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ABSTRACT
Much of the knowledge available on the web today comes as
a result of fruitful collaborations among large groups of peo-
ple. One of the most striking examples of successful web col-
laboration is the online encyclopedia Wikipedia. The web is
used as a collaboration platform by highly specialized blog-
ging communities and by the scientific community. An im-
portant reason for the richness of content generated through
web collaborations is that the participants in such collabo-
rations are not constrained by geographic location. Thus,
like-minded individuals from across the world can join their
efforts. This also means, however, that web collaborators of-
ten do not know each other, and, thus, finding collaborators
on the web is more difficult than it is with more traditional
forms of collaboration that are initiated based on acquain-
tance. This difficulty is further exacerbated by the fact that
web collaborations tend to be more dynamic as participants
join and abandon communities. We consider the task of rec-
ommending project-specific potential collaborators to web
users and propose an approach that is based on statistical
relational learning. Our proposed model thus has the ad-
vantages that it can include complex features composed of
multiple properties and relationships of the entities, it can
handle the high levels of noise and uncertainty inherent in
user actions, and it allows for joint decision-making, which
leads to more accurate predictions. To ensure scalability,
our model is trained in an online fashion. We demonstrate
the effectiveness of our approach on a data set collected from
Wikipedia.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

1. INTRODUCTION
A wealth of knowledge on a wide range of subjects is freely

available on the web. Much of this content is being gener-
ated through the collaboration of large groups of people,
and to a great extent, its richness is due to the fact that
collaborations on the web are not constrained by geographic
location. Thus, even users passionate about highly specific
or unusual topics can form fruitful interactions with others
who share their interests. One of the most striking examples
of successful web collaboration is the Wikipedia online ency-
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clopedia, where high quality comprehensive content is being
generated and refined by “ordinary” people. Collaboration
on the web happens also in more informal settings, such as in
blogs. For example, a sizable community of crafts bloggers
in geographically diverse locations are contributing a rich
repository of techniques, patterns, and projects. While pre-
viously such knowledge was documented in books by single
individuals or as “folklore” through personal acquaintances,
now bloggers who have never met can build on each other’s
ideas, thus leading to more dynamic progress. The web is
used as a collaboration platform also by the scientific com-
munity. For example, the peer review process is supported
by web applications that allow researchers from all over the
world to coordinate their reviewing efforts.

A characteristic typical of web collaborations that is due
to their ability to transcend geographic constraints is that
their participants frequently do not know each other. Unlike
more traditional forms of collaboration where the members
of a team know each other personally and often work in the
same building, web collaborators frequently know each other
only through aliases. Moreover, collaborations on the web
tend to be more dynamic. Wikipedia editors come and go,
new blogs get started, whereas others become defunct, and
new members join the research community. Thus, the set of
collaborators in a web community is in a constant state of
flux. From the point of view of particular users, this means
that they need to remain on the look-out for new poten-
tial collaborators to replace the ones that become inactive.
These considerations motivate the need for modeling web
users from the perspective of their collaborations so that
new collaborators can be suggested to them automatically.

Problem Definition: Because web users often work on
several possibly unrelated projects in parallel, it is essential
to be able to match the ongoing projects of a user with her
potential collaborators according to their interests. Thus,
in this paper we study the task of recommending project-
specific potential collaborators to a web user. We formalize
this task as follows. There are two sets of entities: the set
of users U and the set of projects P. The set of projects
of a user U is denoted by PU ⊂ P. For a given user U
and each of her projects P ∈ PU , the goal is to recommend
as potential collaborators users from U \ {U} whose inter-
ests align closely with P . To make such recommendations,
systems can use two sources of information – the intrinsic
properties of each entity, as well as the relationships that
connect entities. Thus, the sets P and U can be seen as
annotated nodes in a large graph G, whose labeled edges
represent relationships of different kinds. For example, two



projects may be connected by an edge to indicate that one of
the projects references the other; an edge between two users
may indicate that they exchanged messages; and a user can
be linked to a project to indicate that the user is an active
contributor to the project.

Recommendations for future collaborations can be signif-
icantly improved by taking advantage of these relationships
in order to allow for predictions to be made collectively.
For example, to assign potential collaborators to a given
user U ’s projects, a system might consider each possible
collaborator-project (C, P ) pair independently of the oth-
ers and determine its viability based on the characteristics
shared between P and C’s own projects PC , such as similar
text or shared categories. However, by considering all (C, P )
pairs jointly, accuracy can be improved. For instance, con-
sider a situation where two of U ’s potential collaborators,
C1 and C2, interact frequently. Then, because users who
communicate often typically share interests, if we inferred
that C1 is relevant to a project P , we might infer that C2

is also relevant to P , even if there was insufficient evidence
to conclude this based just on the characteristics of P and
C2’s projects. Similarly, based on spurious evidence, we may
conclude that a potential collaborator C3 is also relevant to
P . However, if C3 never communicates with any of the other
users considered relevant to P , our belief in her relevance to
P diminishes.

While the relational information in G can help make rec-
ommendations of significantly higher quality, it can also lead
to approaches that do not scale well. In particular, tech-
niques that perform reasoning over the entire G and require
storing it all at the same time in memory are not applicable
to large-scale web collaboration networks. To address this
challenge, while keeping the benefits of relational informa-
tion, our approach is trained and applied by considering G
in pieces that are streamed one by one, where each piece is
centered at one particular user in U and grown to a small
depth around it.

We explore the task of recommending project-specific po-
tential collaborators to a web user in the context of Wikipedia.
In this setting U consists of the set of Wikipedia editors, and
P corresponds to the set of articles in the encyclopedia. PU

is the set of articles to which a user U is contributing. Two
users U1 and U2 collaborate if they both contribute to the
same article(s), i.e., if PU1 ∩ PU2 6= ∅. The edges in G cor-
respond to a variety of relationships. There are two kinds
of edges between a user U and each of her articles P ∈ PU ,
depending on whether she directly edits P or participates in
discussions regarding P ’s content; two users U1 and U2 are
connected by an edge if they exchange messages, whereas a
directed edge between two articles P1 and P2 indicates that
they hyperlink to each other.

A variety of techniques for learning and reasoning in noisy
and uncertain relational domains have been developed in the
field of statistical relational learning (SRL) [5]. Highly ex-
pressive, SRL models can represent complex features com-
posed of multiple properties and relationships of the entities.
At the same time, because SRL models support probabilis-
tic reasoning, they are well-suited to problems, such as those
arising on the web, that involve using noisy evidence to make
inherently uncertain predictions about user behavior. Our
approach is based on one particular SRL model, Markov
logic networks (MLNs) [24]. In MLNs, features are specified
as first-order logic formulae, each of which has an attached

weight that determines the formula’s relative importance in
the model. Formulae can be viewed as templates that are
instantiated with the entities in a domain to define a Markov
network over the prediction variables. We used MLNs be-
cause the first-order logic syntax of their formulae makes
them intuitive to define and interpret and because a fairly
mature implementation of MLNs is available [9].

For the task of project-specific collaboration recommen-
dation, we defined a set of relational features as the formulae
of an MLN. Each feature can be seen as describing a salient
aspect of a situation in which two users begin collaborating
on a particular Wikipedia article. To ensure the scalabil-
ity of our method, the features are such that, to suggest
collaborators for a particular user U , they need to be evalu-
ated only in a small neighborhood of the relational graph G
around U . Weights on the features are trained in an online
fashion from instances that are streamed one at a time.

The remainder of this paper is structured as follows. Next
we describe the data set used in the experiments and the rep-
resentation we used to ensure scalability. As our approach
is based on MLNs, in Section 3.1, we give MLN background
and in Section 3.2, describe the relational features we de-
fine. In Section 4, we validate our model experimentally
and demonstrate that the addition of global features that
enforce collective decisions leads to significant gains in ac-
curacy. We conclude with a discussion of related work.

2. DATA DESCRIPTION
We collected all Wikipedia articles that appeared in the

featured1 and controversial2 lists in the period Oct. 7-21,
2009. These articles are interesting because they are richly
connected, both by their hyperlinks and by their human net-
work of editors [1]. In this way, we obtained a set P of 3,538
articles. For each article in P, we collected the editors who
contributed to it, either by directly editing the article, or by
editing its“Talk,” i.e., discussion, page. Only edits that were
not marked as“minor”by the editor were considered. In this
way, we obtained a set U of 280,068 editors. In addition,
we collected the hyperlinks among the articles in P. These
articles are densely inter-linked, as indicated by the large
number of hyperlinks (45,006) among them. Wikipedia ar-
ticles often refer to external resources on the Web. In order
to utilize the information in these external pages, for each
article in P, we looked up the categorizations of each of its
external references in the DMOZ open directory3. Because
this information is not available for all URLs, we considered
both exact matches of URLs, for which there were about 0.9
per article in P, as well as exact matches for just the domain
name part of the URL, for which there were about 77 per
article. An editor E1 on Wikipedia can communicate with
another editor E2 by editing E2’s “Talk” page. Thus, we
were able to collect data on the interactions among editors
in U . There were a total of 7,874,985 instances of commu-
nication between pairs of editors in U .

In this work, we are interested in developing a scalable ap-
proach to learning from such richly relational data. To this
end, we represented the data described above as a set of

1http://en.wikipedia.org/wiki/Wikipedia:Featured_
lists
2http://en.wikipedia.org/wiki/Wikipedia:List_of_
controversial_issues
3http://www.dmoz.org/



Figure 1: Sketch of a user-centered subgraph

relational subgraphs, where each subgraph GC is centered
around one of the editors C from U . Each train/test in-
stance consists of a single subgraph. Figure 1 shows a sketch
of such a subgraph. The dark circle on the left represents
the “central” user C from whose perspective the subgraph
is constructed. GC contains all articles PC on which C is
currently working, shown in the figure as the the dotted rect-
angles to which the dark circle points. There are two types
of directed edges from a user to an article, depending on
whether the user directly edited an article or edited the dis-
cussion page associated with it. Each subgraph additionally
includes the set of editors UC , shown as white circles, who
are contributing to at least one of the articles in PC , and for
each of these editors, the set of other articles to which they
are contributing, shown as white rectangles to which the
white circles point. GC also contains undirected edges be-
tween pairs of editors in UC ∪ {C} who have communicated
with one another, and a variety of edges between pairs of
articles to indicate relationships such as hyperlinking to one
another, sharing categories, or having similar text.

Table 1 gives a complete list of the predicates used to
specify GC . Observed edits of articles or articles’ discus-
sion pages are captured by the topicEdit and topicTalk

predicates respectively for non-central users, and the cen-

tralEdit and centralTalk predicates for the central user
of a subgraph. The similar and verySimilar predicates
are pre-computed based on the existing text of the two ar-
ticles at the time when we collected the data. The tf-idf
weighted representation of each article was constructed us-
ing the standard procedure of first performing stemming on
the text (using the Porter stemmer), then removing stop
words [15]. The cat predicate gives the category of each
article, where the categories correspond to the section head-
ings under which articles were listed on the controversial and

featured article lists. There were a total of 19 categories.
To evaluate our model, at test time the links between
UC and PC , corresponding to dashed edges in Figure 1, are
hidden, and the task is to predict them. Because we are
interested in whether or not a collaboration forms, and not
in the exact format of the collaboration, for the hidden links
we do not distinguish between directly editing an article
and editing its discussion page. Thus, all hidden links are
represented by the modifies relation, regardless of whether
a user contributed directly to an article or to its discussion
page. At train time, fully observed subgraphs are provided
as data.

Testing can be set up in a variety of ways. For exam-
ple, one could hide only some of the edges between UC and
PC and provide the rest as evidence. This corresponds to a
scenario where the central user has some existing collabora-
tions, and we would like to recommend new ones. However,
because of the dynamic nature of web collaborations, where
the set of active users is in a constant state of flux and new
projects can be initiated by individual users, we would like
to ensure that our approach does not depend on observed
previous interactions of the potential collaborators with the
projects of the central entity. These considerations have
motivated the adoption of the more challenging test set-up
described above, where all of the edges between UC and PC

are hidden.

3. LEARNING TO PREDICT COLLABORA-
TIONS

Our proposed model for project-specific collaborator rec-
ommendation is represented as a Markov logic network (MLN)
[24]. Before describing the model, we provide background on
MLNs.

3.1 Background
A Markov logic network (MLN) [24] consists of a set of

first-order logic formulae F , each of which has an associated
weight. MLNs can be viewed as relational analogs to Markov
networks, in which the potential functions over cliques are
defined by the groundings of the formulae in F . The role of
first-order logic, therefore, is to provide a highly expressive
language for specifying general relational features. This is
particularly appealing in our task because the domain con-
tains several different relationships (as defined in Table 1)
among entities of different types (e.g., users and projects),
and first-order logic is a natural representation for features
composed of such relationships.

MLNs are appealing as a representation for our task also
because, once their first-order logic formulae are grounded
with a given set of entities (i.e., particular set of users and
projects), they define a Markov network, which provides
principled support for probabilistic reasoning. In particu-
lar, an MLN computes the conditional joint probability of a
set of unknown predicate groundings X, given truth values
for a set of evidence predicate groundings Y as follows:

P (X = x|Y = y) =
exp(

P
fi∈F wini(x, y))P

x′ exp(
P

fi∈F wini(x′, y))
(1)

Above, X and Y are the sets of all unknown and evidence
groundings, respectively, of the predicates in the domain;
x and y are the sets of corresponding truth assignments;
wi is the weight associated with formula fi; ni(x, y) is the



Table 1: Predicates used to specify a user-centered subgraph.
modifies(A, U) Represents the relationship predicted at test time.
topicEdit(A, U) True iff user U directly edited article A.
topicTalk(A, U) True iff user U contributed to the discussion about article A.
centralEdit(A) True iff the central user of the instance edited article A.
centralTalk(A) True iff the central user of the instance contributed to the discussion about article A.
userTalk(U1, U2) True iff U1 and U2 talked to each other.
hyperLink(A1, A2) True iff there is a hyperlink from article A1 to article A2.
similar(A1, A2) True iff the cosine similarity of the tf-idf weighted bag-of-word vector representations of

A1 and A2 is > 0.1 but ≤ 0.5.
verySimilar(A1, A2) True iff the cosine similarity of the tf-idf weighted bag-of-word vector representations of

A1 and A2 is > 0.5.
cat(A, C) True iff article A has category C. The category of each article is the heading under

which it is listed on the controversial or featured articles lists.
level1Exact(A, EC) True iff an external link listed on A has category EC in the first level of the DMOZ

hierarchy.
level2Exact(A, EC) True iff an external link listed on A has category EC in the second level of the DMOZ

hierarchy.
level1Inexact(A, EC) True iff the domain name part of an external link listed on A has category EC in the

first level of the DMOZ hierarchy.
level2Inexact(A, EC) True iff the domain name part of an external link listed on A has category EC in the

second level of the DMOZ hierarchy.

number of true groundings of formula fi on truth assign-
ment x, y; and the denominator computes the normalizing
partition function Z.

Because evaluating the j-th grounding gj
i of formula fi

requires us to consider only the truth values in x, y that
correspond to the grounded literals4 that appear in gj

i , each

grounding gj
i defines a clique over the grounded literals that

appear in it. The value of the potential function over this
clique is exp(wi1(gj

i (x, y) == true)), where 1(A) returns 1
if A evaluates to true and 0 otherwise.

To illustrate, consider a simple MLN that contains a single
formula with weight W :

W : topicEdit(A, U) ∧ similar(A, B)⇒ modifies(B, U) (2)

This formula states that if a user U previously edited an
article A that is similar to one of the existing projects B of
the central user, then U will collaborate on B.

To draw inferences about a particular set of entities, all
groundings of this formula with the given entities are gen-
erated. For example, consider a toy scenario in which the
central user is working on two projects, hong kong and
soccer, there is a single potential collaborator, john, who
edits a single existing project, china. For the sake of illus-
tration, imagine that
similar(china, hong kong) == true and
similar(china, soccer) == false. The relational subgraph
corresponding to this data set is shown in Figure 2 a). The
central user is implicit in the subgraph – while it appears in
the figure, we do not need to name it explicitly. Given these

4A literal is a negated or non-negated atom, where an atom
is defined as a predicate applied to variables or entities in the
domain. A literal is grounded if it contains only entities. For
example, modifies(hong_kong, john) is a grounded literal,
whereas modifies(A, U) is ungrounded.

entities, Formula 2 has the following groundings:

topicEdit(china, john) ∧ similar(china, hong kong)

⇒ modifies(hong kong, john) (3)

topicEdit(china, john) ∧ similar(china, soccer)

⇒ modifies(soccer, john) (4)

Note that we did not form any groundings with
topicEdit(soccer, john) or topicEdit(hong kong, john). This
is because, for convenience in this work we consider the
projects of the central user and those of the potential collab-
orators to be of different types. This is indicated in Figure 1
by the different shading used for the articles edited just by
the potential collaborators and those edited also by the cen-
tral user.

The set X contains the grounded literals
modifies(hong kong, john) and modifies(soccer, john), and
the set Y contains the remaining grounded literals in for-
mulae 3 and 4 above. Because the truth values of grounded
literals in Y are known, we can simplify the above grounded
formulae. Formula 3 becomes
true ∧ true ⇒ modifies(hong kong, john), which can be
further simplified to modifies(hong kong, john). Formula 4
becomes true∧false⇒ modifies(soccer, john). This for-
mula evaluates to true regardless of the value assigned to the
unknown ground literal modifies(soccer, john). Because
such formulae cancel from the numerator and denominator
in Equation 1, they can be safely ignored.

The resulting Markov network contains two disconnected
nodes, corresponding to modifies(hong kong, john) and
modifies(soccer, john) respectively, as shown in Figure 2 b).
The potential function for modifies(hong kong, john) is com-
puted as exp(W1(modifies(hong kong, john) == true)),
whereas the potential function for modifies(soccer, john)
is computed as exp(0). Thus, in our simple toy example,
the Markov network is a logistic regression model whose
features consist of the groundings of Formula 2. In fact,
an MLN defines a logistic regression model whenever each



a) b)

c) d)

Figure 2: Toy example subgraphs (a) and (c), and
their corresponding grounded Markov networks (b)
and (d)

of its formulae contains at most a single unknown literal
(see also http://alchemy.cs.washington.edu/tutorial/4Logistic_Regression.html). The
advantage of using MLNs in this case comes from the con-
venience of defining general relational features that are not
tied to specific entities.

Further advantages are obtained if we use formulae that
contain more than one unknown literal. Consider, for exam-
ple, the formula:

W ′ : userTalk(U1, U2) ∧ modifies(A, U1) ∧ modifies(A, U2)
(5)

This formula suggests that if two users talked to each other,
then they would be relevant collaborators on the same projects.
Continuing the toy example, we introduce a second poten-
tial collaborator, mary, where userTalk(john, mary) = true,
and all other groundings of the userTalk predicate are false.
This is shown in Figure 2 c). Analogous to the example
above, groundings of Formula 5 in which the userTalk lit-
eral is false evaluate to false regardless of the values of
the modifies literals and can therefore be dropped from the
model because they cancel from the numerator and denomi-
nator of Equation 1. Thus, the result of adding this formula
to our MLN is that now the Markov network obtained after
grounding will contain the cliques
{modifies(hong kong, john), modifies(hong kong, mary)} and
{modifies(soccer, john), modifies(soccer, mary)}, as illus-
trated in Figure 2 d). Thus, unlike in the logistic regression
model we obtained earlier, now our model is able to rea-
son about joint assignments of truth values to the unknown
ground literals.

A fairly mature implementation of MLNs is provided in
the Alchemy system [9], in which several algorithms are
available for performing learning and inference. For param-
eter learning, we used the contrastive divergence algorithm,
described in [14], which can be seen as a voted-perceptron-
like gradient descent algorithm, in which the gradient for
updating the weight of a formula F is computed as the dif-
ference between the number of true groundings of F in the
data and the expected number of true groundings of F ac-

cording to the currently learned weights, where the expecta-
tion is computed by carrying out a small number of MCMC
steps over the model. We chose this algorithm because com-
putationally it is relatively cheap, and adapted the existing
implementation in Alchemy such that the data subgraphs
can be streamed one at a time to the learner. For inference,
we used the MC-SAT algorithm, which has been shown to
be very accurate and efficient [20].

3.2 MLNs for Collaborator Recommendation
We address the problem of project-specific collaborator

recommendation by hand-engineering a set of relational fea-
tures as the formulae in an MLN and training weights for
these formulae on available data. We introduce two mod-
els. All rules in the first model contain only a single literal
of the unknown predicate modifies. Thus, as discussed in
Section 3.1, this model corresponds to a logistic regression
classifier whose (Boolean) features are the groundings of the
formulae. We call this model Local because its decisions
are local to each unknown. The second model addition-
ally includes a small set of formulae that contain more than
one literal of the unknown predicate and thus allows for
reasoning over joint assignments of truth values to the un-
known grounded literals. This model is called Global, and,
as shown in the experiments, its predictions are significantly
more accurate than those of Local.

Table 2 shows all formulae in the Local model. The predi-
cates used in the formulae are as described in Table 1, except
that some of the predicates have different versions that in-
dicate the type of article they take as an argument. For
example, the bqSimilar predicate takes as a first argument
a“background”article, i.e., one of the white ones in Figure 1,
and as a second argument a “query” article, i.e., one of the
dotted ones in Figure 1. The first 8 formulae in Table 2
state that a user U will collaborate with the central user on
articles that are in some way related to articles edited by U .
Each of these first 8 formulae is concerned with a different
way in which two articles can be related, by virtue of sharing
content, hyperlinking to one another, or sharing categories.
The second set of 8 formulas is analogous, except that it
relates the articles of the central user to articles to which U
contributed by editing the discussion page.

Table 3 shows the additional set of formulae included in
the Global model in order to allow for joint decisions. These
formulae are analogous to Formula 5 used for illustration in
Section 3.1 and establish different kinds of correlations be-
tween the relevance of two potential collaborators, who in-
teract among each other, to the same article. The first two
formulae assert that two potential collaborators who talk
to each other should be relevant or irrelevant to the same
projects of the central user. The third formula states that
one of the collaborators should be relevant, while the other
one should be irrelevant. This last formula seems to con-
tradict our intuitions; however, it is important to remember
that weight learning can assign a negative weight to it, in
which case, during inference, truth assignments that contra-
dict it would have higher probability than truth assignments
that agree with it.

4. EXPERIMENTS
We compared the performance of the Local model, which

can be viewed as a logistic regression baseline, to that of
the Global model on the data set described in Section 2.



Table 2: Formulae in the Local model
topicEdit(T, U) ∧ bqSimilar(T, T1)⇒ modifies(T1, U)
topicEdit(T, U) ∧ bqVerySimilar(T, T1)⇒ modifies(T1, U)
topicEdit(T, U) ∧ bqHyperLink(T, T1)⇒ modifies(T1, I)
topicEdit(T, U) ∧ bCat(T, C) ∧ qCat(T1, C)⇒ modifies(T1, U)
topicEdit(T, U) ∧ bLevel1Exact(T, C) ∧ qLevel1Exact(T1, C)⇒ modifies(T1, U)
topicEdit(T, U) ∧ bLevel2Exact(T, C) ∧ qLevel2Exact(T1, C)⇒ modifies(T1, U)
topicEdit(T, U) ∧ bLevel1Exact(T, C) ∧ qLevel1Inexact(T1, C)⇒ modifies(T1, U)
topicEdit(T, U) ∧ bLevel2Exact(T, C) ∧ qLevel2Inexact(T1, C)⇒ modifies(T1, U)
topicTalk(T, U) ∧ bqSimilar(T, T1)⇒ modifies(T1, U)
topicTalk(T, U) ∧ bqVerySimilar(T, T1)⇒ modifies(T1, U)
topicTalk(T, U) ∧ bqHyperLink(T, T1)⇒ modifies(T1, U)
topicTalk(T, U) ∧ bCat(T, C) ∧ qCat(T1, C)⇒ modifies(T1, U)
topicTalk(T, U) ∧ bLevel1Exact(T, C) ∧ qLevel1Exact(T1, C)⇒ modifies(T1, U)
topicTalk(T, U) ∧ bLevel2Exact(T, C) ∧ qLevel2Exact(T1, C)⇒ modifies(T1, U)
topicTalk(T, U) ∧ bLevel1Exact(T, C) ∧ qLevel1Inexact(T1, C)⇒ modifies(T1, U)
topicTalk(T, U) ∧ bLevel2Exact(T, C) ∧ qLevel2Inexact(T1, C)⇒ modifies(T1, U)

Table 3: Formulae in the Global model
All formulae from Table 2.
userTalk(U, V) ∧ modifies(T, U) ∧ modifies(T, V)
userTalk(U, V) ∧ !modifies(T, U) ∧ !modifies(T, V)
userTalk(U, V) ∧ modifies(T, U) ∧ !modifies(T, V)

Additionally, we present the performance of a baseline that
predicts randomly.

4.1 Methodology
Training and testing was performed on subgraphs cen-

tered around users who made edits to the encyclopedia on
at least 30 distinct days, had at least 30 collaborators, and
edited at most 15 different articles. These restrictions are
motivated by the observation that collaborator suggestion is
most needed by editors who are strongly engaged with the
encyclopedia, and so contribute to it over extended periods,
but at the same time are focused in their interests. In this
way, we exclude users, such as the “60% of registered users
[who] never make another edit after their first 24 hours” [19],
as well as users who help oversee the editing process and are
therefore somewhat superficially involved in large numbers
of edits, from being central users. However, such users can
still appear as potential collaborators, i.e., as the white cir-
cles in Figure 1. We obtained a total of 1785 subgraphs.

Four-fold cross-validation was performed by splitting the
1785 subgraphs in our data randomly into 4 folds and per-
forming 4 train/test runs, in each run withholding one of
the folds for testing, and training on the remaining three.
Fully observed data is provided during training. As dis-
cussed in Section 2, during testing we hide the truth values
of all groundings of the modifies predicate and test the
models on how well they predict them.

To evaluate a model, we rank the potential project-collaborator
(p, c) pairs according to the probability predicted for the
modifies(p, c) literals by the model, and use two standard
metrics from the information retrieval literature [15]:

• (MAP) Mean average precision, which is identical to
the area under the precision-recall curve. The MAP
score is computed over a set of test subgraphs S as

follows:

MAP(S) =
1

|S|
X
s∈S

1

|Rs|
X

r∈Rs

P@r.

Above, Rs is the set of all possible (p, c) pairs, and the
precision at r is defined as

P@r =
Num of true positive pairs among the top r

r

• (AUC-ROC) Area under the ROC Curve, which is
identical to the mean average true negative rate. This
score is computed as follows:

AUC-ROC(S) =
1

|S|
X
s∈S

1

|Rs|
X

r∈Rs

TN@r,

where the true negative rate at r is defined as

TN@r =
Number of true negatives below position r

Total num true negatives
.

4.2 Results
Figure 3 shows the experimental results. The observed

differences are significant at the 0.001 level according to a
paired t-test, except for the difference in AUC-ROC between
Random and Local. Local provides a small advantage
over Random in terms of MAP score, but its performance
is statistically indistinguishable from Random in terms of
AUC-ROC. On the other hand, the addition of the three
simple formulae from Table 3 leads to significant perfor-
mance gains on both scores, demonstrating the usefulness
of Global’s collective predictions in this domain.

Training of both the Local and Global models was very
efficient. Using dedicated Intel Xeon 2.67GHz CPUs, aver-
age training time per subgraph on average was 0.11 seconds
for Local and 0.21 seconds for Global.

5. RELATED WORK
The problem of collaborator suggestion has been addressed

by several other authors, although, to the best of our knowl-
edge, previous work does not specifically target the setting of
highly dynamic collaborations on the Web. Existing work
on this topic has focused on an academic setting. Zaiane



Figure 3: Accuracy of the different models. All dif-
ferences are significant at the 0.001 level, except for
the difference in AUC-ROC between Local and Ran-
dom.

et al. [25] use DBLP data to recommend research collabora-
tions and find research communities by developing a random
walk algorithm that is based on a tripartite representation of
DBLP data consisting of author, conference, and topic infor-
mation. Relevancy scores are computed by running an ex-
tension of the transitional random walk algorithm over this
tripartite graph. In [13], relevancy scores are derived based
on two metrics – correlation and cooperation. Correlation is
expressed in terms of two authors’ mutual interest in differ-
ent research areas, and cooperation is expressed in terms of
their common collaborators. In [11], the task of predicting
author collaborations is cast as link prediction in social net-
works. A variety of social network analysis measures, such
as common neighbors, Jaccard coefficient, PageRank, and
Hitting time, are proposed and evaluated according to their
accuracy in predicting collaborations.

There are two main difficulties associated with applying
these techniques in our setting. First, our focus is on ap-
proaches that, unlike techniques based on random walks, do
not need to perform computations over the entire collabo-
ration graph, but, rather, compute features only over small
subgraphs centered around the user for whom recommenda-
tions are made. Such approaches are more likely to scale
in the much more dynamic Web collaboration setting. Sec-
ond, in order to ensure that our model can address the most
challenging, worst-case, scenario in which a central user’s
previous collaborators have all become inactive (not an un-
likely event in a web setting), during testing, we hide all links
between a central user’s articles and her potential collabo-
rators, thus simulating the case where a new set of collabo-
rators is suggested. For this reason, techniques that require
observations of previous shared projects between users can-
not be applied. Furthermore, unlike the approach presented
here, techniques that make recommendations based on rele-
vance scores do not involve learning and use only structural
features, not taking into account attributes of the authors
or the document contents. In contrast, our approach can
incorporate a variety of structural and content features and
learn the relative importance of such features. Finally, the
approaches outlined above do not make joint recommenda-
tions, which, as shown in Section 4, can lead to significant
gains in accuracy.

The approach of Gunawardena and Weber [7] finds pro-

totypical collaborations by mining previous successful col-
laboration experiences. Prototypical collaborations are ab-
stractions of collaborations at the level of subject area, e.g.,
Mathematician + Computer Scientist. After inferring a
database of such prototypical collaborations, actual collab-
orators are found by utilizing expert locating systems. This
approach is much better-suited to scientific collaboration
than to other domains such as Wikipedia, as authors do
not usually list their profession, in addition to the fact that
Wikipedia is based on the idea that it can be edited by or-
dinary people and is not exclusive to professionals.

A related problem is that of team formation. For ex-
ample, Lappas et al. [10] study this problem in the setting
where social network information is available and show how
to use this additional information to assemble a team whose
members can work together well. While related, research on
team formation differs from the problem addressed here in
several important aspects. First, the goal of team formation
is to assemble a group of collaborators for a single project;
in contrast, our focus is on suggesting collaborators for all
the projects of a user simultaneously. Second, in our setting
no explicit information on the skills of potential collabora-
tors is available. Finally, in contrast to the work of Lappas
et al. [10], where social network information is used to en-
hance team cohesion, here interactions among users indicate
shared interests.

On the surface, the problem studied here is closely aligned
to the task addressed by collaborative filtering. Collabora-
tive filtering has been successfully applied to predict a user’s
rating for an item by observing a partial list of her ratings [6,
23, 2, 8, 12]. Unobserved ratings are predicted by employ-
ing ratings of like-minded users, where the set of like-minded
users is determined by correlating the similarity of their rat-
ings with the current user’s ratings. One could try to cast
project-specific collaborator recommendation as a collabo-
rative filtering task in two ways. The first approach is to
view the potential collaborators as “items.” In this scenario,
the goal could be to predict the rating given by the central
user to each of these “items.” This formulation, however,
does not allow for project-specific recommendations. More-
over, it requires observations of previous shared collabora-
tors between the central entity and other users, who also
collaborated with some of the “items.” Such observations
are not available in our case. A second approach could be to
treat the (dotted in Figure 1) articles of the central user as
“items”and the potential collaborators as users whose rating
for each of the items we would like to predict. While such an
approach would allow for project-specific recommendations,
applying it requires that at least some of the (dashed in Fig-
ure 1) links between the central user’s articles and the po-
tential collaborators be observed. To overcome the need for
previously observed collaborations, our approach compares
articles based on their content and other features. In this re-
spect, our approach is more akin to techniques that also use
content-based information to make recommendations, e.g.,
[22, 16]. The model proposed here, however, additionally in-
corporates various structural features, as well as interactions
among the users, which allow for joint predictions.

Our work builds on the extensive literature on collective
classification, relational data mining, and statistical rela-
tional learning, e.g., [3, 18, 5, 4]. The proposed approach
is most closely related to previous applications of MLNs,
e.g., [21, 17]. Our results confirm the conclusions drawn in



a variety of previous tasks in which joint predictions based
on relational information were significantly more accurate.
In this paper, we are able to maintain these benefits of col-
lective prediction while trimming training subgraphs to a
reasonable size.

6. CONCLUSIONS AND FUTURE WORK
This paper addresses the task of project-specific collabo-

rator recommendation on the web. Our approach is imple-
mented as an MLN and benefits from the ability to define
complex relational features and to perform principled prob-
abilistic inference over joint predictions. At the same time,
training is performed in an online fashion, considering only
small subgraphs of the domain at any given time step. We
evaluated the proposed approach on a data set collected from
the Wikipedia online encyclopedia and demonstrated that
the ability to perform joint predictions is essential in this
setting. Avenues for future work include evaluating analo-
gous models in other web collaboration settings, e.g., among
bloggers, and investigating the usefulness of additional rela-
tional features.
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