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Abstract. Annotation graphs, made available through the Linked Data
initiative and Semantic Web, have significant scientific value. However,
their increasing complexity makes it difficult to fully exploit this value.
Graph summaries, which group similar entities and relations for a more
abstract view on the data, can help alleviate this problem, but new meth-
ods for graph summarization are needed that handle uncertainty present
within and across these sources. Here, we propose the use of probabilistic
soft logic (PSL) [1] as a general framework for reasoning about annota-
tion graphs, similarities, and the possibly confounding evidence arising
from these. We show preliminary results using two simple graph summa-
rization heuristics in PSL for a plant biology domain.

1 Introduction

The Linked Data initiative and Semantic Web technologies have been very suc-
cessful in providing access to a diversity of data collections. Of particular interest
are annotation graphs, where scientific concepts are tagged with controlled vo-
cabulary terms from ontologies or thesauri. As these collections grow, tools and
techniques to analyze, explore and inspect such data become ever more impor-
tant. In this paper we consider the problem of mining the richly curated anno-
tation graphs, in conjunction with the wealth of semantic knowledge encoded
within ontologies, to create graph summaries. Graph summaries group entities
and relations based on similarity as well as local graph structure, thus creating
a graph at a higher level of abstraction that can be easier to analyze. This can
help the scientist to understand the underlying evidence, to find patterns, and
to make predictions.

Linked Data can provide multiple rich and possibly confounding sources of
evidence about concepts. As a motivating example, we consider an annotation
graph from the domain of plant biology. The nodes in this graph are genes from
the model organism Arabidopsis thaliana (these are the concepts) as well as
terms from both the Gene Ontology (GO) and the Plant Ontology (PO) (these
are the annotations). Edges represent annotations of genes with such terms.
Other sources of information of interest include sequence-based similarity be-
tween pairs of genes, co-occurrence frequencies of pairs of GO terms, taxonomic



distances between pairs of PO or pairs of GO terms, etc. This evidence may
be confounding; for example, genes can have high sequence based similarity to
other genes in their same family. However, more useful evidence may be that
they share high GO functional similarity with genes in unrelated families (with
or without high sequence similarity).

We propose the use of probabilistic soft logic (PSL) [1] as a general framework
for reasoning about annotation graphs, similarities, and the possibly confound-
ing evidence arising from these. PSL is a framework for collective, probabilistic
reasoning in relational domains that directly exploits available similarities. It
uses rules to capture the dependency structure of the domain, based on which it
builds a joint probabilistic model over the data. This allows us to easily encode
the annotation graph, similarity information for nodes, and a number of graph
summarization heuristics, and to explore the effect of these heuristics on the
resulting graph summaries. In this work, we show preliminary results from two
simple heuristics.

2 Motivating Example and Problem Setting

We use an example annotation graph from the plant biology domain to present
our goals for graph summarization. We also use this domain for our experimental
evaluation in Section 6. The graph represents gene annotation data for the model
organism Arabidopsis thaliana, which originates in The Arabidopsis Information
Resource (TAIR).3 Each gene in TAIR is annotated with terms from the Plant
Ontology (PO) and from the Gene Ontology (GO). A fragment of the resulting
annotation graph is illustrated in Figure 1, with PO terms on the left, genes in
the center, and GO terms on the right.

For a scientist exploring a set of genes of interest within a biological context,
e.g., genes related to light-mediated development, finding regularities in such a
graph can provide useful information. Our goal is to facilitate this process by
providing summaries of the graph, that is, by grouping together nodes (and
edges). The grouping can exploit multiple sources of evidence including explicit
similarity between pairs of nodes, or shared annotations. For ease of illustration,
we drastically simplify the graph to the topmost part of Figure 1, shown on
the left in Figure 2. On the right, Figure 2 shows a possible graph summary,
where three pairs of nodes have been grouped into three supernodes or clusters,
and sets of edges between all pairs of nodes in adjacent clusters are represented
by single edges between clusters. However, for real-world graphs, many clus-
terings are possible, and so different heuristics and combinations of heuristics
may be appropriate for different graphs. In this work, we show how two such
heuristics can be easily incorporated into a probabilistic framework, but others
are certainly possible. Future work can extend this approach by incorporating
additional heuristics and adapting heuristics to different graph-summarization
tasks.

3 http://www.arabidopsis.org
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Fig. 1. Part of the annotation graph: PO terms (left), genes (middle), and GO terms
(right).
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Fig. 2. Example subgraph (left) and a possible summary for it (right).

The first is an annotation link heuristic: We would like to cluster nodes that
share a large fraction of their neighbors in the annotation graph. For instance,
the two PO terms “cauline leaf” and “shoot apex” both annotate genes PHOT1
and CRY2 in our example, and there are no genes that are annotated with only
one of these terms. The terms are thus similar in terms of the link structure
they participate in, which supports clustering them. On the GO side, the same
argument holds for “vacuole” and “stomatal movement”, but not for “response to
water deprivation”, which only annotates CRY2. Clearly, the direct link structure
alone does not provide sufficient evidence to decide whether the latter term
should be added to the GO cluster or not. Choosing to include the term in the
cluster would correspond to implicitly assuming that the term should actually
annotate PHOT1 as well, and thus allow one to predict a new link, whereas the
latter would tend more towards accepting the absence of such a link. Finally, we



observe that the two gene nodes share four out of their five neighbors, which can
still be viewed as a relatively strong indication to cluster them.

Next, we consider explicit similarities between pairs of nodes. Such additional
information could help deciding whether the third GO term should be included in
the cluster. For this we use the sequence based similarity between pairs of genes
and information retrieval based metrics between pairs of annotation terms. For
instance, amongst the extensive statistics published by the GO Consortium, the
annotation co-occurrence of pairs of GO terms has significant biological mean-
ing and is a good predictor of new function. For the GO term response to

water deprivation, stomatal movement is the 5th highest co-occurring term;
for the reverse case the rank is 11. Incorporating a similarity measure between
GO terms into the graph summarization process might thus provide additional
evidence in favor of clustering all three terms in the example and further pre-
dicting the “response to water deprivation” annotation on PHOT1. This would
help the biologist understand the new functional annotation of PHOT1 and also
understand that there is a posssible interaction between CRY2 and PHOT1.

To be able to exploit this similarity information, we introduce a similarity
heuristic: we prefer to cluster nodes that are similar according to some available
similarity measure. Recall however that this may also introduce conflicting evi-
dence. For instance, the two genes in our example belong to different groups of
blue light receptors and are therefore dissimilar in terms of sequence similarity,
but similar in terms of their annotations in the graph.

We integrate the multiple types of evidence from the annotation links, the
various similarity metrics, and the two graph summarization heuristics within a
probabilistic model using PSL. We discuss this model in more detail in Section 5,
after an introduction to PSL in Section 4.

3 Related Work

Graph summarization as broadly considered in this paper is a form of multi-
relational clustering that exploits attributes of the nodes or objects to be clus-
tered, as well as additional relational features or properties in which these nodes
participate [2–4]. Multi-relational clustering aims at grouping nodes in hetero-
geneous, multi-relational networks, i.e., networks with both multiple types of
nodes and multiple types of relationships between nodes. The clusters group
nodes based on their similarities, where the value is either given explicitly, or
derived from node attributes or relations between nodes of the same or differ-
ent type(s). There is a large body of work on multi-relational clustering, and
methods include matrix factorization approaches, generative models, and other
optimization methods. Other work on graph summarization explores summa-
rization techniques that can be tailored to user needs and which scale to large
graphs with minimal loss [5–8]. Our proposed approach makes use of the no-
tion of examplars, used in methods such as affinity propagation [9], to denote
the elements which are chosen as the canonical representation for nodes in each
cluster. Besides multi-relational clustering and graph summarization, there is a



broad range of other mining and analysis techniques for heterogeneous informa-
tion networks, cf. for instance [10].

Probabilistic soft logic (PSL) [1] combines ideas from fuzzy logic [11] and
graphical models. Similar to Markov Logic [12], it uses first order logic as a
template language for a graphical model. However, its use of soft truth values
turns inference from a discrete into a continuous optimization task, which can
be solved efficiently.

4 Probabilistic Soft Logic

Probabilistic soft logic (PSL) [1] is a framework for collective, probabilistic rea-
soning in relational domains. PSL uses rules to capture the dependency structure
of the domain, based on which it builds a joint probabilistic model over all atoms.
Each rule has an associated non-negative weight that captures the rule’s relative
importance. Furthermore, PSL uses soft truth values in the interval [0, 1], which
allows one to directly incorporate similarity functions into the logical model. We
refer to Broecheler et al. [1] for full technical details and instead illustrate the
key concepts in the context of the following example program:

w1 : exemplar(A,B)→ similar(A,B) (1)

w2 : link(A,B) ∧ exemplar(A,C) ∧ exemplar(D,C)→ link(D,B) (2)

Here, for simplicity of presentation, we assume w1 = w2 = 1. Consider any
concrete nodes a, b, c, and d instantiating logical variables A, B, C, and D
respectively. The first rule states that if a is in the cluster exemplified by b, they
should be similar (similarity heuristic), whereas the second states that if a and d
are both in the cluster exemplified by c, and a has a link to b, then d should also
have a link to b (link heuristic). While PSL shares the syntax of its rules with
first order logic, PSL uses soft truth values from the interval [0, 1] instead of its
extremes 0 (false) and 1 (true) only. Given a set of atoms ` = {`1, . . . , `n}, we call
the mapping I : ` → [0, 1]n from atoms to soft truth values an interpretation.
PSL defines a probability distribution over interpretations that makes those
satisfying more ground rule instances more probable.

To determine the degree to which a ground rule is satisfied, PSL uses the
Lukasiewicz t-norm and its corresponding co-norm as the relaxation of the log-
ical AND and OR, respectively. These relaxations are exact at the extremes,
but provide a consistent mapping for values in-between. Given an interpretation
I, the formulas for the relaxation of the logical conjunction (∧), disjunction (∨),
and negation (¬) are as follows:

`1 ∧̃ `2 = max{0, I(`1) + I(`2)− 1},
`1 ∨̃ `2 = min{I(`1) + I(`2), 1},
¬̃ l1 = 1− I(`1),

where we use ˜ to indicate the relaxation from the Boolean domain. For a ground
rule r ≡ rbody → rhead ≡ ¬̃ rbody ∨̃ rhead, where rbody and rhead are logical formu-
las composed of atoms and the logical operators defined above, an interpretation



I over the atoms in r determines whether r is satisfied, and, if not, its distance
to satisfaction. Abusing notation, we can expand the usage of I to also denote
the truth assignments to logical formulas induced by assignments to atoms and
applying the definitions of the logical operators in the formula, i.e., I(r) is the
truth value that results from applying the logical operators in r to the truth
values of atoms in r given by I. Then, given I, r is satisfied, i.e., I(r) = 1, if and
only if I(rbody) ≤ I(rhead), that is, the head has at least the same truth value
as the body. Again, this coincides with the usual definition of satisfaction of a
rule when truth values are restricted to 0 and 1. The rule’s distance to satisfac-
tion under interpretation I then measures the degree to which this condition is
violated:

dr(I) = max{0, I(rbody)− I(rhead)} (3)

For instance, consider the interpretation I = {link(a, b) 7→ 1, exemplar(a, c) 7→
0.9, exemplar(d, c) 7→ 0.8, link(d, b) 7→ 0} and let r be the corresponding ground
instance of Rule (2) above. We get I(rbody) = max{0, 1 + 0.8 + 0.9 − 2} = 0.7
and thus dr(I) = max{0, 0.7− 0} = 0.7, whereas the distance would be 0 if the
head had truth value 0.7 or greater.

Given a set of atoms ` of interest, a PSL program induces a distribution over
possible interpretations I. ` first induces a set of ground rules R, which contains
every possible ground rule r such that r can be obtained by performing variable
substitution on one of the rules in the program and each atom mentioned in r
is in `. The probability density function f over I is:

f(I) =
1

Z
exp[−

∑
r∈R

λr(dr(I))p] ; Z =

∫
I

exp[−
∑
r∈R

λr(dr(I))p] (4)

where λr is the weight of the rule r, Z is the continuous version of the normaliza-
tion constant used in discrete Markov random fields, and p ∈ {1, 2} determines
the loss function for minimizing the distance from satisfaction. If p = 2 the loss
function is quadratic and the distance from satisfaction for each ground rule is
squared. Constraints can be imposed on interpretations and the domain updated
accordingly, for instance, requiring a predicate to be functional. Also, the den-
sity function can be conditioned on a partial interpretation and the domain and
definitions of distances to satisfaction updated accordingly.

Finding the most probable interpretation in PSL is an instance of MPE
inference. Maximizing the density function f(I) is equivalent to minimizing the
summation in the exponent. This optimization problem, if subject only to linear
equality and inequality constraints on the interpretation, can be solved efficiently
by casting it as a second-order cone program [1].

5 A PSL Model for Graph Summarization

Figure 3 lists the set of PSL rules used in this work for graph summarization
in annotation data. Different subsets of these rules are experimentally evaluated
and compared in Section 6. We model similarity of pairs of nodes of the same type



exemplar(A,B) → similar(A,B) (5)

exemplar(A,B) → exemplar(B,B) (6)

link(A,B) ∧ link(C,B) ∧ exemplar(A,D) → exemplar(C,D) (7)

link(A,B) ∧ exemplar(A,C) ∧ exemplar(D,C) → link(D,B) (8)

Fig. 3. PSL rules for graph summarization as discussed in Section 5 and experimentally
evaluated in Section 6. Labels refer to the introduction of rules in the text.

with predicate similar/2 and relations between pairs of nodes of different types
with predicate link/2. Both predicates are symmetric. Note that while these
predicates allow us to easily write general rules for all types of links and nodes
appearing in the data, the inference engine takes into account the node types
during grounding and thus ensures that clustering respects the types. Given
truth values for all relevant atoms of these two predicates, the task of inference
is to infer truth values of the remaining predicate exemplar/2, which encodes
clusters. More specifically, the truth value of an atom exemplar(a, b) indicates
whether node a is a member of the cluster that has node b as its exemplar. We
constrain exemplar/2 to be a functional predicate, that is, the truth values of
all its groundings using a given node a as first argument have to sum to one. We
also set a small prior on exemplar/2, further limiting its groundings.

In the following, we discuss the individual rules in more detail, showing how
they encode the clustering heuristics introduced in Section 2 as probabilistic
dependencies.

5.1 Similarity Heuristic

We start with the similarity heuristic, which indicates that pairs of similar nodes
of the same type should probably be clustered. It is modeled by the first PSL
rule:

exemplar(A,B)→ similar(A,B) (5)

This rule connects truth values of similar/2, which are given, to those of
exemplar/2, which are inferred. For a pair of nodes (a, b) with low similarity,
the rule is only satisfied for low truth values of exemplar(a, b). In other words,
it encourages node a to choose a different, more similar exemplar. If a and b are
highly similar, on the other hand, a wider range of truth values for exemplar(a, b)
will satisfy the rule, making it possible for a to choose b or another node as its
exemplar without penalty.

We further encourage clusters with a single exemplar, which is modeled by
the second PSL rule:

exemplar(A,B)→ exemplar(B,B) (6)



This rule breaks chains of exemplar choices by penalizing situations where a node
that is chosen as exemplar by some node in the cluster does not choose itself as
exemplar. As truth values of exemplar/2 atoms are inferred during clustering,
this rule can propagate information in both directions. If the truth value of
exemplar(b, b) is low for a given node b, it will encourage low truth values for
all atoms exemplar(a, b) with other nodes a as first argument. Conversely, each
atom exemplar(a, b) with high truth value encourages a high truth value for
exemplar(b, b).

5.2 Annotation Link Heuristic

The following two PSL rules model the annotation link heuristic:

link(A,B) ∧ link(C,B) ∧ exemplar(A,D)→ exemplar(C,D) (7)

link(A,B) ∧ exemplar(A,C) ∧ exemplar(D,C)→ link(D,B) (8)

Rule (7) states that a shared neighbor is an indication that two nodes should
be clustered. Consider a pair of candidate nodes a and c for clustering, and keep
the exemplar d and the node b on the other side fixed. Due to symmetry, we
get two groundings of the rule, one replacing A with a and C with c, the other
replacing A with c and C with a:

link(a, b) ∧ link(c, b) ∧ exemplar(a, d)→ exemplar(c, d) (9)

link(c, b) ∧ link(a, b) ∧ exemplar(c, d)→ exemplar(a, d) (10)

During clustering, the truth values of link/2 atoms are fixed to either 1 (link
exists) or 0 (link does not exist). If one of the two links does not exist, both
groundings are trivially satisfied, as their bodies will have the minimal truth
value 0. If they both exist, the rules simplify to

exemplar(a, d)→ exemplar(c, d) (11)

exemplar(c, d)→ exemplar(a, d) (12)

and thus encourage the truth value of exemplar(a, d) to be at most and at
least that of exemplar(c, d), respectively. In other words, the two nodes should
agree in the degree to which they choose that specific exemplar and its corre-
sponding cluster. Note that the influence of this rule grows with the number of
joint neighbors the two candidates for clustering share, as those will produce
individual groundings.

While Rule (8) again involves a pair of nodes that are candidates for cluster-
ing (a neighboring node and an exemplar), due to its different form, it encodes
a different dependency. Consider the grounding

link(a, b) ∧ exemplar(a, c) ∧ exemplar(d, c)→ link(d, b) (13)

As truth values of link/2 are fixed to either 0 or 1, this grounding is trivially
satisfied if there is no link between a and b (in which case the truth value of the



body is minimal) or if there is a link between d and b (in which case the truth
value of the head is maximal). The interesting case is thus the one where there
is a link between a and b, but no link between d and b.4 In this case, the rule
increases the probability that

exemplar(a, c) ∧̃ exemplar(d, c) ≤ 0 (14)

In words, the rule will be satisfied in this case if and only if the truth values of
the two exemplar/2 atoms sum to at most 1, thus encouraging the two nodes
not to strongly agree on a joint exemplar. The influence of this rule grows with
the number of neighbors on which a and d disagree. Together, the two rules
thus allow one to take into account both shared and unshared neighbors during
clustering.

6 Evaluation

The goals of graph summarization include identifying patterns and making pre-
dictions in the annotation graph. We use prediction, specifically the task of
predicting missing links, to explore the utility of the simple heuristics from Sec-
tion 5. In our experimental setting, the missing links are links between genes and
GO terms in the annotation graph for the model organism Arabidopsis thaliana,
as described in Section 2. We begin by generating graph summaries using the
rules described ealier. Next, we use this model to predict gene-GO annotations.

In addition to the GO, gene and PO annotation graph, we consider gene-gene
sequence-based similarity,5 as well as PO-PO path based distances from the PO
ontology and GO-GO path based distances from the GO ontology. These are rep-
resented as similar/2 atoms between nodes of each of the three types within the
graph: PO terms, genes and GO terms. In our model, all instances of similar/2
atoms are treated uniformly; however, they are computed using different simi-
larity metrics. All other relations from the data are link/2 atoms between nodes
of different types. Although the type of each node in the graph could be repre-
sented explicitly and used in the rules to control the graph summaries, e.g., to
ensure that no cluster contains both PO and GO terms, in our implementation
we only consider relations between nodes where a relation of that type might
exist between nodes of those types. Further, in the grounding of the atoms in
the data, we make each similar/2 atom symmetric by asserting its inverse, and
we do the same for link/2 atoms.

Using each graph summarization program, we infer the exemplar/2 atoms
forming clusters with soft membership, which is the input to our link predic-
tion program. To then evaluate our link prediction using graph summaries, we
perform leave-one-out evaluation. Specifically, for each link in the original anno-
tation graph we first remove the link and compute the graph summary. We then

4 Note that we get a symmetric grounding that affects the opposite case as well.
5 We compute pair-wise sequence similarity between pairs of genes using the

Nucleotide-Nucleotide BLAST 2.2.26+ package.



predict missing links. We sort the predicted links based on their truth values,
and we interpret the truth values as the confidence in the prediction. We calcu-
late the link prediction precision with recall of one, and we report on the mean
average precision computed over all leave-one-out links.

Many combinations of heuristics could be explored for the summarization and
prediction programs, so we chose the following four configurations to evaluate.
The first configuration (LINK1) uses Rule (7) for graph summarization and
link prediction. The second configuration (LINK2) is the same as LINK1 but
it uses Rule (8) in place of Rule (7). The third configuration (SIM1) uses only the
similarity rules for graph summarization and adds Rule (7) for link prediction.
The fourth configuration (SIM2) is the same as SIM1 but uses Rule (8) in
place of Rule (7). Each configuration also uses Rule (5) and Rule (6). All rules
have weight one except Rule (6) which has a high weight, 1000, to encourage
distinct clusters by breaking chains of exemplar/2 atoms. Learning individual
weights for these rules may be beneficial, but we do not consider it in this work.

Finally, we choose the loss function for minimizing the distance from satis-
faction, which is set by p in (4). In each configuration, we use the linear loss
function for the graph summarization program and the quadratic loss function
for the link prediction program. We use the quadratic loss function for the link
prediction programs for two reasons. First, inference with quadratic loss is more
expensive than with linear loss, so for the interest of time we only use it on link
prediction, which is less expensive than graph summarization. Our link predic-
tion programs are less expensive, in part, because inferring link/2 atoms involves
a smaller number of rules than inferring exemplar/2 atoms. Second, quadratic
loss tends to assign link/2 atom truth values between rather than at the ex-
tremes, 0 or 1, more often than linear loss, and this is helpful when ranking
predicted links to calculate precision.

6.1 Results

Table 1 describes the TAIR annotation graph data sets we used for evaluation.
The first two data sets (DS1 and DS2) have fewer genes but more terms and
annotations over all than the last data set (DS3). Table 2 reports mean average

Table 1. The evaluation data sets. The number of genes, Plant Ontology terms, Gene
Ontology terms, PO-to-gene annotation links and GO-to-gene annotation links.

DS1 DS2 DS3

Genes 10 10 18

PO Terms 53 48 40

GO Terms 44 31 19

PO-Gene 255 255 218

GO-Gene 157 157 92

precision (MAP) on the evaluation data sets for each PSL model configuration.



Considering the LINK1 and LINK2 configurations across all data sets, we see
that Rule (8), used in the latter, consistently has higher precision than Rule (7),
used in the former. Rule (8) is also used in SIM2 where it similarly has higher
precision than the other link rule in SIM1 across all data sets.

Now considering precision across data sets, on DS3 both LINK2 and SIM2
perform well compared to previous link prediction results on similar annotation
data [5]. However, none of the configurations perform well on DS1 and DS2. To
interpret this result we convert the clusters to hard membership, calculate the
average number of clusters of size greater than one produced by each configura-
tion and normalize by the number of nodes in the data set. This is shown in the
right side of Table 2.

Using this information, we see a small number of clusters formed in DS1
and DS2 and a larger number formed in DS36 except where Rule (7) is used.
This suggests that Rule (8) is helpful for link prediction on this data and may
be helpful for clustering; on the other hand, Rule (7) is not helpful for clustering
or link prediction on this data, and may interfere with the use of similarity
attributes in clustering. Finally, this also suggests that neither annotation link
heuristic rule works well for prediction on graphs where we find few clusters of
size greater than one. Since, for example in Rule (8) the truth value of inferred
link/2 atoms is bounded only when there are multiple nodes A and D in the
same cluster, this result is not surprising.

Table 2. Mean average precision of link prediction for evaluated PSL model configu-
rations on each data set. Also, the average number of clusters of size greater than one,
divided by the number of nodes in the data set.

Configuration MAP Clusters
DS1 DS2 DS3 DS1 DS2 DS3

LINK1 0.01 0.00 0.01 0.01 0.01 0.01

LINK2 0.06 0.04 0.30 0.03 0.03 0.10

SIM1 0.01 0.00 0.01 0.01 0.01 0.12

SIM2 0.07 0.12 0.28 0.01 0.01 0.12

7 Conclusions and Future Work

In this work, we demonstrated an exploratory use of graph summarization heuris-
tics in probabilistic soft logic (PSL) on annotation graph data, combining rela-
tional and similarity evidence from multiple, heterogeneous sources. The power
of the approach is the ease in which a variety of clustering criteria can be declar-
atively expressed. Our work, which is ongoing, will continue to explore the space
of graph summarization rules for combining data from rich sources, such as the

6 A similar pattern of cluster sizes emerges when a version of these graphs is clustered
using a separate method similar to [5].



gene sequences, annotations and term ontologies used in this work and other
sources now made available through the Linked Data initiative and Semantic
Web.
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