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1 Introduction

Variational methods provide a tractable approximation to the intractable task of computing inference
in probabilistic graphical models. Much of the literature in this field concerns the convexity of the
variational objective, since convexity guarantees convergence to a global optimum. However, less
attention has focused on the strength of the convexity. By this we mean the following.
Definition 1. A differentiable function, ϕ : S → R, of a convex set S, is κ-strongly convex with
respect to a norm ‖ · ‖ iff, for all s, s′ ∈ S, κ

2 ‖s− s
′‖2 + 〈∇ϕ(s), s′ − s〉 ≤ ϕ(s′)− ϕ(s).

Strong convexity enables faster convergence in stochastic optimization [11], and has recently been
shown to improve the stability of inference—that is, the sensitivity of a predictor to perturbations in
the input. This is partially explained by the duality between strong convexity and strong smoothness
[3]. Wainwright [15] used stability to show that learning with a strongly convex variational method
can asymptotically produce a better approximation to the true model than learning with exact in-
ference. Similarly, London et al. [7, 8] showed that predictors that use strongly convex variational
inference have improved PAC generalization guarantees, due to the stability of inference. Kakade
et al. [4] also related the excess risk (i.e., regret) of exponential families to their moduli of convexity.

We are therefore interested in which variational methods are strongly convex. Since the aforemen-
tioned bounds have a O(1/κ) dependence on the modulus of convexity, κ, we would also like to
identify cases in which the modulus is a constant. In what follows, we present new strong convexity
guarantees for two popular variational methods, tree-reweighting and counting number approxi-
mations. We provide conditions under which their respective objectives are strongly convex, with
moduli that do not depend on the number of variables. When combined with existing theory [e.g.,
4, 8, 15], this yields more optimistic generalization and regret bounds.

2 Background and Notation

We first introduce some notation and review definitions that will be useful in discussing our main
results in the following sections. Let X ⊆ Rd denote a compact domain of observations, and
Y ⊂ {0, 1}k a set of k labels, represented by the k-dimensional standard basis (a.k.a. “one-hot”)
vectors. A structured example is a tuple, (x,y, G), where x ∈ X , y ∈ Yn, and G , (V, E) is some
implicit graph topology that represents the interactions between variables.

We consider the following class of Markov networks for classification, which includes many pop-
ular log-linear models [e.g., 6, 12, 14]. The model’s potential functions are organized according
to the nodes and edges of a graph, and parameterized by a vector of weights, w. In practice, the
weights may be tied (i.e., templated) across node (resp. edge) potentials, though this is not critical
to our results. Let θv(yv |x;w) denote the potential for a node v being in state yv ∈ Y , condi-
tioned on observations x ∈ X . Similarly, let θe(ye |x;w) denote the potential for edge e being
in state ye ∈ Y2. Since yv is a vector, we can organize the potentials for v as a vector, θv(x;w);
then, θv(yv |x;w) = θv(x;w) · yv . Similarly, θe(ye |x;w) and ye can be vectorized, such that
θe(ye |x;w) = θe(x;w) · ye. For brevity, when x and w are clear from context, we will simply use
θv or θe.
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Given an example (x,y, G), we ground the model by instantiating θv and yv for all nodes, and θe
and ye for all edges. With θ , ((θv)v∈V , (θe)e∈E) and ŷ , ((yv)v∈V , (ye)e∈E), we can then write
the aggregate potential for (x,y, G) as a dot product, θ · y. This describes a log-linear distribution,
pw(Y = y |X = x) = exp (θ · ŷ − Φ(θ)), where Φ(θ) , log

∑
ŷ′ exp

(
θ · ŷ′

)
is a normalizing

function known as the log-partition.

The log-partition is convex in θ, and has a well-known variational form [16],

Φ(θ) = max
µ∈M

θ · µ +H(µ), (1)

where M is the marginal polytope—the set of all consistent marginal vectors—and H(µ) is the
entropy of the distribution consistent with marginals µ. The maximizing µ corresponds to the
marginal distribution of Y given x. The negative of the quantity being maximized is often referred
to as the free energy. The maximizing µ are the true marginals of Y, given X = x and w. Further,
MAP inference is achieved by removing the entropy term.

Unfortunately, for general graph structures,M may require an exponential number of constraints,
and H may lack an explicit form. Many variational methods address these problems by: a) relaxing
M to an outer bound using a polynomial set of “local” constraints,

M̃ ,

µ̃ : ∀v ∈ V,
k∑
j=1

µ̃jv = 1 ; ∀e = {u, v} ∈ E ,
k∑
j=1

µ̃ije = µ̃iu,

k∑
i=1

µ̃ije = µ̃jv

 ;

b) replacing H with a tractable surrogate, Ψ. M̃ is usually called the local marginal polytope, and
each µ̃ ∈ M̃ is a set of pseudomarginals. An important property of the free energy is that, when
−Ψ is strongly convex, the free energy is strongly convex. For the reasons discussed in Section 1,
we are interested in identifying cases in which −Ψ is strongly convex with κ = Ω(1).

3 Tree-Reweighting

The tree-reweighted entropy approximation [17] is a convex combination of tree entropies. In this
section, we give conditions under which its modulus of convexity is lower-bounded by a function of
the parameters and structural properties, independently of the number of factors.

Fix a model and a graph G, and assume we are given a distribution ρ over the spanning trees of G,
denoted T (G). Further, assume that each edge e has positive marginal probability, ρ(e) > 0 (i.e.,
appears in at least one tree T with ρ(T ) > 0). For a spanning tree T , (V, ET ), let HT denote
its entropy, which can be computed efficiently from a vector of marginals µ via the Bethe entropy
formula,

HT (µ) ,
∑
v∈V

(1− deg(v))Hv(µv) +
∑
e∈ET

He(µe); (2)

Hv , and He are the node- and edge-wise local entropies, and deg(v) is the degree of node v. The
tree-reweighted entropy is then HTR(µ̃) ,

∑
T∈T (G) ρ(T )HT (µ̃).

The following lemma relates the convexity of−HTR to the convexity of its constituent tree entropies,
as well as the tree distribution.
Lemma 1. [15, Appendix C] Fix a model, a graph G , (V, E), and a distribution ρ over the
spanning trees T (G), such that ρ(e) > 0 for all e ∈ E . Let ρ?e , mine∈E ρ(e) denote the minimum
edge probability. Let κ?T denote the minimum convexity of−HT for any tree T ∈ T (G) with positive
probability under ρ. Then the tree-reweighted negative entropy, −HTR, is (ρ?eκ

?
T )-strongly convex

w.r.t. the 2-norm.

It is well known that the negative entropy,−H , is convex [16]. Wainwright [15] showed that the neg-
ative entropy is in fact strongly convex, lower-bounding the modulus by Ω(1/N), which decreases
as a function of the number of factors, N . This is a pessimistic lower bound, since it considers all
graphical models in the exponential family. Indeed, we can show that the class of tree-structured
models with finite weights and bounded degree induce a negative entropy function that is Ω(1)-
strongly convex. A key component of our analysis is the idea of Markov contraction.
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Definition 2. Fix a model with finite parameters, w, which induce a probability density pw. Fix a
graph G , (V, E). For {u, v} ∈ E , define the contraction coefficient between u and v as

ϑw(u, v) , sup
x∈X , y,y′∈Y

‖pw(Yu |X = x, Yv = y)− pw(Yu |X = x, Yv = y′)‖TV . (3)

Denote the maximum of the contraction coefficients by ϑ?w , sup{u,v}∈E ϑw(u, v).

The contraction coefficients measure the dependence between adjacent variables in a graphical
model. A contraction coefficient of 1 implies determinism, and 0 implies independence. Observe
that determinism can only be induced by infinite weight or feature magnitude. Thus, a model with
finite weights and features always has ϑ?w < 1. As we show in Appendix A, this contraction causes
dependence to decay with graph distance, and implies the following bound on strong convexity,
which is constant with respect to N .
Proposition 1. Fix a model with weights w and tree structure T . Suppose its node degrees are
uniformly upper-bounded by ∆T , and that the maximum contraction coefficient ϑ?w < 1/∆T . It
then follows that the negative tree entropy, −HT , is Ω(1)-strongly convex w.r.t. the 2-norm.

In general, the contraction coefficients are intractable to compute, since they involve a supremum
overX . It is therefore impossible to verify the conditions of Proposition 1 in certain cases. However,
there may be special cases in which it is feasible to compute Equation 3; for instance, if X exhibits
internal structure that can be exploited. We further conjecture that templating the model (e.g., as
a homogeneous Markov chain) may further reduce the time complexity, and may even reduce the
contraction coefficients. We leave these as open problems for future work.

4 Counting Numbers

Various authors [e.g., 1, 2, 9, 10, 18] have proposed convex approximations to the Bethe entropy
based on the concept of counting numbers. This technique generalizes the Bethe entropy with

Hc(µ̃) ,
∑
v∈V

cvHv(µ̃v) +
∑
e∈E

ceHe(µ̃e), (4)

where cv ≥ 0 and ce ≥ 0 are the counting numbers associated with node v and edge e. (Note that
Hc generalizes HTR, since we can recreate HTR with cv = 1−

∑
e:v∈e ρ(e) and ce = ρ(e).) While

existing work focuses on finding counting numbers that preserve convexity, we show how to find
counting numbers that preserve strong convexity, with a bounded modulus.

Since −Hv and −He are convex, it is clear from Equation 4 that −Hc is convex for nonnegative
counting numbers. Heskes [2] derived a more sophisticated set of sufficient conditions for convexity
by reparameterizing the counting numbers. Specifically, −Hc is convex if there exist nonnegative
auxiliary counting numbers, {αv ≥ 0}v∈V , {αe ≥ 0}e∈E and {αv,e ≥ 0}v,e:v∈e, such that

∀v ∈ V, cv = αv −
∑
e:v∈e

αv,e, and ∀e ∈ E , ce = αe +
∑
v:v∈e

αv,e. (5)

The effect of the auxiliary counting numbers—in particular, αv,e—is to shift weight between the
regular counting numbers, cv and ce. Heskes’ conditions mean that cv can be negative and still
guarantee convexity. We can further show that −Hc is strongly convex whenever αv and αe are
uniformly lower-bounded; the αv,e variables, however, are only required to be nonnegative.
Proposition 2. If Hc satisfies Equation 5, then for any κ > 0 such that ∀v, e, αv ≥ κ, αe ≥ κ and
αv,e ≥ 0, it follows that −Hc is κ-strongly convex with respect to the 2-norm.

Proposition 2 lets us characterize the strong convexity of a range of algorithms that optimize
counting numbers. For example, observing that the Bethe approximation often outperformed tree-
reweighting in practice, Meshi et al. [10] proposed a “convexified” Bethe approximation. Their
algorithm finds a set of counting numbers that best approximates the Bethe counting numbers,
cB
v = 1 − deg(v) and cB

e = 1, while satisfying Heskes’ convexity conditions (Equation 5). Via
Proposition 2, incorporating the constraint that αv ≥ κ and αe ≥ κ ensures that the resulting
approximation is κ-strongly convex. This yields the following constrained quadratic program:

min
c, {αv,e≥0}

‖c− cB‖22 s.t. ∀v ∈ V, cv +
∑
e:v∈e

αv,e ≥ κ ; ∀e ∈ E , ce −
∑
v:v∈e

αv,e ≥ κ.
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One can also add constraints (or terms in the objective) to encourage uniform solutions for ce [1], or
to enforce variable-valid counting numbers [10]. The space of counting number optimizations is a
rich area of research.

There is a trade-off between the modulus of convexity (and its associated stability and convergence
benefits) and the accuracy of the marginals. Higher values of κ lead to more convex free energies,
but possibly at the cost of increased approximation error. Clearly, an empirical study of this trade-off
is the next step, which we plan to explore in future work.

5 Conclusion

In this paper, we analyzed the strong convexity of two variational methods for marginal inference in
undirected graphical models. We provided conditions under which the tree-reweighted and counting
number entropy approximations are strongly convex, with moduli that are constant with respect to
the size of the model, thus improving prior guarantees. The scope of this work was to provide
theoretical guarantees; thus, no empirical studies are presented. We plan to address this in future
work.
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A Proof of Proposition 1

Fix any finite weight vector w : ‖w‖ < ∞. Observe that the maximizers of the variational energy
(Equation 1) are limited to some subsetM that depends on w (and x) via θ = θ(x;w). To highlight
the dependence on w, we letMw denote the set of realizable marginal vectors under w; i.e.,

Mw , {µ ∈M : ∃x ∈ X , Φ(θ(x;w)) = θ(x;w) · µ +HT (µ)} . (6)

It is easy to see that Mw, like M, is a convex set, and that a marginal vector µ maximizes the
variational energy for weights w if, and only if, µ ∈ Mw. Therefore, though HT is not a function
w, we can define an associated entropy function,

Hw(µ) ,

{
HT (µ) if µ ∈Mw,

−∞ otherwise,

which preserves the equivalence

max
µ∈M

θ · µ +HT (µ) = max
µ∈Mw

θ · µ +HT (µ) = max
µ∈Mw

θ · µ +Hw(µ). (7)

For an input x, denote by Σw(Y |x) the (grounded) covariance matrix of Y conditioned on X = x,

Σw(Y |x) , E
w

[
ŷŷ> |x

]
− E

w
[ŷ |x] E

w

[
ŷ> |x

]
, (8)

where Ew[· |x] denotes an expectation over the distribution pw(Y |X = x). Let Σ−1
w (Y |x) denote

its inverse (i.e., the precision matrix). The (inverse) covariance matrix has the following relationship
to the convexity of −Hw.
Lemma 2. For a tree-structured model with weights w, the negative entropy, −Hw, is (1/λmax

w )-
strongly convex inMw with respect to the 2-norm, where

λmax
w , sup

x∈X
‖Σw(Y |x)‖2

is the maximum eigenvalue of the covariance matrix of Y, conditioned on w and any input.

The proof is given in Appendix B.

By Lemma 2, to lower-bound the convexity of−Hw, it suffices to upper-bound the spectral norm of
Σw(Y | ·). A simple way to do this (used by Wainwright [15]) is to analyze the trace norm (i.e., sum
of the diagonal), which upper-bounds the spectral norm. The diagonal elements of the covariance
matrix are uniformly upper-bounded by 1/4, since the features are in [0, 1]; this yields a (loose)
upper bound of N/4. For our purposes, this bound is too loose, since it grows with the size of the
network.

A better approach is to analyze the 1-norm (i.e., maximum column sum) or∞-norm (i.e., maximum
row sum), which, for symmetric matrices, are equivalent, and conveniently upper-bound the spectral
norm. (This is because ‖A‖2 ≤

√
‖A‖1 ‖A‖∞ =

√
‖A‖1 ‖A‖1 = ‖A‖1.) Intuitively, the 1-norm

of the covariance matrix captures the maximum dependence as a function of graph distance. To
bound the 1-norm, we will relate each covariance coefficient to a product of contraction coefficients
(Definition 2). For contraction less than 1—i.e., without determinism—this product will decrease
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geometrically with graph distance. This geometric series converges, provided the structure has
bounded degree and sufficiently small contraction.

Our proof requires a technical lemma that is often credited to Dobrushin. We use a version of this
given by Kontorovich [5].

Lemma 3 (5, Lemma 2.1). Let ν : Ω→ R be a signed, balanced measure, such that
∑
ω∈Ω ν(ω) =

0. Let K : Ω× Ω→ R be a Markov kernel, where K(ω |ω′) ≥ 0,
∑
ωK(ω |ω′) = 1, and

(Kν)(ω) ,
∑
ω′∈Ω

K(ω |ω′)ν(ω′).

Then

‖Kν‖TV =
∑
ω

∣∣∣∣∣∑
ω′

K(ω |ω′)ν(ω′)

∣∣∣∣∣ ≤ ϑ∑
ω′

|ν(ω′)| = ϑ ‖ν‖TV ,

where

ϑ , sup
ω,ω′∈Ω

‖K(· |ω)−K(· |ω′)‖TV .

is the contraction coefficient of K.

For the following, we use the shorthand pθ(y) to denote pw(Y = y |X = x), and similar probabil-
ities. Using this notation, the maximum contraction coefficient for a fixed x is

ϑ?θ , sup
{u,v}∈E
yv,y

′
v∈Y

‖pθ(Yu|yv)− pθ(Yu|y′v)‖TV ≤ ϑ?w.

The inequality follows from ϑ?w being a uniform upper bound over all x (see Definition 2). Similarly,
we let σθ(yu, yv) denote the entry of the covariance matrix corresponding to Yu = yu and Yv = Yv
(given X = x).

Fix any x ∈ X . Let π(1), . . . , π(`) denote the sequence of nodes along a path. Note that π is the
unique path connecting its end points, since the model is tree-structured. The covariance entries
corresponding to Yπ(1) = yπ(1) and Yπ(`) = yπ(`) can be written recursively as

σθ(yπ(1), yπ(`))

= pθ(yπ(1), yπ(`))− pθ(yπ(1))pθ(yπ(`))

=
∑

yπ(`−1)

pθ(yπ(1), yπ(`−1), yπ(`))− pθ(yπ(1))pθ(yπ(`−1), yπ(`))

=
∑

yπ(`−1)

pθ(yπ(1), yπ(`−1))pθ(yπ(`) | yπ(`−1))− pθ(yπ(1))pθ(yπ(`−1))pθ(yπ(`) | yπ(`−1))

=
∑

yπ(`−1)

pθ(yπ(`) | yπ(`−1))
(
pθ(yπ(1), yπ(`−1))− pθ(yπ(1))pθ(yπ(`−1))

)
.

Note that the second equality follows from the Markov property; since Yπ(`) is conditionally inde-
pendent of Yπ(1) given Yπ(`−1), we have that pθ(yπ(`) | yπ(`−1), yπ(`)) = pθ(yπ(`) | yπ(`−1)). The
absolute-value sum of covariances between a node assignment yπ(1) and the states of Yπ(`) can be
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bounded via the contraction lemma as∑
yπ(`)

∣∣σθ(yπ(1), yπ(`))
∣∣

=
∑
yπ(`)

∣∣pθ(yπ(1), yπ(`))− pθ(yπ(1))pθ(yπ(`))
∣∣

=
∑
yπ(`)

∣∣∣∣∣∣
∑

yπ(`−1)

pθ(yπ(`) | yπ(`−1))
(
pθ(yπ(1), yπ(`−1))− pθ(yπ(1))pθ(yπ(`−1))

)∣∣∣∣∣∣
≤ ϑ?w

∑
yπ(`−1)

∣∣pθ(yπ(1), yπ(`−1))− pθ(yπ(1))pθ(yπ(`−1))
∣∣

...

≤ (ϑ?w)`−2
∑
yπ(2)

∣∣pθ(yπ(1), yπ(2))− pθ(yπ(1))pθ(yπ(2))
∣∣

≤ (ϑ?w)`−2
∑
yπ(2)

∣∣∣∣∣∣
∑
y′
π(1)

pθ(yπ(2)|y′π(1))
(
pθ(yπ(1), y

′
π(1))− pθ(yπ(1))pθ(y′π(1))

)∣∣∣∣∣∣
≤ k

4
(ϑ?w)`−1.

This follows from recursive applications of Lemma 3, and the fact that the covariance of any variable
assignment is at most 1/4 in magnitude; similarly, the covariance between any two assignments to
the same variable is also at most 1/4.

Given an upper bound on the covariances of node assignments, we can bound the covariance of edge
assignments. Consider edges {a, b}, {c, d} ∈ E . Due to the tree structure, the edges lie at opposite
ends of a unique path connecting their constituent nodes. Without loss of generality, assume that
this path has the order a, b, . . . , c, d, and that the length of the path from b to c is `. By the Markov
property, Ya and Yd are conditionally independent given Yb and Yc. Thus, for any configuration
(Ya, Yb) = (ya, yb) and (Yc, Yd) = (yc, yd), we have that∑

yc,yd

|σθ((ya, yb), (yc, yd))|

=
∑
yc,yd

|pθ(ya, yb, yc, yd)− pθ(ya, yb)pθ(yc, yd)|

=
∑
yc,yd

∣∣pθ(ya, yd | yb, yc)pθ(yb, yc)− pθ(ya | yb)pθ(yb)pθ(yd | yc)pθ(yc)
∣∣

=
∑
yc,yd

∣∣pθ(ya | yb)pθ(yd | yc)pθ(yb, yc)− pθ(ya | yb)pθ(yb)pθ(yd | yc)pθ(yc)
∣∣

=
∑
yc,yd

pθ(ya | yb)pθ(yd | yc) |pθ(yb, yc)− pθ(yb)pθ(yc)|

= pθ(ya | yb)
∑
yc

|pθ(yb, yc)− pθ(yb)pθ(yc)|
∑
yd

pθ(yd | yc)

= pθ(ya | yb)
∑
yc

|σθ(yb, yc)|

≤ k

4
(ϑ?w)`−1.

The same argument can be used to bound the covariance between node and edge variables, where
the relevant path length ` becomes the length from the node to the closest endpoint of the edge. The
base case of covariance between a node or edge state indicator and another state is also at most 1/4.

The preceding discussion yields bounds for the entries of the covariance matrix, which correspond
to covariances between three types of pairs: node variables and node variables; node variables and
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edge variables; and edge variables and edge variables. For a distribution induced by a tree-structured
model, with maximum degree ∆T , the 1-norm of a column corresponding to a node assignment
Yu = yu is

σθ(Yu = yu) =
∑
y′u

|σθ(yu, y
′
u)|+

∑
v∈V

∑
yv

|σθ(yu, yv)|+
∑

{v,v′}∈E

|σθ(yu, (yv, yv′))|

≤ k

4
+
k

4

∑
v∈V\u

(ϑ?w)`(u,v)−1 +
k

4

∑
{v,v′}∈E

(ϑ?w)max{0,min{`(u,v),`(u,v′)}−1}

≤ k

4
+
k

4

∞∑
d=1

∆d
T (ϑ?w)d−1 +

k∆T

4
+
k

4

∞∑
d=1

∆d+1
T (ϑ?w)d−1

=
k

4
+
k∆T

4

∞∑
d=1

(∆T ϑ
?
w)d−1 +

k∆T

4
+
k∆2

T

4

∞∑
d=1

(∆T ϑ
?
w)d−1

=
k

4
+

k∆T

4(1−∆T ϑ?w)
+
k∆T

4
+

k∆2
T

4(1−∆T ϑ?w)
.

where `(u, v) is the length of the path from node u to v. The second inequality is because the number
of nodes at distance d is at most ∆d

T , and the maximum number of edges with endpoints at distance
d is at most ∆d+1

T , where we adjust for node and edge variables at distance zero. The last equality
applies the geometric series identity, since ∆T ϑ

?
w < ∆T /∆T = 1. An analogous argument bounds

the absolute-value sum of covariances involving any edge variable assignment. It therefore follows
that the 1-norm of the covariance matrix is independent of N ; that is,

‖Σw(Y |x)‖1 = O(1).

Recall that the 1-norm of the covariance matrix upper-bounds the spectral norm, since the covariance
matrix is symmetric. Thus, via Lemma 2, the negative entropy, −Hw, of the model with weights w
is Ω(1)-strongly convex with respect to the 2-norm.

B Proof of Lemma 2

We begin with two facts regarding the log-partition and its duality with the negative entropy.
Fact 1. For any w and x, the covariance matrix of Y conditioned on X = x is the Hessian (i.e.,
matrix of second derivatives) of the log-partition; i.e.,∇2Φ(θ) = Σw(Y |x).
Fact 2. The log-partition, Φ, is the convex conjugate of the negative entropy, −H; meaning,

−H(µ) = sup
θ

θ · µ− Φ(θ). (9)

Fact 1 is well known for graphical models; for a derivation, see Wainwright and Jordan [16]. Fact 2
follows from Equation 1. A direct consequence of these facts is the following.
Lemma 4. Fix a tree-structured model with weights w. For any marginals µ ∈Mw in the marginal
polytope of w, with

x? , arg max
x∈X

θ · µ− Φ(θ),

we have that,
∇2(−Hw(µ)) = Σ−1

w (Y |x?).

Proof For µ ∈ Mw, −Hw(µ) has an explicit form (Equation 2) that is convex and clearly twice
differentiable. From Fact 2, −Hw(µ) has a variational form (Equation 9) that is maximized by a
set of potentials, θ? = θ(x?;w), based on w (by definition ofMw) and x?. In other words, Φ is
the Legendre transform of −Hw. Thus, via Legendre duality, the Hessians of −Hw and Φ have an
inverse relationship, where

∇2(−Hw(µ)) =
(
∇2Φ(θ)

)−1
.

The proof is completed by Fact 1.
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We can now show that −Hw is strongly convex inMw. For twice-differentiable functions, Defini-
tion 1 is equivalent to the following.
Fact 3. Let ϕ : S → R denote a twice-differentiable function of a convex set S. If, for all s, s′ ∈ S,

κ ‖s‖2 ≤
〈
s,∇2ϕ(s′) s

〉
,

then ϕ is κ-strongly convex with respect to ‖ · ‖.

Therefore, if −Hw satisfies

κ ‖µ‖22 ≤
〈
µ,∇2(−Hw(µ′))µ

〉
.

for all µ,µ′ ∈Mw, then−Hw is κ-strongly convex with respect to the 2-norm. By Lemma 4, there
exists an x? ∈ X such that

κ ‖µ‖22 ≤
〈
µ,Σ−1

w (Y |x?)µ
〉
. (10)

This means that −Hw is κ-strongly convex if the minimum eigenvalue of Σ−1
w (Y |x?) is lower-

bounded by κ; or, equivalently, that the maximum eigenvalue of Σw(Y |x?) is upper-bounded by
1/κ. Since the eigenspectrum of Σw(Y |x?) is uniformly upper-bounded by λmax

w over all x̂ ∈ X̂ ,
it follows that Equation 10 holds for κ = 1/λmax

w .

C Proof of Proposition 2

The proof of Proposition 2 requires several technical lemmas.
Fact 4. A differentiable function, ϕ : S → R, of a convex set S, is κ-strongly convex with respect to
a norm ‖ · ‖ iff, for all s, s′ ∈ S,

κ ‖s− s′‖2 ≤ 〈∇ϕ(s)−∇ϕ(s′), s− s′〉 .

Lemma 5 (13, Lemma 16). The function ϕ(z) ,
∑d
i zi log zi is 1-strongly convex in the probability

simplex, {z ∈ [0, 1]d : ‖z‖1 = 1}, with respect to the 1-norm.
Lemma 6 (2, Lemma A.1). The difference of entropies, equivalent to the negative conditional en-
tropy, Hv(µ̃v)−He(µ̃e) = −He|v(µ̃e), for v ∈ e, is a convex function of µ̃e.

We now prove Proposition 2.

Proof [Proposition 2] Substituting Equation 5 into Equation 4 and rearranging the terms, we obtain

−Hc(µ̃) = −
∑
v∈V

αvHv(µ̃v)−
∑
e∈E

αeHe(µ̃e) +
∑
e∈E

∑
v:v∈e

αv,e(Hv(µ̃v)−He(µ̃e))

= −
∑
v∈V

αvHv(µ̃v)−
∑
e∈E

αeHe(µ̃e)−
∑
e∈E

∑
v:v∈e

αv,eHe|v(µ̃e).

We will analyze the entropy terms individually, using the gradient definition of (strong) convexity.

Fix any two vectors µ̃, µ̃′ ∈ M̃, and recall that ∀v, ‖µ̃v‖1 = ‖µ̃′v‖1 = 1 and ∀e, ‖µ̃e‖1 = ‖µ̃′e‖1 =
1. Via Lemma 5,−Hv and−He are 1-strongly convex in the probability simplex with respect to the
1-norm. By Fact 4, this means that every node v satisfies,

〈∇(−Hv(µ̃v))−∇(−Hv(µ̃
′
v)), µ̃v − µ̃′v〉 ≥ ‖µ̃v − µ̃′v‖

2
1 .

Therefore,

αv 〈∇(−Hv(µ̃v))−∇(−Hv(µ̃
′
v)), µ̃v − µ̃′v〉 ≥ αv ‖µ̃v − µ̃′v‖

2
1

≥ αv ‖µ̃v − µ̃′v‖
2
2

≥ κ ‖µ̃v − µ̃′v‖
2
2 .

The same holds for every edge e. Further, by Lemma 6, He|v(µ̃e) = Hv(µ̃v) −He(µ̃e) is convex,
meaning 〈

∇(−He|v(µ̃e))−∇(−He|v(µ̃
′
e)), µ̃e − µ̃′e

〉
≥ 0.
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Thus, decomposing the gradient of −Hc, we have that〈
∇(−Hc(µ̃))−∇(−Hc(µ̃′)), µ̃− µ̃′

〉
=

∑
v∈V

αv 〈∇(−Hv(µ̃v))−∇(−Hv(µ̃
′
v)), µ̃v − µ̃′v〉

+
∑
e∈E

αe 〈∇(−He(µ̃e))−∇(−He(µ̃
′
e)), µ̃e − µ̃′e〉

+
∑
e∈E

∑
v:v∈e

αv,e
〈
∇(−He|v(µ̃e))−∇(−He|v(µ̃

′
e)), µ̃e − µ̃′e

〉
≥ κ

∑
v∈V
‖µ̃v − µ̃′v‖

2
2 + κ

∑
e∈E
‖µ̃e − µ̃′e‖

2
2 + 0 = κ

∥∥µ̃− µ̃′
∥∥2

2
.

which gives completes the proof.
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