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Abstract

Structured predictors enable joint inference
over multiple interdependent output vari-
ables. These models are often trained on a
small number of examples with large internal
structure. Existing distribution-free general-
ization bounds do not guarantee generaliza-
tion in this setting, though this contradicts
a large body of empirical evidence from com-
puter vision, natural language processing, so-
cial networks and other fields. In this pa-
per, we identify a set of natural conditions—
weak dependence, hypothesis complexity and
a new measure, collective stability—that are
sufficient for generalization from even a single
example, without imposing an explicit gen-
erative model of the data. We then demon-
strate that the complexity and stability con-
ditions are satisfied by a broad class of mod-
els, including marginal inference in templated
graphical models. We thus obtain uniform
convergence rates that can decrease signifi-
cantly faster than previous bounds, particu-
larly when each structured example is suffi-
ciently large and the number of training ex-
amples is constant, even one.

1. Introduction

Structured prediction is the task of joint reasoning over
multiple interdependent output variables. In practice,
structured models are often trained on a small set of
examples, each containing many dependent variables.
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In network analysis, training data can come from a sin-
gle, massive, connected network (Taskar et al., 2002;
Richardson & Domingos, 2006; Sen et al., 2008); in
computer vision, object classifiers are often trained on
a handful of large outdoor scenes (Munoz et al., 2009);
in cross-document coreference resolution, the training
data may be a single, large corpus (Singh et al., 2010).
Existing generalization bounds for structured predic-
tion cannot guarantee generalization in these settings.
In contrast, intuition, empirical results (Jensen et al.,
2004; Tsochantaridis et al., 2005) and recent statisti-
cal consistency analysis (Xiang & Neville, 2011) sug-
gest that generalization is possible if the single or few
examples are large enough, provided they have reason-
able internal correlation decay and the models have
suitably controlled capacity. In this paper, we present
new generalization bounds for structured prediction
that explicitly consider both the number and size of
structured examples, such that even one example can
guarantee generalization if certain sufficient conditions
hold. Among these conditions is a new measure we re-
fer to as collective stability, which parameterizes the
sensitivity of structured predictors to small changes in
input data. Collective stability enables finer control
over the smoothness of the generalization error w.r.t.
single-variable perturbations, which is nontrivial when
the predictions are interdependent.

In the structured prediction literature (Taskar et al.,
2004; McAllester, 2007), current distribution-free gen-
eralization bounds scale as O(y/In(mn)/m), where m
is the number of examples, and n the size of each struc-
ture. For a fixed m, this term increases with n. Some
assumptions on the distribution are evidently needed
to turn the size of each example into an advantage.
We thus adopt a finer grained analysis in which we
view each structure as a set of dependent variables, but
without making parametric assumptions about the dis-
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tribution. Leveraging recent results in the concentra-
tion of dependent random variables (Chazottes et al.,
2007; Kontorovich & Ramanan, 2008), we show that, if
the data exhibits weak dependence within each struc-
ture, and the hypothesis class has suitable collective
stability, then the empirical error estimate from a sin-
gle structured example should uniformly converge to
its mean as n (or m) grows. Under suitable weak de-
pendence conditions, the effect of dependence does not
affect the convergence rate.

Our specific contributions are as follows. We derive
new generalization bounds for structured prediction,
identifying two properties of the hypothesis class—
Rademacher complexity, and collective stability—as
sufficient conditions. We demonstrate that these con-
ditions are attainable by a broad class of structured
predictors, which we refer to as templated structured
models (TSMs). TSMs subsume many graphical mod-
els used in practice. Inference with TSMs is a min-
imization of a convex objective, consisting of tem-
plated feature functions and a regularization term. In
particular, we focus on TSMs whose objectives are
strongly convex, examples of which include (approx-
imate) marginal inference and some continuous or re-
laxed MAP inference. By exploiting the strong con-
vexity of the inference, and the condition of bounded
weight and feature norms resulting from templating,
we prove that strongly convex TSMs have constant
uniform collective stability. Further, using a novel cov-
ering argument, we show that the space of strongly
convex inference functions can be e-covered by a set
whose size is polynomial (rather than exponential)
in n—a result that is of independent interest. Us-
ing this, we prove that the Rademacher complexity
of strongly convex TSMs asymptotically decreases to
zero as n (or m) grows. We are thus able to prove
O(y/In(mn)/(mn)) generalization bounds for struc-
tured prediction, which decay significantly faster than
previous bounds when m is constant; even for a sin-
gle structured example, the empirical error uniformly
converges to the true error as the size of the structure
increases.

2. Preliminaries

In our learning framework, we are given a set of n
dependent random variables Z = {Z;}7_,, where each
Z; takes values in a measure space Z. We define Z as
the Cartesian product of a domain X and a codomain
Y, so Z; can be expressed as two random variables
(X;,Y;), taking values in X and ) respectively. We
quantify the dependence within Z in Section 4.

The learner aims to predict Y given X. To do so, it

learns a discriminative hypothesis h from a specified
class H C {h: X" — )7”}, where ) C RF is not neces-
sarily the same as ). For example, in multiclass clas-
sification, each dimension of J> could indicate a real-
valued confidence in a specific label. We use h;(x) to
denote the i*® prediction §; and h?(x) to denote its j
value gjf . Similarly, we use h7(x) to denote the predic-
tion vector limited to the 4 value of each prediction,
ie, (97,...,92), and let HI = {h/ : h € H}.

We are particularly interested in hypothesis classes
that perform joint reasoning over all variables simulta-
neously. This means that changes to any single input
variable may affect the output predictions on others.
In Section 6, we discuss examples of such models.

In the canonical learning framework of structured
prediction, we are given m independent draws from
P(Z)—i.e., m realizations of Z. Such is the case in
many computer vision tasks, in which the training
set consists of multiple images of identical dimensions.
Note that any number of realizations can be repre-
sented as a single realization of a set of mn random
variables, whose distribution factorizes over the (iden-
tical) marginal distributions of m subsets of size n. We
are interested in the scenario in which n is much larger
than m, or where n grows and m = O(1). For exam-
ple, in network analysis, it is not unusual to learn from
a single structured example. Thus, unless otherwise
specified, we assume that the training data consists of
a single realization.

Let ¢/ : Y x )> — R be a loss function. Define the
empirical loss of a hypothesis h w.r.t. Z as L(h,Z) =
LS L 0(Y;, hi(X)). The quantity of interest is the ez-
pected loss L(h) = E[L(h,Z)] (also known as the risk)
over realizations of Z, which corresponds to the error
h will incur on future predictions. In the event that Z
represents m realizations of the same set of variables,
the risk is the expected loss on a single realization;
using the previous computer vision example, the test
example would be a single image.

3. Related Work

Our analysis departs from that of traditional struc-
tured prediction (Taskar et al., 2004; McAllester, 2007)
in that we explicitly consider the dependence between
the variables in each example, similar to learning with
interdependent data. There is a large body of work in
learning local (i.e., non-structured) predictors from in-
terdependent data. Usunier et al. (2006) analyze learn-
ing with a specific type of dependence in which each
variable depends on a finite number of variables and is
unconditionally independent of all others. Represent-
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ing the dependence as a graph, the authors use graph
coloring to derive Rademacher-based risk bounds for
local predictors. Ralaivola et al. (2010) use a similar
technique to derive PAC-Bayes bounds for this setting.
Mohri & Rostamizadeh develop risk bounds for ¢- and
B-mixing time series data, using both Rademacher
complexity (2009) and algorithmic stability (2010),
though the hypotheses they consider predict each time
step independently. Other authors (e.g., McDonald
et al., 2011; Alquier & Wintenburger, 2012) provide
risk bounds for autoregressive forecasting models, in
which the prediction at time ¢ depends on a moving
window of previous observations. We study a more
general setting that allows hypotheses to perform joint
inference over arbitrarily structured examples.

Xiang & Neville (2011) examine the asymptotic prop-
erties of collective inference in the one-network learn-
ing paradigm, in which data is generated by an infinite
Markov random field, with certain labels observed dur-
ing training. They show that maximum likelihood and
pseudo-likelihood estimation are asymptotically con-
sistent. While the one-network scenario is related to
the one we consider, we analyze inductive learning.

Our condition of uniform collective stability is a form
of global Lipschitz stability. Wainwright (2006) an-
alyze the Lipschitz stability of approximate marginal
inference w.r.t. changes in the model parameters, us-
ing this to bound the error of an inconsistent estimator
w.r.t. the Bayes optimum. Similarly, (Honorio, 2011)
show that the log-likelihood of many graphical models
is also Lipschitz w.r.t. the parameters. To our knowl-
edge, ours is the first work to identify the connection
between predictive stability, w.r.t. changing inputs,
and the generalization of structured prediction, par-
ticularly in the limited example setting.

4. Concentration Inequality

In this section, we review some supporting definitions
and a theorem on the concentration of dependent ran-
dom variables. We use this theorem to show that the
generalization error uniformly converges to zero as the
size of the structure grows.

For probability measures P and Q on a o-algebra X
over a sample space 2, define the total variation dis-
tance as

P~ Qll,, £ sup [P(4) - Q(A)].
Aex

We fix an ordering of the variables Z £ {Z;}7_, and
define a measure of dependence w.r.t. the ordering.

For i € [n], j > i, let
- P(Z]n | Z1:4—1, Zz/)

nij = sup |P(Zjn | Z1:0-1, 2;) Il >
where the supremum runs over all z.;_; € Z°~! and
zi,z, € Z. Define the upper triangular dependency

matriz @, € R"*™ as

1 for i = j,
07;7]' é ’I’h’] for Z < j,
0 for i > j.

Finally, recall the standard definition of the matrix
infinity norm, [[@,|,, = max;cp Y0, [6:;]. With
these definitions, we recall the following bound, due to
Kontorovich & Ramanan (2008, Theorem 1.1).

Theorem 1. Let f : Z" — R be a measurable func-
tion for which there exists a constant ¢ such that, for
any z,z' € Z" that differ only at a single coordinate,
|f(z) — f(z")] <c¢/n. Then for any e > 0,

—2ne?
P{f(Z) —E[f(Z)] > €} < exp <02H®nc2>o> .

Like (Mohri & Rostamizadeh, 2010, Theorem 8), The-
orem 1 achieves a slight improvement over the original
by using a general form of McDiarmid’s inequality in-
stead of Azuma’s inequality. A short proof is given in
the supplementary materials.

It can be shown that the above bound holds for any or-
dering of Z, which has a strong impact on the growth
of |®y]|, w.r.t. n. Note that we do not assume that Z
is a temporal process. In general, given a graph topol-
ogy and an ordering of the vertices, ||©, ||, measures
the decay of dependence over graph distance. For in-
stance, for Markov a tree process, Kontorovich (2007)
orders the variables via a breadth-first traversal from
the root; for an Ising model on a lattice, Chazottes
et al. (2007) order the variables with a spiraling traver-
sal from the origin. In both of these instances, under
suitable contraction or temperature regimes, the au-
thors show that ||®,,||, is bounded independent of n
(i.e., [|[On]l,, = O(1)). We posit that the same holds
for any graph with bounded degree when the mixing
coefficients exhibit geometric decay.

5. Generalization Bounds

In this section, we derive probably approximately cor-
rect (PAC) generalization bounds for structured pre-
diction and identify the associated sufficient condi-
tions.

A key component of our analysis is the algorithmic sta-
bility of joint inference. Broadly speaking, stability en-
sures that small changes to the input result in bounded
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variation in the output. In learning theory, it has tra-
ditionally been used to quantify the variation in the
output of a learning algorithm upon adding or remov-
ing training examples (Bousquet & Elisseeff, 2002).
We apply this concept to arbitrary vector-valued func-
tions.

Definition 1. Let F be a class of vector-valued func-
tions from Z” to RY, where N does not necessarily
equal n. We say that F has uniform collective stabil-
ity [ if, for any two inputs z,z’ € Z™ that differ only
at a single coordinate, sup;c = || f(z) — f(2')||, < 8.

Note that a function with uniform collective stability
is Lipschitz under the Hamming norm of its domain
and 1-norm of its range.

In addition to stability, we use the Rademacher com-
plexity to measure hypothesis complexity. We adapt
the canonical definition from Bartlett & Mendelson
(2003) for structured prediction and remove the as-
sumption that Z1,..., 7, arei.i.d.

Definition 2. Let Z £ {Z;}", be a set of random
variables. Let {o;}" ; be a set of independent, uni-
formly distributed, {£1}-valued random variables, re-
ferred to as Rademacher variables. Define the empiri-
cal Rademacher complexity of F C {f : Z" — R"} as

ot S e

fermn

R(F,Z)

Define the Rademacher complexity of F, w.r.t.
realizations of Z, as R,,(F) £ E[R(F, Z)].

To accommodate a variety of loss functions, we require
the following generic properties.

Definition 3. A loss function ¢ : ) x J> — R is
(M, X)-admissible if there exist constants M < oo
and A < oo such that: (1) for any y,y’ € Y and
g€y, Wy,g) Ly, 9)| < M; (2) for any y € Y
and gag, € y, M(yag) 7£(yag/)| S A Hg - g/”l'

We provide an example of an admissible loss function
in Section 7. We now state our main result.

Theorem 2. Let H C {h: A" — )A)"} be a class of
hypotheses, where Yy C R%, and suppose H has uni-
form collective stability 5. Let £ be a loss function
that is (M, X)-admissible. Then, for any n > 1 and

5 6 (0,1), with probability > 1 — & over realizations of
= {Z I, every h € H satisfies
k: .
L(h) < L(h, Z) + 20 Y Ry (H))
j=1
In(1/6
FOLEA) [0 [R50 )

We can directly apply Theorem 2 to the setting in
which the training set is m i.i.d. structured examples.
Corollary 1. Let Z' £ {Z|}7, be a set of random
variables representing m realizations of Z. If h(X') =
(M(X))%y, then, for anym >1,n>1 and § € (0,1),
with probability > 1 — § over realizations of Z', every
h € H satisfies

k
L(h) < L(h,Z') +2X Y R (H)
In(1/6)

2mn

+ (M +A8) [|©n]| (2)
We prove Theorem 2 via a series of technical lemmas.
The first lemma establishes the uniform collective sta-
bility of ¢ in terms of the stability of H. In the interest
of space, we defer all intermediate proofs to the sup-
plemental materials.

Lemma 1. If a hypothesis class H has uniform col-
lective stability 8, and a loss function £ is (M, \)-
admissible, then € o H has uniform collective stability

(M + \B).

For the following, let F be an arbitrary class of func-
tions from Z™ to R™. For any particular f € F, let

The following lemma shows that, with high probabil-
ity, ® uniformly converges to its expected value. The
key insight is that uniform collective stability enables
concentration.

Lemma 2. If F has uniform collective stability 3,
then, for any n > 1 and § € (0,1), with probability
> 1— 0 over realizations of Z,

In(1/0)

e
B(F,Z) < B(F o

)+ 81Ol
Using a symmetry argument, we now upper-bound
®(F) by the Rademacher complexity R, (F). Unlike
typical symmetry arguments, our analysis does not
require the individual random variables to be mutu-
ally independent; all we require is that the train and
test sets be identically distributed. (This analysis also
holds for local inference.)
Lemma 3. For anyn > 1, ®(F) < 2R, (F).
Lemma 4. Let H C {h: X" — Y"}, with Y C R*. If
¢ is (M, X)-admissible, then

k
Ra(loH) <A R
j=1
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We are now ready to prove Theorem 2. We start with
the simple observation that L(h) < L(h,Z)+ ®(F,Z),
where we let F £ ¢ oH. By Lemma 1, F has uniform
collective stability (M + AB). We therefore have from
Lemma 2 that, with probability > 1 — ¢,

In(1/6)
2n

L(h) < L(h, Z) + ®(F) + (M + AB) |On ]

To bound ®(F), we apply Lemmas 3 and 4 to ®(F),
which establishes Equation 1.

The bounds in this section imply sufficient conditions
for generalization of structured learning and explicitly
consider both the number and size of structured ex-
amples. When these conditions are met, Equation 2
can be tighter than existing bounds when the number
of structured examples is few or one.

6. Templated Structured Models

In this section, we discuss a broad class of hypotheses
that satisfy 3 = O(1) and R, (H) = O(y/In(n)/n)
(or O(y/In(mn)/(mn))). Before doing so, we briefly
review some related models that are typically used for
structured prediction.

One such model is a Markov random field (MRF). An
MREF is defined by a graph G' £ (V, £), a set of cliques
Q, a set of feature functions {f, : 219 — R}, o and
a set of weights {w, € R%},cqo, where |q| is the size
of clique ¢ and d, is the number of possible assign-
ments. For now, assume that a feature function out-
puts a vector representation of its clique’s assignment;
e.g., fi(zq) = 1if z4 is in the j*" state and 0 other-
wise. One typically denotes the weights by a single
vector w £ (w,)geo and the features by a single func-
tion f(z) £ (f,(24))qc0, both of which have (output)
length d £ 3" ge0 dg- An MRF defines a distribution

P,, over a set of random variables Z = {Z;};cy as

[I>

1
Py (Z = z) iw) exp ((w,f(z))),
where II(w) is a normalizing constant. If each Z; is
actually a tuple (X;,Y;) of input-output pairs, then a
conditional random field (CRF) defines a distribution,

Py(Y=y|X=x)% (w, %) exp((w,f(x,y))),

There are two canonical inference problems in
M/CRFs: marginal inference, which estimates the
marginal distribution of each clique, and mazimum a
posteriori (MAP) inference, which estimates the most
likely global assignment. We denote the marginals by a

vector u £ Ey[f(Z)], where p indicates the marginal
probability that clique ¢ is in state j € [dq]. It is
well known that p = argmax,, ¢ (W, n') + H(p'),
where M £ {u/ € R?|3w : p/ = Ew/[f(Z)]} is the
marginal polytope and H(u') is the entropy of the
distribution whose marginals are /. This identity
is commonly used to perform approximate marginal
inference, by relaxing the marginal polytope and us-
ing a convex surrogate for —H (Wainwright, 2006).
Since we are primarily concerned with the marginals
of individual variables, we assume that the higher-
order marginals are discarded. For a given observation
x € X", the MAP state is the y € V™ that maximizes
Py(Y = y|X = x). (Assume some deterministic,
consistent tie-breaking mechanism.) Since the loga-
rithm is strictly increasing and II(w,x) is constant,
this is equivalent to argmaxy,cyn (w,f(x,y)). Thus
far, we have assumed that Z is a finite set, though
these inference methods have equivalent forms when
Z is continuous, such as in Gaussian random fields.

A common technique for defining M/CRFs is templat-
ing (sometimes referred to as parameter-tying). A
clique template is a complete subgraph pattern, such
as a singleton, pair or triangle. Given a graph, a set
of templates partitions the cliques into subgraphs with
common structure. Thus, a templated MRF replaces
the per-clique features and weights with per-template
ones, which are then applied to each grounding (i.e.,
matching clique). Since the features are no longer tied
to specific groundings, one can define general induc-
tive rules to reason about datasets of arbitrary size
and structure. Because of this flexibility, templating
is used in many relational models (e.g., Taskar et al.,
2002; Neville & Jensen, 2004; Richardson & Domingos,
2006; Broecheler et al., 2010). We will later show that
templating also enables uniform convergence, due to
the fact that the number of parameters does not grow
with the size of the data.

We now present a general class of models that includes
variations of the above graphical models.

Definition 4. For the following, let A be a convex
set and )> C R*, for some k > 1. A templated struc-
tured model (TSM) is defined by: a set of clique tem-
plates T; a set of feature functions { fi}te1, with out-
put length d; > 1; a set of weights {w; € R%},cr;
a reqularizer ¥ : A — R; and a linear projection
I : A — Y". Given a graph G, let t(G) denote
the set of cliques matching template ¢. As before, let
w 2 (w;)ier and f(x,a) = (qut(G) fi(%q,aq))teT,
both of which have (output) length d £ Y, d;. De-
fine the energy function Ey(x,a) £ ¢w(x,a) — ¥(a),
where ¢y (x,a) = (w,f(x,a)). All TSMs must satisfy
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a convexity property, where ¢ (x,a) is concave in A,
and V¥ is convex, implying —F is convex in A.' For a
given input x € X", a TSM hypothesis h outputs

h(x) £ I‘(argenjtax Ew(x,a)). (3)

We denote by Hy g p the class of TSMs that satisfy
the following boundedness conditions: |[7| = O(1);
sup,c7 |t| = O(1); and there exist constants R < oo
and B < oo such that Vw € Hr g B, |W|, < R and,
Vte T, | fi(-,-)|ls < B. Since the model is templated,
and the maximum size and number of templates is
bounded, it is reasonable to assume that R and B do
not grow with n. This might not be the case if one
assigned a unique weight to each clique, or if the max-
imum size or number of templates were unbounded.

We typically assume that the graph, clique templates,
feature functions and energy function are given a pri-
ori. Thus, learning a TSM amounts to learning the
template weights.

Though the above representation is very abstract, one
can show that inference in TSMs is equivalent to in-
ference in the previous models. To recreate (approxi-
mate) marginal inference in a templated CRF, we de-
fine A as the (relaxed) marginal polytope and ¥ as
(a convex surrogate for) the negative entropy; each
feature function f; simply returns the value of a,; the
projection I' zeros out the non-singleton marginals and
then discards any entries for which X # x (which are,
by definition, zero). Note that the resulting output is
of the length nk. We can also recover MAP inference
by letting ¥(a) £ 0 for all a € A. This will return an
integral solution, but it will not satisfy the conditions
necessary for the rest of our analysis.

Suppose we wanted to perform inference on yn di-
rectly; in other words, let A £ Y™ and optimize over
E(x,y), using some convex regularizer. In this case, f;
is an arbitrary linear or concave function of (x4,¥,),
and T" is the identity. For models of continuous do-
mains (e.g., Broecheler et al., 2010), this is equivalent
to MAP inference with a convex prior. For discrete
domains, if Y is the simplex {g € [0,1)* : [|9]l, = 1},
then the optimal y can be considered a relaxation of
the true MAP state, where each ¢/ indicates a score
for variable Y; being in state j.

In the following subsections, we show that certain
TSMs satisfy the sufficient conditions for generaliza-
tion given in Theorem 2; specifically, TSMs whose in-
ference objectives are strongly convex.

!This is satisfied when the features are linear, or when
they are concave in A and the weights are nonnegative.

Definition 5. A function ¢ : A — R is k-strongly
convex (w.r.t. the 1-norm) if A is a convex set and, for
any a,a’ € A and 7 € [0,1],

K
(1= 7)5 lla = d|li +o(ra+ (1 - )a)

< 1p(a) + (1 —7)p(a’).

The negative energy function, —F, is, by design, con-
vex; however, to ensure strong convexity, we con-
sider a class of TSMs whose regularizers are strongly
convex. This includes the previous example of (ap-
proximate) marginal inference, since the negative en-
tropy, as well as many surrogates, are strongly con-
vex (Wainwright, 2006; Shalev-Schwartz, 2007). If
dw(x,a) is concave in A, and ¥(a) is s-strongly con-
vex, then —Ey (x,a) = ¥U(a) — ¢pw(x,a) is at least k-
strongly convex in A. Thus, we now show that TSMs
with k-strongly convex regularizers, which we denote
by HT Rr.B,.x, have good collective stability and low
Rademacher complexity.

6.1. Collective Stability
To prove the collective stability of TSMs, we begin
with two technical lemmas.

Lemma 5. Let ¢ : A — R be k-strongly convex, and
let & = argmin, 4 p(a). Then, for any a € A

.12
la —ally <

(p(a) — p(a)).

R

Lemma 6. Let ¢ : Q@ x A — R be k-strongly con-
ver in A. If, for any w,w' € Q and a € A,
|<p(w,a) - (,D(UJ/,(I)| < )\7 then

< V2M\/E.

1

arg min ¢(w, a) — argmin p(w’, a’)
acA a’'€A

Lemma 6 implies that the maximum of the energy
function has uniform collective stability if the nega-
tive energy function is strongly convex. To apply this
requires a type of Lipschitz stability, which we show
in the following lemma.

Lemma 7. For a graph G and a set of clique tem-
plates T, let Q; = ZteTqut(G)]l{i € q} denote
the number of groundings involving node i, and let
Qc & max;ey Q;. Then, for any G, w € HT R.B,
ac Aandx,x’ € X" that differ at a single coordinate
i

|EW(Xa a) - EW(X/7a)| < 2RBQG

The proof (given in the supplemental materials) lever-
ages the boundedness property of Hy rp. We now
bound the collective stability of T'SMs.
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Theorem 3. For any G, with Qg defined in
Lemma 7, H1 g B, has uniform collective stability

(2y/RBQg/k).

Proof. As discussed, if ¥ is k-strongly convex, then
—F is at least x-strongly convex in A. Fix any w €
M7 rBr and x,x’ € X", and let a,a’ € A denote
their respective maximizers of Ey. Via the additive
property of linear transformations,

1h(x) = h(x) [l = [IT(a) = T'(@")[, = |IT(a —a")|,
< [Tl lla—a"l, <2vRBQg/*,

where the last inequality follows from Lemmas 6 and
7, and the fact that a projection has norm 1. O

For G with bounded degree, one can show that Qg =
O(1); thus, H7 r,B, has uniform collective stability

8= 0(1/V7).

Recall, when x = 0, ) is discrete and A is the marginal
polytope, that maximizing E will return an integral
MAP state. In this case, when —F is not strongly
convex, the remaining boundedness conditions are in-
sufficient for good collective stability. In fact, it can
be shown by counterexample that discrete MAP in-
ference, under nontrivial conditions, has uniform col-
lective stability O(n). If, for example, 7 contains the
unary and pairwise templates, one can always select
inputs x and weights w such that changing a single
input xz; causes every coordinate in the prediction to
change. Thus, in order to obtain useful collective sta-
bility for discrete MAP inference, further restrictions
on the domain or hypothesis class are necessary.

6.2. Rademacher Complexity

We now bound the Rademacher complexity of
Hr7 r B, We do so by first bounding the covering
number of Hr r B «-

Definition 6. Let S C R% be a set of vectors in R?,
for some d > 1. We say that a set C C R< is an e-cover
of & under a norm ||-|| if, for any s € S, there exists a
c € C such that ||s — ¢|| <.

Definition 7. Let F be a class of functions from
X" to RY. For a given n > 1 and x € X", let
S(x) = {f(x) : f € F}. The empirical covering
number Np(e, F,x) is the cardinality of the minimal
C C RY that e-covers S(x) under the normalized p-
norm, N~1/P [[[|,- With a slight abuse of notation, let

Np(e, F,n) £ SUPye vn Np(€, F, X).

Lemma 8. The hypercube [0, A]? admits an e-cover,
under the 2-norm, of cardinality [(v/dA/(2¢))%].

Theorem 4. For a graph G, let Tg = sup,c7 [tH(G)].
Then, for anyn > 1, G and € > 0,

knke?

d
dRBT,
No(e,Hr rB.rsm) < (“) ;o (4)

where k = |h;(-)| is the cardinality of a prediction.

Proof. Fix any x € X", and let S(x) £ {y = h(x) :
h € Hr r B} We will show that there exists a subset
C C 8(x) that is an e-cover of §(x), under the normal-
ized 2-norm. Fix any y,y’ € S(x), and let a,a’ € A
be vectors such that I'(a) = y and I'(a’) = y'. Let
w,w € "7 Rr B, be weight vectors such that a and
a’ maximize E,, and FE,, respectively. Recall that
|h:(+)] = k, and so every output of T' is of length nk.
Since I' is a projection with norm 1, we have that

g3l < lla ]|
— |y =¥, < —=|la—a|, .
vnk 2= Vnk !
Further, since —F is x-strongly convex in A, and every
w € Hr R,B,s satisfies ||w|, < R, using Lemma 5, one
can show that

2 2R
la—a'll} < = [1£(x,2) — £x, )]

Now, consider the set S’'(x) £ {f(x,a) : y € S(x),y =
I'(a)}, which is convex. Since the norm of any feature
function f; is uniformly upper-bounded by B, we have
that ||f(x,a)||,, < BTg for all a € A. Therefore, the
features are contained within the hypercube [0, BT¢]?.
By Lemma 8, this hypercube admits an €’-cover, un-

der the 2-norm, of cardinality [(\/&BTg/(QG/))d—‘. By

extension, there exists an €-cover ¢’ C R? of &'(x)
of at most the same size; and since S§’(x) is convex,
there exists such a C’ where every point in C’ is also in
S'(x). By the definition of &’(x), this means there is
a corresponding ¥’ € C C S(x).

We now have that, for any § € S(x), there exists a
vy’ € C such that

1 .. . 2R
15 =9 < /2 () — o),

vnk
< 2R¢’ 5.
=~V knk '

Solving for €/, we obtain the cardinality of C’ (hence,
C) needed to obtain an e-cover of S(x), under the
normalized 2-norm, which upper-bounds the empiri-
cal covering number. Since this holds uniformly for
any x € X", it also upper-bounds the (non-empirical)
covering number. O
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Theorem 5. For anyn > 1, G and j € [k],

<1+\/21n[(\/aRBTG/H)d1_ -

% J
m”(HT7R7B,m) = "

n

The proof follows from direct application of the
discretization theorem (see supplemental materials).
(Though Dudley’s Theorem is potentially tighter, we
prefer the Discretization Theorem for its simplicity.)
When the dataset contains m realizations of Z, this
bound becomes

— ; 1 2In[(VdRBmTq/k)4]
J <
R (M7 r,p ) < o \/ o )

where T does not increase with m.

7. Application

In this section, we use the results from previous sec-
tions to derive risk bounds for collective classification.
(We consider collective regression in the supplemen-
tal material.) In collective classification, the goal is to
predict a categorical variable from a set of k labels. We
represent this space using the standard basis vectors,
such that each y € ) has exactly one nonzero entry,
whose ordinal corresponds to the label. We assume
that predictors output a real-valued vector, § = h;(x),
where each dimension indicates a score for a particular
label, so the predicted label is the one with the high-
est confidence, i.e., argmax, .y (y',9). We therefore
want the correct label to have the uniquely highest
confidence. Since the multiclass 0-1 loss #1 is not ad-
missible, we define a margin-based loss function that
is admissible and dominates the 0-1 loss:

C4(y, ) £ (Y, ) —

>
<>
~—

max
y' eVyFy’

where v > 0 and 7, is the ramp function (defined in
the supplemental materials).

Lemma 9. The margin loss { is (1,1/v)-admissible.

This allows us to bound the 0-1 classification risk L*
for (approximate) marginal inference in TSMs. For the
following, we assume that a graph G has been deter-
mined a priori, based on the structure of the problem,
and that G has maximum degree Ag = O(1). For no-
tational convenience, let AL £ Ag + 1. To make our
bounds concrete, we will assume that the clique tem-
plates T consist only of the unary and pairwise tem-
plates. We therefore have that Qg (from Section 6.1)
is upper-bounded by A}, and T (from Section 6.2)
is upper-bounded nA},.

Theorem 6. Let Hr g B, be a class of TSM classi-
fiers that output the (approximate) marginals, where
A is the (relaxed) marginal polytope and ¥ is (a sur-
rogate for) the negative entropy, with strong convexity
k. Then, for any n > 1 and § € (0,1), there exists
a constant C' < oo such that, with probability > 1 — ¢
over realizations of Z, every h € Hr r B, satisfies

') < I (h, Z)+2/fyC\/dln(\/&RnAé/ﬁ)

> [RA In(1/3)
+ <1+ ; /<JG> ||®n”oo om (6)

Proof. Since £, dominates £y, it follows that the ex-
pected margin loss I" dominates the expected 0-1 loss
I Therefore, substituting (M,A) = (1,1/7) into
Theorem 2, we obtain risk bounds for ' using the em-
pirical margin loss L7. The rest of the proof follows
from Theorems 3 and 5, where we have substituted
upper bounds for Q¢ and T, and leveraged the fact
that B <1 in (approximate) marginal inference. [J

8. Discussion

In this paper, we derive generalization bounds for
structured prediction in the setting where the train-
ing set consists of few large, structured examples—
possibly even one. We identify three sufficient con-
ditions: weak dependence, low model complexity
and a new measure that is specific to structured
prediction, collective stability. = We show that a
broad class of structured models satisfy the com-
plexity and stability conditions through templating
and strongly convex regularization of the inference
objective. Under suitable weak dependence condi-
tions, when [|®, ||, exhibits sub-linear growth in n,
this leads to O(y/In(mn)/(mn)) uniform convergence,
which is significantly sharper than previous bounds for
structured prediction.

Acknowledgments

This work was partially supported by NSF CAREER
grants 0746930 and 1054215, NSF grant 11S1218488, and
TIARPA via Dol/NBC contract number D12PC00337. The
U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any
copyright annotation thereon. Disclaimer: The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or implied,
of TARPA, Dol/NBC, or the U.S. Government.



Collective Stability in Structured Prediction

A. Proof of Theorem 1

Before proceeding, we recall a general form of McDi-
armid’s inequality.

Theorem 7 (McDiarmid, 1989, Corollary 6.10). Let
f: 2" = R be a measurable function for which there
exist constants {o;}7 = such that, for any i € [n],
Z1.i-1 € 271 and ziy 2 € Z,

[E[f(Z)]|21:i-1, 21] — E[f(Z) ] 21:i-1, %]| < .

Then, for any e > 0,
—2¢2
P2 ~EL(@)] > ) < o (s )

Note that the above does not require independence.
To prove Theorem 1, it therefore suffices to bound
i, af. Kontorovich & Ramanan (2008, Remark
2.1) showed that, if f is c-Lipschitz with respect to
the Hamming metric, then Y7  a? < ne?[|@,>,
(Though the published results only prove this for
countable spaces, Kontorovich later extended this
analysis to continuous spaces in his thesis (2007).) If
f is c-Lipschitz with respect to the normalized Ham-
ming metric, then Y7 a? < ¢2[©,|%, /n, which
completes the proof.

B. Proof of Corollary 1

We Dbegin by establishing that E[L(h,Z')] =
E[L(h,Z)]. We use | € [m] to iterate over examples.
Accordingly, let Z; ; denote the i'!" variable in example
Z;. Recall that each Z; is independent and identically
distributed according to P(Z). By linearity of expec-
tation, we have that

1 m n
BIL(hZ)) =E | — 3% U(Y{;h XI))l
mn =1 i=1
1 i 1 - / /
:EZE EZK(YZ,NM(XD)
=1 =1
I |1
il E (Y;
by
— E[L(h,Z)].

To complete the proof, we simply apply Theorem 2
to E[L(h, Z')], using the fact that [|©,,,] = O]l
because the dependency matrix @,,, is block diagonal.

C. Proof of Lemma 1

By definition, for any z,z’ € Z™ that differ only at the
i*® coordinate,

Z V(yj’ h] (X))

= [€(yi, hi(x)) = L(y;, hi(x"))|
+ 3 yss hy(x)) = Llyz by (X)) -
J#i
Focusing on the first term, we have via the first ad-
missibility condition that

- K(y;., hj (X/))‘

[€(yi, hi(x)) — £(y;, hi(x))]
< l(yi, hi(x)) — €(yi, hi(x"))]
+ [ €(yi, hi(x)) — €(yi, hi(x))]
< |l(yis hi(x)) — €y, hi(x"))| + M.

Combining this with the second term, we have that

sup Z |€ yi, h

= Uy;, hi(x))|
heM 3

<M+supZ|€ (yj, hj(x)) = L(y;, hj(x"))]

heh =
<M+>\supZHh — hi(x')|l,
he
] 1
= M + Asup ||h(x) — h(x')]],
heh

<M+ A5,

where we have used the second admissibility condition
and uniform collective stability.

D. Proof of Lemma 2

Let z,z' € Z™ be two realizations that differ only
at a single coordinate. Without loss of generality,
since |®(F,z) — ®(F,2')| = |®(F,z') — O(F,z)|, as-
sume that ®(F,z) > ®(F,z’). By definition, we have
that

|©(F, 2) — O(F, )|
= |sup{F — F(2)} — sup {F' —F’(z’)}‘
feF fler
<|supF — F(z) — F + F(Z)
feF
= ;telg Zfz fi(
< sup L f(a) - S, < g
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The last inequality follows from uniform collective sta-
bility. We now have that ®(F,Z) satisfies the pre-
conditions of Theorem 1, with ¢ = 8. Recalling that
®(F) = E[®(F,Z)], we therefore have that

— —2ne>
PIB(F,Z) —B(F) > et <exp | —— .
5B =8P 2 e} < p(mnenni@)

Assigning § probability to this event and solving for e
completes the proof.

E. Proof of Lemma 3

For the following, we use variables Z and Z’ to distin-
guish between realizations of the training and testing
sets respectively. Using the definition of ®(F) and
Jensen’s inequality, we have that

O(F)=E ;EE-]E[F(Z,)] — F(Z)
<E |sup F(Z') — F(Z)
feF

Now define a set of Rademacher variables {¢;} , and

let
7 ifo; =1,
T 20 7
7' ifo; =—1,
and
T(oy 2% Hoi=1
Z if g; = —1.

Because Z 1l Z’ and P(Z) =
P(Z,Z') = P(T(0;)|0:) P(T'(0
try,

P(Z'), it follows that
i) 0i); so, by symme-

(F)<E sup Z fi(Z

=E _ ;lelganz (T(Ui))UH
=E iggn;sz fz 7,( ))
<2E ]sc,telg Zazfz ] = 2R, (F),

which completes the proof.

F. Proof of Lemma 4

We begin with a technical lemma, which is a general-
ization of Talagrand’s contraction lemma (Ledoux &
Talagrand, 1991) to vector-valued functions and arbi-
trary norms.

Lemma 10. Let F be a class of functions from a do-
main Z to RE. Let {0}, be a set of Rademacher
variables. If o : RF — R is \-Lipschitz under |- I, for
any p > 1, then, for any z € Z",

SupZUZga fi(zi ] <)\ZE

fer j=1

supZazfj 2 ] .

JeF ,Z

Proof. Define a function S, (f) = Y.i, oio(f(2:)).
Conditioned on o1.,,_1, we know that there must exist
two functions fT, f~ € H such that

E [sup Sn(f)| 0'1:n1]

fer

)) ‘ O1:n—1

=F Lscup Sn—1(f) + one(f(z

IN
+ oI~ + o=+ o

MISH ) = £

where the last line follows from the Lipschitz condition.
For each j € [k], define a variable s,, ; = Sgn(fj+ (zn) —
f; (2n)), and note that

£+ (zn) = f7 ()], < Hf+ ) = f (@)

= and Zn) f;(zn))
This yields
E sup Sn(f) | 01:n1‘|
fer
1 k
+ +

< ) Sn-1(f )+A;5n7jfj (2n)

1
+ 5 Sn— 1 AZ Sn, jf Zn

k
<E [sup Sn—l(f) + )\Z Unsn,jfj(zn) | O1:n—1
feF =1
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By induction on n, we therefore have that

k n
E [sup S, (f)| <E |sup A ;i3 fi(2)
lfef " fer ;; 7
<1378 o 3 as(e)|-
=1 LfeFim
where s; ; disappears because of symmetry. O

The proof of Lemma 4 follows directly from this
lemma, since the second admissibility condition en-
sures that ¢ is A-Lipschitz under the 1-norm. The fact
that h : X" — JA/" is irrelevant. Because Lemma 10
holds for any realization z € Z", we obtain the (non-
empirical) Rademacher complexity by taking the ex-
pectation over Z.

G. Proof of Lemma 5

Let Aa £ a — a. By Definition 5, for any 7 € [0, 1],
K ) . .
T(1—7)5 ||AaH?+<p(a+7'Aa)—<p(a) < 7(p(a)—p(a)).

Since a is, by definition, the unique minimizer of ¢, it
follows that ¢(a + 7Aa) — ¢(a) > 0, so the above in-
equality is preserved when this term is dropped. Thus,
dividing both sides by 7k/2, we have that

1Aall} < (1 —7)|Ad|} <

R

(p(a) — p(a)),

where the left inequality follows from the fact that
(1 — 7) is maximized at 7 = 0.

H. Proof of Lemma 6

Let & =  argming,¢(w,a) and a =
argming . 4 p(w’,a’). Without loss of generality, as-
sume that p(w,a) > (W', d). (If (W', d') > p(w,a),
we could state this in terms of w’.) Using Lemma 5,
we have that

4~ all} < 2 (ol &) — ()
< 2 (p(w, @) - 9, )
-2

Taking the square root completes the proof.

I. Proof of Lemma 7

Using Cauchy-Schwarz, we have that

|EW(X7a) - EW(Xlﬂa)‘
= [(w.f(x,a)) — ¥(a) - (w,f(x',)) + ¥(a)|
= [(w,f(x,a) — f(x',2))]
< [wll, [If(x, ) — £(x', a)ll
< R|f(x,a) - f(x', a)],,

because, by definition, |wl|, is uniformly upper-
bounded by R. Note that the features of (x,a) and
(x’,a) only differ at any grounding involving node i.
The number of such groundings is ;, which is uni-
formly upper-bounded by Q¢, so at most Qg features
will change. Further, since the norm of any feature
function is, by definition, uniformly upper-bounded by
B, we have that

[f(x,a) — £(x',a)l,

= 20| X tli€ ) (fulxanag) = fulx)a,)

teT ||qet(@)

2

IN

Z Z ]l{iG(I}Hft(xqaaq)_ft(xfpaq)uz

teT \q€t(G)

< Z Z ]l{iGq}Hft(anaq)_ft(xfﬁaq)”z

teT qet(G)

which completes the proof.

J. Proof of Lemma 8

We will partition [0, A]¢ into k hypercube cells with
edge length (2¢/v/d). Using multidimensional geom-
etry, one can show the hypercube [0,2¢/V/d]¢ is in-
scribed in a ball of radius €; therefore, the Euclidean
distance from any point in [0, A]? to the center of the
nearest cell is at most €. To find the value of k that
e-covers [0, A]?, we let k(2¢/v/d)? > A% and solve for
k.

K. Discretization Theorem

The following is a consequence of Massart’s finite class
lemma.

Theorem 8. Let F be a class of functions from Z"
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to R™. Foranyn>1andp>1,

2InN, (e, F,Z)

R(F,Z) < inf - + e,
= 21 F
and R, (F) < inf W te
L. Proof of Lemma 9
The ramp function is defined as
1 for a <0,
ry(a) =1 —a/y for0<a<~,
0 for a > 7.

By definition, r., (hence, £,) is bounded by [0,1]; so
for any yuy/ € Y and Z) € y? |€11(y,29) - g]l(ylvz}” < ]-v
which establishes the first admissibility condition.

A

For ,9' € Y, let u £ arg max,cy., . (¢, ) and v’
arg maxy,ey:y;éy,A(y’ U >.A Withotlt loss ofA generality,
assume that (y,9) — (u,9) > (y,9’) — (v, §'). For any
y €Y and 4,9 €Y, we have that

(. 8) — ) — (9.7) — (')

i — )+ () — )
< g — ) + (i) — b3
=g — )
<y~ g~ 71
<llg- 1,

Further, for any a,a’ € R,

s (@) — 7 (a')] < ]1‘“ S Y P
Y Y

Combining these inequalities, we have that

10y, 9) = (w91 < (/)1 —ll;, which es-
tablishes the second admissibility condition.

L.1. Collective Regression

In collective regression, the codomain is a bounded
interval on the real number line. Since the output can
always be shifted and scaled by a constant, we can
assume without loss of generality that ), yC [0,1]. A
standard loss function for regression is the quadratic
loss, typically defined as £,(y,9) = (y — 9)%.

Lemma 11. The quadratic loss {4 is (1,2)-admissible.

Proof. First, since both ) and Y are upper-bounded
by 1, we have the first admissibility condition. Sec-
ond, note that ¢, is smooth with respect to its sec-
ond argument. Therefore, by the mean value theorem,

there exists a 7 € [0, 1] such that, for any y € ) and
;oA

1
gj,f/ey,wrchAg}éQ - Y,

0(09) = a0 8] = |5 a0+ T80 (A9)

=|-2(y — (§ + TAD))(AD)|
<2y — (9 +7AG)||AY]
<2 ‘AQ‘ =2 ||?) - ?Q/H1 >

which establishes the second condition. O

We can thus obtain bounds on the quadratic risk for
the class of TSM regressors with strongly convex reg-
ularizers, similar to how we obtained Theorem 6.
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