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ABSTRACT
Estimating the result size of complex queries that involve selection on mul-
tiple attributes and the join of several relations is a difficult but fundamental
task in database query processing. It arises in cost-based query optimiza-
tion, query profiling, and approximate query answering. In this paper, we
show how probabilistic graphical models can be effectively used for this
task as an accurate and compact approximation of the joint frequency dis-
tribution of multiple attributes across multiple relations. Probabilistic Re-
lational Models (PRMs) are a recent development that extends graphical
statistical models such as Bayesian Networks to relational domains. They
represent the statistical dependencies between attributes within a table, and
between attributes across foreign-key joins. We provide an efficient algo-
rithm for constructing a PRM from a database, and show how a PRM can
be used to compute selectivity estimates for a broad class of queries. One
of the major contributions of this work is a unified framework for the es-
timation of queries involving both select and foreign-key join operations.
Furthermore, our approach is not limited to answering a small set of pre-
determined queries; a single model can be used to effectively estimate the
sizes of a wide collection of potential queries across multiple tables. We
present results for our approach on several real-world databases. For both
single-table multi-attribute queries and a general class of select-join queries,
our approach produces more accurate estimates than standard approaches to
selectivity estimation, using comparable space and time.

1. INTRODUCTION
Accurate estimates of the result size of queries are crucial to sev-

eral query processing components of a database management sys-
tem (DBMS). Cost-based query optimizers use intermediate result
size estimates to choose the optimal query execution plan. Query
profilers provide feedback to a DBMS user during the query de-
sign phase by predicting resource consumption and distribution of
query results. Precise selectivity estimates also allow efficient load
balancing for parallel join on multiprocessor systems. Selectivity
estimates can also be used to approximately answer counting (ag-
gregation) queries.

The result size of a selection query over multiple attributes is de-
termined by the joint frequency distribution of the values of these
attributes. The joint distribution encodes the frequencies of all
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combinations of attribute values, so representing it exactly becomes
infeasible as the number of attributes and values increases. Most
commercial systems approximate the joint distribution by adopting
several key assumptions; these assumptions allow fast computation
of selectivity estimates, but, as many have noted, the estimates can
be very inaccurate.

The first common assumption is the attribute value independence
assumption, under which the distributions of individual attributes
are independent of each other and the joint distribution is the prod-
uct of single-attribute distributions. However, real data often con-
tain strong correlations between attributes that violate this assump-
tion, leading to very inaccurate approximations. For example a cen-
sus database might contain highly correlated attributes such as In-
come and Home-Owner. The attribute value independence assump-
tion would lead to an overestimate of the result size of a query that
asks for low-income home-owners.

A second common assumption is the join uniformity assump-
tion, which states that a tuple from one relation is equally likely
to join with any tuple from the second relation. Again, there are
many situations in which this assumption is violated. For exam-
ple, assume that our census database has a second table for online
purchases. High-income individuals typically make more online
purchases than average. Therefore, a tuple in the purchases table is
more likely to join with a tuple of a high-income individual, thereby
violating the join uniformity assumption. If we consider a query
for purchases by high-income individuals, an estimation procedure
that makes the join uniformity assumption is likely to substantially
underestimate the query size.

To relax these assumptions, we need a more refined approach,
that takes into consideration the joint distribution over multiple at-
tributes, rather than the distributions over the attributes in isola-
tion. Several approaches to joint distribution approximation, also
referred to as data reduction, have been proposed recently; see [2]
for an excellent summary of this area. Most of this work has fo-
cused on the task of estimating the selectivity of a select operation
— the select selectivity — within a single table. One simple ap-
proach for approximating the query size is via random sampling.
Here, a set of samples is generated, and then the query result size is
estimated by computing the actual query result size relative to the
sampled data. However, the amount of data required for accurate
estimation can be quite large. More recently, several approaches
have been proposed that attempt to capture the joint distribution
over attributes more directly. The earliest of these is the multidi-
mensional histogram approach of Poosala and Ioannidis [23, 25].
They provide an extensive exploration of the taxonomy of methods
for constructing multidimensional histograms and study the effec-
tiveness of different techniques. They also propose an approach
based on singular value decomposition, applicable only in the two-



dimensional case. A newer approach is the use of wavelets to ap-
proximate the underlying joint distribution [21, 27, 6].

Much less work has been done on estimating the selectivity of
joins. Commercial DBMSs commonly make the uniform join as-
sumption. One approach that has been suggested is based on ran-
dom sampling: randomly sample the two tables, and compute their
join. This approach is flawed in several ways [1], and some work
has been devoted to alternative approaches that generate samples
in a more targeted way [20]. An alternative recent approach is
the work of Acharya et al. [1] on join synopses, which maintains
statistics for a few distinguished joins. To our knowledge, no work
has been done on approaches that support selectivity estimation for
queries containing both select and join operations in real-world do-
mains.

In this paper, we propose an alternative approach for the selec-
tivity estimation problem, based on techniques from the area of
probabilistic graphical models [17, 24]. As we will show, our ap-
proach has several important advantages. First, it provides a uni-
form framework for select selectivity estimation and foreign-key
join selectivity estimation, introducing a systematic method for es-
timating the size of queries involving both operators. Second, our
approach is not limited to answering a small set of predetermined
queries; a single statistical model can be used to effectively esti-
mate the sizes of any (select foreign-key join) query, over any set
of tables and attributes in the database.

Probabilistic graphical models are a language for compactly rep-
resenting complex joint distributions over high-dimensional spaces.
They are based on a graphical notation that encodes conditional
independence between attributes in the distribution. Conditional
independence arises when two attributes are correlated, but the in-
teraction is mediated via one or more other variables. For exam-
ple, in a census database, education is correlated with income, and
home-owner status is correlated with income. Hence, education is
correlated with home-owner status, but only indirectly via the in-
come level. Interactions of this type are extremely common in real
domains. Probabilistic graphical models exploit the conditional in-
dependencies that exist in a domain, and thereby allow us to specify
joint distributions over high dimensional spaces compactly.

In this paper, we provide a framework for using probabilistic
graphical models to estimate selectivity of queries in a relational
database. As we show, Bayesian networks (BNs) [24] can be used to
represent the interactions between attributes in a single table, pro-
viding high-quality estimates of the joint distribution over the at-
tributes in that table. Probabilistic relational models (PRMs) [18]1

extend Bayesian networks to the relational setting. As we show,
PRMs allow us to represent skew in the join probabilities between
tables, as well as correlations between attributes of tuples joined
via a foreign-key. They thereby allow us to estimate selectivity of
queries involving both selects and joins over multiple tables.

Like most selectivity estimation algorithms, our algorithm con-
sists of two phases. The offline phase, in which the PRM is con-
structed from the database. This process is automatic, based solely
on the data and the space allocated to the statistical model. The
second, online phase, is the selectivity estimation for a particular
query. The selectivity estimator receives as input a query and a
PRM, and outputs an estimate for the result size of the query. Note
that the same PRM is used to estimate the size of a query over any
subset of the attributes in the database; we are not required to have
prior information about the query workload.
�
The term “probabilistic relational models” has two very distinct

meanings in two different communities: the probabilistic modeling
community [11] and the database community [14, 10]. We use the
term in its former sense.

Throughout this paper, we make two important assumptions. The
first is that foreign keys obey referential integrity. This assumption
about the database is required in the construction of the PRM. The
second is that all joins are equality joins between a foreign key and
a primary key. This assumption is made purely for ease of presen-
tation. While queries with foreign-key joins stand to benefit most
from the probabilistic models that we propose, our methods are not
limited to dealing with these queries and we describe how to extend
our approach to a broader class of joins in Section 6.

The remainder of the paper is structured as follows. In Section 2,
we consider the case of selectivity estimation for select operations
over a single table. We define Bayesian networks, and show how
they can be used to approximate the joint distribution over the en-
tire set of attributes in the table. In Section 3, we move to the more
complex case of queries over multiple tables. We present the PRM
framework, which generalizes Bayesian networks to the relational
case, and show how we can use PRMs to accomplish both select
and join selectivity estimation in a single framework. In Section 4,
we present an algorithm for automatically constructing a PRM from
a relational database. In Section 5, we provide empirical validation
of our approach, and compare it to some of the most common ex-
isting approaches. We present experiments over several real-world
domains, showing that our approach provides much higher accu-
racy (in a given amount of space) than previous approaches, at a
very reasonable computational cost, both offline and online.

2. ESTIMATION FOR SINGLE TABLES
We first consider estimating the result size for select queries over

a single relation. For most of this section, we restrict attention to
domains where the number of values for each attribute is relatively
small (up to about 50), and to queries with equality predicates of
the form attribute = value. Neither of these restrictions is a fun-
damental limitation of our approach; at the end of this section, we
discuss how our approach can be applied to domains with larger
attribute value spaces and to range queries.

Let
�

be some table; we use
�

.* to denote the value (non-key)
attributes � ����������� �	� of

�
. We denote the joint frequency distri-

bution over � � ��������� � � as 
����� � ��������� � ��� . It is convenient to
deal with the normalized frequency distribution � � �� ����������� �	� �
where:

������ � ��������� � ����� 
����� � ��������� � ������� � � �
This transformation allows us to treat � � �� ����������� ��� � as a prob-
ability distribution. We can also view this joint distribution as
generated by an imaginary process, where we sample a tuple �
from

�
, and then select as the values of � � ��������� � � the values

of � � � ����������� � � ��� . (Note that we are not suggesting that the sam-
pling process used to define � � be carried out in practice. We are
merely using it as a way of defining ��� .)

Now, consider a query � over a set of attributes � ����������� ������
.*, which is a conjunction of selections of the form �� �"!  . Let#�$

be the event that the equalities in � hold for � . It is clear that
the size of the result of the query � is:

size
$&% ')( � 
 � �� �*�+� � �-, � �  #�$ � � (1)

where 
 � �� � is the number of tuples satisfying � and � �  #�$ � is
the probability, relative to

'
, of the event

#�$
. To simplify notation,

we will often simply use � � �� � . As the size of the relation is
known, the joint probability distribution contains all the necessary
information for query size estimation. Hence, we focus attention
on the joint probability distribution.

Unfortunately, the number of entries in this joint distribution
grows exponentially in the number of attributes, so that explicitly



representing the joint distribution � � is almost always intractable.
Several approaches have been proposed to circumvent this issue by
approximating the joint distribution (or projections of it) using a
more compact structure [25, 21]. We also propose the use of statis-
tical models that approximate the full joint distribution. However in
order to represent the distribution in a compact manner, we exploit
the conditional independence that often holds in a joint distribution
over real-world data. By decomposing the representation of a joint
distribution into factors that capture the independencies that hold
in the domain, we get a compact representation for the distribution.

2.1 Conditional Independence
Consider a simple relation

�
with the following three value at-

tributes, each with its value domain shown in parentheses: Educa-
tion (high-school, college, advanced-degree), Income (low, medium,
high), and Home-Owner (false, true). As shorthand, we will use
the first letter in each of these names to denote the attribute, using
capital letters for the attributes and lower case letters for particular
values of the attributes. We use � �� � to denote a probability distri-
bution over the possible values of attribute � , and �  � � to denote
the probability of the event � � � .

Assume that the joint distribution of attribute values in a database
is as shown in Fig. 1(a). Using this joint distribution, we can com-
pute the selectivity of any query over

�
, � , and � . As shorthand,

we will use ���  �� to denote a select query of the form
� �	� � � �
 � � ��� . Then size

$����� % ')( � � � ��, ���� � � 
 � � � . However, to
explicitly represent the joint distribution we need to store 18 num-
bers, one for each possible combination of values for the attributes.
(In fact, we can get away with 17 numbers because we know that
the entries in the joint distribution must sum to 1.)

In many cases, however, our data will exhibit a certain structure
that allows us to (approximately) represent the distribution using a
much more compact form. The intuition is that some of the correla-
tions between attributes might be indirect ones, mediated by other
attributes. For example, the effect of education on owning a home
might be mediated by income: a high-school dropout who owns
a successful Internet startup is more likely to own a home than a
highly educated beach bum — the income is the dominant factor,
not the education. This assertion is formalized by the statement
that Home-owner is conditionally independent of Education given
Income, i.e., for every combinations of values � � � � 
 , we have that:

� �� ��� � � ��� � � � 
 � � � �� ��� � � � 
 � �
This assumption holds for the distribution of Fig. 1.

The conditional independence assumption allows us to represent
the joint distribution more compactly in a factored form. Rather
than representing �  � � � � � � , we will represent: the marginal dis-
tribution over Education — �  � � ; a conditional distribution of In-
come given Education — � �� � � � ; and a conditional distribution
of Home-owner given Income — � �� � � � . It is easy to verify
that this representation contains all of the information in the orig-
inal joint distribution, if the conditional independence assumption
holds:

� �� � � � � � � �  � � � �� � � � � �� � � � � �
� �  � � � �� � � � � �� � � � (2)

where the last equality follows from the conditional independence
of
�

and � given � . In our example, the joint distribution can be
represented using the three tables shown in Fig. 1(b). It is easy to
verify that they do encode precisely the same joint distribution as
in Fig. 1(a).

The storage requirement for the factored representation seems to
be ��������� ����� , as before. In fact, if we account for the fact

that some of the parameters are redundant because the numbers
must add up to 1, we get  !�	�!�"� �#�$� , as compared to the
�&% we had in the full joint. While the savings in this case may
not seem particularly impressive, the savings grow exponentially as
the number of attributes increases, as long as the number of direct
dependencies remains bounded.

Note that the conditional independence assumption is very dif-
ferent from the standard attribute independence assumption. In this
case, for example, the one-dimensional histograms (i.e., marginal
distributions) for the three attributes are shown in Fig. 1(c). It is
easy to see that the joint distribution that we would obtain from
the attribute independence assumption in this case is very different
from the true underlying joint distribution. It is also important to
note that our conditional independence assumption is compatible
with the strong correlation that exists between Home-owner and
Education in this distribution. Thus, conditional independence is a
much weaker and more flexible assumption than standard (marginal)
independence.

2.2 Bayesian Networks
Bayesian networks [24] are compact graphical representations

for high-dimensional joint distributions. They exploit the the un-
derlying structure of the domain — the fact that only a few aspects
of the domain affect each other directly. We define our probabil-
ity space as the set of possible assignments to the set of attributes
� ����������� ��� of a relation

�
. BNs can compactly represent a joint

distribution over � � ��������� � � by utilizing a structure that captures
conditional independences among attributes, thereby taking advan-
tage of the “locality” of probabilistic influences.

A Bayesian network ' consists of two components. The first
component, ( , is a directed acyclic graph whose nodes correspond
to the attributes � ����������� ��� . The edges in the graph denote a di-
rect dependence of an attribute �  on its parents Parents ��  � . The
graphical structure encodes a set of conditional independence as-
sumptions: each node �  is conditionally independent of its non-
descendants given its parents.

Fig. 2(a) shows a Bayesian network constructed (automatically)
from data obtained from the 1993 Current Population Survey of
U.S. Census Bureau using their Data Extraction System [5]. In this
case, the table contains 12 attributes: Age, Worker-Class, Educa-
tion, Marital-Status, Industry, Race, Sex, Child-Support, Earner,
Children, Income, and Employment-Type. The domain sizes for the
attributes are, respectively: 18, 9, 17, 7, 24, 5, 2, 3, 3, 42, and 4. We
see, for example, that the Children attribute (representing whether
or not there are children in the household) depends on other at-
tributes only via the attributes Income, Age, and Marital-Status.
Thus, Children is conditionally independent of all other attributes
given Income, Age, and Marital-Status.

The second component of a BN describes the statistical relation-
ship between each node and its parents. It consists of a condi-
tional probability distribution (CPD) �*) ��  � Parents ��  ��� for
each attribute, which specifies the distribution over the values of
�  given any possible assignment of values to its parents. This
CPD may be represented in a number of ways. It may be repre-
sented as a table, as in our earlier example. Alternatively, it can
be represented as a tree, where the interior vertices represent splits
on the value of some parent of �  , and the leaves contain distri-
butions over the values of �  . In this representation, we find the
conditional distribution over �� given a particular choice of val-
ues ����+ � � ��������� � ���-, � �/. for its parents by following the
appropriate path in the tree down to a leaf: When we encounter a
split on some variable ���10 , we go down the branch correspond-
ing to the value of �$2 ; we then use the distribution stored at that
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Figure 1: (a) The joint probability distribution for a simple example. (b) A representation of the joint distribution that exploits
conditional independence. (c) The single-attribute probability histograms.
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Figure 2: (a) A Bayesian network for the census domain. (b) A tree-structured CPD for the Children node given its parents Income,
Age and Marital-Status.

leaf. The CPD tree for the Children attribute in the network of
Fig. 2(a) is shown in Fig. 2(b). The possible values for this at-
tribute are N/A, Yes and No. We can see, for example, that the
distribution over Children given Income J �&% � K�L , Age M K!K , and
Marital-Status � never-married is 'N � � � � N � N!O � N � %$%-� ; the distri-
bution given Income J �&% � K�L , Age M K N , and Marital-Status �
married is 'N �  � � N � O % � N �  % � , as is the distribution given Income J
� % � K!L , Age M K N , and Marital-Status � widowed: the two instan-
tiations lead to the same induced path down the tree.

The conditional independence assumptions associated with the
BN ' , together with the CPDs associated with the nodes, uniquely
determine a joint probability distribution over the attributes via the
chain rule:

� ) �� � ��������� � � � �
�P
 �Q �

� ) ��	 � Parents ��� ��� �

(This formula is precisely analogous to the one we used in Eq. (2)
for our simple example from Section 2.1.) Thus, from our compact
model, we can recover the joint distribution; we do not need to
represent it explicitly. In our example above, the number of entries
in the full joint distribution is approximately 7 billion, while the
number of parameters in our BN is 951—a significant reduction!

2.3 BNs for Query Estimation
Our conditional independence assertions correspond to equality

constraints on the joint distribution in the database table. In general,
of course, these equalities will rarely hold exactly. In fact, even if
the data was generated by independently generating random sam-
ples from a distribution that satisfies the conditional independence
(or even unconditional independence) assumptions, the distribution
derived from the frequencies in our data will not satisfy these as-
sumptions. However, in many cases we can approximate the dis-
tribution very well using a Bayesian network with the appropriate
structure. We defer a longer discussion of this issue to Section 4.

A Bayesian network is a compact representation of a full joint
distribution. Hence, it implicitly contains the answer to any query
about the probability of any assignment of values to a set of at-
tributes. Thus, if we construct a BN ' that approximates � � , we
can easily use it to estimate � � �� � for any query � over

�
. As-

sume that our query � has the form � � R �TS (here we abbreviate a
multidimensional select using vector notation). Then we can com-
pute


��� R �US ���+� � � , ������ �WV+� � �-, � )  R �US �
Of course, generating the full joint distribution � ) can be com-



putationally very expensive, and is almost always infeasible in the
runtime setting in which query size is typically estimated. Thus,
we need a more efficient algorithm for computing �*)  R � S � .
Although the problem of computing this probability is NP-hard in
the worst case, BN inference is typically very efficient for network
structures encountered in practice. The standard BN inference al-
gorithms [19] use special-purpose graph-based algorithms that ex-
ploit the graphical structure of the network. The complexity of
these algorithms depends on certain natural parameters relating to
the connectivity of the graph. These parameters are typically small
for most real-world models, allowing very effective inference for
many networks with hundreds of nodes or more [16, 26].

At the start of this section, we made several assumptions. We
now describe how to relax these assumptions. First, we made the
assumption that our select operations used only equality predicates.
It is straightforward to extend the techniques that we have just de-
scribed for computing the probability of an assignment of values to
a set of attributes to handle range queries by computing the prob-
ability that an assignment of values to the attributes falls in that
range. We simply sum over all potential value assignments satis-
fying the range constraints. While at first glance, this may sound
quite expensive, the BN inference algorithms described above can
be easily adapted to compute these values without any increase in
computational complexity. The second important assumption that
we have been making is that the domains for the attributes are small
to moderately sized. We can lift this restriction on our BNs by using
techniques that have been developed for discretization of domain
values [12, 22]. In cases where domain values are not ordinal, we
can use feature hierarchies if they are available [9] or we may use
any of a number of clustering algorithms. Once we have built a BN
over the discretized or abstracted attribute value space, we must
now modify our query estimation techniques to provide estimates
for queries over the base level values. One method for doing this
is to simply compute the selectivity estimate for an abstract query,
which maps the base level values to their appropriate discretized or
abstracted value, and to then compute an estimate for the base level
query by assuming a uniform distribution within the result.

3. JOIN SELECTIVITY ESTIMATION
In the previous section, we restricted attention to queries over a

single table. In this section, we extend our approach to deal with
queries over multiple tables. We restrict attention to databases sat-
isfying referential integrity: Let

�
be a table, and let 
 be a for-

eign key in
�

that refers to some table
�

with primary key L ; then
for every tuple ��� �

there must be some tuple ��� �
such that

� � 
 � � � L . Throughout this paper, we restrict attention to foreign
key joins — joins of the form � � 
 � � � L . We will use the term
keyjoin as a shorthand for this type of join.

3.1 Joining Two Tables
Consider a medical database with two tables: Patient, contain-

ing tuberculosis (TB) patients, and Contact, containing people with
whom a patient has had contact, and who may or may not be in-
fected with the disease. We might be interested in answering queries
involving a join between these two tables. For example, we might
be interested in the following query: “patient.Age = 60+ and con-
tact.Patient = patient.Patient-ID and contact.Contype = roommate”,
i.e., finding all patients whose age is over 60 who have had contact
with a roommate.

A simple approach to this problem would proceed as follows: By
referential integrity, each tuple in Contact must join with exactly
one tuple in ���	��
 ���� . Therefore, the size of the joined relation,
prior to the selects, is � ��� �������� � . We then compute the probability

� of Patient.Age = 60+ and the probability � of Contact.Contype =
roommate, and estimate the size of the resulting query as � ��� �������� � ,� , � .

This naive approach is flawed in two ways. First, the attributes
of the two different tables are often correlated. In general, for-
eign keys are often used to connect tuples in different tables that
are semantically related, and hence the attributes of tuples related
through foreign key joins are often correlated. For example, there
is a clear correlation between the age of the patient and the type
of contacts they have; in fact, elderly patients with roommates
are quite rare, and this naive approach would overestimate their
number. Second, the probability that two tuples join with each
other can also be correlated with various attributes. For example,
middle-aged patients typically have more contacts than older pa-
tients. Thus, while the join size of these two tables, prior to the
selection on patient age, is � ��� �������� � , the fraction of the joined tu-
ples where the patient is over 60 is lower than the overall fraction
of patients over 60 within the Patient table.

We address these issues by providing a more accurate model of
the joint distribution of these two tables. Consider two tables

�
and

�
such that

� � 
 points to
� � L . We define a joint probability

space over
�

and
�

using an imaginary sampling process that ran-
domly samples a tuple � from

�
and independently samples a tuple

� from
�

. The two tuples may or may not join with each other. We
introduce a new join indicator variable to model this event. This
variable, ��� , is binary valued; it is true when � � 
 � � � L and false
otherwise.

This sampling process induces a distribution

� � ���� � � ��������� � ��� �� ������������ "! �
over the values of the join indicator ��� , and the value attributes�

.* �$# � � ��������� � �&% and
�

.* �  � ���������� ! . Now, consider
any select-keyjoin query � over

�
and

�
: � � R �TS � � � ' �)( � � � 
 �

� � L (where again we abbreviate a multidimensional select using
vector notation). It is easy to to see that the size of the result of �
is:

size
$ % ')( � 
����� �

� � � � , � � �-, � �  R �TS ��' �*( � ��� � true � �
In other words, we can estimate the size of any query of this form
using the joint distribution � � defined using our sampling process.
As we now show, an extension of the techniques in Section 2 allow
us to estimate this joint distribution using a probabilistic graphical
model.

3.2 Probabilistic Relational Models
Probabilistic relational models (PRMs) [18] extend Bayesian net-

works to the relational setting. They allow us to model correlations
not only between attributes of the same tuple, but also between
attributes of related tuples in different tables. This extension is ac-
complished by allowing, as a parent of an attribute

� � � , an at-
tribute

� �  in another relation
�

such that
�

has a foreign key for�
. We can also allow dependencies on attributes in relations that

are related to
�

via a longer chain of joins; to simplify the notation,
we omit the description. A PRM for our TB domain is shown in
Fig. 3(a). Here, for example, we have that the type of the contact
depends on the age and gender of the patient.

DEFINITION 3.1.: A probabilistic relational model (PRM) +
for a relational database is a pair -, ��. � , which specifies a local
probabilistic model for each of the following variables:

/ for each table
�

and each attribute �0� � .* a variable
� � � ;
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Figure 3: (a) A PRM for the Tuberculosis domain. (b) A query-evaluation BN for TB domain and the keyjoin query � � Strain �
� � Strain-ID.

/ for each foreign key 
 of
�

into
�

, a boolean join indicator
variable

� � ��� .

For each variable of the form
� � A :

/ , specifies a set of parents Parents  � � A � , where each parent
has the form

� �  or
� � 
 �  where 
 is a foreign key of

�
into some table

�
and  is an attribute of

�
;

/ . specifies a CPD �  � � A � Parents  � � A ��� .
This framework allows a probabilistic dependence of an attribute
� � � on an attribute � �  . This type of dependence only makes sense
if � is related to � via some foreign key dependence: Our PRM
models a distribution where � and � are chosen independently at
random; there is no reason for their attributes to be correlated unless
they are somehow related. Hence, we constrain the PRM model to
allow � � � to depend on � �  only if � � 
 � � � L . More precisely,
we require that if

� � 
 �  is a parent of
� � � , then

� � ��� must also
be a parent of

�
. We also require that the CPD of

� � � is only
defined for cases where

� � ��� � true; in other words, in the CPD
tree for

� � � ,
� � � � is at the root of the tree, and only the fork in

which
� � ��� � true is meaningful.

Note that the join indicator variable also has parents and a CPD.
Consider the PRM for our TB domain. The join indicator variable
Patient. � Strain has the parents Patient.USBorn and Strain.Unique,
which indicates whether the strain is unique in the population or
has appeared in more than one patient. There are essentially three
cases: for a non-unique strain and a patient that was born outside
the U.S., the probability that they will join is around N � N N � ; for a
non-unique strain and a patient born in the U.S. the probability is
N � N N  � , nearly three times as large; for a unique strain, the prob-
ability is N � N N!N!O , regardless of the patient’s place of birth. Thus,
we are much more likely to have U.S.-born patients joining to non-
unique strains than foreign-born ones. (The reason is that foreign-
born patients often immigrate to the U.S. already infected with the
disease; such patients typically have a unique strain indigenous to
their region. U.S.-born patients, on the other hand, are much more
likely to contract the disease by catching it from someone local,
and therefore will appear in infection clusters.)

3.3 Selectivity Estimation using PRMs
We now wish to describe the relationship between a PRM model

and the database. In the case of BNs, the connection was straight-
forward: the BN 'CB is an approximation to the frequency distribu-
tion ��� . In the case of PRMs, the issue is more subtle, as a PRM

does not describe a distribution over a single table in isolation. The
probability distribution of an attribute can depend on parents that
are attributes in other, foreign-key related tuples. We therefore need
to define a joint probability distribution over a tuple � together with
all tuples on which it depends. To guarantee that the set of tuples
we must consider is finite, we place a stratification restriction on
our PRM models.

DEFINITION 3.2.: Let D be a partial ordering over the tables in
our database. We say that a foreign key

� � 
 that connects to
�

is
consistent with D if

� D �
. A PRM + is (table) stratified if there

exists a partial ordering D such that whenever
� � 
 �  is a parent

of some
� � � (where 
 is a foreign key into

�
), then

� D �
.

We can now define the minimal extension to a query � . Let �
be a keyjoin query over the tuple variables � ��������� � � � (which may
or may not refer to the same tables).

DEFINITION 3.3.: Let � be a keyjoin query. We define the up-
ward closure �FE for � to be the minimal query that satisfies the
following two conditions:

1. � E contains all of the join operations in � .

2. For each � , if there is an attribute
� � � with parent

� � 
 �  ,
where

� � 
 points to
�

, then there is a unique tuple variable
� in � E for which � E contains the join � � 
 � � � L .

We can construct the upward closure for any query and that this set
is finite. For example, if our query � in the TB domain is over a
tuple variable G from the Contact, then � E is over the three tuple
variables G � � � � where � is a tuple variable over Patient and � is a
tuple variable over Strain. Note that there is no direct dependence
of attributes of Contact on attributes of Strain, but there are depen-
dencies on Patient, and the introduction of the tuple variable � in
turn necessitates the introduction of the tuple variable � . Note that,
if we consider a keyjoin query �IH that already contains a tuple vari-
able � with the constraint G .Patient = � .Patient-ID, then the closure
of � H is identical to the closure of � ; i.e., the process will not intro-
duce a new tuple variable if a corresponding one is already present.
We can extend the definition of upward closure to select-keyjoin
queries in the obvious way: the select clauses are not relevant to
the notion of upward closure.

Upward closing a query does not change its result size:

PROPOSITION 3.4.: Let � be a query and let �FE be its upward
closure. Then size

$ % ')( � size
$KJ % ' (

.



This result follows immediately from referential integrity.
Let � be a keyjoin query, and let � E be its upward closure. Let

� ����������� � � be the tuple variables in � E . Let � �  � ����������� � � � be
the distribution obtained by sampling each tuple � � ��������� � � inde-
pendently. Then for any query � H which extends � E , the PRM
allows us to approximate � �  # $ � � , precisely the quantity required
for estimating the query selectivity. We can compute the PRM es-
timate using the following simple construction:

DEFINITION 3.5.: Let + � -, ��. � be a PRM over
'

, and let
� be an keyjoin query. We define the query-evaluation Bayesian
network '�� % � ( to be a BN as follows:

/ It has a node � � � for every � � �FE and attribute � � � .*.
It also has a node � � ��� for every clause � � 
 � � � L in �FE .

/ For every variable � � A , the node � � A has the parents spec-
ified in Parents  � � A � in , : If

� �  is a parent of
� � � , then

� �  is a parent of � � � ; if
� � 
 �  is a parent of

� � � , then
� �  is a parent of � � � . where � is the unique tuple variable
for which �FE asserts that � � 
 � � � L .

/ The CPD of � � A is as specified in . .

For example, Fig. 3(b) shows the query evaluation BN for the
upwardly closed keyjoin query � � Strain � � � Strain-ID.

We can now use this Bayesian network to estimate the selectiv-
ity of any query. Consider a select-keyjoin query �IH which ex-
tends the keyjoin query � . We can estimate � � �� H � by computing
� )���� $��  # $ � J � , where

#
	��  Q�� is itself (as above), and
#
	�� � Q�� � �

is � � ��� � true. For example, to evaluate the probability of the
query � .Age = 60+, we would use the BN in Fig. 3(b) (as it upward
closes � ), and compute the probability of (� .Age = 60+,� � Strain �
� � Strain-ID). In reality, we don’t need to construct a BN over all
the nodes in the closure � E ; it is sufficient to include only the at-
tributes queried and their ancestors in '�� % � ( .
4. PRM CONSTRUCTION

The previous two sections showed how we can perform query
size estimation once we have a PRM that captures the significant
statistical correlations in the data distribution. This section ad-
dresses the question of how to construct such a model automati-
cally from the relational database. Many of the ideas in this section
are simple adaptations of previous work on the topic: the work on
learning Bayesian networks from data (e.g., [15]) and the recent
extension of this learning framework to PRMs [11].

The input to the construction algorithm consists of two parts: a
relational schema, that specifies the basic vocabulary in the domain
— the set of tables, the attributes associated with each of the tables,
and the possible foreign key joins between tuples; and the database
itself, which specifies the actual tuples contained in each table.

In the construction algorithm, our goal is to find a PRM -, ��. �
that best represents the dependencies in the data. In order to pro-
vide a formal specification for this task, we first need to define an
appropriate notion of “best”. Given this criterion, the algorithm
will try to find the model that optimizes it. There are two parts
to our optimization problem. The parameter estimation problem
finds best parameter set . for a given dependency structure , . The
structure selection problem finds the dependency structure , that,
with the optimal choice of parameters, achieves the maximal score,
subject to our space constraints on the model.

4.1 Scoring Criterion
To provide a formal definition of model quality, we make use

of basic concepts from information theory [8]. The quality of a

model can be measured by the extent to which it summarizes the
data. In other words, if we had the model, how many bits would
be required, using an optimal encoding, to represent the data. The
more informative the model, the fewer bits are required to encode
the data.

It is well known that the optimal Shannon encoding of a data
set, given the model, uses a number of bits which is the negative
logarithm of the probability of the data given the model. In other
words, we define the score of a model -, ��. � using the following
log-likelihood function:

�  . � , � ' � ������� �  ' � , ��. � (3)

We can therefore formulate the model construction task as that of
finding the model that has maximum log-likelihood given the data.

We note that this criterion is different from those used in the stan-
dard formulations of learning probabilistic models from data [15].
In the latter cases, we typically choose a scoring function that trades
off fit to data with model complexity. This tradeoff allows us to
avoid fitting the training data too closely, thereby reducing our abil-
ity to predict unseen data. In this case, our goal is very different:
We do not want to generalize to new data, but only to summarize
the patterns in the existing data. This difference in focus is what
motivates our choice of scoring function.

4.2 Parameter Estimation
We begin by considering the parameter estimation task for a

given dependency structure. In other words, having selected a de-
pendency structure , that determines the set of parents for each
attribute, we must “fill in” the numbers . that parameterize it. The
parameter estimation task is a key subroutine in the structure selec-
tion step: to evaluate the score for a structure, we must first param-
eterize it. In other words, the highest scoring model is the structure
whose best parameterization has the highest score.

It is well-known that the highest likelihood parameterization for
a given structure , is the one that precisely matches the frequencies
in the data. More precisely, consider some attribute � in table

�
and let � be its parents in , . Our model contains a parameter. ��� � for each value � of � and each assignment of values � to � .
This parameter represents the conditional probability �  � � � �� � � � � � . The maximum likelihood value for this parameter is
simply the relative frequency of

� � � � � within the population of
cases � � � :

.����� � � 
 �  � � � � � � � � � �

 � �� � � � (4)

The frequencies, or counts, used in this expression are called suffi-
cient statistics in the statistical learning literature.

This computation is very simple in the case where the attribute
and its parents are in the same table. For example, to compute the
CPD associated with the Patient.Gender attribute in our TB model,
we simply execute a count and group-by query on Gender and HIV,
which gives us the counts for all possible values of these two at-
tributes. These counts immediately give us the sufficient statistics
in both the numerator and denominator of the entire CPD. This
computation requires a linear scan of the data.

The case where some of the parents of an attribute appear in a
different table is only slightly more complex. Recall that we restrict
dependencies between tuples to those that utilize foreign-key joins.
In other words, we can have � � � depending on � �  only if � � 
 �
� � L for a foreign key 
 in

�
which is also the primary key of

�
.

Thus, to compute the CPD for
� � � that depends on

� �  , we
simply need to execute a foreign-key join between

�
and

�
, and

then use the same type of count and group-by query over the result.



For example, in our TB model, Contact.Age has the parents Con-
tact.Contype and Contact.Patient.Age. To compute the sufficient
statistics, we simply join Patient and Contact on Patient.Patient-
ID=Contact.Patient, and then group and count appropriately.

We have presented this analysis for the case where
� � � depends

only on a single “foreign” attribute
� �  . However, the discussion

clearly extends to dependencies on multiple attribute, potentially
in different tables. We simply do all of the necessary foreign-key
joins, generate a single result table over

� � � and all of its parents
� , and compute the sufficient statistics.

While this process might appear expensive at first glance, it can
be executed very efficiently. Recall that we are only allowing de-
pendencies via foreign-key joins. Putting that restriction together
with our referential integrity assumption, we know that each tuple �
will join with precisely a single tuple � . Thus, the number of tuples
in the resulting join is precisely the size of

�
. The same observa-

tion holds when
� � � has parents in multiple tables. Assuming that

we have a good indexing structure on keys (e.g., a hash index), the
cost of performing the join operations is therefore linear in the size
of
�

.
It remains to describe the computation of the CPD for a join

indicator variable ��� . In this case, we must compute the proba-
bility that a random tuple � from

�
and a random tuple � from�

will satisfy � � 
 � � � L . The probability of the join event can
depend on values of attributes in � and � , e.g., on the value of
� � � and � �  . In our TB domain, the join indicator between Pa-
tient and Strain depends on USBorn within the Patient table and on
Unique within the Strain table. To compute the sufficient statis-
tics for � ���� � � � � � � �  � , we need to compute the total number
of cases where � � � � � , � �  � �

, and then the number within
those where � � 
 � � � L . Fortunately, this computation is also easy.
The first is simply 
��� � � � � � � , 
��� � �  � � � . The latter is

 �  � � � � � � � �  � � � � � 
 � � � L � , which can be computed by
joining the two tables and then doing a count and group-by query.
The cost of this operation (assuming an appropriate index structure)
is again linear in the number of tuples in

�
and in

�
.

4.3 Structure Selection
Our second task is the structure selection task: finding the depen-

dency structure that achieves the highest log-likelihood score. The
problem here is finding the best dependency structure among the
superexponentially many possible ones.2 This is a combinatorial
optimization problem, and one which is known to be NP-hard [7].
We therefore provide an algorithm that finds a good dependency
structure using simple heuristic techniques; despite the fact that the
optimal dependency structure is not guaranteed to be produced, the
algorithm nevertheless performs very well in practice.

4.3.1 Scoring revisited
The log-likelihood function can be reformulated in a way that

both facilitates the model selection task and allows its effect to be
more easily understood. We first require the following basic defini-
tion[8]:

DEFINITION 4.1.: Let � and � be two sets of attributes, and
consider some joint distribution � over their union. We can define
the mutual information of � and � relative to � as:

IMI �&������ ���	� � 

� � � � �� �� ��� �� �� ��� ��� ��� � � �� ��� � ����� � �� �� ��� �� �� ��

If we have � attributes in a single table, the number of possible
dependency structures is  ���� !��! . If we have multiple tables, the
expression is slightly more complicated, because not all dependen-
cies between attributes in different tables are legal.

where
�� �� �� � � � �� � �  � � .

The term inside the expectation is the logarithm of the relative er-
ror between � �� �� � and an approximation to it

�� that makes �
and � independent, but maintains the probability of each one. The
entire expression is simply a weighted average of this relative error
over the distribution, where the weights are the probabilities of the
events � ��� . It is intuitively clear that mutual information is mea-
suring the extent to which � and � are correlated in � . If they
are independent, then the mutual information is zero. Otherwise,
the mutual information is always positive. The stronger the corre-
lation, the larger the mutual information.

Consider a particular structure , . Our analysis in the previous
section specifies the optimal choice (in terms of likelihood) for pa-
rameterizing , . We use .#" to denote this set of parameters. Let � �
be the distribution in the database, as above. We can now reformu-
late the log-likelihood score in terms of mutual information:

� -, ��.#" � ' � �$% �
 
� �  � �'& B � .* IMI ��(  �  � �)� Pa  �  � � ���+*, �.- (5)

where - is a constant that does not depend on the choice of struc-
ture. Thus, the overall score of a structure decomposes as a sum,
where each component is local to an attribute and its parents. The
local score depends directly on the mutual information between a
node and its parents in the structure. Thus, our scoring function
prefers structures where an attribute is strongly correlated with its
parents. We will use /0 �214325 -,76 ' � to denote

� -, ��. " � ' � .
4.3.2 Model space

An important design decision is the space of dependency struc-
tures that we allow the algorithm to consider. Several constraints
are imposed on us by the semantics of our models. Bayesian net-
works and PRMs only define a coherent probability distribution if
the dependency structure is acyclic, i.e., there is no directed path
from an attribute back to itself. Thus, we restrict attention to de-
pendency structures that are directed acyclic graphs. Furthermore,
we have placed certain requirements on inter-table dependencies: a
dependency of

� � � on
� �  is only allowed if

� � L is a foreign key
in
�

, and if the join indicator variable ��� is also a parent of
� � � ,

and plays the appropriate role in the CPD tree. Finally, we have
required that the dependency structure be stratified along tables, as
specified above.

A second set of constraints is implied by computational consid-
erations. A database system typically places a bound on the amount
of space used to specify the statistical model. We therefore place a
bound on the size of the models constructed by our algorithm. In
our case, the size is typically the number of parameters used in the
CPDs for the different attributes, plus some small amount required
to specify the structure. A second computational consideration is
the size of the intermediate group-by tables constructed to compute
the CPDs in the structure. If these tables get very large, storing and
manipulating them can get expensive. Therefore, we often choose
to place a bound on the number of parents per node.

4.3.3 Search algorithm
Given a set of legal candidate structures, and a scoring function

that allows us to evaluate different structures, we need only provide
a procedure for finding a high-scoring hypothesis in our space. The
simplest heuristic search algorithm is greedy hill-climbing search,
using random steps to escape local maxima. We maintain our cur-
rent candidate structure , and iteratively improve it. At each it-



eration, we consider a set of simple local transformations to that
structure. For each resulting candidate successor , H , we check that
it satisfies our constraints, and select the best one. We restrict atten-
tion to simple transformations such as adding or deleting an edge,
and adding or deleting a split in a CPD tree. This process contin-
ues until none of the possible successor structures , H have a higher
score than , . At this point, the algorithm can take some number
of random steps, and then resume the hill-climbing process. Af-
ter some number of iterations of this form, the algorithm halts and
outputs the best structure discovered during the entire process.

One important issue to consider is how to choose among the pos-
sible successor structures , H of a given structure , . The most ob-
vious approach is to simply choose the structure , H that provides
the largest improvement in score, i.e., that maximizes

� 5 -, H � , �*�/0 ��143#5 -, H 6 ' ��� /0 ��143#5 -,76 ' � . However, this approach is very
shortsighted, as it ignores the cost of the transformation in terms of
increasing the size of the structure. We now present two approaches
that address this concern.

The first approach is based on an analogy between this problem
and the weighted knapsack problem: We have a set of items, each
with a value and a volume, and a knapsack with a fixed volume; our
goal is to select the largest value set of items that fits in the knap-
sack. Our goal here is very similar: every edge that we introduce
into the model has some value in terms of score and some cost in
terms of space. A standard heuristic for the knapsack problem is to
greedily add the item into the knapsack that has, not the maximum
value, but the largest value to volume ratio. In our case, we can
similarly choose the edge for which the likelihood improvement
normalized by the additional space requirement:

� � -, H � , ���
� 5 -, H � , �/����20 3 -, H ��� /�����0 3 -, �

is largest.3 We refer to this method of scoring as storage size nor-
malized (SSN).

The second idea is to use a modification to the log-likelihood
scoring function called MDL (minimum description length). This
scoring function is motivated by ideas from information and coding
theory. It scores a model using not simply the negation of the num-
ber of bits required to encode the data given the model, but also the
number of bits required to encode the model itself. This score has
the form /0 �2143 !�� 5 -, 6 ' � � � -, ��. " � ' �	� /����20 3 -, � �
We define

� ! -, H � , �*� /0 �2143 !�� 5 -, H 6 ' �
� /0 ��143 !�� 5 -,76 ' � .
We have experimentally compared the naive approach with the

two ideas outlined above on the Census dataset described in Sec-
tion 2.2. Both SSN and MDL scoring achieved higher log-likelihood
than the naive approach for a fixed amount of space. In fact, SSN
and MDL performed almost identically for the entire range of allo-
cated space, and no clear winner was evident.

All three approaches involve the computation of
� 5 -, H � , � . Eq. (5)

then provides a key insight for improving the efficiency of this com-
putation. As we saw, the score decomposes into a sum, each of
which is associated only with a node and its parents in the struc-
ture. Thus, if we modify the parent set or the CPD of only a single
attribute, the terms in the score corresponding to other attributes
remain unchanged [15]. Thus, to compute the score corresponding
to a slightly modified structure, we need only recompute the local
score for the one attribute whose dependency model has changed.
�
This heuristic has provable performance guarantees for the knap-

sack problem. Unfortunately, in our problem the values and costs
are not linearly additive, so there is no direct mapping between the
problems and the same performance bounds do not apply.

Furthermore, after taking a step in the search, most of the work
from the previous iteration can be reused.

To understand this idea, assume that our current structure is , .
To do the search, we evaluate a set of changes to , , and select the
one that gives us the largest improvement. Say that we have cho-
sen to update the local model for

� � � (either its parent set or its
CPD tree). The resulting structure is , H . Now, we are considering
possible local changes to , H . The key insight is that the compo-
nent of the score corresponding to another attribute

� �  has not
changed. Hence, the change in score resulting from the change to� �  is the same in , and in , H , and we can simply reuse that num-
ber unchanged. Only changes to

� � � need to be re-evaluated after
moving to , H .

5. EXPERIMENTAL RESULTS
In this section, we present experimental results for a variety of

real-world data, including: a census dataset [5]; a subset of the
database of financial data used in the 1999 European KDD Cup [4];
and a database of tuberculosis patients in San Francisco [3]. We
begin by evaluating the accuracy of our methods on select queries
over a single relation. We then consider more complex, select-join
queries over several relations. Finally, we discuss the running time
for construction and estimation for our models.

Select Queries. We evaluated accuracy for selects over a single
relation on a dataset from Census database described above (ap-
proximately 150K tuples). We performed two sets of experiments.

In the first set of experiments, we compared our approach to an
existing selectivity estimation technique — multidimensional his-
tograms. Multidimensional histograms are typically used to esti-
mate the joint over some small subset of attributes that participate
in the query. To allow a fair comparison, we applied our approach
(and others) in the same setting. We selected subsets of two, three,
and four attributes of the Census dataset, and estimated the query
size for the set of all equality select queries over these attributes.

We compared the performance of four algorithms. AVI is a
simple estimation technique that assumes attribute value indepen-
dence: for each attribute a one dimensional histogram is main-
tained. In this domain, the domain size of each attribute is small,
so it is feasible to maintain a bucket for each value. This tech-
nique is representative of techniques used in existing cost-based
query optimizers such as System-R. MHIST builds a multidimen-
sional histogram over the attributes, using the V-Optimal(V,A) his-
togram construction of Poosala et al. [25].4 This technique con-
structs buckets that minimize the variance in area (frequency 
value) within each bucket. Poosala et al. found this method for
building histograms to be one of the most successful in experiments
over this domain. SAMPLE constructs a random sample of the ta-
ble and estimates the result size of a query from the sample. PRM
uses our method for query size estimation. Unless stated otherwise,
PRM uses tree CPDs and the SSN scoring method.

We compare the different methods using the adjusted relative
error of the query size estimate: If

�
is the actual size of our

query and
��

is our estimate, then the adjusted relative error is
 � � �

�� � ����� ���  � � � � . For each experiment, we computed the av-
erage adjusted error over all possible instantiations for the select
values of the query; thus each experiment is typically the average
over several thousand queries.

We evaluated the accuracy of these methods as we varied the
space allocated to each method (with the exception of AVI, where
�
We would like to thank Vishy Poosala for making this code avail-

able to us for our comparisons.
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Figure 4: Relative error vs. storage size for a query suite over the Census dataset. (a) Two attribute query (Age and Income). The
relative error for AVI is 7395. (b) Three attribute query (Age, HoursPerWeek and Income). The relative error for AVI is 865. (c)
Four attribute query (Age, Education, HoursPerWeek and Income). The relative error for AVI is 70.19.
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Figure 5: Relative error vs. storage size for a query over the Census dataset, with models constructed over 12 attributes. (a) Three
attribute query (WorkerClass, Education, and MaritalStatus) (b) Four attribute query (Income, Industry, Age and EmployType).
(c) A scatter plot showing the error on individual queries for a three attribute query (Income, Industry, Age) for SAMPLE and PRM
(using 9.3K bytes of storage). In the scatter plot, each point represents a query, where the | coordinate is the relative error using
SAMPLE and the } coordinate is the relative error using PRM. Thus, points above the diagonal line correspond to queries on which
SAMPLE outperforms PRM and points below the diagonal line correspond to queries on which PRM performs better.

the model size is fixed). Fig. 4 shows results on Census for three
query suites: over two, three, and four attributes. MHIST and
SAMPLE, and all methods significantly outperform AVI. Note that
a BN with tree CPDs over two attributes is simply a slightly dif-
ferent representation of a multi-dimensional histogram. Thus, it is
interesting that our approach still dominates MHIST, even in this
case. As the power of the representations is essentially equivalent
here, the success of PRMs in this setting is due to the different
scoring function for evaluating different models, and the associated
search algorithm.

In the second set of experiments, we consider a more challeng-
ing setting, where a single model is built for the entire table, and
then used to evaluate any select query over that table. In this case,
MHIST is no longer applicable, so we compared the accuracy of
PRM to SAMPLE, and also compared to PRMs with table CPDs.
We built a PRM (BN) for the entire set of attributes in the table,
and then queried subsets of three and four attributes. Similarly, for
SAMPLE, the samples included all 12 attributes.

We tested these approaches on the Census dataset with 12 at-
tributes. The results for two different query suites are shown in
Fig. 5(a) and (b). Although for very small storage size, SAMPLE
achieves lower errors, PRMs with tree CPDs dominates as the stor-
age size increases. Note also that tree CPDs consistently outper-
form table CPDs. The reason is that table CPDs force us to split
all bins in the CPD whenever a parent is added, wasting space on
making distinctions that might not be necessary. Fig. 5(c) shows the

performance on a third query suite in more detail. The scatter plot
compares performance of SAMPLE and PRM for a fixed storage
size (9.3K bytes). Here we see that PRM outperforms SAMPLE on
the majority of the queries. (The spike in the plot at SAMPLE error
100% corresponds to the large set of query results estimated to be
of size N by SAMPLE.)

Select-Join Queries. We evaluate the accuracy of estimation
for select-join queries on two real-world datasets. Our financial
database (FIN) has three tables: Account (4.5K tuples), Transaction
(106K tuples) and District (77 tuples); Transaction refers through a
foreign key to Account and Account refers to District. The tuber-
culosis database (TB) also has three tables: Patient (2.5K tuples),
Contact (19K tuples) and Strain (2K tuples); Contact refers through
a foreign key to Patient and Patient refers to Strain. Both databases
satisfy the referential integrity assumption.

We compared the following techniques. SAMPLE constructs a
random sample of the join of all three tables along the foreign keys
and estimates the result size of a query from the sample. BN+UJ
is a restriction of the PRM that does not allow any parents for the
join indicator variable and restricts the parents of other attributes to
be in the same relation. This is equivalent to a model with a BN
for each relation together with the uniform join assumption. PRM
uses unrestricted PRMs. Both PRM and BN+UJ were constructed
using tree-CPDs and SSN scoring.

We tested all three approaches on a set of queries that joined all
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Figure 6: (a) Relative error vs. storage size for a select-join query over three tables in the TB domain with selection on 3 attributes.
(b) Relative error for three query sets on TB (c) Relative error for three query sets on FIN

three tables (although all three can also be used for a query over
any subset of the tables). The queries select one or two attributes
from each table. For each query suite, we averaged the error over
all possible instantiations of the selected variables. Note that all
three approaches were run so as to construct general models over
all of the attributes of the tables, and not in a way that was specific
to the query suite.

Fig. 6(a) compares the accuracy of the three methods for vari-
ous storage sizes on a three attribute query in the TB domain. The
graph shows both BN+UJ and PRM outperforming SAMPLE for
most storage sizes. Fig. 6(b) compares the accuracy of the three
methods for several different query suites on TB, allowing each
method 4.4K bytes of storage. Fig. 6(c) compares the accuracy of
the three methods for several different query suites on FIN, allow-
ing 2K bytes of storage for each. These histograms show that PRM
always outperforms BN+UJ and SAMPLE.

Running Time. Finally, we examine the running time for con-
struction and estimation for our models. These experiments were
performed on a Sparc60 workstation running Solaris2.6 with 256MB
of internal memory.

We first consider the time required by the offline construction
phase, shown in Fig. 7(a). As we can see, the construction time
varies with the amount of storage allocated for the model: Our
search algorithm starts with smallest possible model in its search
space (all attributes independent of each other), so that more search
is required to construct the more complex models that take advan-
tage of the additional space. Note that table CPDs are orders of
magnitude easier to construct than tree CPDs; however, as we dis-
cussed, they are also substantially less accurate.

The running time for construction also varies with the amount
of data in the database. Fig. 7(b) shows construction time versus
dataset size for tree CPDs and table CPDs for fixed model storage
size (3.5K bytes). Note that, for table CPDs, running time grows
linearly with the data size. For tree CPDs, running time has high
variance and is almost independent of data size, since the running
time is dominated by the search for the tree CPD structure once
sufficient statistics are collected.

The online estimation phase is, of course, more time-critical than
construction, since it is often used in the inner loop of query opti-
mizers. The running time of our estimation technique varies roughly
with the storage size of the model, since models that require a lot
of space are usually highly interconnected networks which require
somewhat longer inference time. The experiments in Fig. 7(c) il-
lustrate the dependence. The estimation time for both methods is
quite reasonable. The estimation time for tree CPDs is significantly

higher, but this is using an algorithm that does not fully exploit the
tree-structure; we expect that an algorithm that is optimized for tree
CPDs would perform on a par with the table estimation times.

6. CONCLUSIONS
In this paper, we have presented a novel approach for estimating

query selectivity using probabilistic graphical models — Bayesian
networks and their relational extension. Our approach utilizes prob-
abilistic graphical models, which exploit conditional independence
relations between the different attributes in the table to allow a
compact representation of the joint distribution of the database at-
tribute values. We have tested our algorithm on several real-world
databases in a variety of domains — medical, financial, and social.
The success of our approach on all of these datasets indicates that
the type of structure exploited by our methods is very common, and
that our approach is a viable option for many real-world databases.

Our approach has several important advantages. To our knowl-
edge, it is unique in its ability to handle select and join opera-
tors in a single unified framework, thereby providing estimates for
complex queries involving several select and join operations. Sec-
ond, our approach circumvents the dimensionality problems asso-
ciated with multi-dimensional histograms. Multi-dimensional his-
tograms, as the dimension of the table grows, either grow expo-
nentially or become less and less accurate. Our approach esti-
mates the high-dimensional joint distribution using a set of lower-
dimensional conditional distributions, each of which is quite accu-
rate. As we saw, we can put these conditional distributions together
to get a good approximation to the entire joint distribution. Thus,
our model is not limited to answering queries over a small set of
predetermined attributes that happen to appear in a histogram to-
gether; it can be used to answer queries over an arbitrary set of
attributes in the database.

There are several important topics that we have not fully ad-
dressed in this paper. One is the incremental maintenance of the
PRM as the database changes. It is straightforward to extend our
approach to adapt the parameters of the PRM over time, keeping
the structure fixed. To adapt the structure, we can apply a variant
of the approach of [13]. We can also keep track of the model score,
relearning the structure if the score decreases drastically.

Another important topic that we have not discussed is joins over
non-key attributes. In our presentation and experiments, our queries
use only foreign key joins. While this category of queries stands to
benefit most from the probabilistic models that we propose, our
methods are more general. We can compute estimates for queries
that join non-key attributes by summing over the possible values
of the joined attributes, and our estimates are likely to be more
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Figure 7: (a) The construction time for a PRM for Census using tree and table CPDs as a function of model storage space. (b) The
construction time for a PRM for Census using tree and table CPDs as a function of data size. (c) The running time for query size
estimation as a function of model size.

accurate than methods that do not model any of the dependencies
between tuples. However an empirical investigation is required to
evaluate our methods on this category of queries.

There are many interesting extensions to our approach, which
we intend to investigate in future work. First, we want to extend
our techniques to handle much larger databases; we believe that
an initial single pass over the data can be used to “home in” on a
much smaller set of candidate models, the sufficient statistics for
which can then be computed very efficiently in batch mode. More
interestingly, there are obvious applications of our techniques to the
task of approximate query answering, both for OLAP queries and
for general database queries (even queries involving joins).
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