
Multi-Relational Data Mining
using Probabilistic Models

Research Summary

Lise Getoor

Computer Science Department
Stanford University

getoor@cs.stanford.edu

Abstract. We are often faced with the challenge of mining data represented in
relational form. Unfortunately, most statistical learning methods work only with
“flat” data representations. Thus, to apply these methods, we are forced to con-
vert the data into a flat form, thereby not only losing its compact representa-
tion and structure but also potentially introducing statistical skew. These draw-
backs severely limit the ability of current statistical methods to mine relational
databases. Probabilistic models, in particular probabilistic relational models, al-
low us to represent a statistical model over a relational domain. These models
can represent correlations between attributes within a single table, and between
attributes in multiple tables, when these tables are related via foreign key joins.
In previous work [4, 6, 8], we have developed algorithms for automatically con-
structing a probabilistic relational model directly from a relational database. We
survey the results here and describe how the methods can be used to discover
interesting dependencies the data. We show how this class of models and our
construction algorithm are ideally suited to mining multi-relational data.

1 Introduction

A large portion of real-world data is stored in commercial relational database
systems and we would like to discover interesting statistical correlations in the
data. Often the data is stored in multiple tables and there are many-one or many-
many relationships between rows in the tables. However, most statistical learning
methods work only with “flat” data representations. Thus, to apply these meth-
ods, we are forced to convert the data into a flat form. This has several important
implications. The inability to mine the database directly produces redundancy
and potentially high consistency-maintenance overhead. Databases are typically
normalized and flattening the data introduces duplication and we lose our com-
pact representation. But more importantly, we also potentially introduce statisti-
cal skew when we flatten the data. These drawbacks severely limit the ability of
current statistical methods to mine relational databases.
Probabilistic models, in particular probabilistic relational models, allow us to rep-
resent a statistical model over a relational domain. We have developed a learning
algorithm for automatically constructing a probabilistic relational model directly
from a relational database that avoids flattening the data and avoids making inap-
propriate independence assumptions. We have applied this algorithm to several

medium-sized real-world databases. Not only is the running time of the learning
algorithm is quite reasonable in practice, but more importantly, domain experts
found the models our algorithm produced both easy to interpret and compelling.
In short, this class of models and our construction algorithm are ideally suited to
mining relational data.
This paper is a summary of previous work [4, 6, 5, 8].

2 Probabilistic Relational Models

Probabilistic relational models (PRMs), first introduced by [11], are an extension
of Bayesian networks to relational domains. A PRM describes a template for a
probability distribution over a database. The template includes a relational com-
ponent, that describes the relational schema for the domain, and a probabilistic
component, that describes the probabilistic dependencies that hold in the domain.
A PRM, together with a particular universe of objects, defines a probability dis-
tribution over the attributes of the objects and the relations that hold between
them. The relational component describes entities in the model, attributes of each
entity, and references from one entity to another. The probabilistic component de-
scribes dependencies among attributes, both within the same entity and between
attributes in related entities. An edge between attributes represents a probabilistic
dependence of one attribute on the other attribute. In addition, the probabilistic
component can also be used to model uncertainty over object references.

2.1 Relational Language

A schema for a relational model describes a set of tables,
���������
	�����
	������

.
Each table has at least one key attribute, denoted X.K. The other attributes (or
columns) in the table are either descriptive attributes or foreign key attributes
(key attributes of another table) 1. As an example, Figure 1 shows a PRM for
a database from a tuberculosis (TB) clinic. The database contains information
about TB patients, the TB strains that have been seen in the population and people
who have been in contact with the patients. In this case, the schema for the TB
PRM has three tables: Patient, Strain and Contact.
A descriptive attribute � of table

�
is denoted

��� � , and its domain of values is
denoted ��� ��� ��� . We assume that domain sizes are finite. For example, the Pa-
tient table has descriptive attributes such as Gender, Race and Hiv. The descrip-
tive attributes are shown in ovals Figure 1. The domain of Patient

�
Hiv might be�

negative, positive, not-tested
�
.

We use a similar notation,
��� �

, to refer to a foreign key of
�

. The domain type������� ��
is
�

and
�

is typed, i.e., the schema specifies the table the foreign key
is referencing. If

�
refers to tuples of table ! , then the range type "�#%$'&)(� �� is

! . In our TB example, the class Patient has foreign key Strain linking a patient
to the strain with which they are infected. In addition, the Contact has a foreign
key Patient that refers to the patient that named this contact (The foreign keys are
not shown in Figure 1).

1 Foreign keys can be constructed from multiple attributes; here for simplicity we describe them
as a single attribute

For each foreign key attribute
��� �

, we can define an inverse
� � �

. Let
�

refer to
tuples in table Y. For ��� ! ,

� � � � � � returns the set of tuples in
�

that refer to� . More precisely, � � � � � � � ����� � � � � � �
For example the inverse of Contact.Patient returns a patient’s set of contacts.
Finally, we compose object references by defining the notion of a reference chain.
This allows us to define functions from objects to other objects to which they are
indirectly related. A reference chain � � � � 	����
��	 �
	

is a sequence of foreign
keys (inverse or otherwise) such that for all � , "�#%$'&�(� ��� � ���)��� �
�� �

.

2.2 Schema Instantiation

An instance � of a schema is simply a standard relational logic interpretation of
this vocabulary. It specifies: the set of tuples

�
in each table; a value for each at-

tribute
� � � (in the appropriate domain); and a value for each foreign key attribute� � �

, which is the key of a tuple in the appropriate range type. For each tuple
�

in
the instance and each of its attributes � , we use ����� � to denote the value of

� � �
in � .
A relational skeleton ��� of a relational schema is a partial specification of an
instance of the schema. It specifies the set of tuples � � � � � for each table and
the relations that hold between the tuples (e.g., the values for the foreign keys).
However, it leaves the values of the descriptive attributes of the tuples unspecified.
The relational skeleton defines the random variables in our domain; we have a
random variable for each attribute of each tuple in the skeleton. A PRM then
specifies a probability distribution over completions � of the skeleton.

2.3 Probabilistic Model

A PRM defines a probability distribution over a set of instances of a schema. Most
simply, we assume that the set of tuples and the relations between them are fixed,
i.e., external to the probabilistic model. Then, the PRM defines only a probability
distribution over the attributes of the tuples in the model.
The probabilistic model consists of two components: the qualitative dependency
structure, � , and the parameters associated with it, ��� . The dependency structure
is defined by associating with each attribute

��� � a set of parents Pa � ��� ��� . Intu-
itively, the parents are attributes that are “direct influences” on

��� � . In Figure 1,
the arrows define the dependency structure.
We distinguish between two types of formal parents. The attribute

��� � can de-
pend on another probabilistic attribute � of

�
. This formal dependence induces

a corresponding dependency for individual tuples: for any tuple
�

in � � � � , � � �
will depend probabilistically on

� � � . The attribute
��� � can also depend on at-

tributes of related tuples
��� � � � , where � is a reference chain. To understand

the semantics of this formal dependence for an individual tuple
�

, note that
� � �

represents the set of tuples that are referenced by
�

. Except in cases where the ref-
erence chain is guaranteed to be single-valued, we must specify the probabilistic
dependence of

� � � on the multi-set
� � � ��� ��� � � � � . In order to represent this

dependency compactly we will allow
� � � to depend probabilistically on some

aggregate property of this multi-set. There are many natural and useful notions of
aggregation: the mode of the set (most frequently occurring value); mean value

of the set (if values are numerical); median, maximum, or minimum (if values are
ordered); cardinality of the set; etc.
Given a set of parents Pa � ��� ��� for

��� � , we can define a local probability model
for

��� � . We associate
��� � with a conditional probability distribution that spec-

ifies
� � ��� � �

Pa � ��� ����� . Here the CPDs are multinomial distributions, repre-
sented either as tables or trees. Each CPD specifies for each possible instantiation
of the parents, the distribution over the child’s value. Let � be the set of parents
of
��� � , � �

Pa � ��� ��� . Each of these parents � � — whether a simple attribute
in the same relation or an aggregate of a set of related tuples — has a set of values
� ��� � � in some ground type. For each tuple of values � � ������� , we specify a
distribution

� � ��� � � � � over � � ��� ��� . This entire set of parameters comprises
� � .

Definition 1. A probabilistic relational model (PRM) � for a relational schema�
is defined as follows. For each

� � � and each descriptive attribute � of
�

,
we have:

– a set of parents Pa � ��� � � � � � � 	������	 �	� � , where each � � has the form
��� �

or
��� � � � , where � is a reference chain;

– a conditional probability distribution (CPD) that represents
�	
 � ��� � �

Pa � ��� ����� .

2.4 PRM semantics

Given any skeleton, we have a set of random variables of interest: the attributes� � � of the tuples in the skeleton. The PRM specifies a probability distribution
over the possible joint assignments of values to these random variables. As with
Bayesian networks, the joint distribution over these assignments can be factored.
That is, we take the product, over all

� � � , of the probability in the CPD of the
specific value assigned by the instance to the attribute given the values assigned
to its parents. Formally, this is written as follows:

� � � � � 	 � 	 � � � ���
����

�
������ ���

� � � ��� � � � Pa � ��� ��� �
��� �	� �

������
�	�
�

�
������

�	�
�
� � � ��� � � � Pa � ��� ��� � (1)

This expression is very similar to the chain rule for Bayesian networks. There
are two primary differences. First, our random variables are the attributes of a set
of tuples. Second, the set of parents of a random variable vary according to the
relational context of the tuple— the set of tuples to which it is related.
As in any definition of this type, we have to take care that the resulting function
from instances to numbers does indeed define a coherent probability distribution,
i.e., where the sum of the probability of all instances is � . In Bayesian networks,
where the joint probability is also a product of CPDs, this requirement is satisfied
if the dependency graph is acyclic: a variable is not an ancestor of itself. A similar
condition is sufficient to ensure coherence in PRMs as well, see [4, 5] for details.

3 Learning PRMs

In order to learn a PRM from an existing database, we adapt and extend the
machinery that has been developed over the years for learning Bayesian networks
from data [2, 9] to the task of learning PRMs from structured data [4, 6]. In the
learning problem, our input contains a relational schema that specifies the basic
vocabulary in the domain — the set of tables, the attributes of each table and the
possible foreign-key joins between tuples in the different tables Our training data
consists of a fully specified instance of that schema stored in a database.
There are two components of the learning task: parameter estimation and struc-
ture learning. In the parameter estimation task, we assume that the qualitative
dependency structure of the PRM is known; i.e., the input consists of the schema
and training database (as above), as well as a qualitative dependency structure � .
The learning task is only to fill in the parameters that define the CPDs of the at-
tributes. In the structure learning task, we must discover the dependency structure
� as well. We discuss each of these problems in turn.

3.1 Parameter Estimation

Here the dependency structure is known, e.g., we are given the structure � that
determines the set of parents for each attribute, and our task is to learn the pa-
rameters ��� that define the CPDs for this structure. The key ingredient in pa-
rameter estimation is the likelihood function, the probability of the data given the
model. This function measures the extent to which the parameters provide a good
explanation of the data. Intuitively, the higher the probability of the data given
the model, the better the ability of the model to predict the data. The likelihood
of a parameter set is defined to be the probability of the data given the model:� � � � � � 	 � 	 � � � � � � � � 	 � 	 � � � �
As in many cases, it is more convenient to work with the logarithm of this func-
tion: � � � � � � 	 � 	 � � ��� � & � � � � � 	 � 	 � � �

��� �	� �
������

� �
�
�� �
���� �

� �
�
� � & � � � ��� � � � Pa � ��� ��� �	�
 � (2)

The key insight is that this equation is very similar to the log-likelihood of data
given a Bayesian network [9]. In fact, it is the likelihood function of the Bayesian
network induced by the structure given the skeleton: the network with a ran-
dom variable for each attribute of each tuple

� � � , and the dependency model in-
duced by � and � , as discussed in Section 2.4. The only difference from standard
Bayesian network parameter estimation is that parameters for different nodes in
the network — those corresponding to the

� � � for different tuples
�

from the
same class — are forced to be identical. This similarity allows us to use the well-
understood theory of learning from Bayesian networks.
Consider the task of performing maximum likelihood parameter estimation. Here,
our goal is to find the parameter setting ��� that maximizes the likelihood

� � ��� �
� 	 � 	 � � for a given � , � and � . Thus, the maximum likelihood model is the model
that best predicts the training data. This estimation is simplified by the decompo-
sition of log-likelihood function into a summation of terms corresponding to the

various attributes of the different classes. Each of the terms in the square brackets
in (2) can be maximized independently of the rest. Hence, maximum likelihood
estimation reduces to independent maximization problems, one for each CPD. In
fact, a little further work reduces Eq. (2) even further, to a sum of terms, one for
each multinomial distribution �

�
� � � � . Furthermore, there is a closed form solu-

tion for the parameter estimates. In addition, while we do not describe the details
here, we can take a Bayesian approach to parameter estimation by incorporating
parameter priors. For an appropriate form of the prior and by making standard
assumptions, we can also get a closed form solution for the estimates.

3.2 Structure Learning

We now move to the more challenging problem of learning a dependency struc-
ture automatically. The main problem here is finding a good dependency structure
among the huge number of many possible ones. As in most learning algorithms,
there are three important components that need to be defined: the hypothesis
space which specifies which structures are candidate hypotheses that our learn-
ing algorithm can return; a scoring function that evaluates the “goodness” of
different candidate hypotheses relative to the data; and the search algorithm, a
procedure that searches the hypothesis space for a structure with a high score. We
discuss each of these in turn.

Hypothesis Space Fundamentally, our hypothesis space is determined by our
representation language: a hypothesis specifies a set of parents for each attribute��� � . We must, however, restrict our hypothesis space to ensure that the structure
we are learning is a legal one. We are learning our model based on one training
database, but would like to apply it in other settings, with potentially very dif-
ferent relational structure. We want to ensure that the structure we are learning
will generate a consistent probability model for any skeleton we are likely to see.
We can do this by constructing a class dependency graph for the candidate PRM
and ensuring that the class graph is acyclic. We maintain the graph during learn-
ing, and consider only models whose dependency structure passes the appropriate
test; see [4, 5] for more details.

Scoring Function The second key component is the ability to evaluate dif-
ferent structures in order to pick one that fits the data well. We adapt Bayesian
model selection methods to our framework. Bayesian model selection utilizes a
probabilistic scoring function. In line with the Bayesian philosophy, it ascribes a
prior probability distribution over any aspect of the model about which we are un-
certain. In this case, we have a prior

� � � � over structures, and a prior
� � � � � � �

over the parameters given each possible structure. The Bayesian score of a struc-
ture � is defined as the posterior probability of the structure given the data � .
Formally, using Bayes rule, we have that:� � � � � 	 � ��� � � � � � 	 � � � � � � � �
where the denominator, which is the marginal probability

� � � � � � is a normal-
izing constant that does not change the relative rankings of different structures.

This score is composed of two main parts: the prior probability of the structure,
and the probability of the data given that structure. The marginal likelihood is a
crucial component, which has the effect of penalizing models with a large num-
ber of parameters. Thus, this score automatically balances the complexity of the
structure with its fit to the data. In the case where � is a complete assignment,
and we make certain reasonable assumptions about the structure prior, there is a
closed form solution for the score.

Search Algorithm Now that we have a hypothesis space and a scoring function
that allows us to evaluate different hypotheses, we need only provide a procedure
for finding a high-scoring hypothesis in our space. For Bayesian networks, we
know that the task of finding the highest scoring network is NP-hard [1]. As PRM
learning is at least as hard as Bayesian network learning (a Bayesian network is
simply a PRM with one table and no relations), we cannot hope to find an efficient
procedure that always finds the highest scoring structure. Thus, we must resort to
heuristic search.
The simplest heuristic search algorithm is greedy hill-climbing search, using our
score as a metric. We maintain our current candidate structure and iteratively
improve it. At each iteration, we consider a set of simple local transformations to
that structure, score all of them, and pick the one with highest score. We restrict
attention to simple transformations such as adding, deleting or reversing an edge.
We can show that, as in Bayesian network learning, each of these local changes
requires that we recompute only the contribution to the score for the portion of
the structure that has changed in this step; this has a significant impact on the
computational efficiency of the search algorithm. We stop when we have reached
a local optimum in the model space. We can make our search procedure more
robust by incorporating any of the standard extensions to greedy search such as
random restarts, maintaining a tabu list or using a simulated annealing form of
search algorithm.

4 Experimental Results

We have run our algorithm on a variety of synthetic and real-world domains, see
[6, 7, 5] for additional results. Here we describe one of the real-world domains.
Figure 1 shows the PRM learned for a database of epidemiological data for 1300
patients from the San Francisco tuberculosis (TB) clinic, and their 2300 con-
tacts [17]. For the patient table, the schema contains demographic attributes such
as age, gender, race, and place of birth (pob), as well as medical attributes such
as HIV status, disease site (for TB), whether the X-ray results indicate cavitary
infection, etc. The clustered attribute indicates whether this patient is a member
of a cluster of TB outbreaks (a number of patients with the same TB strain) or
whether the patient is infected with a unique strain of TB (likely to be an indepen-
dent reactivation of latent infection and not part of a disease transmission chain).
In addition, we have a strain table representing the different TB strains that have
been identified among the patient population. The strain table has attributes for
drug susceptibility results for streptomycin (str), isoniazid (inh), rifampin (rif),
ethambutol (emb), and pyrazinamide (pza). The fitness attribute reflects the rel-
ative prevalence of a particular strain of M. tuberculosis in the study population:

infected

str

contage

fitness

closeness

clustered

treatment

gender

relationship

age

race

inh

secondary_case

pob

hiv

emb

household

site

pza

care

cavitary

smear

rif

care_provider

Strain

Patient
Contact

Fig. 1. The PRM structure learned for the TB domain.

strains identified only once were considered to have low fitness, strains isolated
from 2–5 different patients were considered to have moderate fitness, and strains
found in 3–6 individuals were considered to have high fitness. Each patient is also
asked for a list of people with whom he has been in contact; the contact table has
attributes that specify the relationship of contact (sibling, coworker, etc.), contact
age, whether the contact is a household member, etc.; in addition, the type of
diagnostic procedure that the contact undergoes (care) and the result of the diag-
nosis (infected) are also reported. The secondary case attribute indicates whether
the contact later becomes a patient in the clinic.

We learn a rich dependency structure both within entities and between attributes
in different entities. Our domain experts found many of the dependencies to be
quite reasonable, for example: the dependence of age at diagnosis on HIV status
— typically, HIV-positive patients are younger, and are infected with TB as a
result of AIDS; the dependence of the contact’s age on the relationship of con-
tact with the patient — contacts who are coworkers are likely to be younger than
contacts who are parents and older than those who are school friends; or the de-
pendence of HIV status on race — Asian patients are rarely HIV positive whereas
white patients are much more likely to be HIV positive.

We also discovered dependencies that are clearly relational, and that would have
been difficult to detect using a non-relational learning algorithm. For example
there is a correlation between the race of the patient and the fitness of the strain.
Patients who are Asian are more likely to be infected with a strain which is unique
in the population (low fitness), whereas other ethnicities are more likely to have
strains that recur in several patients (high fitness). The reason is that Asian pa-

0 10 20 30 40 50 60 70 80 90 100

patient.clustered <- patient.pob

patient.clustered <- patient.age

patient.site <- patient.gender

patient.race <- patient.age

patient.hiv <- patient.cavitary

contact.relationship <- contact.closeness

patient.smear <- patient.cavitary

patient.care_provider <- patient.cavitary

contact.contage <- contact.infected

contact.care <- contact.infected

strain.str <- strain.inh

strain.inh <- strain.fitness

patient.clustered <- patient.race

patient.cavitary <- patient.site

patient.care_provider <- patient.age

contact.treatment <- contact.care

strain.pza <- strain.rif

contact.household <- contact.treatment

contact.contage <- contact.relationship

strain.rif <- strain.inh

E
d

g
es

Occurrence (%)

Fig. 2. The most commonly occurring edges in 100 learned models

0 10 20 30 40 50 60 70 80 90 100

contact.infected <- contact.patient.gender

patient.care_provider <- patient.contact.care

patient.age <- patient.strain.fitness

patient.age <- patient.contact.contage

patient.age <- patient.contact.relationship

contact.infected <- contact.patient.race

contact.infected <- contact.patient.pob

contact.closeness <- contact.patient.gender

contact.care <- contact.patient.care_provider

patient.site <- patient.contact.secondary_case

patient.hiv <- patient.strain.fitness

contact.care <- contact.patient.race

patient.care_provider <- patient.contact.closeness

patient.site <- patient.contact.household

patient.race <- patient.strain.fitness

contact.infected <- contact.patient.age

patient.site <- patient.contact.infected

patient.site <- patient.contact.contage

patient.care_provider <- patient.contact.treatment

contact.relationship <- contact.patient.gender

E
d

g
es

Occurrences (%)

Fig. 3. The most commonly occurring inter-relational edges in 100 learned models .

0

10

20

30

40

50

60

70

80

90

100

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221

Edges

O
cc

u
ra

n
ce

 P
er

ce
n

ta
g

e

Fig. 4. The distribution of occurrences of edges in 100 learned models.

tients are more often immigrants, who immigrate to the U.S. with a new strain
of TB, whereas others are often infected locally. Another interesting relational
correlation is between the place of birth of the patient and whether or not their
contacts become secondary cases. US-born patient’s contacts are more likely to
become secondary cases than foreign born patients. This is also explained by the
immigrants likelihood of having a reactivated (non-infectious) TB case.
The model shown in Figure 1 shows the PRM learned using the greedy search
algorithm. In order to get a better understanding of the robustness of the learned
dependencies, we also ran experiments where we introduced randomness into the
search. The learning algorithm for this set of experiments is a version of simu-
lated annealing: in early phases of the search we are likely to take random steps
(rather than the best step), but as the search proceeds (e.g., the temperature cools)
we are less likely to take random steps and more likely to take the best greedy
step. Figure 4 shows the distribution of occurrences of edges in 100 learned mod-
els. We see that of the possible 310 possible edges that can occur in our models,
we see about two-thirds of them occurring at least once2. Figure 2 shows the
most frequently occurring edges. Figure 3 shows the most frequently occurring
edges between attributes in different relations. It is not surprising that the multi-
relational edges are less frequent. First, intuitively attributes of the same object
or tuple are more tightly coupled and thus more likely to have correlations. Sec-

2 The models learned had tree structured CPDs; among other things this allows finer-grain de-
pendencies to be learned. If we restrict attention to table CPDs, then in 100 runs only about a
third of the possible edges occur.

ond, by the nature of our phased search, we will uncover dependencies between
attributes within the same table before we consider dependencies between at-
tributes in different tables, thus we will only add the latter to our model in the
case where the correlation has not already been explained.
There are several caveats to be made about looking at these numbers. First, many
dependency structures are score equivalent, so that we can not always distinguish
between a model that has for example an edge going one direction versus a model
that has the same edge directed in the opposite direction. Second, in making in-
ferences the path of influence between two variables is what really matters, not
just whether they are directly connected. Nevertheless, these experiments give us
some additional insight into the domain.
Looking at the edge occurrences supports our earlier discoveries. For example, 50
of the models learned have an edge going from hiv to age and 45 of the models
have an edge going from age to hiv; 72 of the models have an edge between
contact relationship and contact age and 28 have the same edge in the reverse
direction; and 69 of the learned models have an edge from race to hiv while 27
have the reversed edge. For the multi-relational dependencies, the most common
correlations between strain fitness and patient attributes are on the attributes race,
pob and age

5 Related Work

Two recent developments within the ILP community are related to PRMs: stochas-
tic logic programs (SLPs)[12, 3] and Bayesian logic programs (BLPs)[10]. The
semantics for these two approaches are quite different, with the BLP semantics
being the closest to PRMs. An SLP defines a sampling distribution over logic pro-
gramming proofs; as a consequence, it induces a probability distribution over the
possible ground facts for a given predicate. On the other hand, a BLP consists of a
set of rules, along with conditional probabilities and a combination rule; follow-
ing the approach of knowledge-based model construction [16], the BLP essen-
tially specifies a propositional Bayesian network. This approach is very similar
to the probabilistic logic programs of [14, 15].
Learning algorithms for these approaches are being developed. Methods for learn-
ing SLPs are described in [13]. A maximum likelihood approach is taken for
parameter estimation for an SLP which is based on maximizing the posterior
probability of the program. The task of learning the structure of an SLP is quite
different from learning a PRM structure and is based on more traditional ILP
approaches. On the other hand, while BLPs are more closely related to PRMs,
and methods for learning BLPs have been suggested in [10], learning algorithms
have not yet been developed. Methods for learning PRMs may be applicable to
learning BLPs.

6 Conclusion

It is important for us to develop sound statistical methods for directly mining
multi-relational data stored in a relational database. Probabilistic relational mod-
els are one approach for achieving this goal. PRMs offer the advantage of having
semantics based on well-founded statistical principles developed for Bayesian

networks and graphical models. The learning algorithms query the database for
statistics directly and do not require the data to be extracted from the database
before the learning algorithm can be applied. In addition, the learning algorithms
are data driven and do not require the user to postulate individual hypothesis. And
the learned PRMs give a full model of the joint domain and thus are easier to in-
terpret than a collection of rules. In summary, PRMs are an important new tool
for multi-relational data mining.

References

[1] D. M. Chickering. Learning Bayesian networks is NP-complete. In D. Fisher and H.-J. Lenz, edi-
tors, Learning from Data: Artificial Intelligence and Statistics V, pages 121–130. Springer Verlag,
1996.

[2] G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks
from data. Machine Learning, 9:309–347, 1992.

[3] J. Cussens. Loglinear models for first-order probabilistic reasoning. In Proceedings of the Fifteenth
Annual Conference on Uncertainty, pages 126–133, Stockholm, Sweden, 1999. Morgan Kaufman.

[4] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pages 1300–
1307, Stockholm, Sweden, 1999. Morgan Kaufman.

[5] L. Getoor. Learning Statistical Models from Relational Data. PhD thesis, Stanford University,
2001. to appear.

[6] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning probabilistic relational models. In
S. Dzeroski and N. Lavrac, editors, Relational Data Mining. Springer-Verlag, 2001.

[7] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models of relational
structure. In Proceedings of the International Conference on Machine Learning, Williamstown,
MA, 2001. Morgan Kaufman.

[8] L. Getoor, B. Taskar, and D. Koller. Selectivity estimation using probabilistic models. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data, pages 461–472,
Santa Barbara, CA, 2001. ACM Press.

[9] D. Heckerman. A tutorial on learning with Bayesian networks. In M. I. Jordan, editor, Learning in
Graphical Models, pages 301 – 354. MIT Press, Cambridge, MA, 1998.

[10] K. Kersting, L. de Raedt, and S. Kramer. Interpreting Bayesian logic programs. In Proceedings
of the AAAI-2000 Workshop on Learning Statistical Models from Relational Data, pages 29–35.
AAAI Press, 2000.

[11] D. Koller and A. Pfeffer. Probabilistic frame-based systems. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence, pages 580–587, Madison, WI, 1998. AAAI Press.

[12] S.H. Muggleton. Stochastic logic programs. In L. de Raedt, editor, Advances in Inductive Logic
Programming, pages 254–264. IOS Press, Amsterdam, 1996.

[13] S.H. Muggleton. Learning stochastic logic programs. In Proceedings of the AAAI-2000 Workshop
on Learning Statistical Models from Relational Data, pages 36–41. AAAI Press, 2000.

[14] L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilistic knowledge bases.
Theoretical Computer Science, 171:147– 177, 1996.

[15] D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence, 64:81–129,
1993.

[16] M.P. Wellman, J.S. Breese, and R.P. Goldman. From knowledge bases to decision models. The
Knowledge Engineering Review, 7(1):35–53, 1992.

[17] M. Wilson, J. DeRisi, H. Kristensen, P. Imboden, S. Rane, P. Brown, and G. Schoolnik. Ex-
ploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray
hybridization. In Proceedings of the National Academy of Sciences, 2000.

