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Introduction
Many interesting tasks in artificial intelligence require the
ability to work with imperfect relational data. Examples in-
clude social network applications in which partial informa-
tion about users and about their connections is available. For
instance, we may have attribute information about users; we
may know the age, gender, personality, likes and dislikes
etc. of a user, but this knowledge is usually incomplete in
the sense that we do not have all attribute values for all users.
The knowledge can also be uncertain, for instance when the
attribute values are not given directly by the user but instead
they are inferred from user generated content.

The relational aspect of social network data stems from
the connections between the users, e.g., Facebook users are
connected with their friends; Twitter users can follow one
another; in Amazon, users can bookmark other interesting
users; in Epinions users can trust other users or include
them in their block list (i.e. distrust) etc. Again, the avail-
able knowledge about the connections is typically incom-
plete and uncertain. An interesting task is to perform most
probable explanation (MPE) inference over a given social
network, i.e. based on (1) given attribute values about users
and their connections and (2) some background knowledge
about the domain, expressed as probabilistic rules in first-
order logic, infer missing attribute values such that the given
and the inferred values combined adhere to the background
knowledge as well as possible. MPE inference is an impor-
tant task in statistical relational learning (SRL).

Probabilistic Soft Logic (PSL)
A particularly interesting framework for SRL is probabilis-
tic soft logic (PSL). Unlike in other forms of SRL, in which
predicates are Boolean, in PSL they can take soft truth val-
ues in the interval [0, 1]. Conjunction and disjunction in PSL
rules are respectively modelled by the Łukasiewicz t-norm
and t-conorm because their particular piecewise linear form
allows to cast MPE inference for a PSL program as a con-
vex optimization problem. Negation is the standard negation
from fuzzy logic, i.e. for x and y in [0, 1] (the˜indicates the
relaxation over Boolean values):

x∧̃y = max(0, x+ y − 1), x∨̃y = min(x+ y, 1)
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¬̃x = 1− x
In a PSL program, relationships and attributes are mod-

elled by predicates, and first-order rules model constraints
on these predicates. MPE inference is concerned with find-
ing the most probable assignment of truth values. The prob-
ability of truth value assignments is defined by a weighting
function, namely, distance to satisfaction (dr). Generally, the
distance to satisfaction of an unsatisfied rule is the difference
between the truth values of the body and the head. A rule r
is satisfied when the truth value of its head is at least as high
as the truth value of its body. Therefore, the rule’s distance
to satisfaction under an interpretation I is defined in Equa-
tion (1). An interpretation I is a mapping that associates a
truth value to each element, i.e., I(x) ∈ [0, 1].

dr(I) = max{0, I(rbody)− I(rhead)} (1)

A PSL program, i.e. a set of PSL rules, induces a distribu-
tion over interpretations I . The probability density function
is (Brocheler, Mihalkova, and Getoor 2012):

f(I) =
1

Z
exp[−

∑
r∈R

λr(dr(I))
p] (2)

where λr is the weight of the rule r, Z is a normalization
constant (see Equation (3)), and p ∈ {1, 2} provides a choice
of two different loss functions. p = 1 favors the satisfaction
of one rule, and p = 2 favors the satisfaction of all rules
to some degree. These probabilistic models are instances of
hinge-loss Markov random fields (Bach et al. 2013).

Z =

∫
I

exp[−
∑
r∈R

λr(dr(I))
p] (3)

For example Trusts(A,B) → Knows(A,B) models
that “if A trusts B then A knows B” where A and
B are variables referring to arbitrary objects (Huang et
al. 2012). An example of a grounded version of this
PSL rule is Trusts(Alice,Bob) → Knows(Alice,Bob). If
Trusts(Alice,Bob) and Knows(Alice,Bob) are true to respec-
tively degree 0.7 and 0.5, then the rule is satisfied to degree
1 − (0.7 + 0.5) = 0.8. The truth degree of some predicates
is given in advance, and, roughly speaking, the goal of MPE
inference is to find a truth assignment for the other pred-
icates such that the combined degree of satisfaction of all
grounded rules is as high as possible.



Variables in PSL rules are implicitly universally quan-
tified. A PSL rule Trusts(A,X) ∧ Trusts(X,B) →
Trusts(A,B), models that “A trusts B” is true to the de-
gree to which there is a trusted third party X . In standard
PSL there is no direct way to express that A can trust B if
most friends of A trust B. The notion most in this statement
represents a fuzzy quantifier. Atoms whose truth values are
functions of other atoms’ truth values are defined using ag-
gregates. PSL supports linear aggregates, e.g., the average
truth value of a set of atoms. However, non-linear aggre-
gates such as the fuzzy quantifiers as we propose in the next
section require additional capabilities.

Fuzzy quantifiers
The idea of fuzzy quantifiers (Delgado et al. 2013) was first
introduced by Zadeh (Zadeh 1983). Quantifiers represent
notions such as “most” and “a few”. The necessity of in-
troducing a new notation to define quantifiers based on a
linguistic perspective has also been studied in (Barwise and
Cooper 1981; Keenan and Westerstahl 2011) in the context
of generalization quantifiers.

Intuitively, quantifiers relate to the concept of cardinality
of sets. Recall that a fuzzy set A in a universe X is a X −
[0, 1] mapping. The cardinality of A is defined as the sum of
the individual membership degrees, i.e.

|A| =
∑
x∈X

A(x) (4)

A fuzzy quantifier Q is a [0, 1]− [0, 1] mapping. Q is called
coherent if Q is non-decreasing and if it satisfies the bound-
ary conditions Q(0) = 0 and Q(1) = 1. Figures 1 and 2
depict two coherent fuzzy quantifiers.

Zadeh (Zadeh 1983) suggested to calculate the truth value
of “Q A’s are Bs”, with A and B fuzzy sets in X , as:

Q

(
|A ∩B|
|A|

)
(5)

Other approaches for fuzzy quantifiers and aggregation op-
erators have been proposed, most notably Yager’s OWA-
operators (Yager 1988).

Extending the semantics of PSL to allow the use of these
quantifiersis non-trivial. The main challenge is finding a way
in which MPE inference over PSL programs can be cast as
a convex optimization problem.

Extension approach
A PSL model consists of a collection of weighted rules.
Given the data, rules are grounded out with substitution
of logical terms, and form hinge-loss potentials for Equa-
tion (2). Hinge-loss MRFs have log concave density func-
tions and finding a MPE is a convex optimization problem,

which is solvable in polynomial time. Although, the numer-
ator of the fuzzy quantifier (i.e., Equation (5)) is grounded
out using the Łukasiewicz t-norm, grounding the function to
some threshold is not linear and cannot be represented with
linear constraints.

However, one could initialize the aggregate values by
grounding the quantifier operator. Each fuzzy aggregate can
be defined as a new predicate, e.g., most of the trusted
friends can be defined by MostFriendsTrust(A,B)
which calculates the cardinality of the trusted friends of A
who trust B over all trusted friends of A. By using this new
predicate, we are able to define rules similar to the standard
PSL rules using conjunction and disjunction, e.g., the fol-
lowing PSL rule indicates that if most friends of A trust B,
A trusts B: MostFriendsTrust(A,B)→ Trusts(A,B)

The value of each grounded predicate will be updated to
satisfy all grounded rules during the MPE inference or learn-
ing phase which maximizes the likelihood of each variable
conditioned on all other variables. Thus, to update the value
of the fuzzy aggregates, we propose to ground the aggregate
function iteratively during the inference and weight learning
phase until the aggregate value has converged.

Conclusion
PSL is a probabilistic modeling framework which uses first-
order logic and soft truth values in the interval [0, 1] for rea-
soning in relational domains. PSL uses the Łukasiewicz t-
norm and t-conorm from fuzzy logic to model respectively
conjunction and disjunction. In the current version of PSL,
rules representing notions such as “most” and “a few” have
not been addressed. We propose an extension to PSL with
fuzzy quantifiers to overcome this limitation. We believe
fuzzy quantifiers expand the ability of PSL to model social
network applications which work with imperfect relational
data, e.g., trust propagation, link prediction, node labelling.
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