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Abstract. In this paper, we consider the link prediction problem, where we are
given a partial snapshot of a network at some time and the goal is to predict
the additional links formed at a later time. The accuracy of current prediction
methods is quite low due to the extreme class skew and the large number of po-
tential links. Here, we describe learning algorithms based on chance constrained
programs and show that they exhibit all the properties needed for a good link
predictor, namely, they allow preferential bias to positive or negative class; han-
dle skewness in the data; and scale to large networks. Our experimental results
on three real-world domains—co-authorship networks, biological networks and
citation networks—show significant performance improvement over baseline al-
gorithms. We conclude by briefly describing some promising future directions
based on this work.

1 Introduction

Network analysis, performed in domains including social networks, biological networks,
transaction networks, and the web, has received a lot of interest in recent years. These
networks evolve over time and it is a challenging task to understand the dynamics that
drives their evolution. Link prediction is an important research direction within this
area. The goal here is to predict the potential future interaction between two nodes,
given a partial view of the current state of the network.

This problem occurs in several domains. In many cases, we are interested in the
links that are likely to form in the future. For example, in citation networks describing
collaboration among scientists, we want to predict which pairs of authors are likely to
collaborate in future; in social networks, we would want to predict new friendships;
in query graphs, we want to predict the related queries in the context of web search
and in biological networks we want to predict which proteins are likely to interact.
On the other hand, we may be interested in anomalous links; for example, in financial
transaction networks, the unlikely transactions might indicate fraud, and on the web,
they might indicate spam.

There is a large literature on link prediction. Early approaches to this problem are
based on defining a measure for analyzing the proximity of nodes in the network [1,
19, 14]. For example, shortest path, common neighbors, Katz measure, Adamic-adar
etc., all fall under this category. More recently, Sarkar et al. [22] gave a theoretical
justification of these link prediction heuristics. Liben-Nowell and Klienberg studied the
usefulness of all these topological features by experimenting on bibliographic datasets



[14]. It was found that, no one measure is superior in all cases. Statistical relational
models were also tried with some success [7, 8, 24, 20]. Recently, the link prediction
problem is studied in the supervised learning framework by treating it as an instance
of binary classification [9, 11, 4, 25, 27]. These methods use the topological and semantic
measures defined between nodes as features for learning classifiers. Given a snapshot
of the social network at time t for training, they consider all the links present at time
t as positive examples and consider a large sample of absent links (pair of nodes which
are not connected) at time t as negative examples. The learned classifiers performed
consistently across all the datasets unlike heuristic methods which were inconsistent,
although the accuracy of prediction is still very low. There are several reasons for this
low prediction accuracy. One of the main reasons is the huge class skew associated with
link prediction. In large networks, it’s not uncommon for the prior link probability on
the order of 10−4 or less, which makes the prediction problem very hard, resulting in
poor performance. In addition, as networks evolve over time, the negative links grow
quadratically whereas positive links grow only linearly with new nodes. Further, in
some cases we are more concerned with link formation, the problem of predicting new
positive links, and in other cases we are more interested in anomalous link detection [21],
the problem of detecting unlikely links. In general, we need the following properties for
a good link predictor: allow preferential bias to the appropriate class; handle skewness

in the data; scale to large networks.
Chance-constraints and Second-Order Cone Programs(SOCPs) [15] are a special

class of convex optimization problems that have become very popular lately, due to the
efficiency with which they can be solved using fast interior point methods. They are
used in a variety of settings such as feature selection [3], dealing with missing features
[23], classification and ordinal regression algorithms that scale to large datasets [18], and
formulations to deal with unbalanced data [17, 10]. In this work, we give a scalable cost-
sensitive formulation based on chance-constraints which satisfies all the requirements
needed for learning a good link predictor mentioned above and show how it can be used
for link prediction to significantly improve performance. The chance constraints can be
converted into deterministic ones using Chebyschev-Cantelli inequality, resulting in a
SOCP. The complexity of SOCPs is moderately higher than linear programs and they
can be solved using general purpose SOCP solvers like SeDuMi3 or YALMIP4.

The main contributions of this paper include: 1. We identify important require-
ments of the link prediction task and propose a new cost-sensitive formulation based on
chance constraints satisfying all the requirements. We describe its connections to other
frameworks like biased classification and uneven margin algorithms. 2. We perform a
detailed evaluation on multiple datasets from three real-world domains–co-authorship
networks, biological networks and citation networks– to investigate the effectiveness of
our methods. We show significant improvement in link prediction accuracy.

2 Cost-sensitive learning for Link Prediction

In this work, we consider the link prediction problem as an instance of binary classi-
fication. We are given training data D = {(x1, y1), (x2, y2), · · · , (xn, yn)} where, each
xi ∈ ℜn is a feature vector defined between two nodes and yi ∈ {−1,+1} is the

3 http://sedumi.ie.lehigh.edu
4 http://users.isy.liu.se/johanl/yalmip/



corresponding label that stands for the presence or absence of an edge between the
two nodes. In our case, we have a huge class imbalance problem, i.e., the number of
negative examples ≫ the number of positive examples. There are two different ways
of addressing the class imbalance problem. In the first approach, it is turned into a
balanced problem either by over-sampling the minority class or under-sampling the
majority class. However, both these sampling methods have their drawbacks. By doing
under-sampling, we lose some information and over-sampling introduces noise into the
data. In the second approach, class imbalance problem is addressed by reducing it to
a cost-sensitive learning problem where misclassification costs are unknown. Then, the
ratio of misclassification costs is varied to find out the best decision function based on
the validation set. In this work, we will follow the second approach which is considered
to be more principled. In particular we are interested in a cost-sensitive formulation in
the max-margin framework. We require a solution which is scalable to large data sets;
this is very important for the link prediction task. For now, we work with only linear
decision functions of the form f(x) = wT x− b. However, all the formulations described
in this work can be kernelized to construct non-linear classifiers.

Cost-Sensitive Learning Problem: In the traditional binary classification prob-
lem, all misclassifications are considered to be of the same cost, i.e., C12 = C21 where,
C12 is the misclassification cost of predicting a data point of class 1 as class 2 and C21

the misclassification cost of predicting a data point of class 2 as class 1. However, this
assumption is not true for many real-world applications like medical domains e.g., pre-
dicting whether a patient has breast cancer or not. In these problems, some mistakes
are considered more costly than others and are studied under cost-sensitive framework.
In a cost-sensitive learning problem, we are given a set of training examples, along with
the misclassification costs. The goal of learning is to find a hypothesis that minimizes
the expected cost of misclassification.

3 Clustering-based Cost-Sensitive formulation

In this formulation, we assume that class conditional densities of positive and negative
points can be modeled as mixture models with component distributions. Let k1 and
k2 denote the number of components in the mixture model for positive and negative
class respectively and say k = k1 + k2. We can cluster the positive and negative points
separately, and estimate the first and second order moments (µ,Σ) of all the clusters.
Given these second order moments, our goal is to find a discriminating hyperplane
wT x − b = 0, which separates these positive and negative clusters in such a way that
it minimizes the expected cost of misclassification. To this end, consider the following
formulation:

min
w,b,ηi

1

2
‖w‖2

2
+ Creg

{

C12

k1
∑

i=1

ηi + C21

k
∑

i=k1+1

ηi

}

s.t. Pr(Xi ∈ H2) ≤ ηi, : ∀i = 1, · · · , k1

Pr(Xi ∈ H1) ≤ ηi : ∀i = k1 + 1, · · · , k

0 ≤ ηi ≤ 1 : ∀i = 1, · · · , k

(1)



Here Xi,∀i = 1, · · · , k1 and Xi,∀i = k1 + 1, · · · , k are random variables corre-
sponding to the components of the mixture models for positive and negative classes
respectively; H1 and H2 denote the positive and negative half spaces i.e., H1(w, b)
=

{

x|wT x − b ≥ 0
}

and H2(w, b) =
{

x|wT x − b ≤ 0
}

; ηi stands for the probability
with which any point drawn from a mixture component lies on the wrong side of the
hyperplane. The objective function consists of two terms: the first term 1

2
‖w‖2

2
is the

standard squared-norm regularizer and second term C12

∑k1

i=1
ηi+C21

∑k

i=k1+1
ηj is the

empirical expected cost of misclassification. Creg is the regularization parameter that
controls the trade off between empirical error and generalization error.

The above probabilistic constraints can be written as deterministic constraints using
multivariate Chebyshev-Cantelli inequality [10].

3.1 Conversion of Chance-constraint to Second-Order Cone constraint

This conversion can be done in several different ways [12, 10]. We present the variant
based on a multi-variate generalization of Chebyschev-Cantelli inequality [16] which is
stated below.

Theorem 1. Let Z be a random variable whose second order moments are (µ, σ2).
Then for any t > 0,

Pr(Z − µ ≥ t) ≤ σ2

σ2+t2

We can use the above theorem to do this conversion. Let X be an n-dimensional random
variable with second order moments (µ,Σ). By applying the above theorem to random
variable −wT x, w ∈ ℜn and with t = wT µ − b, we get

Pr(−wT X ≥ −b) ≤ wT Σw

wT Σw + (wT µ − b)2
(2)

Now, satisfying the constraint Pr(wT X−b ≥ 0) ≥ η is same as satisfying Pr(−wT X ≥
−b) ≤ 1 − η. By applying Theorem 1, we can satisfy Pr(−wT X ≥ −b) ≤ 1 − η if:

wT Σw

wT Σw + (wT µ − b)2
≤ 1 − η (3)

Re-arranging the terms in the above inequality gives us:

wT µ − b ≥ κ
√

wT Σw (4)

where, κ =
√

η
1−η

.

3.2 Separable Case

By using the above conversion with X = Xi and η = 1 − ηi and re-writing it in the
standard SOCP form, we get the following formulation:



min
w,b,ηi

C12

k1
∑

i=1

ηi + C21

k
∑

i=k1+1

ηj

s.t. wT µi − b ≥ 1 + κi

√

wT Σiw : ∀i = 1, · · · , k1

b − wT µi ≥ 1 + κi

√

wT Σiw : ∀i = k1 + 1, · · · , k

0 ≤ ηi ≤ 1 : ∀i = 1, · · · , k

W ≥ ‖w‖
2

(5)

where, κi =
√

1−ηi

ηi

; W is a user-defined parameter which plays similar role as Creg

in the previous formulation. The geometric interpretation of the above constraints
is that of finding a hyperplane which separates the positive and negative ellipsoids
whose centers are at µi, shapes determined by Σi, and the sizes of the ellipsoids, i.e.,
κi (see Figure 1) to be classified correctly in order to minimize the expected cost of
misclassification.

Fig. 1: Geometric interpretation of SOCP formulation

3.3 Non-Separable Case

In the above formulation, if the means of the clusters are not separable, then the
optimization problem is infeasible. For example, in the worst case say ηi is 1 for some



of the non-separable ellipsoids; but even in this worst case the constraints require the
means µi of these ellipsoids to lie on the correct side of the hyperplane, i.e., wT µi−b ≥ 1
and wT µi − b ≥ −1. To avoid this problem, we can introduce slack variables ξi as in
soft-margin SVM formulation and fix the values of η1 and η2, the false-positive and
false-negative probabilities, to very small values (say 0.1). Note that, η1 and η2 are
shared by all the clusters of positive and negative classes respectively. In this case the
objective function will be replaced with slack variables ξi instead of ηi in the separable
case and leads to the following formulation:

min
w,b,ηi

C12

k1
∑

i=1

ξi + C21

k
∑

i=k1+1

ξj

s.t. wT µi − b ≥ 1 − ξi + κ1

√

wT Σiw : ∀i = 1, · · · , k1

b − wT µi ≥ 1 − ξi + κ2

√

wT Σiw : ∀i = k1 + 1, · · · , k

ξi ≥ 0 : ∀i = 1, · · · , k

W ≥ ‖w‖
2

(6)

We can see that cost-sensitive SVM is now a special case of this formulation when we
consider each data point as a cluster, i.e., the covariance matrix is null. By solving the
above SOCP problem using standard SOCP solvers like SeDuMi, we get the optimum
values of w and b, and a new data point x can be classified as sign(wT x − b).

3.4 Unbalanced data

In the case of skewed class distribution, one class will have more representative data
points (majority class) when compared to the other class (minority class). We can
handle the unbalanced problem in three different ways.

1) Cost-Sensitive classification: we can transform the unbalanced problem into
a cost-sensitive learning problem where costs are unknown and by varying the costs
based on a validation set to find the best discriminating hyperplane(CS-SOCP). More
specifically, we need to vary the ratio Cmin/Cmaj where, Cmin and Cmaj corresponds to
the misclassification costs of minority and majority class.

2) Biased classification: we can vary the preferential bias for each class η1 and
η2 instead of varying the misclassification costs and try to find a maximum-margin
hyperplane in the biased classification framework (B-SOCP) [17].

3) Classification with Uneven margins: we can vary the positive margin (τ+)
and negative margin (τ

−
) to find the best decision function in the Uneven Margin

framework (PAUM) [13]. In the uneven margin setting, the constraints in the above

formulation will become wT µi − b ≥ τ+ − ξi + κ1

√

wT Σiw and b − wT µi ≥ τ
−
− ξi +

κ2

√

wT Σiw for positive and negative clusters respectively.
We will empirically evaluate these three frameworks for different kinds of link pre-

diction problems.

3.5 Advantages of CCP for Link Prediction

There are several advantages of using chance-constrained programs for the link predic-
tion.



Scalability: The SOCP formulation based on chance constraints is scalable to large
datasets because the number of constraints in this formulation is linear in the number
of clusters, whereas the number of constraints in the SVM formulation (QP problem)
is linear in the number of data points. In addition, there are very efficient interior point
algorithms for solving SOCP.

Missing Links: As described before, we consider a large sample of node pairs which
are not connected at time t as negative examples. However, some of these negative
examples may be noisy, i.e., the link may exist, but was simply not observed at time
t. In the case of SVMs the gemoetric interpretation of dual is that of finding the
distance between two convex hulls corresponding to the positive and negative points
respectively [2]. Conversely, the interpretation of dual for SOCP formulation is that of
finding distance between two convex hulls corresponding to the positive and negative
ellipsoids. In the presence of noisy labels, The SVM solution is much more sensitive to
noisy labels than the solution with ellipsoids.

Missing features: Chance-constrained programs can naturally handle missing fea-
tures [23]. The key idea here is to use chance constraints to deal with uncertainty in the
missing values based on the second order moments. The Gaussian assumption allows
us to use EM to impute the missing values. The resulting formulation again leads to
an SOCP problem.

Applications: We can use this framework for several applications like recommen-
dations, collaborative filtering, online advertisement and marketing, and anomalous
link discovery in financial networks, terrorist networks, power grids and disease trans-
mission networks.

4 Experimental Results and Discussion

In this section, we describe our experimental setup, description of datasets, features
used for learning the classifier, evaluation methodology, followed by our results and
discussion.

4.1 Datasets:

We use three different kinds of real-world domains namely co-authorship networks,
biological networks, and citation networks for evaluating our learning algorithms.

Co-authorship networks. In co-authorship networks, we want to predict which
pair of authors are likely to collaborate in future. We use two different co-authorship
networks:

1) DBLP dataset: we use a dataset which was generated using DBLP collection
of computer science articles 5, and contains all the papers from the proceedings of 28
conferences related to machine learning, data mining and databases from 1997 to 2006.

2) Genetics dataset: The genetics dataset contains articles published in 14 jour-
nals related to genetics and molecular biology from 1996 to 2005. The genetics dataset
was generated from the popular PubMed database6.

For each dataset we have the data for 10 years. We consider the data from first 9
years for training and the data from the 10th year for testing. We consider all the links

5 http://dblp.uni-trier.de/
6 http://www.ncbi.nlm.nih.gov/entrez



formed in the 9th year as positive training examples and among all the negative links
(those links that are not formed in the first 9 years), we randomly collect a large sample
and label them as negative training examples. Note that the features of these training
examples are constructed based on the first 8 years of data. Similarly for the test set,
we consider all the links that are formed during the 10th year as positive examples
and collect a sample of all the negative links as negative examples. Also the features
of these testing examples are constructed based on the first 9 years of data.

Biological networks. We use two biological networks, a protein-protein interac-
tion network7 and a metabolic network8. The details are described below:

1) Metabolic network: This network contains 668 nodes and 2782 links. In the
metabolic network, proteins are represented as nodes, and an edge indicates that the
two proteins are enzymes that catalyze successive reactions between them. This dataset
has several features for each protein based on gene expression, localization, phylogenetic
profiles and chemical compatibility along with some kernel features as well.

2) Protein-protein interaction network: This network contains 2617 nodes and
8844 edges. Each protein is described by a 76 dimensional feature vector, where each
feature indicates whether the protein is related to a particular function or not.

Since we do not have temporal information for either of these networks, we will
choose a random two thirds of the data for training and the remaining one third for
testing.

Citation networks. For the citation prediction task, we used the KDD Cup 20039

dataset which contains the citation network for both training and testing periods sep-
arately. Also for each paper we have all the information including the title, authors,
abstract and textual content of the paper. We consider two different kinds of prediction
tasks.

1) Complete bibliography prediction: Given a new paper we want to predict
the complete bibliography of the paper, i.e., all those papers in the training which will
be cited by this paper. In this task, we connect this new paper to all the previous
papers written by its authors before the prediction for constructing features.

2) Partial bibliography prediction: In this task, given a new paper and its
partial bibliography, we want to predict the remaining entries.

We sample roughly 10 times the number of positive links from the pool of absent
links resulting in a positive to negative class ratio of 1:10. The exact number of positive
and negative examples used for different link prediction tasks are shown in Table 1.

4.2 Feature description

We use two different kinds of features between two nodes, namely content features and
structural features.

The content feature function φcont : ℜd×ℜd 7→ ℜn is defined based on the attributes
of the two nodes. For example, in the case of co-authorship networks the features of
each author corresponds to occurrences of a particular word in the author’s papers.
The content feature function could be the kronecker product of these binary vectors.
Similarly for friend recommendation problems in social networks, content features will

7 http://noble.gs.washington.edu/proj/maxent/
8 http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/ismb05/
9 http://www.cs.cornell.edu/projects/kddcup/datasets.html



Prediction Task Training Testing

# positives # negatives # positives # negatives

DBLP 1404 14040 1021 10210

Genetics 2422 24220 3017 30170

Metabolic network 618 6180 928 9280

Protein network 1966 19660 2948 29480

Complete citation 3000 30000 3000 30000

Partial citation 3000 30000 3000 30000

Table 1: Details of training and testing data for different link prediction tasks

be defined based on the user profiles – geographic location, college/university, work
place, hobbies/interests, browsing/navigation history on the network etc. In the case
of protein-protein networks, content features can be defined as the Kronecker product
of the features of each protein. Therefore, weights on each of these kronecker features
will tell us how likely those proteins will interact.

The structural feature function φstruct : Gn1,n2
7→ ℜm is defined over the local

subgraph around the two nodes n1 and n2. One can also call them relational features,
e.g., approximate Katz measure which is calculated on the ensemble of paths between
two nodes (say upto depth 4), number of common neighbors, social connectivity which
shows how connected these two nodes are with the other nodes in their neighborhood
etc., which are meaningful for each network. For example, in the citation prediction task
the network between papers and authors is very complex, i.e., links are between one
paper and another–paper1 cites paper2, and between an author and a paper–author1

writes paper1. Therefore, these complex multi-way relationships could be used to define
relational features which will be useful for our link prediction task.

4.3 Evaluation

We use the precision and recall metrics from Information Retrieval context for eval-
uation, and compare the chance-constraints based algorithms, namely cost-sensitive
SOCP (CS-SOCP), biased SOCP (B-SOCP) against cost-sensitive SVMs10 (CS-SVM)
and perceptron with uneven margins (PAUM) [13]. We rank all the test examples ac-
cording to the margin of the classifiers and calculate precision and recall from top-k by
varying the value of k. Here, precision is defined as the percentage of true-positive links
that are predicted correctly among the top-k and recall is defined as the percentage of
true-positive links that are predicted correctly out of the total true-positive links. Note
that, majority of the applications of link prediction algorithms are in recommendation
systems like movie recommendations in Netflix, music recommendation engines like
last.fm, friends suggestions in social networks etc. Therefore, link prediction algorithms
should be evaluated based on the quality of the top-k recommendations produced by
them. According to the above definitions of precision and recall, precision need not
always monotonically decrease with k. We report the precision and recall curves by
varying the value of k along the x-axis. We also report the AUC values calculated for
top 20% of the total testing links (see Table 2).

10 LIBSVM with -wi option to specify costs



CS-SOCP B-SOCP CS-SVM PAUM

DBLP 0.4019 0.3707 0.3186 0.0682

Genetics 0.2314 0.1981 0.1526 0.0638

Metabolic 0.619 0.6183 0.6447 0.0816

Protein 0.2754 0.2786 0.2471 0.1274

Complete citation 0.3684 0.3186 0.3252 0.3586

Partial citation 0.4994 0.469 0.5356 0.3607

Table 2: AUC values for top 20% of the total testing links for different learning algorithms

We use k1 = k2 = 100 clusters for all clustering-based SOCP formulations and
k-means++11, a variant of k-means algorithm which is fast and proven to be near
optimal for clustering in our experiments. We observe that the number of clusters will
not make much difference in the results as long as they are not too small a number of
clusters. As the number of clusters increases SOCP based algorithms will tend to move
closer towards their SVM counterparts. Note that, SOCP and SVM based algorithms
are exactly the same when we consider each data point as a cluster, i.e., the covariance
matrix is null. We use diagonal covariance for our SOCP experiments. We report the
best results for CS-SVM and CS-SOCP by varying the ratio C+/C

−
on validation set.

Similarly, we give the best results for B-SOCP by varying η1 and η2 . For PAUM,
we pick the best values for τ

−
from {−1.5,−1,−0.5, 0, 0.1, 0.5, 1} and for τ+ from

{−1,−0.5, 0, 0.1, 0.5, 1, 2, 5, 10, 50} based on the validation set. We run PAUM for a
maximum of 1000 iterations or until convergence.

Training time Classification time

CS-SVM CS-SOCP CS-SVM CS-SOCP

DBLP 39.68s 0.69s 7.64s 0.46s

Genetics 3m 34s 9s 1m 44s 27s

Metabolic 15.1s 4.89s 7.31s 4.29s

Protein 42m 23s 56.64s 1m 53s 19.64s

Complete citation 3m 17.6s 8.92s 1m 16.6s 13.92s

Partial citation 5m 19.5s 10.21s 1m 3.3s 13.78s

Table 3: Training and classification time results

4.4 Results and Discussion

The precision and recall curves for all the 6 datasets are shown in Figures 2,3 and 4. As
we can see, both CS-SOCP and B-SOCP outperform CS-SVM in precision and recall
for majority of the datasets namely, DBLP, genetics, complete and partial bibliographic
prediction tasks. Particularly, they achieve significantly higher recall on the complete
bibliography prediction task (72.4% and 66.16% compared to 52.53% of CS-SVM) and

11 http://en.wikipedia.org/wiki/K-means++



partial bibliographic prediction task (82.96% and 75.13% compared to 70.13% of CS-
SVM). Similarly, if we look at the AUC values in Table 2, SOCP based algorithms
significantly outperform the other algorithms on 4 out of 6 prediction tasks, including
the protein-protein interaction network which is a very high-dimensional dataset. We
conjecture that noisy labels for the missing links (explained in the previous section)
might have contributed to the bad performance of CS-SVM in both these tasks. Also
note that the prediction accuracies significantly improve in the case of partial predic-
tion task compared to the complete prediction task because of additional information
in the form of partial references of each paper. These results show the strength of rich
information present in the link structure. It is important to note that, even in the
other cases like metabolic and protein networks, performance of SOCP formulations
are comparable to CS-SVM. In our experiments, we noticed that behavior of PAUM
was not consistent across all the datasets. For example, it had the best performance
for complete bibliographic prediction task and worst performance for the metabolic
network. This may be partly due to our restricted search over the margin space. It
appears that varying costs or probabilities might be easier than varying margins to
handle the problem of unbalanced data. Since one of the main advantages of SOCP
based formulations is scaling, we report the training and classification time12 of both
CS-SVM and CS-SOCP for all the datasets in Table 3 (m stands for mins and s for
secs). Note that, training time for CS-SOCP includes clustering time and time taken
to solve the SOCP problem. We can see that CS-SOCP is orders of magnitude faster
than CS-SVM. Furthermore, CS-SOCP requires less time for classification when com-
pared to that of CS-SVM. Since the learned link predictors need to be deployed in
real-time systems like recommendation engines, it is important to have low test time
computational cost. Note that, the classification time in SVMs is proportional to the
number of support vectors and support vectors grow linearly with size of the data. On
the other hand, the number of support vectors in CS-SOCP is bounded by the number
of clusters k and does not depend on the size of the data.

5 Conclusions and Future Work

In this work, we proposed a new cost-sensitive formulation based on chance constraints
and described its connections to other frameworks like biased classification and uneven
margin algorithms. We showed how learning algorithms based on chance-constraints
can be used to solve different kinds of link prediction problems and showed empirical
evidence with experiments on several real-world datasets. It is interesting to note that
we could formulate link-prediction as a complex structured prediction problem with
exponential number of constraints. The manner in which the absent links are sampled
to be used as negative examples for our classification problem, is roughly equivalent to
randomly sampling the constraints for the structured prediction problem [6, 5]. We be-
lieve that this is a very fruitful direction towards solving some of these hard problems.
Wick et al. use similar ideas for their SampleRank algorithm and got some impressive
results [26]. In future, we would like to extend the current framework to a relational
setting similar to Taskar’s work [24]. However, formulating it as relational or struc-
tured prediction poses an enormous inference problem, especially in large networks.

12 All experiments were run on a machine with 2GB RAM and 2.16 GHz Intel dual core
processor



One possible approach is to take a middle path between complete independence and
arbitrary relational structure.
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Fig. 2: Precision and Recall curves for Co-authorship networks (a) DBLP (b) Genetics
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Fig. 3: Precision and Recall curves for Biological networks (a) Metabolic netowork (b) Protein-
protein interaction network
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Fig. 4: Precision and Recall curves for citation networks (a) Complete bibliography prediction
task (b) Partial bibliography prediction task


