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Abstract
Online communications provide a rich resource for under-
standing social networks. Information about the actors, and
their dynamic roles and relationships, can be inferred from
both the communication content and traffic structure. A key
component in the analysis of online communications such as
email is the resolution of name references within the body
of the message. Name reference resolution relies on the con-
text of the message; both the content of the message and
the sender and recipients’ relationships can help to resolve a
reference. Here we investigate a variety of approaches which
make use of the email traffic network to disambiguate email
name references. The email traffic network serves as a proxy
for inferring relationships. These relationships in turn help
us infer likely candidates for the name references. Our ini-
tial findings suggest that simple temporal models can help us
effectively resolve name references. For the class of models
proposed, performance is maximized by exploiting long-term
traffic statistics to rank candidates.

1 Introduction

Within the networked world, email has become a ubiq-
uitous form of global communication. Whether com-
municating with friends or colleagues in a local area
or halfway around the world, email allows us to main-
tain or develop relationships with others at any distance.
Given email traffic is a reflection of the relationships in
an underlying social network, email archives present a
potentially rich collection of evidence that can be used
to infer the structure, attributes and dynamics of the
social network. The challenge is to infer these proper-
ties from email data that is often ambiguous, incomplete
and context-dependent.

Email collections contain both structured and un-
structured data. The structured data or metadata indi-
cates which parties communicated and when the com-
munication occurred. By focusing solely on the meta-
data, we can identify communication patterns, but we
cannot easily ascribe meaning to the underlying rela-
tionships. The unstructured data in the body of the
email can clarify the roles of individuals and their re-
lationships with others. Yet without the appropriate
context, an outside observer may find a message pro-
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vides little insight.
When communicating with others, people con-

stantly rely on shared context to simplify communica-
tion. Shared context is common knowledge among in-
dividuals that allows them to use ambiguous references
which are clear within the shared context. A common
example of this occurs when two people refer to a mutual
friend by a first name or a nickname in conversation.

“How’s John doing today? Is he feeling better”

Given the topic of conversation along with the name
reference, it is clear to both parties who John is. Yet to
someone without knowledge of the context, the reference
is meaningless.

Consider the problem of exploiting name references
in the email body. Name references are an important
element in understanding the social network. Before we
can process the email content in the archive and asso-
ciate activities and other attributes with individuals, we
need to infer the number and identities of the individu-
als generating the observed traffic. Each individual has
two classes of references: network references and name
references. Network references in the context of email
are simply the individual’s email addresses. Note that
this is potentially a many-many mapping: individuals
may have multiple email addresses and a single email
address may serve more than one individual. There is
also a temporal component; an individual may have one
email address for the time they are in one position in the
company, but when they change roles within the com-
pany, perhaps moving to another division, their email
address may change. Name references are the various
forms of an individual’s given name along with their
nicknames that may appear in the email body. In order
to define an individual’s identity and draw broader con-
nections across emails in the archive, we need to be able
to map both name references and network references to
the individual.

In this paper, we focus on the problem of mapping
ambiguous name references, specifically first name ref-
erences, to network references. The core challenge in
this problem is identifying ways to exploit context from
the email archive to effectively resolve the ambiguity.
We describe this in the next section. Next, we formally
define the general problem of name reference resolution.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited 70



Then we discuss the types of context available that can
potentially be exploited. We investigate several differ-
ent approaches, which vary in the context features and
temporal models used, and introduce a methodology for
evaluating their performance. Finally we present re-
sults from our algorithm evaluation on the Enron email
archive and conclude with thoughts on future work.

2 Exploiting Context

When reading email, what types of context do we
exploit to resolve ambiguous name references? In
addition, what context does an email collection offer
when analyzing relationships retrospectively? Below is
a list of some of the contextual cues available to us for
understanding name references.

• The participants in the conversation

• The larger group of people known by the partici-
pants in the conversation and the types of relation-
ships among them

• The individuals that the participants in the con-
versation have recently communicated with, either
before or after the email was sent

• The topic of conversation in the email

• Recent topics of conversation among the partici-
pants and others outside the current conversation,
either before or after the email was sent

• Cues contained within other emails in the thread

• Related name references within the current email

• Prior knowledge linking individuals to topics of
conversation

This list of contextual cues is by no means exhaustive.
Yet it reminds us of the two broad classes of context
that email captures: social context (who’s talking?)
and topical context (what are they talking about?).
Our long term goal is to exploit both to characterize
the underlying social network, as each form of context
can help clarify ambiguities in the other. Yet the
challenge of capturing and exploiting dynamic topical
context is a significant research thrust on its own,
as evidenced by the work in the topic detection and
tracking community [3].

Our focus in this paper will be to investigate the
discriminative power of dynamic social context. We
want to first understand the performance of algorithms
that leverage the patterns of communication among
network references to estimate the mapping between
name and network references.

3 Problem Definition

Let E = {ei} be a set of email addresses observed in the
email collection and let N = {nj} be a set of observed
name references in the email bodies. The set E may
be extracted from the email metadata, or the set may
come from another source such as an employee directory,
which lists individuals together with their emails. The
set N is the result of an entity extraction process that
identifies name references within the email bodies.

The objective of name reference resolution is to
construct a mapping from a set of observed name
references N = {nj} in the email collection to either
ranked subsets of network references, Ej , where Ej ⊆ E
or the null network reference φ, if no network reference
is sufficiently probable. The null network reference φ
serves two purposes. First, it is not a given that there
exists a corresponding network reference for each name
reference. An email collection may not contain email
exchanges between all individuals referenced within the
email bodies. Second, the entity extraction process will
incorrectly declare some terms in the email collection
to be name references, for which there is no network
reference. In both cases, the appropriate response is to
map the given name reference to φ.

For each name reference nj , the corresponding can-
didate set Ej is ranked based on the context of the name
reference. A scoring function g is used to compute the
strength of association g(ec, nj |Cj) between each can-
didate ec ∈ Ej and nj , given the context Cj associated
with nj . Once all of the candidates have been scored,
they are ranked in descending order and only those can-
didates with scores g(ec, nj |Cj) > λ are retained. The
most likely network reference ẽ(nj) is either the candi-
date with the maximum score greater than the threshold
or φ otherwise.

In this paper, we explore the use of the email
traffic context for ranking the candidate set. We define
the email traffic network for a set of email messages
M = {mi} as follows: we have a directed hypergraph
GM with the set of vertices E and hyperedges H =
{(esi

, Eri
, ti)}. For each email message mi, there is

a hyperedge from the sender network reference esi ,
esi ∈ E , to the set of recipients of the message, Eri ⊆ E .
The attribute ti is the time at which the email was sent.

4 Name Reference Resolution Process

The general name resolution process is composed of
three phases: candidate set generation, candidate rank-
ing and candidate rejection illustrated in figure 1. Given
we envision a data analyst reviewing the candidate as-
sociations in rank order to identify the true referent, our
overall goal is to minimize the number of candidates the
user must evaluate while identifying as many true net-
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Fr:  James S.

To:  Christi N.

Date: Oct. 24 2001

Subject: FW: Dynegy v.

ComEd update

Susan and I are on the case.

Are you still in DC?

Scored Candidates List:

Susan L.

Susan P.

Susan B.
Minimum

Score

Threshold

Final Candidates List:

Susan L.

Susan P.

Rogest H.

Susan B.

James S. Susan P.

Susan L.

Christi N.

Donna F.

Figure 1: The name reference resolution process

work references as possible. When the true referent is
a member of the candidate set, we want the algorithm
to rank the true network reference as high as possible.
Given the true referent may not be part of the candidate
set at all, we also want to reject as many candidates as
possible without severely impacting recall.

4.1 Candidate Set Generation The role of the
candidate set is to restrict our attention to a small num-
ber of likely candidates prior to scoring the candidates.
In our initial approach, we use two levels of screening.
We begin with the strong assumption that if any com-
munication has occurred between the true referent and
the email participants, the sender was involved. There-
fore we initially restrict the candidate set to those net-
work references where at least one email communication
has been observed with the sender.

Although we expect this assumption will be true
in many cases, there are clearly instances where it will
break down. For example, not all name references cor-
respond to individuals that the email sender knows per-
sonally. Within the context of an organization, refer-
ences may be made to individuals many levels removed
in the management hierarchy. It is also not a given
that an active relationship will be observable through
email communication. The parties involved may be in
close physical proximity allowing direct communication
or may use other means of communication. A third pos-
sibility is that the email communications are simply not
available in the email collection for one of a variety of
reasons. Regardless of these factors, as we show in the
results section, we are able to achieve suprisingly high
recall.

Our second level of screening relies on available
name information for the network references. We
assume that some name information is initially available
either from the name tags attached to email addresses
or from the email addresses themselves. In our initial
experiments, we examine name references that match
exactly at least the first or last name associated with the
candidate network reference. Clearly this constraint can

be relaxed by employing a string comparison function
to look for close name matches.

4.2 Candidate Scoring As mentioned earlier, our
main interest is in defining and evaluating candidate
scoring functions that leverage dynamic social context.
If we begin with the presumption that name reference
usage is often connected to events occurring around the
time of the reference, the question is what fraction of the
name references can we resolve by ranking candidates
based on the level of email traffic around the time of
the reference? To explore this, we introduce a class
of scoring functions and explore the sensitivity of their
performance along four general dimensions.

• The relationships examined

• The time scale at which the email traffic is viewed

• The summary statistic used to characterize rela-
tionship activity during a given time interval

• The degree of traffic history considered

We consider each of these dimensions next and then de-
scribe two temporal models which make use of features
defined according to these dimensions.

4.2.1 Relationships Given our assumption of direct
communication between at least the email sender and
the true referent, our objective is to characterize the de-
gree of communication between the email participants,
the sender and recipients Ep = es ∪ Eri

, and the candi-
date network reference ec.

Specifically we consider models that exploit either
solely the traffic between the sender es and the candi-
date ec (denoted sender-only) or models that exploit
the pairwise traffic between all the email participants,
sender and recipients, and the candidate ec (denoted
sender+recipients). When integrating traffic from
the sender and recipients’ pairwise interactions with the
candidate, we want to understand the relative discrim-
ination power offered by each and identify summary
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statistics that effectively leverage the relationships for
candidate scoring.

4.2.2 Time Scale To examine the email traffic at a
given time scale, we first partition the time axis into
regular intervals of duration ∆t. The phase of the
partition is fixed by first selecting a reference time t0
such that t0 ≤ tr < t0 + ∆t where tr is the time of
the email containing the name reference. The time
intervals {Tk} are defined as Tk = {t′ : t0 + k∆t ≤
t′ < t0 + (k + 1)∆t, k ∈ Z} so that the time interval T0

includes the time tr of the email 1. In our experiments,
we investigate daily and weekly time intervals (denoted
daily and weekly). The weekly time intervals are
phased such that they begin on Sunday.

4.2.3 Summary Statistics Once the time axis is
partitioned into regular intervals, our next step is to
compute a summary statistic or feature s(Ep, ec, Tk,GM)
for each interval Tk that provides an indication of
relationship activity among some or all of the email
participants Ep and the candidate ec. We consider the
following variations on computing the statistic:

Binary versus Count. For any pair of network
references, for the given interval, we may either
have a 0/1 indicator which denotes whether or
not there has been an email exchange between
the pair (denoted binary) or we may want to use
the frequency information and keep track of the
number of messages exchanged (denoted count).

Unidirectional versus Bidirectional. For any
network reference, we may be interested in only
the messages sent from the network reference to
the candidate reference (denoted unidirectional)
or we may be interested in bidirectional exchanges
where the candidate and network references can
take on either the sender or recipient roles (denoted
bidirectional)

As mentioned earlier, we can distinguish models which
make use of the sender-only traffic information versus
the sender+recipients traffic information. In the latter
case, we introduce the parameter β to weight the sender
versus recipient contributions. Table 1 summarizes the
statistics used in the experiments.

4.2.4 Integrating Traffic History The final step
in computing the candidate score g(ec, n|C) given the
context C = {Ep, T0,GM} involves integrating the

1Although the definition of T0 is dependent on the email of
interest, we will not explicitly indicate this dependence to avoid
additional complexity in the notation.

summary statistics for time intervals around the time of
the email containing the name reference. We compute
the local time average of the summary statistics using
either a non-causal autoregressive (denoted AR) or
moving average filter (denoted MA) that incorporates
both future and past traffic patterns around the time of
the name reference. The autoregressive filter is defined
as

gAR(ec, n|Ep, Tk,GM) =
(1−α)

2 gAR(ec, n|Ep, Tk−1,GM) +
(1−α)

2 gAR(ec, n|Ep, Tk+1,GM) +
αs(Ep, ec, Tk,GM)

= α
2

∞∑
i=0

(1− α)i(s(Ep, ec, Tk−i,GM)

+s(Ep, ec, Tk+i,GM))

while the moving average filter is defined as

gMA(ec, n|Ep, Tk,GM) =
1

2M+1

M∑

i=−M

s(Ep, ec, Tk−i,GM).

In practice, when evaluating the AR filter, we terminate
the summation once a convergence criterion is met. The
degree of traffic history incorporated into the candidate
score g(ec, n|Ep, T0,GM) is controlled by the parameters
α for the AR model and M for the MA model.

4.3 Candidate Rejection Once the scores have
been computed for all network references in the can-
didate set, the candidates with a score below the spec-
ified threshold λ are removed from the candidate set.
The objective of candidate rejection is to remove candi-
dates that are deemed unlikely to correspond to name
references without rejecting a significant fraction of true
referents. The degree of performance achieved is depen-
dent on the ability of the scoring function to separate
the true referents from the other candidates.

Within the context of the models proposed above,
performance clearly depends on the following two fac-
tors. First, it is dependent on the legitimacy of the gen-
eral assumption that a high degree of communication
activity around the time of the name reference is indica-
tive of a potential correspondence between a name and
network reference. Second, performance is also depen-
dent on the model’s characterization of what qualifies
as a high degree of traffic. All relationships are clearly
not equivalent. Yet our baseline models do not attempt
to capture external factors influencing the relationship
activity. We will revisit these issues in later discussion.
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Table 1: Summary statistic definitions. m(e1, e2, Tk,GM) is the number of messages sent from network reference
e1 to network reference e2 over the time interval Tk. I(·) is the indicator function.

Name Definition
Binary, Sender-Only, Bidirectional I(m(es, ec, Tk,GM) + m(ec, es, Tk,GM))
Count, Sender-Only, Bidirectional m(es, ec, Tk,GM) + m(ec, es, Tk,GM)
Count, Sender-Only, Unidirectional m(es, ec, Tk,GM)
Count, Sender+Recipients, Bidirectional(β) (1− β)(m(es, ec, Tk,GM) + m(ec, es, Tk,GM))+

β
|Eri

|
∑

eri
∈Eri

(m(eri , ec, Tk,GM) + m(ec, eri , Tk,GM))

5 Experiment Design

With a set of models defined, the next major task at
hand is evaluating their performance on a representative
dataset. The bulk of our efforts to date have focused on
data preparation, ground truth generation and defini-
tion of evaluation protocols. A number of subtle but
important issues arise as one considers the various ele-
ments of the overall experiment. We review all aspects
of the approach in the following sections.

5.1 Dataset Preparation

5.1.1 The Data: Enron Email Corpus With
the recent release of the Enron email dataset [20],
researchers have been given a unique opportunity to
glimpse inside a large corporation and observe a subset
of email traffic among the employees. The Enron email
dataset is the collection of email from the folders of 151
Enron employees. The data is available in several forms.
CMU first released the original email data. Since then
USC/ISI and more recently UC Berkeley have released
normalized forms of the data in a MySQL database.
Our results are based on the USC/ISI version of the
dataset. There are over 250,000 email messages in the
dataset with the majority of the traffic occurring in the
2000-2002 time frame.

We initially chose to resolve name references in only
those emails exchanged between the core 151 employees.
This was done primarily to reduce confounding effects
of observability in our experiments. Given we can only
observe pairwise relationships where at least one of the
participants is a member of the set of 151 employees,
constraining the set of emails in this way guarantees
that all relationships we consider in the resolution
process are observable in the email collection, assuming
emails haven’t been lost or deleted.

There are 7644 emails in the ISI database that were
exchanged among the 151 employees. A non-trivial
number of duplicate emails exist that were removed
to avoid skewing the results of the analysis. After
deduplication of this set, 6550 emails remain. This is
the set of emails from which the name references were

extracted.

5.1.2 Extracting Enron Employee Names To
support named entity extraction and candidate set
generation, we constructed a network reference set E
of 7864 Enron email addresses and a corresponding list
of employee names by parsing the email addresses. In
total, there are 29,176 enron.com email addresses in
the collection. This includes employee email addresses
along with group mailing lists. Given the most common
email address format often corresponding to employees
is <name1 > . <name2 > @enron.com, we parsed
these addresses and saved only those where either
name1 or name2 matched a first or last name in the
employeelist table in the ISI database. This reduced
the list to 7713 email addresses that are distinct from
the email addresses listed for the 151 employees in the
ISI database.

As others have noted, some employees have multi-
ple email addresses in the collection. We believe that in
most cases this is due to an employee moving within the
company. Therefore each email address and its associ-
ated relationship structure characterizes the employee’s
role over a certain time period in the company. We
chose not to deduplicate the email addresses in order to
preserve this context.

5.1.3 Constructing the Email Traffic Network
The hypergraph GM representing the email traffic net-
work captures the observed traffic exchanged between
the 7864 Enron email addresses in E . Since the Enron
email collection is the union of email folders correspond-
ing to the given 151 Enron email addresses, GM only
captures the traffic exchanged between those 151 email
addresses and the remaining 7713 email addresses in
E . There are 64449 emails in the ISI database that were
exchanged among the 7864 email addresses. After dedu-
plication of this set, 55395 emails remain. Therefore GM
is composed of 7864 nodes and 55395 hyperedges.

5.1.4 Detecting Name References To detect
name references in the email bodies, we initially scan
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through the emails searching for words that match ex-
actly one or both first and last names of an employee on
the list of 7864 Enron employee names. We also merge
adjacent partial name matches, assuming in most cases
this results in a full name not listed on the employee
list.

For our initial experiments, we chose to focus on
resolving first name references to others outside of
the email conversation. Therefore to filter out name
references not of interest, we saved only partial name
detections that matched one of the 151 Enron employee
first names. Then we filtered out first name references
at the beginning and end of the email text, assuming
those are references to the sender and recipients.

5.2 Ground Truth Generation To evaluate algo-
rithm performance, we manually identified the true net-
work references associated with a set of first name refer-
ences. In some cases, the true referent was obvious from
other name references in the sender’s message or the at-
tached message. In others, we needed to search through
the traffic to find other emails in the thread or previous
conversations to clarify the reference. When multiple
email addresses appear to correspond to the referenced
individual, the email address in use around the time of
the name reference is chosen as the true referent.

After this processing, we have 84 labelled first name
references with candidate sets of size 2 or greater. Of
these, 54 have candidate sets that contain the true
referent. A number of first name references with no
obvious context in the message could not be resolved
after further searching of the email collection.

5.3 Performance Evaluation When evaluating the
performance of a given scoring function, we have two
objectives. First, we want to understand how well the
scoring function ranks the true referent relative to other
candidates on average in a candidate set. We refer to
this as the relative ranking performance of the scoring
function. Second, we want to characterize the ability of
the scoring function to rank true referents higher than
other candidates in general across candidate sets. We
refer to this as the absolute ranking performance of the
scoring function. We consider each evaluation task in
the following sections.

5.3.1 Relative Ranking Performance To provide
insights into relative ranking performance, three per-
formance metrics are evaluated for each scoring func-
tion. First, we compute the rank 1 rate (R1R) which is
the fraction of candidate sets containing true referents
over which the true referent is the top ranked candidate.

This is expressed as

R1R =
1
|Nt|

∑

n∈Nt

I (ẽ(n) = etrue(n))

where I(·) is the indicator function, etrue(n) is the true
network reference associated with the name reference
n and Nt = {n : n ∈ N , etrue(n) ∈ E(n)} is
the set of name references with the true referent in
the corresponding candidate sets. Note the R1R is
computed assuming no candidate rejection.

The rank 1 rate provides an intuitive summary of
performance, but can be misleading in this context
given the variable sized candidate sets. Therefore to
establish a relative baseline, we compute the expected
value of the random rank 1 rate (RR1R) achieved by
random selection of the top ranked candidate from each
candidate set. This is expressed as

RR1R =
1
|Nt|

∑

n∈Nt

1
|E(n)| .

Since the rank 1 rate gives no indication of how
severe the failure is when the true referent is not rank
1, we also compute a metric we refer to as the average
true referent rank (ATRR). The ATRR is the average
of the ratio of the true referent rank and the candidate
set size. This is expressed as

ATRR =
1
|Nt|

∑

n∈Nt

1
|E(n)|

|E(n)|∑

k=1

kI (
e(k)(n) = etrue(n)

)

where e(k)(n) is the network reference with rank k in
the candidate set E(n). Each true referent rank is
normalized by the corresponding candidate set size to
account for the variation in the number of candidates
and reduce the sensitivity of the measure to large
candidate sets.

5.3.2 Absolute Ranking Performance Assessing
the absolute ranking performance involves evaluating
the scoring function’s ability to rank true referents
higher than other candidates across all candidates nom-
inated for a given set of name references. Our interest in
characterizing ranking performance from this perspec-
tive stems from our desire to reject as many candidates
as possible without a significant loss of true referents. If
the scoring function is able to separate the two classes
of candidates with reasonable success, we will achieve
our aim.

A natural measure of ranking performance advo-
cated in the literature [2, 5, 6, 8] is the area under
the receiver operating characteristic (ROC) curve. The
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ROC curve is a standard depiction of a detector’s per-
formance from classical signal detection theory, showing
the detector’s true positive rate versus false positive rate
[22]. The area under the ROC curve (AUC) provides a
measure of the separability achieved by the detector be-
tween the two classes. More specifically, the empirical
AUC is an estimate of the probability that the detector
will rank a randomly selected positive example higher
than a randomly selected negative example, assuming
all ties are broken uniformly at random [2]. When the
AUC=1.0, perfect separability is achieved. When the
AUC=0.5, the detector performs no better than ran-
dom chance.

If one defines the true referents to be the positive
class and the other candidates to be the negative class,
the AUC of the scoring function is the area under
the empirical ROC curve generated by sweeping the
threshold over the range of scores and computing the
(false positive rate,true positive rate) operating points
on the curve. This empirical AUC can be directly
expressed in the following manner

AUC =
1

NTRNOC

∑

n1∈Nt

∑

n2∈N

∑

eoc∈E(n2)/etrue(n2)

I (g(etrue(n1), n1|C1) > g(eoc, n2|C2)) +
1
2
I (g(etrue(n1), n1|C1) = g(eoc, n2|C2))

where NTR = |Nt| is the number of true referents and
NOC =

∑
n∈N |E(n)/etrue(n)| is the number of other

candidates overall [2].

6 Discussion

We now examine the performance of the various scoring
functions on the labelled name reference data. Figures
2-4 present a series of summary plots showing the rank
1 rates, average true referent ranks and AUCs of the
scoring functions as a function of the amount of traffic
history considered.

Consider first the R1R and ATRR metrics measur-
ing relative ranking performance. For all models, as the
filter duration is increased 2, incorporating more traf-
fic history into the scoring process, the relative rank-
ing performance generally increases and approaches a
maximal level of performance. In terms of rank 1 rate,
the performance of these simple models approaches 0.8
in most cases with sufficient history and significantly
outperforms the random selection baseline. Finer level

2The duration of the MA filter is simply the number of time
intervals over which the filter averages the summary statistic. We
have defined the duration of the AR filter to be twice the number
of time intervals required for the impulse response of the filter to
decay to 10% of its peak response.

distinctions among the models can not yet be made; if
one assumes the name reference resolutions are inde-
pendent, there is no statistically significant difference
in performance among the models considered.

At the beginning of this investigation, our expecta-
tion was that the traffic patterns around the time of a
given name reference would clarify the identity of the
true referent. For the models we have proposed, the re-
sults suggest quite the opposite: ranking performance
is maximized when we consider the long-term traffic
patterns over one year or longer. This implies that by
simply examining prior relationship strengths, as repre-
sented by the volume of communication, we are able to
successfully resolve a majority of first name references.

In hindsight, this result is not very surprising.
While the use of a name reference in a given email may
be related to an ongoing event, it is not clear that we
should also expect a notable increase in communication
between the true referent and the email sender around
that time. For example, it is possible for a single email
from the true referent to the email sender to be the
impetus for the email containing the name reference.
Meanwhile, the email sender may be engaged in longer
threads of conversation with other potential candidates,
thereby leading to a low rank for the true referent. In
these scenarios, examining the content will be critical
to correctly resolve the reference.

Now let us consider the AUC metric measuring ab-
solute ranking performance. In contrast to the relative
ranking results, we see a significant distinction between
the sender-only models and the sender+recipients mod-
els. As the influence of the relationships between the re-
cipients and the candidate is increased, the AUC curve
continues to shift lower indicating that separability be-
tween the true referents and the other candidates is de-
creasing across all filter durations.

At first glance, it may seem that the trends for
the relative and absolute ranking performance measures
are inconsistent. Why should the relative ranking
performance be fairly insensitive to the influence of
the recipients while the absolute ranking performance
is much more so? This result suggests that while
the relative rankings are not changing significantly,
the variances of the true referent and other candidate
score distributions are increasing, causing the decrease
in separability. This is not surprising for a number
of reasons. As we add more pairwise relationships,
we introduce more opportunities for the candidate’s
score to be falsely inflated. Multiple active pairwise
relationships do not necessarily signify higher order
dependencies between the relationships. Another factor
is that not all email users are equivalent. Some users
are more prolific email composers than others, leading
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to score inflation once again that is misleading. Further
investigation is needed to explore these issues.

Clearly we have only begun to explore the full scope
of the name reference resolution problem. In this initial
experiment, we have focused on first name references
and limited our search for the true referent to those
candidates that the email sender has communicated
with. Even with first name references, it is possible
that a given reference corresponds to an individual
that the email sender never communicates with. As
discussed earlier, this can occur for a variety of reasons.
Most interesting are the cases where the references
are to individuals that the email sender knows of but
does not have a relationship with. To deal with these
challenges, a more sophisticated approach is required.
Another important aspect of the resolution task to note
is the dependence among name references within a given
email and across emails. Our belief about one name
reference can certainly impact and inform the resolution
of other related references. Therefore it is valuable to
incorporate such connections into the resolution process.

To summarize, we see that simple temporal traf-
fic models perform surprisingly well for name reference
resolution when considering the long-term traffic pat-
terns. To push the performance beyond a certain level,
we expect that both content and traffic patterns will
need to be exploited. We are in the process of gener-
ating more labelled name references to support experi-
mentation aimed at better understanding the limits of
traffic-based approaches.

7 Related Work

This paper uses a social network generated from the
email traffic of the Enron data set as a tool for name
reference resolution. In this section, we describe some of
the relevant related work on social networks, the Enron
data set and entity resolution.

7.1 Social Networks There has been a great deal of
recent work in social network generation, analysis and
mining. Using semantic associations from email commu-
nication, for example, McArthur and Bruza [17] propose
methods of generating a social network using implicit
and explicit connections between people. Liben-Nowell
and Kleinberg [15] use co-authorship to create social
networks to predict future interactions among members
of a given social network. Studies have also been done
on creating and mining social networks to identify pos-
sible collaborators for a given problem [18, 11] and clus-
tering people of similar interests [19]. Schwartz and
Wood generate a social network using the to and from
fields of email messages to discover users of a particular
interest and field.

7.2 Enron The release of the Enron data set in 2003
provided an unprecedented collection of emails from a
major organization for use in research. Klimt and Yang
[14] provides an overview of this corpus including the
number of employees, the number of emails and a rep-
resentative social network derived from the email traffic.
Moreover, they used the Enron data to explore meth-
ods of email classification [13]. Corrada-Emmanuel [4]
created MD5 hashes of the Enron emails and contact
information to identify and deduplicate emails. Using
the structure of the emails, Keila and Skillicorn [12]
found a relationship in the word use pattern with mes-
sage length as well as relationships among individuals.
Skillicorn [21] further demonstrated methods to detect
unusual and deceptive email communications. Diesner
and Carley [7] used analysis of the email social network
patterns over time to explore crisis detection in email.
Moreover, a number of useful tools have also been de-
veloped in order to navigate and view email archives [9].

7.3 Entity Resolution in Email There has been
limited work in named entity resolution in email sys-
tems. Abadi [1] uses emails from an online retailer
for anaphora resolution within email orders. Abadi’s
research, however, is designed for the resolution of pro-
nouns referring to product orders rather than individ-
uals and relies mainly on NLP for resolution. Holzer,
Malin and Sweeney [10] on the other hand use social net-
works created from online resources like personal web-
sites to resolve email aliases. Their approach of using so-
cial networks derived from relations from other sources,
including proximity of references in a given web site,
is particularly effective in controlled environments such
as the university used in their evaluation. Of note, is
Malin’s evaluation of methods of disambiguation in re-
lational environments [16]. Although Malin’s work used
actor collaborations in the Internet Movie Database
rather than email, Malin did find that methods which
leverage community, in contrast to exact similarity pro-
vide more robust disambiguation capability, supporting
our approach to the problem.

8 Conclusion

In this paper, we have examined ways in which email
traffic can be used to resolve ambiguous name refer-
ences within the body of the email messages. Our con-
tributions include a formal statement of the problem;
the definition of the resolution process in terms of can-
didate generation, candidate scoring and candidate re-
jection; and an evaluation methodology that examines
both absolute and relative rank. We have presented
an initial suite of models for candidate scoring, which
exploit both role and temporal information, and evalu-
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ated their performance on a real-world corporate email
archive, the Enron collection. Surprisingly, such mod-
els perform well by simply ranking candidates based on
long-term traffic statistics, a natural surrogate for rela-
tionship strength. Our overall goal is to develop robust
ways of exploiting context information during the res-
olution process. The email traffic network is just one
element of the context information we hope to eventu-
ally exploit.
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Figure 2: Autoregressive Filter Performance: (a) Daily Interval Rank 1 Rates, (b) Average True Referent Ranks
and (c) Areas Under the ROC Curves
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Figure 3: Autoregressive Filter Performance: (a) Weekly Interval Rank 1 Rates, (b) Average True Referent Ranks
and (c) Areas Under the ROC Curves
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Figure 4: Moving Average Filter Performance: (a) Daily Interval Rank 1 Rates, (b) Average True Referent Ranks
and (c) Areas Under the ROC Curves (d) Weekly Interval Rank 1 Rates, (e) Average True Referent Ranks and
(f) Areas Under the ROC Curves

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited 81




