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Abstract
In recent years, informal, online communication has trans-
formed the ways in which we connect and collaborate with
friends and colleagues. With millions of individuals commu-
nicating online each day, we have a unique opportunity to ob-
serve the formation and evolution of roles and relationships in
networked groups and organizations. Yet a number of chal-
lenges arise when attempting to infer the underlying social
network from data that is often ambiguous, incomplete and
context-dependent. In this paper, we consider the problem of
collaborative network discovery from domains such as intel-
ligence analysis and litigation support where the analyst is at-
tempting to construct a validated representation of the social
network. We specifically address the challenge of relation-
ship identification where the objective is to identify relevant
communications that substantiate a given social relationship
type. We propose a supervised ranking approach to the prob-
lem and assess its performance on a manager-subordinate re-
lationship identification task using the Enron email corpus.
By exploiting message content, the ranker routinely cues the
analyst to relevant communications relationships and mes-
sage traffic that are indicative of the social relationship.

Introduction
The Internet provides an increasing number of avenues for
communication and collaboration. From instant messaging
and email to wikis and blogs, millions of individuals are
generating content daily that reflects their relationships with
others in the world, both online and offline. Now that storage
has become vast and inexpensive, much of this data will be
archived for years to come. This provides new opportunities
and new challenges. As networked groups and organizations
increasingly leverage online means of communication and
collaboration, there is an opportunity to observe the forma-
tion and evolution of roles and relationships from the com-
munications archives. Such data provides a rich collection
of evidence from which to infer the structure, attributes and
dynamics of the underlying social network. Yet numerous
challenges emerge as one contends with data that is often
ambiguous, incomplete and context-dependent.

If we wish to analyze the underlying social network that is
at least partially represented by a collection of informal, on-
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line communications, it is important to think carefully about
the data transformations required prior to conducting any
type of analysis. At the highest level, we are fundamentally
interested in discovering entities and the types of relation-
ships they share. This implies that we must do more than
simply adopt the communications (hyper)graph as a surro-
gate for the social network. Entities can and often do use
more than one account online and not all communications
relationships are equivalent. In fact, the social network can
be thought of as a collection of networks with different rela-
tionship types (e.g. friendship, trust, advice, management).
Human relations are multi-faceted and context-dependent.
Therefore it is important to tease the communications apart
and understand what types of relationships are being ex-
pressed among the entities.

We view the network discovery process of identifying the
entities and their relationships as being inherently a collab-
orative process between human and machine. In this paper,
we consider the scenario from domains such as intelligence
analysis and litigation support where an analyst is attempt-
ing to reconstruct a representation of the social network
from the data with minimal context. This involves map-
ping the communications graph, which represents commu-
nication events among network references (email addresses,
telephone numbers, etc.), to a validated social network ex-
pressing typed relationships among the known entities that
the analyst believes are substantiated by the data. Within
this process, there are two distinct tasks: entity resolution
and relationship identification. Entity resolution refers to the
mapping of network references to their corresponding enti-
ties. Relationship identification refers to the identification of
relevant communications that are indicative of a given rela-
tionship type.

In this paper, we propose a supervised ranking approach
to address the relationship identification problem. Our goal
is to focus the analyst’s attention on relevant communica-
tions relationships that express a given social relationship
along with relevant message traffic that supports this asso-
ciation. We begin the discussion in the following section
with a formal definition of the problem. We discuss our ap-
proach to learning a relationship ranker from traffic statis-
tics and message content and present an evaluation of these
methods on a manager-subordinate relationship identifica-
tion task in email. We then review related work and con-



clude with thoughts on future directions.

Problem Definition
Informal, online communications such as instant messag-
ing, text messaging and email are composed of structured
and unstructured data. At the most basic level, this includes
the network references corresponding to the sender and one
or more recipients, the date and time of the communication
and the message content. We will define a communications
archive C as a set of observed messages exchanged among a
set of network references N :

C = {mk = (ns
k, Nr

k , dk, bk) : ns
k ∈ N,Nr

k ⊆ N} . (1)

For each message mk, ns
k is the sender’s network reference,

Nr
k is the set of recipient network references, dk is the date

and time and bk is the body of the message. Every archive
has a corresponding communications graph Cg = {N,L}
that represents the message data as a set of dyadic commu-
nication relationships

L =
{
lij = (ns

i , n
r
j ,Mij) : ns

i , n
r
j ∈ N,Mij ⊆ C

}
. (2)

among the network references N . For each directed rela-
tionship lij , ns

i is the sender’s network reference, nr
j is the

recipient’s network reference and Mij is the set of messages
sent by ns

i that include nr
j as one of the recipients.

The task of relationship identification involves identifying
a mapping from the dyadic communications relationships L
to one or more social relationships from a predefined set S.
To emphasize the collaborative nature of our approach to the
task, it is not our intention to develop an algorithm that au-
tomatically maps communications relationships to social re-
lationships without intervention. A validated social network
is one that the analyst believes is supported by evidence in
the data. Therefore the machine’s role in a collaborative ap-
proach to the task is to focus the analyst’s attention on poten-
tially relevant relationships along with supporting evidence
in the message traffic.

We envision the analyst navigating the communications
graph by following paths and incrementally investigating re-
lationships in the ego networks corresponding to network
references along the path. The ego network for a given en-
tity in a network is generally defined as the subgraph that
represents all of the direct relationships between the selected
entity (the ego) and others (the alters). Formally in the case
of the communications graph, the ego network E(ni) for a
given network reference ni ∈ N can be defined as

E(ni) = Eo(ni) ∪ Ei(ni) (3)

where
Eo(ni) = {lij = (ni, nj ,Mij) ∈ L}. (4)

is the set of directed communications relationships from the
ego to the alters and

Ei(ni) = {lji = (nj , ni,Mji) ∈ L}. (5)

is the set of directed communications relationships from the
alters to the ego. For the purposes of ranking communica-
tions relationships within an ego network, we will initially

restrict our attention to the set Eo(ni) to avoid training and
testing on the same message traffic.

Relationships in a given ego network Eo(ni) will be
ranked with a learned scoring function h that assigns a real-
valued score to the relationship indicating its relative like-
lihood of expressing the social relationship of interest. If
multiple social relationships are defined in the set S, there
will be a corresponding scoring function for each social re-
lationship. The task therefore is to learn a scoring function
from a set of known relationships that successfully ranks
relevant communications relationships higher than irrelevant
relationships.

Learning to Rank Relationships
Objective
From initial exploration of the data or external sources of
information, we assume a set of ego networks in the com-
munications graph have been labeled, indicating whether or
not the communications relationships exhibit the social rela-
tionship of interest. Initially we will approach the problem
of learning multiple scoring functions independently. There-
fore in each learning exercise, our goal is to learn a single
scoring function for the given social relationship.

For a subset Nt ⊆ N of network references in the collec-
tion, we assume the corresponding set of ego networks

Ē = {Ē(ni) : ni ∈ Nt} (6)

are fully labeled

Ē(ni) = {(lij , sij) : lij ∈ L, sij ∈ {0, 1}} (7)

where sij indicates whether the communications relation-
ship exhibits the given social relationship. Given a feature
extraction process f(l) ∈ Rp that maps a specified commu-
nications relationship r to a p-dimensional feature vector,
we can reexpress the labeled training data as

F̄ = {F̄(ni) : ni ∈ Nt} (8)

where

F̄(ni) = {(fij , sij) : lij ∈ L, fij = f(lij), sij ∈ {0, 1}}.
(9)

The goal is to estimate a scoring function h that yields
good generalization performance in terms of the mean recip-
rocal rank of relevant relationships on unseen ego networks.
The rank of a relevant relationship is defined with respect
to the irrelevant relationships within the corresponding ego
network. For the ego network Ē(ni),

Fr(ni) = {fij : (fij , sij) ∈ F̄(ni), sij = 1} (10)

is the set of feature vectors corresponding to the relevant
communications relationships and

Fo(ni) = {fij : (fij , sij) ∈ F̄(ni), sij = 0} (11)

is the set of feature vectors for the irrelevant communica-
tions relationships. The rank r(fr, ni) of a relevant relation-
ship fr ∈ Fr(ni) is therefore defined as

r(fr, ni) = 1 + |{fo : h(fo) ≥ h(fr), fo ∈ Fo(ni)}| (12)



where h(f) ∈ R. The mean reciprocal rank MRR(F̄) for
the scoring function on the labeled ego networks is then

MRR(F̄) =
1
R

∑
n∈Nt

∑
fr∈Fr(n)

1
r(fr, n)

(13)

where R = | ∪n∈Nt
Fr(n)|.

Approach
Given the complexity of learning a scoring function that di-
rectly optimizes the mean reciprocal rank, we will indirectly
optimize a bound on this criteria by minimizing the number
of rank violations committed by the scoring function. The
ranking performance of the scoring function can be assessed
by considering how well the function satisfies a series of
pairwise ranking constraints. For every possible pairing of
relevant and irrelevant relationships in an ego network, we
desire a scoring function that scores the relevant relation-
ships higher than the irrelevant relationships so that

h(fr)− h(fo) > 0

∀fr ∈ Fr(n), fo ∈ Fo(n), n ∈ Nt. (14)

A violation of one of these constraints is what we will refer
to as a rank violation. Clearly the number of rank viola-
tions maps directly to the rank as implied by equation 12.
Appendix A clarifies the connection between the number of
rank violations and the mean reciprocal rank. The important
observation is that the minimization of rank violations leads
to maximization of a lower bound on mean reciprocal rank.

We pursue a large-margin approach to learning the scor-
ing function following in the spirit of prior large-margin
ranking work (Herbrich, Graepel, & Obermayer 1999;
Joachims 2002; Yan & Hauptmann 2006). We define the
rank margin as

m(fr, fo) = h(fr)− h(fo) (15)

for a pair of relevant and irrelevant relationships (fr, fo).
A positive rank margin implies the rank constraint for the
pair is satisfied. The magnitude of the rank margin gives a
measure of the degree of satisfaction.

We will assume the scoring function h takes a generalized
linear form

h(f) = w · Φ(f) : Rp → R (16)

where Φ is an arbitrary nonlinear mapping. We will estimate
the scoring function through minimization of the following
regularized objective function

C(w) =
1
2
||w||2 + λ

∑
n∈Nt

∑
fr∈Fr(n)

∑
fo∈Fo(n)

g (m(fr, fo))

(17)
where g is a convex margin loss function. At the optimum
of this objective function,

w∗ =
∑

n∈Nt

∑
fr∈Fr(n)

∑
fo∈Fo(n)

α(fr, fo) (Φ(fr)− Φ(fo))

(18)

where α(fr, fo) = −λg′(m∗(fr, fo)) and m∗(fr, fo) are
the rank margins at the optimum. Substituting into equation
16, we find the optimum scoring function takes the form

h(f) =
∑

n∈Nt

∑
fr∈Fr(n)

∑
fo∈Fo(n)

α(fr, fo) (Φ(fr)− Φ(fo)) · Φ(f). (19)

Given the transformed feature vectors enter the expansion
solely as dot product terms, we can employ kernel functions
K(x, y) = Φ(x) · Φ(y) satisfying Mercer’s Theorem which
provides a range of functional forms. This ultimately yields
the general scoring function

h(f) =
∑

n∈Nt

∑
fr∈Fr(n)

∑
fo∈Fo(n)

α(fr, fo) (K(fr, f)−K(fo, f)) . (20)

The corresponding dual objective function for the general
nonlinear case is obtained by substituting equations 18 and
20 into equation 17 yielding

C(α) =
1
2

∑
n∈Nt

∑
fr∈Fr(n)

∑
fo∈Fo(n)∑

n′∈Nt

∑
f ′

r∈Fr(n′)

∑
f ′

o∈Fo(n′)

α(fr, fo)α(f ′r, f
′
o)(K(fr, f

′
r)

−K(fo, f
′
r)−K(fr, f

′
o) + K(fo, f

′
o))

+λ
∑

n∈Nt

∑
fr∈Fr(n)

∑
fo∈Fo(n)

g (m(fr, fo)) .(21)

Message Ranking
After ranking communications relationships with the scor-
ing function, a natural question to ask is how does each mes-
sage contribute to the overall score for a given relationship?
If we define a scoring function with the form

h(f) = w · Φ(f) = w ·
∑

mi∈M

Φ′(fm) =
∑

mi∈M

hm(fmi)

(22)
where the relationship score can be expressed as a linear
combination of message scores hm(fmi

), we can immedi-
ately assess the relative contributions and sort the messages
based on the message scores. We will employ a feature space
and kernel function for content-based relationship ranking
that admits this decomposition.

Manager-Subordinate Relationship
Identification

To evaluate the utility of the proposed approach, we consider
the problem of manager-subordinate relationship identifica-
tion within an email archive. For this task, the goal is to
identify relationships within each ego network where the al-
ter is the ego’s manager. In the following, we present two
relationship summarization methods for exploiting relation-
ship traffic statistics and message content.



From Recipients Include From Recipients Include
na nb nb na

na nc and not nb nb nc and not na

nc na and not nb nc nb and not na

nc na and nb

Table 1: List of possible communications events corre-
sponding to a dyadic relationship (na, nb). Nc is the com-
mon set of network references with whom both na and nb

communicate. nc is a generic reference to any network ref-
erence in Nc.

Traffic-Based Relationship Ranking
In a hierarchical organization, it seems reasonable to be-
lieve that traffic patterns alone can provide significant in-
dicators of organizational structure, assuming that issues of
observability do not unduly complicate matters. Within the
literature, there is evidence that group structure evident in
email communications corresponds well to organizational
constructs (Tyler, Wilkinson, & Huberman 2003). Similarly,
we investigate whether management behavior is evident in
the traffic statistics.

For a given dyadic relationship (na, nb), we compute a
number of traffic-based features between the network ref-
erences na, nb and the set of network references Nc with
whom both na and nb communicate. nc is a generic ref-
erence to any network reference in Nc. The common as-
sociates are included to allow the ranker to key on poten-
tial differences in communication patterns with fellow col-
leagues and the manager. For each type of communication
event listed in Table 1, from the specified network reference
that includes/excludes the specified recipients, we compute
the number of messages of this type and the quartiles for
the distribution of the number of recipients observed across
those messages. Including summary statistics for the num-
ber of recipients is potentially important for capturing differ-
ences in information distribution behavior and indications of
group communications/directives.

Content-Based Relationship Ranking
Although traffic statistics alone may be sufficient for rank-
ing relationships, they do not provide insight to the analyst
that enables her to make a judgement about the type of social
relationship expressed. Ultimately message content must be
identified that substantiates the social relationship. There-
fore we will assess the performance of a ranker that directly
exploits the message content and allows us to rank the mes-
sages within the communications relationship.

Prior to computing feature vectors for individual relation-
ships, we perform filtering steps on the message content to
remove spurious characters and eliminate text from previous
messages in the thread. Then we construct a master term list
for the communications archive to define the feature space.
For each communications relationship, we summarize the
traffic by simply counting the term frequencies across the set
of messages corresponding to the communications relation-
ship. No stop word removal or term weighting was applied
prior to learning the ranker.

Approach MRR
Content-Based with Attribute Selection 0.719

Content-Based 0.660
Traffic-Based (From na including nc and not nb) 0.613

Traffic-Based 0.518
Random 0.211

Worst-Case 0.141

Table 2: Mean reciprocal rank for the various approaches.
The MRR reported for the learned rankers results from the
best performing regularization parameter.

Results
To assess the performance of our approach, we utilized the
Enron email dataset along with organizational ground truth
derived from an internal Enron document. This dataset is the
collection of email from the folders of 151 Enron employees
released as part of the government investigation into Enron’s
financial practices. Our results are based on the UC Berkeley
version of the collection containing approximately 250,000
unique email messages mainly occurring in the 2000-2002
time frame.

Using an internal Enron document specifying the direct
reports for Enron employees over 2000-2001, we identified
43 individuals in the collection with observable manager-
subordinate relationships and nontrivial ego networks. We
constructed the ego networks corresponding to each em-
ployee over this time frame and retained only those rela-
tionships where a minimum of 5 emails were sent in each
direction. The resulting ego networks range in size from 2
to 107 relationships.

For both traffic and content-based relationship ranking,
we use a linear kernel function and evaluate generaliza-
tion performance using leave-one-ego-network-out cross-
validation. We report the mean reciprocal rank (MRR) for
the best performing regularization parameter. We also pro-
vide results for the worst case, where all the rank constraints
are violated, and the average case for random selection. The
results are provided in Table 2.

Traffic-Based Relationship Ranking
The linear ranker trained on all of the traffic statistics per-
forms well relative to the baselines. By reducing the feature
space to a single dimension, we achieve a significant ad-
ditional improvement. Ranking relationships solely based
on the number of emails sent from the ego to the common
network references and not to the alter yields the best per-
formance. After some reflection on group dynamics, this
result is intuitively appealing. First the feature emphasizes
relationships where there is a large set of common network
references. For a manager and subordinate, these will likely
correspond to fellow members of the group that the man-
ager leads. At the same time, the feature deemphasizes re-
lationships where more emails are sent from the ego to the
common set and the alter. When both ego and alter are col-
leagues, these events are more likely than when the alter is
the manager.



Content-Based Relationship Ranking
We explored two content-based ranking approaches. In the
first approach, a linear ranker was trained on the relationship
term frequencies for all 19,067 terms. Examining the abso-
lute value of the resulting weight vector, we determined the
1000 most discriminative terms. Then we trained another
linear ranker only on the term frequencies for the selected
terms.

We found that content-based ranking consistently outper-
forms traffic-based ranking. We also found that attribute
selection provides a significant additional performance im-
provement. As shown in Table 2, the content-based ranker
trained in the constrained term space yields the highest MRR
of 0.719. Examining the top ranked terms in the weight
vector, we find terms indicative of the relationship of in-
terest. Some notable words appearing in the top 20 include
”please”, ”report”, ”project”, ”termination”, and ”executed”.

We note that there are some ego networks in which
content-based ranking performs worse than traffic-based
ranking. The messages in these relationships suggest that
the problem may be caused by more complex relationships.
For example, in one ego network where content-based rank-
ing performs significantly worse, the ego is a senior legal
analyst. Although this individual had only one assigned
manager, she performed tasks for other individuals, such as
writing and analyzing legal documents, similar to those per-
formed for her direct manager.

Content-Based Message Ranking
To qualitatively evaluate message ranking, we examined
the highly ranked messages identified by the top perform-
ing content-based ranker. In cases where the manager-
subordinate relationship achieved rank 1, we found that
definitive evidence was usually contained within the top 10
messages. Definitive evidence for this type of social rela-
tionship includes emails with weekly reports, vacation re-
quests, and project assignments. For example:

From: Cheryl Nelson [cheryl.nelson@enron.com]
To: Mark E Taylor [.taylor@enron.com]
Subject: Holiday Vacation
Hi Mark,
I would like to take Wednesday, December 27th as a va-
cation day because I could not get a flight on the 26th.
Since I do not plan to leave town until December 24, I
could catch up with my work by working on sat. De-
cember 23rd. Let me know if this is okay with you.

Although the analyst may have some preconceived no-
tions about the nature of the relationship that are accurate,
there are other aspects that may be specific to the domain
or organization and therefore difficult to anticipate. For ex-
ample, message ranking revealed ”workload updates” re-
quested by one manager from subordinates. Workload up-
dates are weekly reports. This process also identified emails
that provide evidence for the social relationship in ways one
would not expect. For example:

From: Christian Yoder [christian.yoder@enron.com]
To: Elizabeth Sager [elizabeth.sager@enron.com],

Genia Fitzgerald [genia.fitzgerald@enron.com]
Subject: Happiness
Happiness is looking at the new legal org chart (which
Jan just now dropped on my desk). I always approach
these dry documents as though they were trigrams re-
sulting from throwing the coins and consulting the I-
Ching. At the top of the trigram which I find myself
listed in I see a single name: Elizabeth Sager, and at
the bottom I see the name Genia FitzGerald. ... cgy

As this example hopefully illustrates, message ranking may
help the analyst gain additional insights and move beyond
evidence that can be discovered through simple keyword
queries.

Related Work
In the scenario we are considering, where an analyst is ex-
amining a collection of online communications with min-
imal context a priori, it will be important to have a num-
ber of tools to examine the data from varying perspec-
tives. By focusing solely on the communications events
through analysis of the communications graph, we can iden-
tify groups/communities and key individuals that are influ-
ential based on their position in the graph. Yet in general,
we can conclude little about the nature of the relationships
without exploiting the corresponding content.

Within the context of email exploitation, McCallum et
al. (McCallum, Corrada-Emmanuel, & Wang 2004) took
the first step toward a richer model of email relationships
by proposing a generative model that captures the depen-
dencies between topics of conversation and relationships.
Since then, several other generative models have been pro-
posed (Wang, Mohanty, & McCallum 2005; Song et al.
2005; Zhou et al. 2006; Zhang et al. 2006) that support
joint relationship-topic clustering or group-topic clustering.
These algorithms provide utility when initially exploring the
data. Yet as the analyst discovers various relationship types
of interest, these approaches do not provide a mechanism to
capture and exploit the analyst’s relationship labels so that
additional relevant content tailored to her information needs
can be identified. Our approach therefore provides a com-
plimentary capability by leveraging the context provided by
the analyst.

Other related approaches in the literature have focused
primarily on processing the communications events to un-
derstand the structure of the social network. Eckmann et al.
(Eckmann, Moses, & Sergi 2003) develop an information-
theoretic approach to email exchange that allows for sepa-
rating static and dynamic structure which appears to corre-
spond to formal and ad-hoc organizational structure. Tyler
et al. (Tyler, Wilkinson, & Huberman 2003) present a
group detection algorithm that segments the communica-
tions graph by eliminating edges with low betweenness cen-
trality. The validity of the groups detected within HP Labs
was verified through interviews. Diesner and Carley (Dies-
ner & Carley 2005) analyze global properties of the En-
ron communications graph and rank network references us-
ing various centrality measures from social network anal-
ysis to identify influential individuals. O’Madadhain and



Smyth (O’Madadhain & Smyth 2005) propose an approach
for ranking vertices in graphs representing event data and
demonstrate a weak correlation between network reference
rank and position in the organizational hierarchy using a cor-
porate archive of email events.

In recent years, there has been increasing interest in
defining learning methods that address ranking tasks (Her-
brich, Graepel, & Obermayer 1999; Joachims 2002; Fre-
und et al. 2003; Burges et al. 2005). Our approach is in-
spired by earlier work on large-margin methods for rank-
ing (Herbrich, Graepel, & Obermayer 1999; Joachims 2002;
Yan & Hauptmann 2006) that learn a scoring function
through minimization of the number of rank violations on
the training data. Similar to (Yan & Hauptmann 2006), our
general objective is to learn a ranker that successfully ranks
relevant objects higher than irrelevant objects across a set
of object sets. In the case of (Yan & Hauptmann 2006),
the object sets are collections of retrieved documents cor-
responding to various queries. In our scenario, the object
sets are the communications relationships in the labeled ego
networks. We chose to minimize the number of rank vi-
olations in order to indirectly maximize the mean recipro-
cal rank. As we have established in Appendix A, mini-
mization of rank violations maximizes a lower bound on the
mean reciprocal rank (MRR). Recent work (Joachims 2005;
Burges, Ragno, & Le 2007) has examined the problem of
directly optimizing multivariate performance measures sim-
ilar to MRR that more accurately represent ranking perfor-
mance across object sets of varying size. Additional work is
needed to define suitable methods for direct optimization of
the MRR.

Conclusions and Future Work
The overall process of inferring the underlying social net-
work from a communications archive involves two main
tasks: entity resolution and relationship identification. In
this paper, we presented a formal definition of the relation-
ship identification task and proposed a supervised ranking
approach to the problem. We showed that through minimiza-
tion of rank violations, we can indirectly learn a relationship
ranker that maximizes a lower bound on the mean recip-
rocal rank. Through experimentation on the Enron email
dataset, we demonstrated the utility of this approach on a
manager-subordinate relationship identification task. Using
traffic and content-based features, the ranking method is able
to routinely cue the analyst to relevant communications rela-
tionships. Message ranking using the content-based ranker
provided additional guidance by illuminating compelling ev-
idence within the message traffic substantiating the social
relationship.

Cueing the analyst to relevant relationships and message
content is an important first step; yet it is only half of the
collaborative cycle we envision. As the user navigates the
communications graph, she will make judgements about re-
lationships and message content. These judgements can
be exploited to incrementally refine the scoring function as
her exploration proceeds. The goal is to enable continuous
learning behind the scenes that supports her in the discov-
ery process. To realize this capability, a number of chal-

lenges must be addressed such as automated model selection
(feature selection and hyperparameter tuning) and learning
from multiple types of rank constraints indicating what rela-
tionships and message content are relevant. Other questions
emerge about how to most effectively leverage unlabeled re-
lationships in the communications graph and direct labeling
efforts to rapidly accelerate the learning. These are some of
the issues we will focus on in future research.

Appendix A: Lower Bound on the Mean
Reciprocal Rank

In order to show that minimizing the number of rank viola-
tions is a reasonable proxy for maximizing the mean recipro-
cal rank (MRR), we need to understand how these quantities
are related. For a fixed number of rank violations, the re-
sulting MRR varies depending on how the rank violations
are distributed across the relevant relationships. If the rank
violations are concentrated, so that a small number of rele-
vant relationships are low ranked, the MRR will be higher
than the case where the same number of rank violations are
distributed across a larger number of relevant relationships.
It is this line of thought that leads to bounds on the MRR for
a given number of rank violations.

Let us assume that there are M relevant relationships and
that the maximum possible rank for the ith relationship is
N i

r + 1. This implies that the maximum number of rank
violations that can be associated with the ith relevant rela-
tionship is N i

r.
A useful analogy for this discussion is to imagine we have

M bags and N balls. Each bag has one ball prior to assign-
ing any of the N balls. The ith bag can hold N i

r +1 balls. In
this scenario, the mean reciprocal rank is the mean recipro-
cal number of balls in a bag. To lower bound the MRR, we
need to determine the assignment of N balls to the bags that
minimizes the mean reciprocal number of balls in a bag.

To minimize the MRR for N balls, consider a process
whereby the balls are incrementally assigned to the bags so
that at each step the MRR is minimized. This implies that
we want to assign the next ball to the bag that maximizes
the incremental reduction in MRR. If there are b balls in
a bag already, the incremental reduction in MRR from an
additional ball is

1
M

(
1
b
− 1

b + 1

)
=

1
Mb(b + 1)

. (23)

Therefore, at each step, we should add the next ball to a bag
with the least number of balls that can accept an additional
ball. By uniformly adding balls to bags that can accept them,
we will maintain a minimum MRR throughout the process.

Let Sk(k ≥ 2) be the number of bags that can hold k or
more balls. We will make p passes down the line of bags
adding one ball to each bag that can accept one until all N
balls are placed. On the ith pass,

Bi = min

Si+1, N −
i−1∑
j=0

Bj

 (24)



balls are placed. B0 = 0 by definition. The lower bound on
MRR is therefore

MRRmin =
M −B1

M
+

1
M

(
1

p + 1
Bp

+
p−1∑
i=1

1
i + 1

(Bi −Bi+1)

)

= 1− 1
M

p∑
i=1

1
i(i + 1)

Bi. (25)

The key observation here is that all of the Bi for i < p re-
main constant and Bp decreases as N decreases. Therefore
the lower bound on MRR is strictly monotonically increas-
ing with a decreasing number of rank violations.
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