
Probabilistic Similarity Logic

Matthias Bröcheler
Computer Science Dept.
University of Maryland

College Park, MD 20740

Lilyana Mihalkova
Computer Science Dept.
University of Maryland

College Park, MD 20740

Lise Getoor
Computer Science Dept.
University of Maryland

College Park, MD 20740

Abstract

Many machine learning applications require the
ability to learn from and reason about noisy
multi-relational data. To address this, several ef-
fective representations have been developed that
provide both a language for expressing the struc-
tural regularities of a domain, and principled sup-
port for probabilistic inference. In addition to
these two aspects, however, many applications
also involve a third aspect–the need to reason
about similarities–which has not been directly
supported in existing frameworks. This paper
introduces probabilistic similarity logic (PSL),
a general-purpose framework for joint reason-
ing about similarity in relational domains that
incorporates probabilistic reasoning about sim-
ilarities and relational structure in a principled
way. PSL can integrate any existing domain-
specific similarity measures and also supports
reasoning about similarities between sets of en-
tities. We provide efficient inference and learn-
ing techniques for PSL and demonstrate its ef-
fectiveness both in common relational tasks and
in settings that require reasoning about similarity.

1 Introduction

A variety of machine learning applications require the abil-
ity to learn from and reason about noisy, or uncertain,
multi-relational data. This has motivated the fields of sta-
tistical relational learning (SRL) and multi-relational data
mining, which have made significant progress on devel-
oping effective representations that incorporate in a uni-
fied framework two central aspects of modeling in multi-
relational domains—on the one hand, these representations
provide a language for expressing the structural regularities
present in a domain, and on the other hand, they provide
principled support for probabilistic inference, e.g., [12, 8].

In addition to relational structure and probabilistic depen-

dencies, many applications of interest also involve a third
aspect—the need to reason about similarities—which has
not been directly supported in existing SRL frameworks.

This paper introduces probabilistic similarity logic (PSL),
a general-purpose framework for joint reasoning about sim-
ilarity in relational domains. PSL uses annotated rules to
capture the dependency structure of the domain, based on
which it builds a joint probabilistic model over all simi-
larity decision atoms. PSL embodies the following novel
characteristics. First, PSL provides a unified framework in
which probabilistic reasoning about relational structure is
seamlessly incorporated with reasoning about similarities.
A direct consequence of this is that PSL can integrate any
existing similarity measures, thereby extending their appli-
cability to a relational context. It is important to distin-
guish between similarity itself and the uncertainty in sim-
ilarity propagation - the latter justifying our probabilistic
approach. Second, as an extension to its treatment of sim-
ilarity, PSL supports reasoning about similarity between
sets of entities, defined by a given relation. Third, PSL is
efficient because it casts inference as a cone program and
uses a relational database for data management, which al-
lows it to take advantage of efficient querying techniques
developed in the database community.

Motivating Examples: To illustrate the diversity of rela-
tional settings that require reasoning about similarity, we
next describe two distinct applications. The first motivat-
ing application is a Wikipedia-like environment in which a
set of hyperlinked documents are being edited by a set of
interacting users. One task in this setting, that is of interest
in information retrieval applications, is to automatically in-
fer similarities between the documents based both on their
content and on the relational structure of the domain. Alter-
natively, one may be interested in identifying similar users,
e.g. in collaborative filtering. Each of these problems can
be approached in isolation by comparing pairs of entities
based on their attributes. For example, for document simi-
larity, one can take advantage of the extensive literature on
similarity metrics, e.g., [2]. However, due to the relational
structure of this problem, user similarity and document

similarity are closely entangled. For instance, users who
edit similar documents are likely to be similar. Conversely,
documents edited by similar users are likely to be simi-
lar. Furthermore, the relational structure of the domain can
also be incorporated into this reasoning to state, for exam-
ple, that two documents are likely similar if they have been
edited by users who interact frequently. Set constructs al-
low for significant modeling flexibility in this domain. For
example, let U1 and U2 stand for two users and {U.edited}
represents the set of all documents edited by U ; then, one
can write U1

∼= U2 ⇒ {U1.edited} ∼= {U2.edited} to
state that if U1 is similar to U2 we conclude that the sets of
documents edited by U1 and U2 are similar.

As a second motivating application, consider the task of
ontology alignment. An ontology is a formal specification
of a set of concepts and the different relationships that ex-
ist among them, usually forming a concept hierarchy. The
goal of ontology alignment is, given two ontologies O1

and O2 that may use different vocabularies to describe the
same, or similar, concepts, to find a matching between the
concepts and relationships in O1 and O2, e.g., [6, 10]. Be-
cause frequently no exact match exists, one needs to reason
about degrees of similarity between concepts and relations,
while at the same time incorporating this reasoning into a
relational framework. For example, one can exploit regu-
larities such as that two concepts are similar if their sub-
concepts or parent concepts are similar.

Several other applications could also benefit from the abil-
ity to incorporate similarities into a relational framework.
For example, in computer vision, the similarity of two im-
ages can be based both on domain-specific similarity mea-
sures and on relational structure within the image; in bioin-
formatics, one may predict the function of a protein based
on its similarity to other proteins, inferred from its proper-
ties, and protein-protein interactions.

The paper first introduces PSL in Section 2; then we eval-
uate PSL on the problems of inferring document similar-
ity and ontology alignment. We evaluate the importance
of PSL’s elements and demonstrate how PSL can obtain
state-of-the-art performance in ontology alignment by in-
corporating domain-specific similarity measures. Related
work is discussed in Section 4.

2 PSL
PSL specifies how similarities propagate through the re-
lational structure using annotated rules. PSL represents
a family of languages, defined by particular user choices.
In the following general description, we discuss the choice
points and explain the specific choices made in this paper.

2.1 Syntax of PSL

For maximum expressivity, PSL rules can be written in
first-order logic (FOL); in addition, we support an object-

oriented (OO) short-hand that is more succinct in many
cases. In particular, let X and Y be variables represent-
ing entities in the domain. Entities are typed, and TX is
the type of X , e.g., person, document, etc. Each entity X
has a set of attributes A(TX) and may participate in a set
of relations R(TX). Using FOL, a(X,V) asserts that X
has attribute a ∈ A(TX) with value V . Using OO, X.a
returns the value of attribute a. Analogously, for a rela-
tion r ∈ R(TX), in FOL r(X,Y) indicates that X and
Y are related via r, and in OO, X.r refers to any one en-
tity related to X via r. PSL can also represent sets of en-
tities. If X.edited refers to a document X edited, then
{X.edited} refers to the set of all documents edited by
X . The same statement can be expressed algebraically as
{Y |edited(X,Y)}. While the latter notation is cumber-
some, it allows for sets defined by n-ary relations, where
n > 2, i.e., {Y |edited(X,Y, T)} may refer to all docu-
ments Y that were edited by user X at time T . Although
both types of syntax are supported by PSL, for clarity, we
will use primarily the OO syntax.

PSL also supports statements about the similarity between
two entities or relation-defined sets of entities. We can
write statements such as X.text s1= Y.text, meaning that
the textual content of documents X and Y is similar ac-
cording to measure s1;X.edited s2= Y.edited, meaning that
one of the documents edited by X is similar to one of the
documents edited by Y ; and {X.edited} s3= {Y.edited},
meaning that the entire set of documents edited by X is
similar to the set of Y ’s edits. The functions s1, s2, and s3
can be arbitrary functions of a pair of the appropriate types
of entities, or sets of entities, whose domain is [0, 1].

Similarity statements combined in logical rules form a PSL
program. A PSL program may contain three types of
rules: soft rules, each of which has a weight that deter-
mines the relative importance of the rule, as discussed in
Section 2.2; hard constraints, which are always required to
hold; and exclusivity constraints. Hard constraints can be
viewed as rules with infinite weight but are maintained sep-
arately in PSL to enforce them throughout inference. An
exclusivity constraint on a relation r and entity X states
that X can be related to at most one entity via r.

Table 1 shows an example PSL program for our Wikipedia
domain. The first rule states that if two documents have
similar text, then they are similar; the second rule states
that two documents are similar if the sets of their editors are
similar; the third rule states that two documents are similar
if the sets of their first- and second-order neighbors in the
hyperlink graph are similar; the fourth rule encodes transi-
tivity of similarity and is a hard constraint. The similarity
function sn is based on attributes and s{} is defined below.

However, unlike in binary logic, here the conjunction and
implication operators need to combine similarities, which
are real numbers in [0, 1]. To emphasize this distinction, we

w1 : A.text sn= B.text⇒̃A ∼= B

w2 : {A.editor}
s{}= {B.editor}⇒̃A ∼= B

w3 : {A.linksTo} ∪ {A.linksTo.linksTo}
s{}= {B.linksTo} ∪ {B.linksTo.linksTo}⇒̃A ∼= B

Hard : A ∼= B ∧̃ B ∼= C⇒̃A ∼= C

Table 1: Example PSL program.

have placed a tilde over these operators in Table 1. More-
over, we would also like to have “soft” versions of disjunc-
tion and negation that behave as their counterparts from bi-
nary logic so that we are able to manipulate PSL rules as in
logic. For example, the fourth rule could be rewritten as a
disjunction as follows: ¬̃(A

sp= B) ∨̃ ¬̃(B
sp= C) ∨̃ A sp= C.

One set of such truth-combining operators that general-
ize their Boolean counterparts is provided by t-norms and
their corresponding t-conorms [14]. In PSL, any t-norm/t-
conorm pair may be used. We used the Lukasiewicz t-
(co)norm, defined as follows:

a∧̃b = max{0, a+ b− 1} (1)
a∨̃b = min{a+ b, 1} (2)
¬̃a = 1− a (3)

Above, a, b ∈ [0, 1] can be similarities or Boolean truth
values. The Lukasiewicz t-norm is appealing because it is
linear in the values being combined, and because unlike, for
example, the product t-norm, which defines a∧̃b = ab, the
Lukasiewicz t-norm leads to sparser grounded PSL pro-
grams because the ∧̃ operator evaluates to 0 on all a, b for
which a + b < 1. On the other hand, the product t-norm
may be more appropriate in domains in which it is impor-
tant to model longer-range dependencies.

For computational efficiency, we currently require sets to
be fully observed, e.g., all groundings of the edited relation
in {A.edited} must be provided as evidence. However,
as an essential feature, PSL supports set similarity func-
tions that combine the results of reasoning over similarities
between individual members of the sets. For example, in
{A.edited}

s{}= {B.edited}, s{} can be defined as

s{} =

∑
i∈{A.edited}

∑
j∈{B.edited} sp(i, j)

|{A.edited}|+ |{B.edited}|
,

where sp(i, j) is a function of the similarity of two individ-
uals. The values of sp can be inferred from the data and are
not required to be part of the evidence.

2.2 Semantics of PSL

A PSL program defines a probability distribution over sim-
ilarities between entities or sets of entities in a domain.
In the following discussion, we require that all weights be

positive. This requirement does not detract from the gen-
erality of PSL because any negative weight can be made
positive by negating the corresponding rule.

Given a domain D, each grounding of each PSL rule R
represents an instantiation of all variables in R by replac-
ing them with entities from D. For each rule, all possible
groundings are generated. For example, let R be:

{A.editor} s1= {B.editor}∧̃A.text s2= B.text⇒̃A s3= B

SupposeD contains the entities doc1 and doc2. Then, there
are 4 unique groundings of R, corresponding to the possi-
ble ways of replacing A and B with doc1 and doc2, and in
each grounding we expand the editor relation and the text
attribute of each participating entity. A statement of the
form a

si= b, where a and b are entities or sets of entities,
is called a ground proposition. Each ground proposition
represents a statement about particular entities and can be
assigned a value by the similarity function si. Let G be the
set of all ground propositions with the entities in D. Let
I(G) be an interpretation, i.e., a particular truth assign-
ment to the elements in G, such that for each g ∈ G, its truth
value is a real number between 0 and 1, i.e., I(g) ∈ [0, 1].
The probability of an interpretation I(G), according to a
PSL program P is given by the following expression:

P(I(G)) =
1
Z

exp(−dδ(P, I)) (4)

Above, Z =
∫
I′

exp(−dδ(P, I ′)) is the familiar normaliz-
ing constant that integrates over possible real-valued truth
assignments. In the exponent, dδ(P, I) is the distance
from satisfaction function. First, we define the distance
from satisfaction of a single grounding GR of rule R ∈ P .

Definition 1 The distance from satisfaction of a single
ground rule GR, according to a particular interpretation
I , is d(GR, I) = 1− I(GR).

Intuitively, the closer the value of a particular ground rule
is to 1, the closer it is to being satisfied, and the smaller its
distance from satisfaction. We now extend this definition
to the distance from satisfaction of a PSL program P . This
is the distance from satisfaction of all possible groundings
of the rules in P , weighted by the weight of each rule.

Definition 2 Let P be a PSL program containing n rules
and let I be an interpretation. If I violates any hard or ex-
clusivity constraints in P , P’s distance from satisfaction is
∞. Otherwise, for each rule Rk ∈ P , let Vk(I) be the vec-
tor containing the distances from satisfaction of all ground-
ings of Rk in I , i.e., Vk = [d(G1

Rk
, I) . . . d(G

nRk

Rk
, I)]T ,

where nRk
is the number of groundings of Rk. Let V (I)

be the vector formed by stacking all of the Vk-s after mul-
tiplying them with the corresponding weight wk: V (I) =
[w1V1(I) . . . wnVn(I)]T . Let δ be an arbitrary distance
metric. Then, dδ(I,P) = δ(V (I),0).

The distance metric δ presents another choice point by
which members in the PSL family of languages are iden-
tified. For example, if we use the L1-norm distance
δL1(x,y) = ‖x − y‖1, we obtain the log-linear repre-
sentation, commonly used in SRL and graphical models.
Alternatively, we could use the squared L2-norm distance
δL2(x,y) = ‖x − y‖22, thus making the penalty for not
satisfying a rule a faster-growing function of the distance
from satisfaction.

2.3 The Importance of Similarity

The ability to reason about similarities in a relational
framework is a central novel property of PSL. Here we
motivate its importance. The most immediate advantage
of reasoning about similarity is that, in PSL, the numerous
well-understood domain-specific similarity measures that
exist in the literature can be easily brought to bear in a re-
lational context. A further advantage results from the in-
terplay of relational structure and similarity; namely, PSL
supports reasoning about similarity not only between the
attributes of two entities X and Y , but also between the re-
spective sets of entities related to X and Y , e.g., the sets of
entities related to X and Y via the editor relation.

Because support for set similarity is such an important as-
pect of PSL, we consider it further by contrasting setFree-
PSL, in which set similarity is not allowed, to the complete
PSL. Suppose we would like to reason about the similarity
between two documents based on the editors they have in
common. This is expressed in setFree-PSL as:

A.editor
ss= B.editor⇒̃A ∼= B (5)

The main issue with this rule is that the number of its
groundings that are active during inference depends on the
absolute number of editors that A and B have in common.
Consider what happens as a result. Let a1 and b1 be two
documents, each having n editors with perfect overlap be-
tween their editor sets; and let a2 and b2 be two documents
each having m editors, m � n, such that they have n ed-
itors in common. Then, all else being equal, the penalty
for not inferring that a1 and b1 are similar is equal to the
penalty for not inferring that a2 and b2 are similar, although
in the former case we have much stronger evidence of the
similarity of the two documents. A related issue is that to
maintain the relative importance of rules constant across
domains, when rules such as the above are present in the
model, their weight needs to depend on the sizes of the
relations. For example, if a weight for the above rule is
learned in one data set and used for prediction in another
one in which documents have larger numbers of editors, all
else being equal, the relative importance of that rule will in-
crease simply because it will have more active groundings
during inference. These issues are completely resolved by
the introduction of sets. For example, in PSL we can write:

{A.editor}
s{}= {B.editor}⇒̃A ∼= B (6)

This rule now has a single grounding, and the strength of
the evidence on the left equals the amount of overlap be-
tween the two sets.

Sets are also beneficial when they appear in the consequent
of a rule. Consider the difference between the following
two rules that relate the similarity of two concepts in an
ontology to the similarity of their sub-concepts:

C1
s1= C2⇒̃C1.subconcept

s1= C2.subconcept (7)

C1
s1= C2⇒̃{C1.subconcept}

s{}= {C2.subconcept} (8)

For two similar concepts that each have n sub-concepts, the
first rule will have at most n true groundings out of n2 pos-
sible ones, even if their sub-concepts align perfectly, while
the second rule correctly captures the intended meaning.

As a further benefit of sets, using rules such as (6) and (8)
instead of (5) and (7) leads to fewer groundings per rule.
Specifically, if rule (8) is used, then there will be a single
grounding for each pair of concepts C1, C2; on the other
hand, if rule (7) is used, there will be k2 groundings for
each pair C1, C2, where k is the maximum relation size.

2.4 Inference

It is frequently necessary to perform maximum a posteri-
ori inference (also called MPE inference) to infer the most
likely values for a set of propositions, given observed val-
ues for the remaining (evidence) propositions. For exam-
ple, in an ontology alignment task, we would like to predict
the best matching of concepts from one of the ontologies
with concepts from the other one. More formally, we split
the set of propositions into two subsets: let y be the set of
propositions with unknown values and let x be the set of
evidence propositions with values in I(x). Then the task
is to find a truth assignment IMAP (y) that is most likely
according to the PSL program, given the evidence:

IMAP (y) = arg max
I(y)

P (I(y)|I(x)) (9)

= arg max
I(y)

1
Z

exp (−dδ((I(y), I(x)),P))

(10)

= arg max
I(y)

(−dδ((I(y), I(x)),P)) (11)

As can be seen from Definition 2, to evaluate dδ , we need
to form all groundings of the rules in P with the entities
in the domain. To limit the number of grounded rules that
are active during inference, we take advantage of the fact
that only grounded rules that evaluate to strictly less than
1 need to be considered. Thus, grounded rules that have
value 1 given the evidence I(x) can be excluded from con-
sideration because their value does not depend on assign-
ments to the propositions in y. Furthermore, rather than
performing inference over all remaining grounded rules
at once, we employ a lazy grounding technique, whereby

only grounded rules whose value becomes smaller than 1
at some point during inference are included in the infer-
ence problem. Such rules are called activated in Alg. 1,
which describes MAP inference in PSL. This algorithm
works by transforming the grounded PSL program into a
second-order cone program (SOCP) [16] (line 4) whose so-
lution gives an assignment to the propositions in y (line 5).
Necessary conditions are given in Theorem 1 below. Any
rules that have not achieved their maximal possible value
of 1 in the current solution, are added to the set of active
ground rules (lines 6-10) and the process repeats for as long
as new rules are activated. In generating the SOCP (line 5)
we introduce one variable va for each ground atom a. For
each ground rule GR we add an auxiliary variable vR and
the constraint:

vR ≥ d(GR, I ′),
where d(GR, I ′) is as given in Definition 1, and I ′ is the
interpretation in which the truth values of all atoms a are
given by their respective variables va. In words, this con-
straint specifies that vR must be greater than or equal to
the distance from satisfaction of the rule GR where the
truth values of all atoms a are replaced by their respec-
tive variables va. Moreover, we add all hard and exclu-
sivity domain constraints in the form of constraints on the
atom variables va. Finally, we build the conic objective
function, δ(V (I ′), 0), from the (fixed) weights and auxil-
iary variables vR according to Definition 2. To solve the
SOCP, one can use any available technique [1].

Alg. 1 is in essence equivalent to cutting plane inference
(CPI) [20], except that, unlike CPI, PSL programs are con-
tinuous constrained numeric optimization programs. More-
over, in the subset of PSL studied here, inference is poly-
nomial in the number of grounded rules activated by Alg. 1,
as stated in Theorem 1, which relies on the standard com-
plexity result for SOCP [16] by showing the equivalence
of PSL inference to a certain numeric problem outlined
above.

Theorem 1 Let R be the set of grounded rules activated
in Alg. 1. Then, under the choices made in this paper,
namely, linear or conic similarity functions, Lukasiewicz t-
(co)norm, and L1- or L2-norm distance-from-satisfaction
functions, a solution to the SOCP can be found in time
O(|R|3.5).

A detailed derivation of the SOCP and proof of the theorem
can be found in the extended version of the paper [4].

2.5 Weight learning

Weight learning in PSL is performed using standard tech-
niques by optimizing the log-likelihood of interpretation I:

log P(I(G)) = −δ(V (I),0)− logZ (12)

Above, δ(V (I),0) is as in Definition 2. The gradient of
Equation (12) with respect to weight wk depends on the

Function: MAP-Inference

I0(y)← all zeros assignment1.1
R← all grounded rules activated by I(x) ∪ I0(y)1.2
whileR has been updated do1.3

i← current iteration1.4
O ← generateConvexProb(R)1.5
Ii(y)← optimize(O)1.6
foreach Proposition y ∈ y do1.7

if Ii(y) > θ(θ = 0.01) then1.8
Ry ← activated rules containing y R← R ∪ Ry1.9

end1.10
end1.11

end1.12

Algorithm 1: MAP-Inference in PSL

distance function δ used. For δ(·, ·) = ‖·, ·‖1 (which we
used in the experiments), the gradient is given by:

− ∂

∂wk
log P(I(G)) = ‖Vk(I),0‖1 − E(‖Vk(I),0‖1),

where E(‖Vk(I),0‖1) is the expected value of ‖Vk(I),0‖1
with respect to the currently learned weights. We exper-
imented with two ways of optimizing the above gradient:
we used BFGS, a popular quasi-Newton method [18], and
the Perceptron algorithm [7], where in both cases the ex-
pectation was approximated with the value of ‖Vk(I),0‖1
in the MAP state, which is a frequently used approximation
since computing the expectation is intractable.

2.6 The PSL System

We implemented PSL in Java using a relational database1

for storage and efficient retrieval during the rule ground-
ing. Given a set of rules and database handle, the sys-
tem grounds out all rules that could be potentially unsat-
isfied and builds the numeric model corresponding to those
rules which can be solved using any standard numeric op-
timization toolbox2. If the optimal solution determined
by the numeric solver changes the truth value of an atom,
the system automatically determines all affected rules and
grounds out any rules that might become unsatisfied as
a consequence. A number of data structures are main-
tained to efficiently determine such changes. Changes to
the ground rules are reflected in the numeric model which is
maintained throughout the reasoning process and updated
within the solver. This allows the solver to exploit knowl-
edge about the previous optimal solution to quickly con-
verge on the new solution. The system will be available at
http://psl.umiacs.umd.edu.

3 Experiments

This section presents an empirical evaluation of PSL that
addresses two questions:

1We used the freely available H2 database (http://www.
h2database.com/)

2We used MOSEK (http://www.mosek.com).

0.6

0.65

0.7

0.75

0.8

250 375 500 625 750

F1

Number of Training Documents

Categoriza*on Accuracy (External Classifier)

A>ributes Only
A>ributes + Links
A>ributes + Links + Talks

Figure 1: F1 score on classification against number of train-
ing documents.

1. Is PSL effective at modeling relational inference tasks?
2. How useful are the novel features provided by PSL?
We study these questions on two distinct problems, namely
(a) category prediction and similarity propagation for
Wikipedia documents and (b) ontology alignment on a
standard corpus of bibliographic ontologies. After describ-
ing the data and the experimental methodology, we present
results that demonstrate PSL’s effectiveness on relational
inference. We then investigate in more detail the impor-
tance of sets and the benefit of reasoning about similarity.

3.1 Wikipedia Category Prediction

We collected all Wikipedia articles that appeared in the
featured list3 in the period Oct. 7-21, 2009, thus obtain-
ing 2460 documents. We used featured articles because
they are richly connected, both by their hyperlinks and by
their network of human editors [3]. After stemming and
stop-word removal, we represented the text of each docu-
ment as a tf/idf-weighted feature vector. Each document
belongs to one of 19 distinct categories, which were ob-
tained by using the category under which each featured ar-
ticle was listed. Some of the original categories that were
similar were merged to ensure that each category contains
sufficiently many documents. The data contains the re-
lations Link(fromDoc, toDoc), which establishes a hyper-
link between two documents; Talk(document, user), which
states that the user edited the “Talk” page of the given
document;4 and HasCat(document, category), which states
that the document has a particular category. We used
the last two years of edits to the talk pages. To reduce
noise, we discarded talks that were marked as “minor”
by the users themselves or were authored by users with
no user names, which typically correspond to automated
bots or instances of vandalism. The dataset is available at
http://psl.umiacs.umd.edu.

We applied PSL to two distinct tasks in this data set. First,
3
http://en.wikipedia.org/wiki/Wikipedia:Featured_lists

4In Wikipedia, each page has an accompanying Talk page
where editors discuss potential changes to the content.

to verify that PSL can handle common relational problems,
we experimented with a collective classification setting,
where relational information is used in an effort to improve
over a classifier trained on the tf/idf-weighted word features
on a holdout document set. The goal is to predict HasCat
for each test document. The second task tests PSL’s ability
to reason about and propagate similarities. In this task, the
text features of the documents are used only to compute
a measure of similarity between any given pair of docu-
ments and are not used directly as features in a classifier.
At test time, the categories of a small subset of the docu-
ments, called “seed documents,” are observed, and the goal
is to propagate these assignments to unlabeled documents
based on the similarity between them and the relationships
in which they participate. The accuracy of the inferred sim-
ilarities is evaluated through the correctness of the cate-
gory assignments of the unobserved documents, inferred
through the HasCat relation, and thus, on the surface this
task may seem almost identical to collective classification.
However, we emphasize that in the similarity propagation
task the text of documents is not used directly but only to
measure similarities between the documents; no model is
trained on the textual features of the documents. In other
words, there is no assumption that the documents in the
test set are from the same domain, or even the same lan-
guage, as those in the training set. Thus, to perform well,
our model needs to effectively propagate these similarities
through the relational structure.

The methodology in both tasks is as follows. We randomly
split the entire corpus of documents into two equal-sized
sets A and B and remove all relations between documents
in different sets. We use the data in A for training and then
test on set B. The results we report in Figures 1 and 2 are
averages over 16 independent runs, and the vertical error
bars show the standard deviations.

For the collective classification task, we trained a
Naive Bayes classifier over the text features of a ran-
domly selected subset of X documents from A (Fig-
ure 1 will show results for varying X). The pre-
dictions of this classifier were provided as evidence
through the ClassifyCat(wordFeatures, category) simi-
larity function. We used the remaining documents in A
for training the rule weights with the BFGS algorithm.
We experimented with three sets of rules. The first set,
Attributes-Only, is a baseline that uses only the follow-
ing rule, which simply copies the predictions of the Naive
Bayes classifier:

ClassifyCat(A, N) ⇒̃ HasCat(A, N)

The second set, Attributes+Links:, contains an additional
rule stating that hyperlinked documents tend to have the
same category:

hasCat(B, C) ∧̃ link(A, B) ∧̃ A 6= B ⇒̃ HasCat(A, C)

0.2

0.3

0.4

0.5

0.6

0.7

0.15 (220) 0.2 (290) 0.25 (370) 0.3 (440)

F1

Percentage of Seed Document (# Documents)

Categoriza-on Accuracy (Ini-al Seed)

A@ributes only A@ributes + Links A@ributes + Links + Talks

Figure 2: F1 score on category prediction against percent-
age of seed documents

The third set Attributes+Links+Talks contains an addi-
tional rule stating that two documents talked about by the
same user have the same category:

talk(D, A) ∧̃ talk(E, A) ∧̃ hasCat(E, C) ∧̃
E 6= D ⇒̃ HasCat(D, C)

Each set of rules includes an additional constraint which
ensures that each document can have at most one category.
To compute the precision, for each document we select the
category to which it is most related, according to the propa-
gated similarities, and compare that category to the ground
truth. We note that no document categories were provided
during testing, but that Naive Bayes training requires a sig-
nificant number of labeled documents. The F1 scores (com-
puted as the harmonic mean between precision and recall)
on collective classification are shown in Figure 1. All dif-
ferences are statistically significant at p = 0.01. We ob-
serve that considering link relationships yields an average
6.5% improvement over the baseline, whereas link and talk
relationships combined improve the baseline F1 score by
an average of 10.6%. As expected, improvements are larger
for smaller training corpus size where the base classifier is
less accurate.

On the similarity propagation task, we randomly designate
X% of the documents in the train (A) and test (B) sets as
seed documents and reveal their category during inference.
As a baseline (Attributes-Only), we use a rule stating that
documents with similar word vectors, as measured by co-
sine similarity, have the same category. As before, we used
two additional rule sets by extending the baseline with rules
concerning link and talk relationships (Attributes+Links
and Attributes+Links+Talks respectively). We empha-
size that in contrast to the first task, here we do not use
the words as features in the model but only to compute
similarities between documents. Figure 2 shows the av-
erage F1 scores for varying percentage of seed documents.
All observed differences are significant at p = 0.01, ex-
cept for the two left-most points, where the significance is
at p = 0.02. We observe that propagating category assign-

ments via link and talk relationships yields a huge improve-
ment over the attribute similarity baseline.

These results demonstrate that the relational structure in the
Wikipedia data set is helpful and that PSL can effectively
exploit it to model both tasks.

3.2 Ontology Alignment

Ontology alignment has received growing attention in re-
cent years, in part due to the explosion of interest in web
services, information exchange over the web in general and
the semantic web in particular. A large number of ap-
proaches have been proposed (see [6] and [10] for surveys).
Ontology alignment is a particularly challenging problem
due to the complexities of ontologies themselves. Ontolo-
gies define concepts, relations, and objects and a host of
possible relationships between those basic entities. In ad-
dition, ontologies have an associated semantics which con-
strains feasible alignments to ensure consistency.

Using the general PSL framework, we designed a set of
21 rules and constraints expressing our understanding for
how similarity propagates within ontologies. Some of these
rules are hard rules, like a rule stating that one concept from
ontologyO1 can be equivalent to at most one concept in on-
tologyO2, that ensure the consistency of a computed align-
ment. The majority of the rules are soft-weighted rules, like
rules stating that concepts are equivalent if their names or
their parents are similar. For example:

type(A, concepts) ∧̃ type(B, concepts) ∧̃ name(A, X)
∧̃ name(B, Y) ∧̃ similarID(X, Y)
∧̃ A.source 6= B.source
⇒̃ similar(A, B)

states that two concepts A,B with similar names defined
in different source ontologies are likely to be similar.
similarID is a similarity function implemented using a
slightly modified Levenshtein metric.
If two concepts align, then it is likely that their respective
sets of sub-concepts align as well, which we capture in the
following rule using the set equivalence operator s{} de-
fined in Section 2.1.

type(A, concepts) ∧̃ type(B, concepts) ∧̃ similar(A, B)
∧̃ A! = B ⇒̃ {A.subclassOf}

s{}= {B.subclassOf}

A fraction of the rules consider attribute similarity as
source of evidence while the remaining rules focus on
equivalences of related entities, such as sub-concepts,
super-concepts, incident relations, and others. The full
set of rules is included in the extended version of this pa-
per [4].We extended standard string similarity measures,
such as Levenshtein and Dice similarity, to measure the
similarity between attributes. Given a pair of ontologies,
we convert each ontology into a knowledge base of ground
atoms and load it into the database.

0

0.2

0.4

0.6

0.8

1

PSL Aflood AROMA ASMOV CIDER DSSim Aflood Lily MapPSO RiMOM SAMBO SAMBOtdf SPIDER TaxoMap

Ontology Alignment -‐ System Comparison

Figure 3: F1 Measure comparison of different ontology alignment systems on real bibliographic ontologies

We do not claim that 21 rules suffice to capture all in-
tricacies of ontologies, but catering toward any of them
is as easy as adding more rules or similarity measures.
The ease with which rules can be modified and similar-
ity functions integrated into PSL allows model designers
to quickly evaluate their intuitions by testing different rules
and similarity functions with little implementation effort.

To evaluate the performance of our set of PSL rules, we
conducted an experimental study using the OAEI bench-
mark [5]. The Ontology Alignment Evaluation Initiative
(OAEI) invites researchers to compare their ontology align-
ment systems on a fixed set of benchmark ontology pairs
for which reference alignments are provided5. We used
the same set of rules for all ontology pairs and compared
the reference alignment to the alignment inferred by PSL.
Since the reference alignments provided by OAEI declare
equivalences to be either true or false, we used a threshold
of 0.5 on the inferred similarities.

Figure 3 compares the F1 score of PSL against the reported
scores of other systems that participated in the evaluation
initiative [5] on the real-world ontologies included in the
benchmark (300 level). The ontologies used in our evalua-
tion contained approximately 100 entities (concepts, prop-
erties) each. We use one ontology pair for training rule
weights and then test on the 3 remaining pairs; we re-
port average F1 over all possible test ontology pairs. For
weight learning, we used the Perceptron algorithm. Our
PSL model obtains an F1 score of 0.865, which shows that
PSL can learn accurate weights from a single pair of on-
tologies and generalize to the remaining pairs. We observe
that using only a small set of PSL Rules, we achieve align-
ment results that are comparable to the leading ontology
matching systems which have been subject to considerable
research and implementation effort.

We also experimented with a methodology closer to the one
used in the OAEI initiative by manually fixing weights and
testing on all ontology pairs. The results were almost iden-
tical to the ones in Fig. 3. However, because the weights
were informed by our observations on the learned weights
from above, we consider these results “contaminated.”

5http://oaei.ontologymatching.org/2008/

Utility of Sets

In this section we quantify the utility of sets for probabilis-
tic relational reasoning on the ontology alignment task. For
this purpose, we explored the behavior of the complete and
setFree versions of our ontology alignment PSL program
on the 20X ontologies of the OAEI benchmark, which con-
tains ontology pairs with randomly inserted attribute and
structural noise. We tried to replicate this suite of bench-
mark ontologies such that we can control the level of noise.
For a given level of attribute noise a and structural noise
s, we replace a fraction of a attributes with random strings
and remove a fraction of c relationships from the ontology.
The results closely match the 20X ontology pairs.

The PSL rules we used for ontology alignment above con-
tain set constructs. For instance, one rule states that if two
concepts are similar, then the sets of their respective chil-
dren overlap. To contrast standard PSL to setFree-PSL
we created a second set of rules in which all rules using
sets were replaced by their setFree counterparts using the
conversion scheme outlined in Section 2.3. We learned
rule weights on one generated pair of ontologies and then
tested on a different, independently generated pair with the
same noise levels. The results are averages over 10 inde-
pendent trials. Figure 4 compares the results for two levels
of structural noise, 0.2 in a) and 0.4 in b), and with attribute
noise varying from 0 to 0.8. All differences are statistically
significant at p = 0.01. We observe that complete PSL
consistently outperforms the setFree version, yielding im-
provements from 9.3% to 57% as attribute noise increases.

3.3 Similarity and Scalability

Lastly, we discuss the similarity aspect of PSL in the con-
text of the presented experiments. For one, having a se-
mantics centered around similarity allows PSL to easily
incorporate a wide range of similarity measures. In our
Wikipedia experiments, we integrated cosine similarity and
an existing implementation of Naive Bayes. For ontology
alignment, we used previously proposed string similarity
measures such as Levenshtein, Dice, and others.

However, because our gold standard evaluation data did not
contain similarity values but was in terms of hard truth

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.15 0.3 0.4 0.5 0.55 0.6 0.65 0.7 0.75 0.8

F1

A-ribute Noise

Complete PSL setFree PSL
0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.15 0.3 0.4 0.5 0.55 0.6 0.65 0.7 0.75 0.8

F1

A-ribute Noise

Complete PSL setFree PSL

a) 0.2 Structural Noise b) 0.4 Structural Noise

Figure 4: F1 comparison of complete- and setFree PSL on ontology alignment with varying structural and attribute noise

statements, were were unable to evaluate the quality of
the similarity values inferred by PSL. Instead, to achieve
comparability to the data at hand, we used some means of
similarity post-processing, e.g., in ontology alignment we
treated two concepts as exactly aligned if their similarity
was greater than 0.5. This raises the question of whether a
discrete formulation of the problem within PSL would lead
to better performance. To answer this question, we imple-
mented a discrete version of PSL called 0-1 PSL based on
mixed integer conic programming which requires all result
atoms to be either 0 or 1, i.e. true or false.

We repeated the Wikipedia category prediction experi-
ments using 0-1 PSL6. The measured performance of 0-
1 PSL was equal to the continuous formulation (i.e. dif-
ferences were statistically insignificant) on the similarity
propagation task and slightly worse compared to standard
PSL (at p = 0.02) on collective classification.

While the performance was virtually identical, PSL infer-
ence of the discrete formulation took significantly longer.
On the similarity propagation task, PSL inference in the
original continuous setting took an average of 83 seconds
including data loading and preparation. Discrete inference
took more than 11 times longer at an average of 974 sec-
onds. Similarly, for collective classification, PSL infer-
ence took 18.5 minutes for a complete run including classi-
fier training, whereas 0-1 PSL required almost an hour (54
minutes) on average. Since the ontology alignment task is
much smaller, inference times were under 5 seconds with
most of the time spend on parsing and data loading. These
statistics also demonstrate the efficiency and scalability of
standard PSL inference.

4 Related Work

PSL builds upon a large body of research in SRL, in which
relational structure is parametrized in order to define a
probabilistic graphical model over the properties and re-
lations of the entities in a domain, e.g., BLPs [13], PRMs

6For ontology alignment, we were unable to tune the discrete
solver to find an optimal solution, possibly due to the more com-
plex relational structure and wide usage of set constructs.

[11], RMNs [21], MLNs [19]. Like these models, PSL also
supports probabilistic reasoning over relational structure.
However, unlike previous work, PSL additionally supports
reasoning about similarities of entities, or sets of entities,
and integrates these capabilities into a unified framework.
In terms of expressivity, PSL is closest to Hybrid MLNs
[22], which allow the use of numeric-valued predicates.
However, because Hybrid MLNs were not specifically de-
signed for use with similarities, they do not include support
for reasoning about set similarity, and reasoning in them is
intractable in general. In contrast, because PSL restricts
the numeric-valued predicates it allows to similarity pred-
icates, which evaluate in the interval [0, 1], it can incorpo-
rate logical and similarity reasoning in a principled way
by using t-(co)norms, thus making use of a well-developed
theoretical framework, e.g., [9]. The advantage of this is
that, while in Hybrid MLNs numeric and Boolean values
are always combined by multiplication, in PSL a variety
of truth combining functions may be used. For example,
as discussed in Section 2.1, here we used Lukasiewicz t-
(co)norms because they lead to sparser linear optimization
problems. Support for similarity computations between
relation-defined sets is an essential feature of PSL and has
not been previously explored in any of the above models.
PSL is related to imperative frameworks, such as, IDFs
[17] that use a programming language to define structural
dependencies. While being very general, such frameworks
are more complex to use and require implementation by the
user, such as providing the MCMC sampler with custom-
made proposal functions for each application studied. With
PSL, a user only specifies the model – inference and learn-
ing do not require user input. PSL is also related to ap-
proaches, such as kFoil [15], that base similarity compu-
tation with kernel functions on relational structure. While
also treating similarities as distances, kFoil addresses a dif-
ferent problem from the one studied here, by assuming that
instances are independent. In contrast, PSL not only uses
relational structure as features, but also to propagate simi-
larities. In addition, we point to the large body of work in
probabilistic and fuzzy logic programs which shares con-
ceptual similarities with PSL. However, PSL uses a very
different probabilistic model which captures cyclic depen-

dencies, handles inconsistencies, and enforces domain con-
straints, among other things.

5 Conclusions and Future Work

We introduced a new general framework that integrates
probabilistic reasoning about similarity in a relational con-
text and demonstrated its effectiveness on two distinct tasks
that involve reasoning about similarity. We experimentally
validated the utility of set constructs and similarity infer-
ence - two novel features supported by PSL. Directions of
future work include studying different distance from satis-
faction functions, such as L2 distance and applying PSL
to other domains, especially ones in which we can validate
PSL on ground truth data with similarity values.

Acknowledgment

We thank Avi Pfeffer, Kristian Kersting, and the anony-
mous reviewers for their helpful comments and sugges-
tions. This material is based upon work supported by the
National Science Foundation under Grant No. 0937094.
LM is supported by a CI Fellowship under NSF Grant No.
0937060 to the Computing Research Association. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF or the CRA.

References

[1] F. Alizadeh and D. Goldfarb. Second-order cone pro-
gramming. Mathematical Programming, 95(1):3–51,
2003.

[2] Ricardo Baeza-Yates and Berthier Ribeiro-Neto.
Modern Information Retrieval. Addison Wesley,
1999.

[3] Ulrik Brandes, Patrick Kenis, Jürgen Lerner, and
Denise van Raaij. Network analysis of collaboration
structure in Wikipedia. In Proceedings of WWW-09,
2009.

[4] Matthias Bröcheler, Lilyana Mihalkova, and Lise
Getoor. Probabilistic similarity logic. Technical re-
port, University of Maryland, College Park, 2010.

[5] C. Caracciolo, J. Euzenat, L. Hollink, R. Ichise,
A. Isaac, V. Malaise, C. Meilicke, J. Pane, P. Shvaiko,
and H. Stuckenschmidt. First results of the ontology
alignment evaluation initiative 2008. In ISWC-2008
Workshop on Ontology Matching, 2008.

[6] N. Choi, I. Y. Song, and H. Han. A survey on ontology
mapping. ACM SIGMOD Record, 35(3):34–41, 2006.

[7] Michael Collins. Discriminative training methods for
hidden Markov models: Theory and experiments with
perceptron algorithms. In Proceedings of EMNLP-02,
2002.

[8] Luc De Raedt. Logical and Relational Learning.
Springer Verlag, Berlin, 2008.

[9] Francesc Esteva and Llus Godo. Monoidal t-norm
based logic: towards a logic for left-continuous t-
norms. Fuzzy Sets and Systems, 124(3):271–288,
2001.

[10] J. Euzenat. Ontology matching. Springer, 2007.

[11] Lise Getoor, Nir Friedman, Daphne Koller, and Ben-
jamin Taskar. Learning probabilistic models of link
structure. Journal of Machine Learning Research,
3:679–707, 2002.

[12] Lise Getoor and Ben Taskar, editors. Introduction to
Statistical Relational Learning. MIT Press, 2007.

[13] K. Kersting and L. De Raedt. Bayesian logic pro-
grams. Technical report, Albert-Ludwigs University,
2001.

[14] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic:
Theory and Applications. Prentice Hall, 1995.

[15] Niels Landwehr, Andrea Passerini, Luc De Raedt, and
Paolo Frasconi. Fast learning of relational kernels.
Machine Learning, 78:305–342, 2010.

[16] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Le-
bret. Applications of second-order cone program-
ming. Linear Algebra and Its Applications, 284(1-
3):193–228, 1998.

[17] Andrew McCallum, Karl Schultz, and Sameer Singh.
FACTORIE: Probabilistic programming via impera-
tively defined factor graphs. In Proceedings of NIPS-
09, 2009.

[18] Jorge Nocedal and Stephen Wright. Numerical Opti-
mization. Springer, 2nd edition, 2006.

[19] M. Richardson and P. Domingos. Markov logic net-
works. Machine Learning, 62(1):107–136, 2006.

[20] S. Riedel. Improving the accuracy and efficiency of
MAP inference for Markov logic. In Proceedings of
UAI-08, 2008.

[21] Ben Taskar, Pieter Abbeel, and Daphne Koller. Dis-
criminative probabilistic models for relational data. In
Proceedings of UAI-02, 2002.

[22] Jue Wang and Pedro Domingos. Hybrid Markov logic
networks. In Proceedings of AAAI-08, 2008.

