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Abstract

Many interesting research problems, such as
ontology alignment and collective classifica-
tion, require probabilistic and collective in-
ference over imprecise evidence. Existing ap-
proaches are typically ad-hoc and problem-
specific, requiring significant effort to devise
and provide poor generalizability. In this pa-
per, we introduce probabilistic similarity logic
(PSL), a simple, yet powerful language for
describing problems which require probabilis-
tic reasoning about similarity where, in addi-
tion to reasoning probabilistically, we want to
capture both logical constraints and impreci-
sion. We prove that PSL inference is polyno-
mial and outline a wide range of application
areas for PSL.

1. Introduction

Many problems addressed by statistical relational
learning (SRL), such as ontology alignment and collec-
tive classification, exhibit four important characteris-
tics:

Collective Decision: The overall decision problem is
composed of a (large) number of individual decisions
which depend on one another in complex ways.

Locality of Evidence: In solving the decision prob-
lem, only local evidence is considered, which means
that each individual decision depends only on a small
number of other decisions which are factored into the
decision process.

Imprecision of Decision: Individual decisions can
be vague and imprecise, meaning that one cannot es-
tablish a decision variable to be either true or false.

Probabilistic Evidence: The evidence used in de-
ciding individual decision variables is of a probabilistic
nature.
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We call the class of decision problems which posses the
above four characteristics CLIP, for collective, local,
imprecise, and probabilistic.
Locality facilitates decomposition of the problem and
probabilities are a popular model for uncertainty.
Both concepts are frequently employed in SRL ap-
proaches. We used the term “collective” instead of
“relational” to highlight the fact that dependencies
are frequently symmetric therefore rendering directed
models unapplicable. The novel concept of impre-
cision in this context is particularly important when
reasoning about similarity where boolean truth values
are too constraining. Imprecision and uncertainty are
distinct concepts.

CLIP contains a number of interesting and widely stud-
ied problems. Yet, most of these problems have been
studied in isolation and ad-hoc approaches have been
proposed to their solution. We propose a general-
purpose framework, called probabilistic similarity logic
(PSL), as a first attempt at a unifying framework
for reasoning about CLIP problems. PSL is based
on Markov Random Fields and t-norm Fuzzy Logics
thereby combining reasoning about uncertainty and
imprecision in one framework. Furthermore, PSL is
the conclusion of a careful analysis of CLIP problems
and provides features that cater toward the particular
requirements of this class of problems. Benefiting from
the generality of a logical language, PSL can describe
a great variety of problems; we demonstrate its use on
the two initially mentioned research topics. In addi-
tion, we identify a fragment of PSL which allows for
an optimal, polynomial time inference algorithm and
verify its efficiency in practice.

Existing general frameworks for probabilistic reason-
ing, such as Markov Logic (Richardson & Domin-
gos, 2006) and Bayesian Logic Programs (Kersting &
Raedt, 2001), lack the expressiveness to describe all
four aspects of CLIP problems. In addition, inference
in such frameworks can be NP-hard in the worst case,
very time consuming in practice, and often relies on
probabilistic approximation algorithms. On the other
hand, individual ad-hoc approaches require significant
implementation effort, are idiosyncratic, and do not
generalize well to similar problems.
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2. Similarity Logics

This section defines the basic syntax and semantics of
probabilistic similarity logic (PSL) as used in proba-
bilistic similarity logic programs (PSLP). We assume
that any problem of interest is logically describable by
a finite set of predicate symbols P (each with an associ-
ated finite arity), a finite set of constant symbols C, and
an infinite set of variable symbols V. A term is either
a constant symbol or a variable symbol. Let p ∈ P be
an n-ary predicate symbol and let t1, . . . , tn ∈ C∪V be
terms, then p(t1, . . . , tn) is an atom. If all ti ∈ C are
constant symbols, then p(t1, . . . , tn) is a ground atom.

Definition 1 (PSL-Rule) Let B1, . . . , Bn, H be
atoms and µ ∈ R ∪ {∞} a real number or infinity,
then

H
µ← B1 ∧ B2 ∧ . . . ∧ Bn

is a PSL-Rule. µ is called the weight of a PSL-Rule.
A PSL-Rule with finite weight is called a probabilistic
evidence rule, and certainty rule if the weight is
infinite.

A variable substitution σ : V → C is used to ground
non-grounded rules. For a given PSL-rule r, σr denotes
a grounded instance whereby all free variable symbols
v in r are replaced by σ(v).

PSL is a real-valued logic which means that each
ground atom can assume a truth value from the unit
interval [0, 1] instead of being limited to the boolean
truth values true and false. Intuitively, the truth value
0 corresponds to false and 1 to true and any value
v ∈ (0, 1) represents a degree of truth between those
two extrema. As we shall see in the following, real-
valued degrees of truth allow us to model the impreci-
sion inherent in CLIP problems.

Definition 2 (PSL-Interpretation) A PSL-
Interpretation (or truth evaluation) I is mapping
I : AG → [0, 1] from the set of all ground atoms AG

to the unit interval.

The semantics of PSL are based on those of Fuzzy
Logics (Klir & Yuan, 1995),(Gottwald, 2001). As in
t-norm fuzzy logics (Esteva & Godo, 2001), we derive
the truth value of formulas from the truth values of
its atoms using so called t-norm operators. For our
purposes it suffices to think of a t-(co)norm ◦ as a
“truth combination function” ◦ : [0, 1]× [0, 1] → [0, 1]
t-(co)norms allow us to extend a PSL-Interpretation
to entire formulas and rules.

Definition 3 (Semantics of Rules) Let I be a
PSL-Interpretation and let ⊕ be a t-conorm, then we
define the truth value of a PSL-Rule as:

I(H
µ← B1 ∧ . . . ∧ Bn) = (⊕iI(¬Bi))⊕ I(H)

The syntax and semantics of PSL presented thus far al-
low us to capture facts and the inherent imprecision of
CLIP problem instances, as well as formalize our knowl-
edge about the problem using rules. The uncertainty
that underlies the class of problems we are interested
in is modeled as a probability distribution over the set
of interpretation. Since there is no single “correct”
interpretation, we have to reason about the relative
likelihood as prescribed by the weighted rules. The ev-
idence rules RE represent uncertain knowledge about
the problem domain. The weight of a rule r ∈ RE

reflects the likelihood that a rule holds in the domain.
A (relatively) high weight µ of evidence rule r means
that it is very likely that each grounded instance σr
has a high degree of truth.

Definition 4 (Probability of Interpretation)
Let RE be a set of evidence rules and RC be a set
of certainty rules. We define the probability of any
interpretation I w.r.t RE ,RC as:

P(I|RE ,RC) =





1
Z e

∑
r∈RE

∑
σ µr×I(σr) if ∀r ∈ RC , σ :

I(σr) = 1
0 otherwise.

where Z =
∫

I,∀r∈RC ,σ:I(σr)=1
e
∑

r∈RE

∑
σ µr×I(σr) is a

normalization constant to ensure that P is a valid point
probability distribution.

The grounded evidence rules induce a Markov Ran-
dom Field (Kindermann & Snell, 1980) over the set of
ground atoms constrained by the grounded certainty
rules. The probabilistic model is therefore similar to
that of Markov Logic (Richardson & Domingos, 2006)
with the difference that PSL uses point probabilities
over a high dimensional hypercube and differentiates
between evidence and certainty rules.

To effectively address some of the characteristics fre-
quently observed in CLIP problems, we extend PSL by
some novel constructs.
In PSL we distinguish between three types of predi-
cate symbols and correspondingly between three types
of atoms: basic atoms, composite atoms, and attribute
atoms. Basic atoms are just normal atoms and have
no special meaning.

Composite atoms are atoms whose truth values de-
pend on the truth value of other atoms. In collective
decision problems, one frequently needs to consider
a particular aggregate over a set of related decisions.
Composite atoms are the means to define such aggre-
gates in PSL.

As the name suggests, attribute atoms are restricted
to attribute symbols, i.e., the constant terms of ground
attribute atoms must correspond to attributes in the
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domain, such as strings and numbers. Constraining
the signature of attribute predicates in this manner
has the advantage of allowing users to define arbi-
trary truth evaluation functions for attribute atoms
externally which makes it possible to easily incorpo-
rate sophisticated and well-studied attribute similarity
measures, such as string similarity measures (Chandel
et al., 2007), into the PSL framework.

The definition of a probability distribution over PSL-
Interpretations given in the previous section consid-
ers grounded evidence rules to be independent. In
most cases, this independence assumption is (approx-
imately) true and allows us to factor the probabil-
ity distribution into manageable parts. Yet, there
are cases when it is necessary to account for the de-
pendencies between rules. For this, we introduce p-
junctions, which are special combiner operators sim-
ilar to combining rules in Bayesian Logic Programs
(Kersting & Raedt, 2001).

Definition 5 (p-junction) Let H1, . . . ,Hn

be atoms, then H1♦H2♦ . . . ♦Hn is a p-
junction. A p-junction operator ¯ is a
function ¯ : [0, 1] × [0, 1] → [0, 1] such that
⊗(x, y) ≤ ¯(x, y) ≤ ⊕(x, y),∀x, y ∈ [0, 1].
The semantics of a p-junction are then given by
I(H1♦ . . . ♦Hn) = ¯iHi.

Definition 6 (PSL Program) A probabilistic sim-
ilarity logic program (PSLP) P is a tuple P =
〈RE ,RC , KB〉, where RE is a set of evidence rules,
RC is a set of certainty rules, and KB 〈AKB , IKB〉 is
a PSL-Knowledge Base of atoms AKB and their truth
values IKB.

Given a PSLP, one is naturally interested in the truth
values of those atoms which are not included in the
knowledge base, i.e. in the truth value of the non-
evidence atoms which we do not know the truth value
a priori. In the context of reasoning under uncertainty,
this is the problem of finding the most likely truth
value assignment.

Definition 7 (Most Probable Interpretation)
Given a PSLP P = 〈RE ,RC ,KB〉, the most probable
interpretation (MPI) IMPI is defined as:

IMPI = argmaxIP(I | RE ,RC , I = IKB on AKB)

The MPI problem defined above essentially corre-
sponds to finding the MAP state of the probabil-
ity distribution P. MPI-Inference in existing general
frameworks is typically NP -hard. In contrast, we can
show that finding the most probable interpretation of
a PSLP is polynomial in the number of ground rules
and atoms.

Theorem 1 Under the assumptions that (1) ⊕ is the
Lukasiewicz t-conorm: ⊕(x, y) = min(x + y, 1), (2)
¯ is a quadratic p-junction operator, and (3) the ag-
gregator function for all composite atoms is linear in
the truth values, MPI inference for a given PSLP can
be reduced to a convex optimization problem which is
solvable in time polynomial in the number of ground
rules and atoms.
Essentially, using real-valued logics yields a continuous
optimization problem and the careful design of PSL
with mild assumptions ensure convexity. PSL MPI in-
ference can be transformed into a Second-Order Cone
Program (SOCP) (Lobo et al., 1998), for which very
efficient interior point methods have been developed
(Nesterov & Nemirovsky, 1994) and shown to converge
fast in practice. In fact, several high performing, com-
mercial optimization toolboxes are available.

3. Applications and Future Work

Using ontology alignment and collective classification
as examples, we demonstrated the ease with which
such CLIP problems can be modeled and reasoned
about in PSL while achieving performance that is
comparable to existing, highly optimized ad-hoc ap-
proaches. Writing Prolog style rules is simple and in-
tuitive, which highlights the utility of PSL as a general
purpose, rapid prototyping framework for CLIP prob-
lems.

The expressivity and flexibility of PSL makes it appli-
cable to a wide range of problems in computer vision,
computational biology, database schema integration,
natural language processing, social network analysis,
and others which we hope to explore in future research
to determine the scope and limitations of PSL.
In addition, we will investigate efficient learning of rule
weights using Quadratic Programming.
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