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Abstract
Entity resolution has received considerable attention in recent
years. Given many references to underlying entities, the goal is
to predict which references correspond to the same entity. We show
how to extend the Latent Dirichlet Allocation model for this task
and propose a probabilistic model for collective entity resolution
for relational domains where references are connected to each other.
Our approach differs from other recently proposed entity resolution
approaches in that it is a) generative, b) does not make pair-wise
decisions and c) captures relations between entities through a hid-
den group variable. We propose a novel sampling algorithm for
collective entity resolution which is unsupervised and also takes
entity relations into account. Additionally, we do not assume the
domain of entities to be known and show how to infer the number
of entities from the data. We demonstrate the utility and practicality
of our relational entity resolution approach for author resolution in
two real-world bibliographic datasets. In addition, we present pre-
liminary results on characterizing conditions under which relational
information is useful.

1 Introduction
In many applications, there are a variety of ways of referring
to the same underlying entity. Given a collection of entity
references, or references for short, we would like to a)
determine the collection of ‘true’ underlying entities and
b) correctly map the references in the collection to these
entities. This problem comes up in many guises throughout
computer science. Examples include computer vision, where
we need to figure out when regions in two different images
refer to the same underlying object (the correspondence
problem); natural language processing where we would
like to determine which noun phrases refer to the same
underlying entity (co-reference resolution); and databases,
where, when merging two databases or cleaning a database,
we need to determine when two records are referring to the
same underlying individual (deduplication).

We are interested in resolving references when they are
connected to each other via relational links, as in the biblio-
graphic domain where author names in papers are connected
by co-author links. Now entity resolution becomes collective
in that resolution decisions depend on each other through the
relational links. We show that collective entity resolution im-

proves performance over independent pair-wise resolution.
There is a long history of work in both general and

relational entity resolution. Recently, generative [22, 29] and
discriminative [24, 28] probabilistic approaches have been
proposed as well as non-probabilistic algorithms [20, 12].
Our model differs from most of the above in that it is
unsupervised, does not assume the underlying entities to
be known, does not make pairwise decisions and explicitly
models relations between entities using group membership.

We introduce a generative probabilistic model for entity
resolution that builds on the recently proposed Latent Dirich-
let Allocation model (LDA) [6]. Unlike most existing mod-
els, we do not introduce a decision variable for each potential
duplicate pair of references, but instead have an entity label
for each reference. To model collaborative relations between
entities, we introduce a group label for each reference, so
that entities coming from the same collaborative group are
more likely to be observed in a relation. For author resolu-
tion, this means that we model collaborative groups to ex-
plain co-authorship relations. The generative process in our
model may be viewed as an extension of the Dirichlet Pro-
cess mixture model: the group labels in our model influence
the choice of entities for each author reference in a paper.

Another contribution of this paper is an unsupervised
Gibbs sampling algorithm for collective entity resolution. It
is unsupervised because we do not make use of a labeled
training set and it is collective because the resolution deci-
sions depend on each other through the group labels. Fur-
ther, the number of entities is not fixed in our model, and we
propose a novel sampling strategy to estimate the most likely
number of entities given the references.

The paper is organized as follows. We present a motivat-
ing example in Section 2 and related research in Section 3.
In Section 4, we first adapt the LDA model for document
authors and extend it for entity resolution in Section 5. The
sampling framework for inference is presented in Section 6.
In Section 7 and Section 8, we describe how entity attributes
are modeled. Section 9 describes our novel algorithm for de-
termining the number of entities and in Section 10 and Sec-
tion 11 we explore parameter choices and algorithmic im-
provements . Finally, we present experimental results on real
and synthetic data in Section 12 and conclude in Section 13.



2 A Motivating Example
In this section, we introduce a concrete bibliographic exam-
ple to explain the entity resolution problem for authors and
motivate our approach. Consider as an example six real pa-
per citations P1 through P6 from CiteSeer:

P1: “JOSTLE: Partitioning of Unstructured Meshes for Massively
Parallel Machines” C. Walshaw, M. Cross, M. G. Everett, S.
Johnson
P2: “Partitioning Mapping of Unstructured Meshes to Parallel
Machine Topologies”, C. Walshaw, M. Cross, M. G. Everett, S.
Johnson, K. McManus
P3: “Dynamic Mesh Partitioning: A Unified Optimisation and
Load-Balancing Algorithm”, C. Walshaw, M. Cross, M. G. Everett
P4: “Code Generation for Machines with Multiregister Opera-
tions”, Alfred V. Aho, Stephen C. Johnson, Jefferey D. Ullman
P5: “Deterministic Parsing of Ambiguous Grammars”, A. V. Aho,
S. C. Johnson, J. D. Ullman
P6: “Compilers: Principles, Techniques, and Tools”, A. Aho, R.
Sethi, J. Ullman

Each of the 6 papers has its own author references.
For instance, the first paper P1 has four references ‘C.
Walshaw’, ‘M. Cross’, ‘M. G. Everett’ and ‘S. Johnson’. In
all we have 21 references in the 6 papers. The goal is to
find out how many different author entities these references
correspond to and which reference maps to which entity.
Ground truth tells us that all of the Aho’s map to the same
author entity, as do the Everret’s and the Ullman’s. The
interesting case here is that of Johnson. The four Johnson
references correspond to two Johnson entities: those in
papers P4 and P5 correspond to Stephen C. Johnson from
Bell Labs, while those in papers P1 and P2 map to Steve P.
Johnson from University of Greenwich, London. However,
going by just the names of the references it is not clear
why ‘Stephen C. Johnson’ is not ‘S. Johnson’, when ‘Alfred
V. Aho’ is the same as ‘A. Aho’. Our goal will be to
make use of the collaboration relationships to make these
contrasting inferences simultaneously. We would like to
be able to infer from the collaborations that there are two
different collaboration groups in this example and authors
are more likely to publish with other authors from the same
group. As illustrated in Fig. 1, the first group G1 has
Aho, Ullman and Sethi as member authors. The other group
G2 has Walshaw, Cross, Everett and McManus. Stephen
C. Johnson is associated with the first collaboration group,
while S Johnson from papers P1 and P2 is a different person
since he is associated with the second collaboration group.

In order to make these inferences, our model introduces
an entity label and a group label for each reference, both
of which are hidden and need to be inferred. The inference
procedure is collective in that they cannot be made indepen-
dently for each reference — their relationships to other ref-
erences need to be considered as well. Also, the group and
the entity labels are inter-dependent. The entity labels for

A. V. Aho S. C. Johnson

J. D. Ullman

G1 Alfred V. Aho

Jeffrey D. Ullman Ravi Sethi

Stephen C. Johnson

P5

S. Johnson

M. CrossC. Walshaw

M. G. Everett

G2 Chris Walshaw

Mark Cross Kevin McManus

Martin EverettSteve P. Johnson
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Figure 1: Author entities in two different collaboration
groups and two generated papers. The ovals are the entities
belonging to groups shown as encapsulating rectangles. Dot-
ted rectangles represent papers with author references shown
as smaller solid rectangles. Each paper is generated by the
group above it.

the two Johnson’s depend on their group labels, as we just
saw. Also, the group labels depend on the entity labels in
turn. Sethi from paper P6 and Johnson from paper P5 belong
to the same group since they are tied by the identical entity
labels for the Aho’s and Ullman’s in the two papers. These
two hidden variables are the key distinctions of our model
in comparison to some other recent ones that have been pro-
posed. Most other approaches introduce a decision variable
for each potential duplicate pair to infer whether or not they
correspond to the same entity, while we introduce two vari-
ables for each reference in the data. As data sizes grow, we
believe that this distinction has a significant impact.

It is interesting to note the role of papers P3 and P6
in this collective inference for the Johnson’s though none
of them contain a Johnson reference. They help to rein-
force our belief that there are two distinct tightly knit groups
or communities where member authors collaborate strongly
with each other. Observe that frequent collaborations be-
tween Walshaw and Aho, and Everett and Ullman for exam-
ple would have the opposite effect. Then we would think
there is one collaboration group, as opposed to two, and
therefore all Johnson’s are more likely to be the same author.

Not surprisingly, inferring the entity labels exactly turns
out to be intractable. In this paper, we propose an effective
Gibbs sampling approach for approximate inference. Also,
one critical aspect of the inference procedure is discovering
the likely number of entity labels, since the actual entities are
hidden from us. We show how the number of entities can be
inferred as well.

Though we use the bibliographic domain of papers and
authors, our model is applicable in a straight-forward manner
for other domains where noisy references to person entities
are observed together. Examples include names of people
traveling together on the same flight, names appearing to-
gether in the same email or groups of people attending the
same meeting. Furthermore, our approach can be general-



ized to model other resolution problems. We are investigat-
ing a very similar model for word sense resolution in natural
language documents, where the references are word occur-
rences and the senses are the entities to be resolved.

3 Related Work
There is a large body of work on deduplication, record link-
age, and co-reference detection. The traditional approach
to entity resolution considers similarity of textual attributes.
There has been extensive work on approximate string match-
ing algorithms [26, 8] and adaptive algorithms that learn
string similarity measures [4, 9, 33]. Beyond applying stan-
dard machine learning techniques, other approaches use ac-
tive learning [32]. In addition, data integration is an area of
active research [17, 26, 23].

The groundwork for posing record linkage as a prob-
abilistic classification problem was done by Fellegi and
Sunter [13]. Winkler [34] builds upon this work by intro-
ducing a latent match variable estimated using Expectation
Maximization. More recently, hierarchical graphical models
have been proposed [30].

Probabilistic models that take into account interaction
between different entity resolution decisions have been pro-
posed for named entity recognition in natural language pro-
cessing and for citation matching. McCallum et al. [24]
employ conditional random fields (CRF) for noun corefer-
ence and use clique templates with tied parameters where
the decision for one pair affects another through their over-
lap. Parag et al. [28] extend the CRF model to merge ev-
idence across multiple fields. More recently, Culotta and
McCallum [10] have considered relations between multiple
types to deduplicate them jointly. However, all of these mod-
els consider pairwise decisions between potential duplicates
and are supervised in that their parameters require training on
labeled data. Our approach is distinct in that the parameters
do not require training and are estimated automatically from
unlabeled data. Also, we do not consider pairwise decisions
which becomes prohibitive for bigger datasets. Instead, we
use an entity label for each reference.

Pasula et al. [29] propose a probabilistic relational
model for the citation matching problem. This captures de-
pendence between identities of co-authors of the same pa-
per, but does not model collaborative probabilities between
authors directly. Daumé and Marcu [19] have recently pro-
posed an extension to Pasula et al.’s model, where the num-
ber of clusters or entities is directly modeled by a Dirichlet
Process and is similar in spirit to ours. However, we pro-
pose a three level model where the selection of author en-
tities depends on the groups that they belong to. Li et al.
[22] propose a generative model for disambiguating entities
in text documents that captures joint probabilities for co-
occurrence. They show impressive benefits over a pairwise
discriminative model. They model pairwise co-occurrence

probabilities rather than group memberships and searching
for the set of most likely entities is not a focus of their work.

Kalashnikov et al. [20] enhance feature-based similarity
between an ambiguous reference and the many entity choices
for it with relationship analysis between the entities, like
affiliation and co-authorship. This is in the same spirit as our
work, however they focus on the entity matching problem
where the domain of entities is given and the right entity
needs to be identified for each new reference. We focus on
a more difficult problem where neither the entities nor the
number of entities is known.

Non-probabilistic approaches that take relational fea-
tures into account for data integration have been proposed
[11, 7, 1, 3, 20, 12]. Chaudhuri et al. [7] make use of join
information for deduplication but assume the secondary ta-
bles themselves to be clean. The notion of co-occurrence in
dimensional hierarchies has also been proposed [1], while
other approaches look at weighted combinations of attribute
and relational distance measures [3]. Dong et al. [12] adopt
a model similar to Parag et al. [28] and resolve entities of
multiple types by propagating relational evidences in a de-
pendency graph. They adopt a pair-wise reconciliation ap-
proach so that the graph has nodes for all potential duplicate
pairs and all pairs of similar attributes.

We model collaborative groups using LDA [6] which
improves Probabilistic Latent Semantic Indexing [18] as a
generative topic model for documents. The related author-
topic model [31] recognizes the problem of duplicate au-
thors; here we propose a solution for it. Kubica et al. [21]
have proposed generative models for links using underlying
groups, but they do not handle identity uncertainty.

4 LDA Model for Authors
In this section, we show how the LDA model for topics and
words in documents can be adapted to a group mixture model
for author entities. We start with the simpler case where there
is no ambiguity in the author references. In the next section,
we expand the model to handle ambiguous author references.

Consider a collection of D documents and a set of A
authors who write these documents. We have a set of R
author references, {a1, . . . , aR} in these D documents. Each
document can have multiple authors and for now, we assume
the authors of each document are observed. For the ith

author reference, ai indicates which author it corresponds to
and di denotes the document in which it occurs. Further we
introduce the notion of collaborative author groups. These
are groups of authors which tend to co-author together. We
will assume that there are T different groups. Each author
reference ai has an associated group label zi.

The probabilistic model is shown using plate notation
in Figure 2(a). The probability distribution over authors for
each group is represented as a multinomial with parameters
φj , so the probability P (a = i | z = j) of the ith author in
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Figure 2: Plate representation for (a) LDA model for authors
and (b) LDA-ER model for author resolution from ambigu-
ous references. Observed variables are shaded.

the database being chosen for the jth group is φj
i . We have T

different multinomials, one for each group. Each paper d is
modeled as a mixture over T groups. The distribution used
is again a multinomial with parameters θd, so the probability
Pd(z = j) of the jth group being chosen for document
d is θd

j . Each θd is drawn from a Dirichlet distribution
with hyper-parameters α; similarly each φj is drawn from
a Dirichlet distribution with hyper-parameters β.

To illustrate this generative process in the model, we
show how the authors for paper P5 are chosen in Fig.
1. First, a distribution θd over collaborative groups is
chosen for the paper. These are the likely groups that will
contribute the authors of the document. Each group has a
distribution φi over likely authors. In our example, φG1

has equal probability for Aho, Ullman, Sethi and Stephen
C. Johnson and 0 otherwise, while φG2 chooses between
Walshaw, Cross, Everett, Steve Johnson and McManus with
equal probability. Note that our model allows an author to
belong to multiple groups, though not illustrated here. The
distribution θd that is chosen for paper P1 has probability 1
for group G1 and 0 probability for all other groups. Now
each author is chosen by first sampling a group zi from θd

and then sampling an author from group zi. Since θd for P1
has non-zero probability only for group G1, it is the group
that is chosen for every author in P1. Having selected G1
as the group for each author, the first draw from φG1 yields
Aho as the first author, the second yields Stephen C Johnson
and the third yields Ullman. The authors for the other papers
are selected similarly. Note that in general more than one
group may have non-zero probability in the distribution θd

for a paper, so that authors for the same paper can come from
multiple groups with smaller probability.

5 LDA-ER Model for Author Resolution
In the previous section, we assumed that the author identity
can be determined unambiguously from each author refer-
ence. However, when we are dealing with author names, this
is typically not the case. The same author may be repre-
sented in a variety of ways: ‘Alfred V. Aho’, ‘Alfred Aho’,
‘AV Aho’, etc. There may be mistakes due to typos or ex-
traction errors. Finally, two ‘S. Johnson’s may not refer to
the same author entity. One may refer to ‘Stephen C. John-
son’ and another may refer to ‘Steve P. Johnson’. The result
is that we are no longer sure of the mapping from the author
reference to the author entity. We must resort to inference to
identify the true author for each reference.

To capture this, we will associate an attribute va with
each author a. In addition, we add an extra level to the
model that probabilistically modifies the author attributes
Va to generate the references r = {r1, r2, . . . , rR}. Each
reference is generated by first sampling a group z and then
an author entity a as before. Then, the author reference r is
generated from a by modifying the attribute va according to
a noise model N . We use a relatively sophisticated noise
model that we explain in Section 8. The probability of
generating an author reference r from a particular author
entity is defined as P (r|va). The conditional probabilities
for each reference are normalized to sum to 1 over all author
entities. It is the reference r that is observed, while the
entity a and group label z are hidden variables. The LDA-ER
model is represented in Figure 2(b).

Illustrating this in the context of our motivating example
in Fig. 1, we have already seen how the three author
entities are chosen for paper P1. The attributes va for the
three authors are ‘Alfred V. Aho’, ‘Stephen C. Johnson’ and
‘Jeffrey D. Ullman’. However the complete/correct names
do not always appear in papers or citations. In this case,
the noise process modifies the attributes of the three selected
entities to generate ‘A. V. Aho’, ‘S. C. Johnson’ and ‘J. D.
Ullman’ as the three author references in the paper.

The probability of generating the set r of references for
a corpus given parameters α, β and V can be expressed as

P (r; α, β,V) =
∏

d

P (rd; α, β,V)(5.1)

=
∏

d

∑

ad

P (rd | ad;V)P (ad; α, β)

=

∫

φ

P (φ; β)
∏

d

∑

ad

P (rd | ad;V)

×

∫

θ

P (θ; α)P (ad | θ, φ)dθdφ

6 Inference using Gibbs Sampling
In general, the integral in Eq. (5.1) is intractable due to
coupling between θ and φ. Different approximations have



been proposed, including variational methods [6], Gibbs
sampling [16] and Expectation Propagation [25].

We extend the approach proposed by Griffiths et al. [16]
for our model. Now θ and φ are not directly estimated
as parameters. Instead, we first construct the posterior
distribution P (z, a | r) and then estimate θ and φ from this
posterior distribution. We derive the joint probability from
Eq. (5.1) as:

P (z, a, r) = P (z)P (a | z)P (r | a)(6.2)

where

P (z) = (
Γ(Tα)

Γ(α)T
)D

D
∏

d=1

∏

t Γ(α + CDT
dt )

Γ(Tα + CDT
d∗ )

(6.3)

is the probability of the joint group assignment to all refer-
ences and

P (a | z) = (
Γ(Aβ)

Γ(β)A
)T

T
∏

t=1

∏

a Γ(β + CAT
at )

Γ(Aβ + CAT
∗t )

(6.4)

is the conditional probability of the authors given the groups
and P (r | a) =

∏

i P (ri | vai
) is the conditional probability

of the references given the authors. CDT
dt is the number of

times group t has been observed for all the references in
document d and CDT

d∗ =
∑

t CDT
dt . Similarly, CAT

at is the
number of times references to author a have been observed
with group label t in all documents.

We construct a Markov chain that converges to the pos-
terior distribution P (z, a | r) and then draw samples from
this Markov chain. Each state in the Markov chain is an
assignment of a group label and an author label to all R
references. In the Gibbs sampling approach, the labels for
each reference are sequentially sampled conditioned on the
current labels of all other references. By construction, this
Markov chain converges to the target posterior distribution.
However, we first need to define the full conditional distri-
bution P (zi = t, ai = a | z−i, a−i, r), where z−i is the set
of all but the ith group label and a−i of all but the ith author
label. In words, this is the probability that the ith reference
comes from the tth group and the ath author considering the
current group and author assignment to all other references.

We can derive this full conditional distribution as

P (zi = t, ai = a | z−i, a−i, r)

∝
CDT

(−i)dit+α

CDT
(−i)di∗

+Tα

CAT
(−i)at+β

CAT
(−i)∗t

+Aβ
P (ri | va)

The factorization makes intuitive sense. The first term is
the probability of group t in document di, the second is
the probability of author a in group t and the third is the
probability of the author attribute va being modified into the
ith reference.

Instead of sampling zi and ai as a block, we can sample
them separately:

P (zi = t | z−i, a, r)(6.5)

∝
CDT

(−i)dit
+ α

CDT
(−i)di∗

+ Tα

CAT
(−i)ait

+ β

CAT
(−i)∗t

+ Aβ

P (ai = a | z, a−i, r) ∝
CAT

(−i)ati
+ β

CAT
(−i)∗ti

+ Aβ
P (ri | va)(6.6)

7 Modeling Author Attributes
In the previous section, while the author labels were unob-
served, we assumed that the author attribute values va are
known. But in general, the author attributes will not be
known and we now show how to infer their values from the
references. The conditional distribution for sampling groups
zi is not directly affected by the attributes. However, the at-
tributes influence the assignment of author labels ai, since
a reference ri is more likely to be assigned to an author
with similar attributes. Conversely, any author attribute vi

depends on the references that have author label i. Incorpo-
rating a prior P (v) =

∏A

i=1 P (vi) into the joint distribution
in Eq. (6.2), we derive the conditional distribution for assign-
ing a value v to vi given all author labels and references as:

P (vi = v | a, r) ∝ P (v)

R
∏

j=1

P (rj | v)δi(aj)(7.7)

Intuitively, vi should be set to the most likely value that
explains the generation of the references assigned to author
i. For example, if multiple “A.V. Aho” and “Alfred Aho”
references have been assigned author label i along with the
reference “Alfred Ah”, then the author attribute vi is most
likely to be “Alfred V. Aho”. The sampling algorithm now
also samples the author attributes vi iteratively, conditioned
on the references and current author assignments, along with
sampling the group and entity labels for each reference. For
‘free authors’ to which no references are currently assigned,
their attributes cannot be estimated. They are assigned a
‘free’ attribute ‘?’, that is equally likely to generate any
reference attribute.

8 Noise Model
The different ways of distorting or modifying an author at-
tribute to an author reference in a paper is captured by the
noise model N . The noise model handles first, middle and
last names independently. The first name can be initialed
with probability pFI , dropped with probability pFD or re-
tained as a whole with probability pFR, where pFI + pFD +
pFR = 1. There are similar parameters pMI , pMD and pMR

for the middle name. The probabilities for the first and mid-
dle initials being incorrect are pFIr and pMIr. Last names



and retained first or middle names may be corrupted by char-
acters being inserted, deleted or replaced with probabilities
pI , pD and pR respectively. The minimum numbers of in-
sertion (nI ), deletion (nD)and replacement (nR) operations
for modifying an author attribute v to a reference v′ are ob-
tained using edit-distance for strings. Then the generation
probability is P (v′|v) = pnI

I · pnD

D · pnR

R .

9 Determining Number of Entities
In the development up until now, we have considered the
number of authors A to be given, when in practice this
needs to be estimated. One of the contributions of this work
is an unsupervised method for determining the number of
entities. We propose a novel approach that avoids searching
explicitly over the possible number of author entities and
instead adapts it within our sampling framework.

9.1 Basic Inference With Gibbs Sampling We first de-
scribe a novel but simple Gibbs sampling algorithm for it-
eratively sampling the values of the hidden group and entity
labels for each reference conditioned on the existing labels
of all other references. Equations 6.5, 6.6 and 7.7 form the
basis of this algorithm. We first sample a group label for
each reference according to Eq. (6.5). Next, we sample an
entity label for each reference according to Eq. (6.6). The
difference for the entities is that the number of entity labels
is unknown and needs to be inferred by the algorithm. So
we either choose an existing entity label or alternatively a
hitherto unused one. For a new entity label, its observed oc-
currence count CAT

(−i)ati
is 0. But the parameter β ensures a

non-zero probability of a new label being chosen. Also, the
attribute va for a new entity is unknown. So we use a fixed
value for the probability P (ri|va) for a new entity a that con-
trols how frequently new entity labels are sampled. Once all
the entity labels are sampled, in the third step the attribute
values are sampled for each of the existing entities according
to Eq. (7.7). The iterations continue till convergence. There
is a connection between this flavor of Gibbs sampling infer-
ence for number of entities and the Dirichlet process which
we describe in the next subsection.

9.2 Relation to the Dirichlet Process The Dirichlet pro-
cess was introduced by Ferguson [14] and Antoniak [2] as a
non-parametric statistical approach that allows the complex-
ity of the model to grow with increasing size of the data.
In the context of our application, we would like the num-
ber of entities to be inferred in model rather than it being
a fixed parameter, and we would like the model to be able
to accommodate a greater number of entities as the num-
ber of references in the data grows. The Dirichlet process
can be imagined as a distribution over discrete distributions
and is used as follows for choosing the number of compo-
nents in a mixture model. A distribution (or a component)

is first drawn from the Dirichlet process, the parameters are
then sampled from this distribution and finally the data is
drawn using these parameters. Drawing a parallel with our
application, we can sample an entity first, choose the param-
eters (the attribute) for that entity and then finally generate
the reference using the entity parameters. When the Dirich-
let process is integrated out, a clustering effect is observed in
the conditional distribution for choosing the nth component
given n − 1 previous component draws. The probability of
choosing one of the existing components is proportional to
the number of times it has been chosen in the previous n− 1
draws, while a new component has a nonzero probability of
being sampled. In particular, let G0 be the baseline probabil-
ity distribution over discrete components η and α be a scalar.
Then, given the n − 1 draws η1:n−1, the distribution for the
nth component is given by

ηn =

{

η∗
i with prob ni

n−1+α

η, η ∼ G0 with prob α
n−1+α

where ni is the number of times η∗
i has occurred in η1:n−1.

Exact inference is intractable in the Dirichlet process
mixture model but approximate inference techniques have
been proposed [27, 5]. Of particular interest is the Gibbs
sampling strategy proposed by Neal [27]. This algorithm
iteratively samples the component label ai for the ith data
object ri from the conditional distribution given the other
labels:

P (ai = k | r, a−i, α)(9.8)
= P (ai = k | a−i, α)P (ri | r−i, a−i, ai = k)

For an existing component k

P (ai = k | a−i, α) =
CA

(−i)k

α + N − 1
(9.9)

where CA
(−i)k is the number of previous assignments to the

kth component without counting the ith assignment. For a
component k that has not been used before

P (ai = k | a−i, α) =
α

α + N − 1
(9.10)

We may imagine LDA-ER as the Dirichlet process
mixture model augmented with a group structure above it
that enables it to capture relations between the components
or entities. In LDA-ER, a group zi = t is first sampled
for the ith reference from the distribution over groups for
the document and then an entity is sampled from it. In
the Dirichlet process, any previously existing entity may
be chosen in this step depending on their prior counts.
But in LDA-ER, the choice is controlled by the sampled
group t. Entities that have previously been associated with
this sampled group are much more likely to be chosen.



This distinction allows LDA-ER to model relations between
entities. As in the Dirichlet process, alternatively a new
entity may be selected in LDA-ER. However, this new entity
now becomes associated with group t and may be chosen for
future references from this group. This difference is clearly
observable from the conditional distributions in Eq. (9.9)
and Eq. (6.6). While the probability for choosing the kth

entity in Eq. (9.9) depends on CA
(−i)a which is the number of

previous occurrences of entity a, in Eq. (6.6) it depends on
CAT

(−i)at
which is the number of joint occurrences of group t

and entity a. This coupling of the group and entity labels
distinguishes the LDA-ER model from the Dirichlet process
mixture model.

9.3 Block Assignment for Entity Resolution As has
been noted in the case of naive Gibbs sampling for infer-
ence in the Dirichlet process mixture model [5], iteratively
estimating the group and entity label for each reference sepa-
rately, as described in Sec. 9.1 can be prohibitively slow. We
now describe a novel algorithm that overcomes this problem
by reassigning entity labels for a set of entities at the same
time. This achieves an agglomerative clustering effect on
the references. Observe that for any assignment of entity la-
bels to references, each entity label defines a cluster — all
references that have this entity label belong to this cluster.
Sampling a new label for each reference separately is equiv-
alent to an individual reference migrating from one cluster
to another. Agglomerative clustering is significantly faster
since pairs of clusters merge into one. We achieve the same
effect with the new sampling algorithm that we propose. In
addition, we allow existing clusters to split. The conditional
probabilities for these choices for any particular entity clus-
ter given the entity and group labels for all other references
are derived from the joint distribution in Eq. (6.2). As in
traditional Gibbs sampling, these probabilities then form the
transition probabilities in a Markov process.

We define a cluster by picking an author label j and
consider the set s of reference indices that have j as their
author label: s = {i | ai = j}. We assign new author
labels to all references indexed by cluster s simultaneously.
In general, the number of possible author assignments to
s is exponential in |s| and it is virtually impossible to
enumerate all these different probabilities and sample from
this distribution.

Instead, in our algorithm we restrict the space of can-
didates such that the cluster of references assigned to a par-
ticular author label may (a) merge with a cluster currently
assigned to another author label, (b) stay unchanged or (c)
split and have a part assigned to a hitherto unassigned author
label j′. Case (a) is similar to two author clusters merging
and the number of authors is effectively decreased by one.
In case (c), an author cluster splits into two and the num-
ber of authors is effectively increased by one. However, the

number of possible partitions of s into j and j ′ is still 2|s|.
The simple but restricted solution that we use is splitting to
the set that last merged into label j via option (a).

We first consider assigning a single author label to all
of cluster s. The full conditional distribution we need to
derive is P (as = i | z, a−s, r) which is the probability of
all the labels as in cluster s being set to i conditioned on all
references and group labels and all other author labels. Let
us denote

T (t, i) =

CAT
(s)it
∏

n=1

(β + CAT
(−s)it + CAT

(s)it − n)(9.11)

T (t, ∗) =

CAT
(s)∗t
∏

n=1

(Aβ + CAT
(−s)∗t + CAT

(s)∗t − n)

where CAT
(s)at

is the number of times author a and group t

have been jointly assigned to references in s, and CAT
(−s)at

is the number of such assignments outside s. Let zs be the
set of groups currently assigned to the references indexed by
cluster s. Then the conditional distribution is derived from
Eq. (6.2) as

P (as = i | z, a−s, r)(9.12)

∝
∏

t∈zs

T (t, i)

T (t, ∗)

∏

j∈s

P (rj | vi)

where the first product term is the group evidence for the
assignment and the second is the attribute evidence.
An Interpretation of Block Assignment: Here we show
how the terms in this conditional probability can be rear-
ranged so that the result makes intuitive sense. Let j be an
index into cluster s and tj be the group label for that refer-
ence. Also, consider cluster s to be an ordered set and de-
note by s<j the set of elements in s strictly before position
j. Then we can rewrite Eq. (9.13) as

P (as = i | z, a−s, r)(9.13)

∝
∏

j∈s

β + CAT
(s<j)itj

+ CAT
(−s)itj

Aβ + CAT
(s<j)∗tj

+ CAT
(−s)∗tj

P (rj |vi)

Here CAT
(s<j)it

is the number of times author label i and group
label t have occurred jointly for just the references in s<j .
We interpret this as follows. We assign author labels to the
references in cluster s in sequence. For each assignment,
the second term is the probability of the reference given
the author and the first term is the probability of the author
label for the reference given its current group label, including
the assignments already made in the sequence as additional
evidence. It must be stressed that this ordering is introduced
solely for interpretation purposes and the actual probability



is independent of the ordering. Note that Eq. (9.13) reduces
to Eq. (6.6) as expected when cluster s has a single element.

For the case when we partition cluster s into s1 and s2

and assign two different author labels to them, the condi-
tional probability looks very similar:

P (as1 = i, as2 = i′ | z, a−s, r)

∝
∏

t∈zs

T (t, i)T (t, i′)

T (t, ∗)

∏

j∈s1

P (rj | vi)
∏

j∈s2

P (rj | vi′)

Observe that when one author label merges with an-
other according to Eq. (9.13), the attribute of the freed au-
thor j changes from vj to the free attribute ’?’. The differ-
ence in prior probabilities of the two attribute values leads
to an additional term in the merge probability in Eq. (9.13):
P (?)/P (vj). Similarly, when splitting the references as-
signed to author j between j and currently unassigned j ′,
the attribute of author j ′ changes to vj′ from ‘?’ and the split
probability has the additional term P (vj′ )/P (?). Therefore,
the higher the prior probability of ‘?’ relative to other at-
tributes, the higher will be the likelihood of a merge com-
pared to a split.

Putting everything together, our entity resolution algo-
rithm starts from an initial assignment of authors and groups
to all references and iterates over three steps sequentially un-
til convergence. First, it samples a group label for each ref-
erence. This has complexity O(RT ) for R references and T
group labels. Then for each assigned author label, it samples
the next author label for its current references. This requires
O(AS) operations for A author labels and a maximum of
S potential duplicates per author. Finally, it samples an at-
tribute for each assigned author label, requiring O(A) oper-
ations. For each round of sampling authors and attributes,
we do several iterations of group sampling to let the group
labels stabilize for the current author assignments. Note that
all stages in an iteration are linear in the number of refer-
ences and author labels allowing our model to scale to large
datasets as we demonstrate in the experimental section.

10 Determining Model Parameters
We have described how the numbers of authors can be de-
termined within the sampling procedure. The remaining as-
pects of the model are the number of groups and the Dirich-
let hyper-parameters. Their choice affects performance in
different ways.

10.1 Number of Groups We begin by observing that the
choice of the number of groups is subjective and not as
critical as the number of entities. Relationships among the
same set of entities can be captured with different number of
groups at different levels of resolution. While it is possible
to estimate the likely number of groups from the data, it is an
area of potential future research. Here we consider the effect

of varying number of groups on entity resolution. Recall that
our guiding intuition is to assign the same author label to sets
of references when they are similar and have similar group
distributions. When the number of groups T is too small,
misleading similarities in group distributions are likely to
be observed, leading to false positives. If T is too high,
references to the same author can get split over different
groups, making false negatives likely. In other words, lower
T favors higher recall and lower precision, while higher T
leads to lower recall with higher precision.

10.2 Hyper-parameters To appreciate the roles of α and
β, note from Eq. (6.5) that when α = 0, a reference is forced
to pick a group label from the other references in the same
document. Similarly, when β = 0, a reference has to pick a
group label from other references to the same author, and
also an author label from other references with the same
group label. In general, for low values of α and β, the model
tends to overfit the data. This is particularly undesirable
for entity resolution, since we need to estimate the number
of authors and need to generalize from the current author
assignments. To get a feel for what values are appropriate,
observe that Tα is the number of pseudo reference counts
added to each document. Since in most cases documents will
have one or two authors, we set Tα to be 0.25. Similarly, Aβ
is the number of pseudo references for each topic. We set β
according to the number of references in the dataset and the
number of topics used. A typical value for Aβ is 5.

10.3 Noise Model Parameters We iteratively estimate the
noise parameters from data in a unsupervised manner. We
start from an initial estimate that is typical of some datasets
we explored. For instance, first names are initialed and
dropped with probabilities 0.75 and 0.001 (0.25 and 0.7
for middle names) and is incorrect with probability 0.0005
(0.001 for middle names). Characters may be dropped,
replaced or inserted, each with probability 0.0025. After
every author sampling step, we re-estimate the probabilities
looking at each reference attribute and the attribute of the
author it has been assigned to. However, the estimates from
the initial iterations may not be good. For example, when
all references are distinct entities, all corruption probabilities
are estimated to be 0. To prevent this, estimates are made
to evolve slowly. A weighted combination of the current
probabilities and the new estimates yields the probabilities
for the next iteration. Typically, we retain current estimates
with weight 0.9.

11 Algorithm Refinements
Unlike group labels, author labels for references are sampled
from a restricted space. Here we propose improvements for
the sampling algorithm for inferring the author labels.



11.1 Bootstrapping Author Labels Initialization of au-
thor labels is an issue both for convergence time and quality.
One option is to assign the same initial label to any two ref-
erences that have attributes v1 and v2, where either v1 = v2

or v1 is an initialed form of v2. However, for domains where
last names repeat very frequently, like Chinese, Japanese or
Indian names, this can affect the initial accuracy quite ad-
versely, from which it is hard to recover. For the case of such
common last names1, we propose an improved bootstrapping
scheme. We assign the same author label to pairs only when
they have document co-authors with the same initial author
label. This improves bootstrap accuracy significantly for one
of our datasets that has frequently repeating names.

11.2 Group Evidence for Author Self Loops Recall that
Eq. (9.11) shows the group evidence for different transitions
for cluster s. CAT

(−s)at is the number of references outside
cluster s that have author label a and group label t. For any
group t, it is the group evidence for merging with the cluster
for author label a. However, if s is the cluster of references
with author level j, then CAT

(−s)jt
will be 0 for all group labels

t, since there are no references outside cluster s with author
label j. Therefore, cluster s has little affinity to itself when
considering group evidence and prefers merging with other
clusters. Note however that every cluster has higher attribute
affinity to itself than to other clusters. We introduce a scalar
parameter that allows us to have additional control on the rate
of cluster merges. We consider a small fraction δ of CAT

(s)jt
as

external group evidence for j. The higher the value of δ, the
stronger has to be the evidence to cause an existing author
label to merge with another label or to split into two.

12 Experimental Evaluation
We begin by evaluating our algorithm on two real cita-
tion datasets. We compare our collaborative entity resolu-
tion model (LDA-ER) with the best attribute-based models.
Next, to gain further understanding of the conditions under
which entity resolution benefits from collaborative group in-
formation, we evaluate our model on a broad range of syn-
thetic datasets with varying relational structure.

12.1 Results on Citation Data We first perform experi-
mental evaluations on two citation datasets. The first is the
CiteSeer dataset containing citations to papers from four dif-
ferent areas in machine learning, originally created by Giles
et al. [15]. This has 2,892 references to 1,165 authors, con-
tained in 1,504 documents. The second dataset is signifi-
cantly larger; arXiv (HEP) contains papers from high energy
physics used in KDD Cup 20032. This has 58,515 references
to 9,200 authors, contained in 29,555 papers. The authors for

1http://en.wikipedia.org/wiki/List of most popular family names
2http://www.cs.cornell.edu/projects/kddcup/index.html

both datasets have been hand-labeled.
To evaluate our algorithms, we measure the performance

of our model for detecting duplicates in terms of precision,
recall and F1 on pairwise duplicate decisions. It is practi-
cally infeasible to consider all pairs, particularly for HEP, so
as others have done, we employ a ‘blocking’ approach to ex-
tract the potential duplicates. This approach retains ∼ 99%
of the true duplicates for both datasets.

We use a simple scheme for attribute priors, where
common last names are set to be 10 times more likely than
other last names, and the free attribute ‘?’ is 10 times more
likely than common names. When sampling group labels
given the entity assignments at each step, we iterate until the
log-likelihood converges. Typically for the first few steps,
we perform 50 group sampling iterations for each author
iteration. Thereafter we proceed with 20 group iterations
for each author iteration. The F1 converges in about 30
author iterations for CiteSeer and 50 author iterations for
HEP. On a 3.2GHz Dell Precision 670 Intel Xeon server, this
takes between 2.5 and 10 minutes for CiteSeer and between
2 and 12 hours for HEP depending on the number of groups.
As discussed in Section 11.2, we use a small fraction
(δ= 0.5%) of group evidence for self probabilities.

As a baseline (ATTR), we compare with the hybrid
SoftTF-IDF measure [8] that has been shown to outperform
other unsupervised approaches for text-based entity reso-
lution. Essentially, it augments the TF-IDF similarity for
matching token sets with approximate token matching us-
ing a secondary string similarity measure. Jaro-Winkler is
reported to be the best secondary similarity measure for
SoftTF-IDF. We also experiment with the Jaro and the Scaled
Levenstein measures. However, directly using an off-the-
shelf string similarity measure for matching names results
in very poor recall. From domain knowledge about names,
we know that first and middle names may be initialed or
dropped. A black-box string similarity measure would un-
fairly penalize such cases. To deal with this, ATTR uses
string similarity only for last names and retained first and
middle names. In addition, it uses drop probabilities pDropF

and pDropM for dropped first and middle names, initial
probabilities pFI and pMI for correct initials and pFIr and
pMIr for incorrect initials. The probabilities we used are
0.75, 0.001 and 0.001 for correctly initialing, incorrectly ini-
tialing and dropping the first name, while the values for the
middle name are 0.25, 0.7 and 0.002. We calculated the
probabilities from the labeled datasets and then hand-tuned
them for performance. Our observation is that baseline res-
olution performance does not vary significantly as these val-
ues are varied over reasonable ranges.

ATTR only reports pairwise match decisions, which are
often inconsistent globally. We also evaluate a second base-
line ATTR* which takes a transitive closure over the pair-
wise decisions in ATTR. Both ATTR and ATTR* need a



similarity threshold for deciding duplicates and determining
the right threshold is a problem for these algorithms. One of
the strengths of LDA-ER is that it does not require any sim-
ilarity threshold. For comparison, we consider the best F1
that can be achieved by the baselines over all thresholds.

Table 1: Performance of ATTR and ATTR* in terms of F1
using various secondary similarity measures with SoftTF-
IDF. The measures compared are Scaled Levenstein (SL),
Jaro (JA), JaroWinkler (JW) and the generative similarity
model used with LDA-ER (Gen).

CiteSeer
SL JA JW Gen

ATTR 0.980 0.981 0.980 0.982
ATTR* 0.989 0.991 0.990 0.990

HEP
SL JA JW Gen

ATTR 0.976 0.976 0.972 0.975
ATTR* 0.971 0.968 0.965 0.970

Table 1 records baseline performance with various string
similarity measures coupled with SoftTF-IDF. Note that the
best baseline performance is with Jaro as secondary string
similarity for CiteSeer and Scaled Levenstein for HEP. It
is also worth noting that a baseline without initial and
drop probabilities scores below 0.5 F1 using Jaro and Jaro-
Winkler for both datasets. It is higher with Scaled Levenstein
(0.7) but still significantly below the augmented baseline.
Transitive closure affects the baseline differently in the two
datasets. While it adversely affects precision for HEP, it
improves recall for CiteSeer.

Table 2 shows the best performance of each of the three
algorithms for each dataset. Note that the recall includes
blocking, so that the highest recall achievable is 0.993 for
CiteSeer and 0.991 for HEP. LDA-ER outperforms both
forms of the baseline for both datasets for all string similarity
measures and the improvements are statistically significant.
For CiteSeer, LDA-ER gets close to the highest possible
recall with very high accuracy. This means that it is able
to retrieve almost all duplicates correctly. Improvement over
the baseline is greater for HEP in terms of F1. Also, LDA-
ER reduces error rate over the baseline by 22% for CiteSeer
(from 0.9% to 0.7%) and by 20% for HEP (from 2.4% to
1.9%). Also, HEP has more than 64, 6000 true duplicate
pairs, so that a 1% improvement in F1 translates to more
than 6, 400 correct pairs.

Looking more closely at the resolution decisions from
CiteSeer, we were able to identify some interesting combi-
nation of decisions by LDA-ER that would be difficult or
impossible for an attribute-only model. There are instances
in the dataset where reference pairs are very similar but cor-
respond to different author entities. Examples include (liu

Table 2: Performance of LDA-ER, ATTR and ATTR* for
CiteSeer and HEP datasets. The standard deviation of the
F1 is 3 × 10−4 for CiteSeer and 1.7× 10−4 for HEP.

CiteSeer HEP
P R F1 P R F1

ATTR 0.990 0.971 0.981 0.987 0.965 0.976
ATTR* 0.992 0.988 0.991 0.976 0.965 0.971
LDA-ER 0.997 0.988 0.993 0.991 0.971 0.981

j, lu j) and (chang c, chiang c). LDA-ER correctly predicts
that these are not duplicates. At the same time, there are
other pairs that are not any more similar in terms of attributes
than the examples above and yet are duplicates. These are
also correctly predicted by LDA-ER by leveraging common
collaboration patterns. The following are examples: (john
m f, john m st), (reisbech c, reisbeck c k), (shortliffe e h,
shortcliffe e h), (tawaratumida s, tawaratsumida sukoya),
(elliott g, elliot g l), (mahedevan s, mahadevan sridhar),
(livezey b, livezy b), (brajinik g, brajnik g), (kaelbing l p,
kaelbling leslie pack), (littmann michael l, littman m), (son-
dergaard h, sndergaard h) and (dubnick cezary, dubnicki c).
An example of a particularly pathological case is (minton s,
minton andrew b), which is the result of a parse error. The
attribute-only baselines cannot make the right prediction for
both these sets of examples simultaneously, whatever the de-
cision threshold, since they consider names alone.

We were also interested in exploring how the number
of collaborative groups affects the performance of our entity
resolution algorithm. Table 3 records the performance of the
group model on the two datasets with varying number of
groups. While we observe a general trend where precision
improves and recall suffers with more groups, note that the
F1 is largely stable over a range of groups.

Table 3: LDA-ER Performance over varying number of
groups

Num. CiteSeer HEP
Grps P R F1 P R F1
100 0.995 0.991 0.993 0.986 0.972 0.979
200 0.997 0.988 0.993 0.988 0.972 0.980
300 0.998 0.980 0.989 0.990 0.971 0.980
400 0.999 0.980 0.989 0.990 0.970 0.980
500 0.991 0.971 0.981
600 0.991 0.969 0.980

12.2 Properties of Collaborative Graphs While the
LDA-ER model shows improvement for both citation
datasets, the improvement is much more significant for the
HEP dataset. On investigating why our model shows a larger
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Figure 3: Improvement of LDA-ER over ATTR* for varying (a) ambiguity of references, (b) avg. number of references per
author and (c) avg. number of references per document. Other parameters are held constant for each experiment.

improvement for HEP than for CiteSeer, we found some no-
table differences between the datasets. We call a reference
ambiguous if there is more than one author entity with that
last name and first initial. There is a significant difference in
reference ambiguity between the two datasets — only 0.5%
of the references in CiteSeer are ambiguous while 9% of
HEP references are ambiguous. A second difference is in the
density of the author collaboration graph. The average num-
ber of collaborators per author is 2.15 in CiteSeer and 4.5 in
HEP. Finally, a third significant difference relates to the sam-
ple size. While the ratio of the number of references to the
number of authors is 2.5 for CiteSeer, for HEP it is 6.36. On
the other hand, one of the features that is preserved for both
datasets is the average number of references per document,
which is 1.9 for both.

In order to investigate which of these features is respon-
sible for the performance difference, we ran our algorithm on
a range of synthetically generated datasets. This allowed us
to investigate the conditions under which our model is most
likely to lead to significant improvements over algorithms
which do not take into account collaborative structure. Due
to space constraints, we provide only the outline of the data
generator; it is reasonably sophisticated. It attempts to mimic
the way authors of academic papers are generated by the un-
derlying collaborative pattern among researchers. There are
two phases in this generative process. First, a collaborative
graph is created in steps, where in each step a collaborative
edge is added between two authors. Each author is given
a name sampled from US census data. By sampling from
the top k% of this distribution we can control the percent-
age of ambiguous names in the data. Other parameters allow
us to control the number of authors and the average collab-
oration degree. In the second stage, documents are created
from this collaborative graph by first sampling an initiator
author, who chooses randomly from collaborators to select
co-authors for that document. The author names for each
document are modified by a noise model to generate the ref-
erences. Various parameters allow us to control the number
of documents generated, the average number of authors per

document and the level of noise in the references.
In our setup for experiments with synthetic data, we vary

the synthetic dataset parameters one at a time holding the
others constant. The default values of the parameters are
set to reflect the features of the real datasets. The datasets
have 1000 authors with an average of 4.5 collaborators. We
generate 3000 documents with an average of 2 references
per document and 15% ambiguous references. We explore
varying the fraction of ambiguous references, the ratio of
references to authors, the average number of collaborators
and average number of references per document. Since
the results are averaged over different datasets, we present
only the improvement in F1 measure observed for the group
model over ATTR*.

Figure 3 summarizes the trends that we observe. One
significant improvement trend is over varying ambiguity in
the references. As shown in Figure 3(a), it climbs sharply
from 0.01 for 10% ambiguity (as in HEP) to 0.06 for 27%
reference ambiguity. Figure 3(b) shows that LDA-ER nat-
urally benefits from higher sample sizes for the author ref-
erences. Figure 3(c) shows that LDA-ER benefits from a
greater number of authors per document. However, no sta-
tistically significant trends emerged from our experiments
with varying collaboration degree keeping other factors like
sample size fixed; some experiments showed larger improve-
ments with higher degree, however the results were not con-
sistent. More thoroughly characterizing properties of the col-
laborative graph structure that lead to improved entity reso-
lution is an interesting area for future work.

13 Conclusions
In this paper, we have developed a probabilistic generative
model for collectively resolving entities in relational data.
It is novel in that it does not make pair-wise decisions and
introduces a group variable to capture relationships between
entities. Our model may be viewed as extending the Dirichlet
process mixture model to capture relations between entities
or components. We propose an unsupervised approach for
collective inference in our model that does not require any



labeled training data. In addition, we present a novel sam-
pling strategy to estimate the number of entities automati-
cally from the references. We have demonstrated the utility
of the proposed model on two real-world citation datasets.
Additionally, we have identified some of the conditions un-
der which these models are expected to provide greater ben-
efit. Areas for future work include extending the models to
resolve multiple entity classes and better characterization of
collaborative graphs amenable to these models.
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