
Query-Time Entity Resolution

Indrajit Bhattacharya
University of Maryland,

College Park
MD, USA 20742

indrajit@cs.umd.edu

Lise Getoor
University of Maryland,

College Park
MD, USA 20742

getoor@cs.umd.edu

Louis Licamele
University of Maryland,

College Park
MD, USA 20742

licamele@cs.umd.edu

ABSTRACT
The goal of entity resolution is to reconcile database refer-
ences corresponding to the same real-world entities. Given
the abundance of publicly available databases where enti-
ties are not resolved, we motivate the problem of quickly
processing queries that require resolved entities from such
‘unclean’ databases. We propose a two-stage collective res-
olution strategy for processing queries. We then show how
it can be performed on-the-fly by adaptively extracting and
resolving those database references that are the most help-
ful for resolving the query. We validate our approach on
two large real-world publication databases where we show
the usefulness of collective resolution and at the same time
demonstrate the need for adaptive strategies for query pro-
cessing. We then show how the same queries can be an-
swered in real time using our adaptive approach while pre-
serving the gains of collective resolution.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: Information Search and Re-
trieval — Clustering, Query formulation

General Terms: Algorithms

Keywords: entity resolution, relations, query, adaptive

1. INTRODUCTION
Entity resolution is a practical problem that comes up in

data mining applications in a variety of ways. It is studied
as the data cleaning problem of ‘deduplication’, where the
goal is to identify and consolidate pairs of records or refer-
ences within the same relational table that are duplicates
of each other. It is also important in data integration as
the ‘fuzzy match’ problem, where tuples from two heteroge-
neous databases with different keys, and possibly different
schemas, need to be matched and consolidated.

In spite of the widespread research interest and the practi-
cal nature of the problem, many publicly accessible databases
remain unresolved, or partially resolved, at best. The pop-
ular publication databases, CiteSeer and PubMed, are rep-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

resentative examples. CiteSeer contains several records for
the same paper or author, while author names in PubMed
are not resolved at all. This is due to a variety of rea-
sons, ranging from rapid and often uncontrolled growth of
the databases and the computational and other expenses in-
volved. Yet, millions of users access and query such databases
everyday, mostly seeking information that, implicitly or ex-
plicitly, requires knowledge of the resolved entities. The
information gathered from such databases would be signifi-
cantly more useful or accurate if the entities were resolved.

The abundance of such important and unresolved public
databases motivates us to formulate the problem of query-
time entity resolution. The goal is to enable users to query
an unresolved or partially resolved database and resolve
the relevant entities on the fly. A user may access several
databases everyday and he does not want to clean every
database that he queries. He only needs to resolve those en-
tities that matter for his query. For instance, when looking
for all books by ‘Stuart Russell’ in CiteSeer, it is not use-
ful to resolve all other author references in CiteSeer. Also,
the resolution needs to be quick, even if it is not entirely
accurate.

Though entity resolution queries have not been addressed
in the literature, there has been significant progress on the
general entity resolution problem. Recent research has fo-
cused on the use of additional relational information between
database references to improve resolution accuracy [2, 15,
6, 1, 10]. This improvement is made possible by resolving
related references or records jointly, rather than indepen-
dently. Intuitively, this corresponds to the notion that figur-
ing out that two records refer to the same underlying entity
may in turn give us useful information for resolving other
record pairs that are related. While it has been shown that
collective resolution significantly improves entity resolution
accuracy, the added improvement comes at a considerable
computation cost arising from the dependencies. This added
computational expense makes its application in query-time
resolution challenging. Due to its inter-dependent nature,
the set of references that influence collective resolution of a
query may be very large. In this paper, we present adaptive
algorithms for extracting the most relevant references for a
query that enable us to resolve entities at query-time, while
preserving the gains of collective resolution.

Our specific contributions in this paper are as follows.
First, we motivate and formulate the problem of query-time
entity resolution. Our entity resolution approach is based on
a relational clustering algorithm. To the best of our knowl-
edge, clustering based on queries in the presence of relations

1h

A Ansari
1r 2r 3r

A Ansari

2h

5r

C Chen

3h

A Ansari

4h

9r 10r

4r

6r 7r 8r

A Mouse Immunity Model A Better Mouse Immunity Model

Measuring Protien−bound Fluxetine Autoimmunity in Biliary Cirrhosis

L Li W Wang

C ChenW Wang W Wang

W W Wang

Figure 1: An example set of papers represented as
references connected by hyper-edges. References
are shaded according to their entities.

has received little attention. We also formulate query-time
clustering as a resource-constrained problem and propose
adaptive strategies for constructing the set of references that
influence a query. Finally, we present experimental results
on large real-world datasets where our strategy enables col-
lective resolution in seconds with minimal loss in accuracy.

The rest of the paper is organized as follows. In Section 2,
we formalize the relational entity resolution problem and the
concept of entity resolution queries. In Section 3, we briefly
review the relational clustering algorithm that we employ for
collective entity resolution. Next, in Section 4, we describe
an unconstrained strategy for extracting the references rel-
evant for collectively resolving a query, and in Section 5
we present our adaptive algorithm for resolving queries un-
der resource constraints. We present experimental results
in Section 6, review related work in Section 7 and finally
conclude in Section 8.

2. ENTITY RESOLUTION: FORMULATION
In the simplest formulation, we have a collection of refer-

ences, R = {ri}, with attributes {R.A1, . . . ,R.Ak}. Let E =
{ej} be the unobserved domain entities. For any particular
reference ri, we denote the entity to which it maps as E(ri).
We will say that two references ri and rj are co-referent if
they correspond to the same entity, E(ri) = E(rj). Note
however that the database is unresolved, i.e. the mapping
E(ri) is not provided. Further, the domain entities E and
even the number of such entities is not known. However, we
may have information about relationships between the ref-
erences. To model relationships in a generic way, we use a
hyper-edge set H with possible attributes {H.A1 . . .H.Al}.
Each hyper-edge connects multiple references. To capture
this, we associate a set of references H.R with each hyper-
edge. Note that each reference may be associated with zero
or more hyper-edges.

Let us now look at a sample domain to see how it can rep-
resented in our framework. Consider a database of academic
publications similar to DBLP, CiteSeer or PubMed. Each
publication in the database has a set of author names, each
of which is a reference ri in R. For each reference, ri.Name
records the observed name of the author in the publica-
tion. In addition, we can have attributes such as R.Email
to record other information for each author reference that
may be available in the paper. Also, each publication rep-
resents a co-author relationship among the references in it.
So we have a hyper-edge hi ∈ H for each publication and
rj ∈ hi.R for each reference rj in the publication. If publi-
cations have information such as title, keywords, etc, they
are represented as attributes of H.

To illustrate, consider the following four papers, which we
will use as a running example:
1. W. Wang, C. Chen, A. Ansari, “A mouse immunity model”

2. W. Wang, A. Ansari, “A better mouse immunity model”

3. L. Li, C. Chen, W. Wang,“Measuring protein-bound fluxetine”

4. W. W. Wang, A. Ansari, “Autoimmunity in biliary cirrhosis”

To represent them in our notation, we have 10 references
{r1, . . . , r10} in R, where r1.Name =‘W Wang’, etc. There
are 4 hyper-edges {h1, . . . , h4} in H for the four papers. This
is represented pictorially in Figure 1.

Given this formulation, the entity resolution task is
defined as the partitioning or clustering of the references ac-
cording to the underlying entity-reference mapping E(r). To
illustrate, assume that we have six underlying entities. This
is illustrated in Figure 1 using a different shading for each
entity. For example, the ‘Wang’s of papers 1, 2 and 4 are the
same individual but that from paper 3 is a different person.
Also, the ‘Chen’s from papers 1 and 3 are different individ-
uals. Then, the correct resolution for our example database
with 10 references returns 6 entity clusters: {{r1, r4, r9},
{r8}, {r2}, {r7}, {r3, r5, r10}, {r6}}. The first two clusters
correspond to ‘Wang’, the next two to ‘Chen’, the fifth to
‘Ansari’ and the last to ‘Li’.

Instead of clustering all database references, in many ap-
plications, users are interested in just a few of the clusters.
For example, we may want to retrieve all papers written by
some person named ‘W Wang’. We will call this an en-
tity resolution query on ‘W Wang’, since answering it
involves knowing the underlying entities. We will assume
that queries are specified using R.Name, which is a noisy
identifier for entities. Since names are ambiguous, treating
them as identifiers leads to undesirable results. For exam-
ple, it would be incorrect to return the set {r1, r4, r8} of all
references with name ‘W Wang’ as the answer to our query.
This answer does not indicate that r8 is not the same person
as the other two. Also, the answer should include the paper
by ‘W W Wang’ (r9), who is the same entity as the author
of the first paper. Therefore, the correct answer to the en-
tity resolution query on ‘W Wang’ should be the partition
{{r1, r4, r9}, {r8}}.

Different approaches employed for the general entity reso-
lution problem can also be used for entity resolution queries.
In traditional attribute-based entity resolution, simi-
larity is computed for each pair of references based on their
attributes and only those pairs that have similarity above
some threshold are considered to be co-referent. This often
runs into problems. In our example, it is hard to infer with
just attributes that references r1 and r8 are not co-referent
although they have the same name, while r1 and r9 are

co-referent although their names are different. When rela-
tions between references are available, the naive relational
entity resolution approach additionally considers the at-
tributes of the related references when computing similarity
between pairs of references. For example, when computing
the similarity between ‘W. Wang’ and ‘W. W. Wang’, it
takes into account that both have co-authors with name ‘A.
Ansari’. This also can be misled in many cases. For instance,
the two ‘W. Wang’ references r1 and r8 are not co-referent,
though they both have co-authors with name ‘C. Chen’. The
correct evidence to use here is that the ‘Chen’s are not co-
referent either. Therefore, in order to resolve the ‘W. Wang’
references, it is necessary to resolve the ‘C. Chen’ references
as well, and not just consider their attributes. This is the

goal of collective entity resolution, which improves ac-
curacy but is harder to solve because the references cannot
be clustered independently. Instead, any resolution decision
is affected by other resolutions through hyper-edges.

3. RELATIONAL CLUSTERING
Given that the goal of entity resolution is to cluster the

database references according to their entities, we have de-
veloped a relational clustering algorithm for entity resolu-
tion (RC-ER) [2]. Given a current set of reference clusters
C = {ci}, it iteratively merges the pair of clusters that are
the most similar. We associate a cluster label r.C with each
reference to denote its current cluster membership. Recall
that for the attribute-based approach, the similarity mea-
sure only considers the attributes of references. For the naive
relational approach, it additionally considers the attributes
of related references. The collective approach, in contrast,
considers the cluster labels of the related references and the
similarity of two clusters ci and cj is defined as

sim(ci, cj) = (1 − α) × simA(ci, cj) + α × simR(ci, cj)

where simA is the attribute similarity and simR the rela-
tional similarity between the references in the two clusters
with combination weight α (0 ≤ α ≤ 1). The interesting as-
pect of the collective approach is the dynamic nature of the
similarity. The similarity between two references depends on
their current cluster labels and therefore changes with the
labels. In our example, the similarity of the two references
‘W. Wang’ and ‘W. W. Wang’ increases once the ‘Ansari’
references are given the same cluster label. Let us now see
how the two components of the similarity are computed.

Attribute Similarity: For each reference attribute, we
assume the existence of some basic similarity measure that
takes two reference attributes and returns a value between 0
and 1 that indicates the degree of similarity between them.
In addition, if hyper-edges have attributes, then the at-
tribute similarity of two references can also take into account
the attributes of the hyper-edges with which they are asso-
ciated. Several sophisticated similarity measures have been
developed for names, and popular TF-IDF schemes may be
used for other textual attributes such as keywords. The mea-
sure that works best for each attribute may be plugged in.
Finally, a weighted combination of the similarities over the
different attributes yields the combined attribute similarity
between two reference clusters.

Relational Similarity: For collective entity resolution, re-
lational similarity considers the cluster labels of the refer-
ences that each cluster is connected to via the hyper-edges.
There are many possible ways to define this similarity; we
use a variant that we have proposed earlier [2, 3].

The hyper-edges relevant for a cluster are the hyper-edges
for all its references. Recall that each reference r is associ-
ated with one or more hyper-edges in H. Therefore, the
hyper-edge set c.H for an entity cluster c is defined as

c.H =
�

r∈R∧r.C=c

{hid | (hid, rid) ∈ H ∧ r.id = rid}

This set defines the hyper-edges that connect a cluster c to
other clusters, and are the ones that relational similarity
needs to consider. For instance, when all the references in
our running example have been correctly clustered as in Fig-
ure 1(b), the hyper-edge set for the larger ‘Wang’ cluster is

{h1, h2, h4}, which are the hyper-edges associated with the
references r1, r4 and r9 in that cluster.

The different clusters to which any entity cluster c is con-
nected via its hyper-edge set is called the neighborhood
Nbr(c) of that cluster c.

Nbr(c) =
�

h∈c.H,r∈h

{cj | cj = r.C}

For our example ‘Wang’ cluster, its neighborhood consist of
the ‘Ansari’ cluster and one of the ‘Chen’ clusters, which are
connected by its edge-set. Now, for the relational similarity
measure between two entity clusters, their neighborhoods
are compared using a set similarity measure, such as Jaccard
similarity:

simR(ci, cj) = Jaccard(Nbr(ci), Nbr(cj))

Recall that for two sets A and B, their Jaccard similarity is

defined as Jaccard(A, B) = |A � B|
|A � B|

. The similarity can be

computed and updated very efficiently, in time that is linear
in the average number of neighbors per cluster.

Clustering Algorithm: Given the similarity measure for
a pair of clusters, a greedy agglomerative clustering algo-
rithm is used for collective entity resolution. The algorithm
bootstraps the clusters, identifies the candidate set of po-
tential duplicates and iterates over the following steps. At
each step, it identifies the currently ‘closest pair’ of clusters
(ci, cj) from the candidate set and merges them to create a
new cluster cij . It identifies new candidate pairs and up-
dates the similarity measures for the ‘related’ cluster pairs.
All of these tasks are performed efficiently using an indexed
priority queue. The algorithm terminates when the similar-
ity for the closest pair falls below a threshold.

4. ENTITY RESOLUTION QUERIES
As we have seen, for entity resolution queries, the answer

includes only a few of the entity clusters for the database.
Then it is clearly unnecessary to resolve all database ref-
erences for any query. However, for collective resolution,
correctly resolving the relevant entities for a query may in-
volve resolving neighboring entities as well. To address this,
we propose a two-phase query processing strategy consisting
of an extraction phase followed by a resolution phase. In the
extraction phase, the goal is to extract the relevant set of
references Rel(Q) for answering the query Q accurately and
then, in the resolution phase, we perform collective resolu-
tion on Rel(Q).

We introduce two expansion operators for constructing
the relevant set for an entity resolution query Q(n). The
first operator is the name expansion operator XN or n-
expansion for short. For a name n, XN (n) returns all refer-
ences whose names exactly match that name or are ‘similar’
to it. Similar names can determined by blocking techniques
[12]. For a query Q(n), we first need to find all references
that can potentially be included in the answer. This base
level of references can be retrieved by expanding the name
n as Rel0(Q(n)) = XN (n). The first step in Figure 2 shows
n-expansion on ‘W Wang’ in our example.

The second operator is hyper-edge expansion Xh, or
h-expansion. For any reference r, Xh(r) returns all refer-
ences that share a hyper-edge with it. For collective entity
resolution, we need to consider all related references for each
references. Therefore, we need to perform h-expansion on

A_Ansarir

C_Chenr

L_Lir

L_Lir

C_Chenr

C_Chenr

L_Lir

A_Ansarir

A_Ansarir0Rel (Q) Rel (Q)1

Rel (Q)2

W_W_Wang

W_Wang

W_Wang

W_Wang

A_Ansari

C_Chen

r

r

r

r

r

r

r

A_Ansari

...

...

...

8

1

4

9 10

5

2

7

6

11

54

23

89

16

66

3W_Wang
Q

Figure 2: Relevant set for query ‘W. Wang’ using
h-expansion and n-expansion alternately

the references in Rel0(Q(n)). Figure 2 illustrates this op-
eration in our example. The interesting aspect of collective
resolution is that we cannot stop here. We will need to re-

solve the references that we so obtained, and this requires
n-expanding these new references. This suggests a recur-
sive growth of the relevant set. Formally, for a query Q(n),
the expansion process alternates between n-expansion and
h-expansion:
Reli(Q(n)) = XN (n) for i = 0

XH(Reli−1(Q(n))) for odd i
XN (Reli−1(Q(n))) for even i

The improvement in resolution accuracy for Q(n) falls off
quickly with expansion depth, so we can terminate the ex-

pansion process at some cut-off depth d∗: Rel(Q) = � d∗

i=0

Reli(Q). Also, the size of the relevant set can be signifi-
cantly reduced by restricting name expansion to exact n-
expansion Xe

N that only considers references with exactly
the same name. Interestingly, we can show that the re-
stricted strategy that alternates between exact n-expansion
and h-expansion does not affect recall significantly.

5. ADAPTIVE QUERY EXPANSION
The query expansion strategy from the previous section

is unconstrained in that it blindly expands all references in
the current relevant set and also includes all new references
generated by an expansion operation. However, for many
domains the size of the relevant set resulting from such un-
constrained expansion is prohibitive for query-time resolu-
tion even for small expansion depths. Given the limited time
to process a query, our solution is to include the references
that are most helpful for resolving the query. To illustrate
using our example from Figure 2, observe that ‘Chen’ and
‘Li’ are significantly more common or ‘ambiguous’ names
than ‘Ansari’ — even different ‘W. Wang’ entities are likely
to have collaborators named ‘Chen’ or ‘Li’. Therefore, when
h-expanding Rel0(Q) for ‘W. Wang’, ‘Ansari’ is more infor-
mative than ‘Chen’ or ‘Li’. Similarly, when n-expanding
Rel1(Q), we can choose not to expand the name ‘A. Ansari’
any further, since two ‘A. Ansari’ references are very likely
to be coreferent. But we need more evidence for the ‘Chen’s
and ‘Li’s. To describe this formally, the ambiguity of a name
n is the probability that any two references ri and rj in the
database that have this name (ri.Name = rj .Name = n)
are not coreferent: Amb(n) = P (E(ri) 6= E(rj)). The goal
of adaptive expansion is to add less ambiguous references
to the relevant set and, of the references currently in the
relevant set, expand the most ambiguous ones.

For adaptive hyper-edge expansion, we set an upper-
bound hmax on the number of new references that h-expansion
at a particular level can generate. Formally, we want
|XH (Reli(Q))| ≤ hmax|Reli(Q)|. The value of hmax may
depend on depth i but it is small enough to rule out full
h-expansion of the current relevant set. Then, given hmax,
our strategy is to choose the least ambiguous references from
XH(Reli(Q)), since they provide the most informative evi-
dence for resolving the references in Reli(Q). We sort the
h-expanded references in increasing order of ambiguity and
select the first k from them, where k = hmax|Reli(Q)|.

ReliA(Q,hmax) = LeastAmb(k,XH(Reli−1

A (Q))) (1)

The setting for adaptive name expansion is very sim-
ilar. For some positive number nmax, exact n-expansion of
Reli(Q) is allowed to include at most nmax|Reli(Q)| refer-
ences. Note that now the selection preference needs to be
flipped — more ambiguous names need more evidence, so
they are expanded first. So we can sort Xe

N (Reli(Q)) in de-
creasing order of ambiguity and select the first k from the
sorted list, where k = nmax|Reli(Q)|. But this could poten-
tially retrieve only references for the most ambiguous name,
totally ignoring references with any other name. To avoid
this, we choose the top k ambiguous references from Reli(Q)
before expansion, and then expand the references so chosen.

ReliA(Q, nmax) = Xe
N (MostAmb(k,Reli(Q))) (2)

Though this cannot directly control the number of new ref-
erences added, µr × k is a reasonable estimate, where µr is
the average number of references per name.

The adaptive expansion scheme proposed in this section
is crucially dependent on the estimates of name ambigu-
ity. We now describe one possible scheme that worked quite
well. Recall that we want to estimate the probability that
two randomly picked references with Name = n correspond
to different entities. For any single valued attribute R.A
of the underlying entity, a naive unsupervised estimate of
AmbA(n) is the fraction of references having A = n. This
estimate is clearly not good since the number of references
with a certain Name does not always match the number
of different entities for that Name. However, we can do
much better if we have an additional attribute R.A1 that
also records a single valued attribute of the underlying en-
tities. Given A1, ambiguity of A = n can be estimated as
AmbA(n) = |A1|

A
n /|A1|

A
∗ where |A1|

A
x is the number of dif-

ferent values observed for A1 in references r with r.A = x.
For example, we can estimate the ambiguity of a last name
by counting the different first names observed for it, since
last name and first name are both single valued attributes
of the underlying people, and the two are not correlated.
In fact, when multiple such uncorrelated single valued at-
tributes R.Ai are available, this approach can be generalized
to obtain even better estimates of ambiguity.

6. EXPERIMENTAL RESULTS
We experimented on two datasets to evaluate our query-

time resolution strategy. The first dataset, arXiv, contains
papers from high energy physics and was used in KDD Cup
20031. It has 58,515 references to 9,200 authors, contained
in 29,555 publications. Our second dataset is the Elsevier
BioBase database2 of publications from biology used in
1
http://www.cs.cornell.edu/projects/kddcup/index.html

2
http://help.sciencedirect.com/robo/projects/sdhelp/about biobase.htm

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60 70

tim
e

(s
ec

s)

#references (in thousands)(b)

BioBase
arXiv

Figure 3: Execution time of RC-ER for increasing
number of references.

the recent IBM KDD-Challenge competition. It contains
156,156 publications with 831,991 author references. Apart
from the size difference, the average number of author names
per paper is 5.3 for BioBase, as compared against 1.9 for
arXiv. Also, unlike arXiv, BioBase includes keywords, topic
classification, language, country of correspondence and affil-
iation of the corresponding author as attributes of the each
paper, which we use as attributes for resolution in addition
to author names.

For entity resolution queries in arXiv, we selected all am-
biguous names that correspond to more than one author en-
tity. This gave us 75 queries with the number of true entities
for each varying from 2 to 11 (average 2.4). For BioBase,
we query the top 100 author names with the highest num-
ber of references. The average number of references for each
of these 100 names is 106. The number of entities for each
name ranges from 1 to 100 (average 32), thereby providing
a wide variety of entity resolution settings over the queries.

We first explore the growth rate of the relevant set over ex-
pansion depth for a sample query in each of the two datasets.
The growth rate for the arXiv query is moderate. The num-
ber of relevant references is 7 at depth 0, and grows to 7,500
at depth 7. In contrast, for BioBase the growth is quite
dramatic. The relevant set size grows from 84 at depth 0
to 586,000 by depth 5 for name similarity expansion and to
384,000 for exact expansion. The growth rates for these two
samples from arXiv and BioBase are typical for all of our
queries in these two datasets.

Next, Figure 3(b) shows how the relational clustering al-
gorithm RC-ER scales with number of references. All exe-
cution times are reported on a Dell Precision 870 server with
3.2GHz Intel Xeon processor and 3GB of memory. The plot
shows that the algorithm scales linearly with increasing ref-
erences, but the gradient is different for the two datasets
mainly due to the difference in the average number of ref-
erences per hyperlink. This suggests that RC-ER is well-
suited for query-time resolution for arXiv. But for BioBase,
it would require up to 600 secs for 40,000 references.

In our next experiment, we evaluate several algorithms
for entity resolution queries. We compare entity resolution
accuracy of the pair-wise co-reference decisions using the F1
measure (which is the harmonic mean of precision and re-
call). For a fair comparison, we consider the best F1 for each
of these algorithms over all possible thresholds for determin-
ing duplicates. For the algorithms, we compare attribute-

based entity resolution (A), naive relational entity resolution

that uses attributes of related references (A+N), and our re-
lational clustering algorithm (RC-ER) for collective entity

resolution using unconstrained expansion up to depth 3. We

also consider transitive closures over the pair-wise decisions
for the first two approaches (A* and A+N*). For attribute
similarity, we use the Soft TF-IDF with Jaro-Winkler simi-
larity for names, which has been shown to perform the best
for name-based resolution [4], and TF-IDF similarity for the
other textual attributes.

Table 1: Entity resolution accuracy (F1) for dif-
ferent algorithms over 75 arXiv queries and 100
BioBase queries

arXiv BioBase

A 0.721 0.701
A* 0.778 0.687
A+N 0.956 0.710
A+N* 0.952 0.753
RC-ER Depth-1 0.964 0.813
RC-ER Depth-3 0.970 0.820

The average F1 scores over all queries are plotted in Ta-
ble 1 for each algorithm in the two datasets. It shows that
RC-ER improves accuracy significantly over the baselines.
For example in BioBase, the improvement is 21% over A
and A+N, 25% over A* and 13% over A+N*. This vali-
dates the potential benefits of collective resolution, as shown
by recent research [2, 15, 6, 13] in the context of offline
cleaning, and motivates its application for query-time en-
tity resolution. Significantly, most of the accuracy improve-
ment comes from the depth-1 relevant references. For 56
out of the 100 BioBase queries accuracy does not improve
beyond the depth-1 relevant references and for the remain-
ing the average improvement is 2%. However, for 8 of the
most ambiguous queries, accuracy improves by more than
5%, the biggest improvement being as high as 27% (from
0.67 to 0.85 F1). Such instances are fewer for arXiv, but
the biggest improvement is 37.5% (from 0.727 to 1.0). This
suggests that while there are potential benefits to looking at
greater depths, the benefits fall off quite quickly on average
beyond depth 1.

The first set of experiments show the benefits of RC-ER.
Next, we measure the processing times over unconstrained
relevant sets up to depth 3 for all queries in the two datasets.
For arXiv, the average processing time of 1.6 secs (with 406
references in the relevant set on average) is quite acceptable.
However, it is more than 10 minutes for BioBase (avg. rel-
evant set size is 44,129), which clearly necessitates adaptive
strategies for relevant set construction.

Finally, we investigate the effectiveness of our adaptive
expansion strategy on BioBase. For estimating ambiguity
of references, we use last names with first initial as the sec-
ondary attribute. This resulted in very good estimates of
ambiguity — the ambiguity estimate for a name is strongly
correlated (correlation coeff. 0.8) with the number of en-
tities for that name. For each of the 100 queries, we con-
struct the relevant set Rel(Q) with d∗ = 3 using adaptive
h-expansion and adaptive exact n-expansion. Since most
of the improvement from collective resolution comes from
depth-1 references, we consider two different experiments.
In the first, we use adaptive expansion only at depths 2 and
beyond (AX-2) and unconstrained h-expansion at depth 1.
In the second(AX-1), we use adaptive h-expansion even at
depth 1, with hmax = 6. For both of them, we use adap-

tive expansion at higher depths 2 and 3 with parameters
hmax = 3 at 3 and nmax = 0.2 at 2.

Table 2: Comparison between unconstrained and
adaptive expansion for 100 BioBase queries

Unconstr. AX-2 AX-1

relv-set size 44,129.5 5,510.52 3,743.52
time (secs) 606.98 43.44 31.28
accuracy (F1) 0.821 0.818 0.820

In Table 2, we compare the two adaptive schemes against
unconstrained expansion with d∗ = 3 over all queries. Clearly,
accuracy remains almost unaffected for both schemes. First,
we note that AX-2 matches the accuracy of unconstrained
expansion and shows almost the same improvement over
depth 1 even though it n-expands a small fraction of Rel1(Q)
— the average size of the relevant set reduces to 5,500 from
44,000. More significantly, AX-1 also matches this improve-
ment even without including many depth-1 references. This
reduction in the size of the relevant set has an immense
impact on the query processing time. The average process-
ing time drops from more than 600 secs for unconstrained
expansion to 43 secs for AX-2 and further to just 31 secs
for AX-1, thus making it possible to use collective entity
resolution for query-time resolution.

As a further improvement, we investigate setting expan-
sion depth d∗ adaptively. In a simple setup, we set d∗ to
1 for queries where the number of different first initials for
a last name is less than 10 (out of 26), and explore depth
2 only for more ambiguous queries. This reduced the av-
erage processing time for 18 of the 100 queries by 35% to
11.5 secs from 17.7 secs with no reduction in accuracy. In a
more general setting, where a bigger fraction of queries have
lower ambiguity, the impact is expected to be even more
significant.

7. RELATED WORK
The entity resolution problem has been studied in many

different areas under different names. Much of the work
has focused on traditional attribute-based entity resolution.
Extensive research has been done on defining approximate
string similarity measures [14, 4] that may be used for unsu-
pervised entity resolution. Efficiency has been an important
issue in data cleaning [9, 12] and probabilistic techniques
have also been proposed for efficiently looking up candidate
matches for incoming tuples [5].

Many recently proposed approaches take relations into ac-
count for data integration [2, 3, 6, 10, 1]. Dong et al.[6] col-
lectively resolve entities of multiple types by propagating re-
lational evidences in a dependency graph, while Ananthakr-
ishna et al.[1] leverage on a dimensional hierarchy over the
relations. Some of these approaches have been shown to be
scalable, but the focus has not been on query-time cleaning.

Probabilistic models for collective entity resolution have
been applied to named entity recognition and for citation
matching [13, 11, 15, 16]. While these perform well, they
have mostly been useful for small datasets and probabilistic
inference for relational data is not known to be scalable in
practice. Approaches have been proposed for localized eval-
uation of Bayesian networks [7], but not for clustering prob-
lems, which is our approach for entity resolution. Adaptive

machine learning approaches have been proposed for data
integration [17], where active learning requires the user to
label informative examples. As we do, Fuxman et al. [8]
motivate the problem of querying databases that violate in-
tegrity constraints. However, the relational aspect of the
problem does not come up in their setting.

8. CONCLUSIONS
In this paper, we have motivated the problem of query-

time entity resolution for accessing unresolved third-party
databases. The biggest issue in query-time resolution of en-
tities is reducing the computational expense of collective res-
olution while maintaining its benefits in terms of resolution
accuracy. We propose an adaptive strategy for extracting
the set of most relevant references for collectively resolving a
query. We demonstrate that this adaptive strategy preserves
the accuracy of unconstrained expansion while dramatically
reducing the number of relevant references, thereby enabling
query-time collective resolution. While we have presented
results for bibliographic data, the techniques are applica-
ble in other relational domains. Future research directions
include exploring stronger coupling between the extraction
and resolution phases of query processing and investigating
localized resolution for offline data cleaning as well.

Acknowledgements: This work was supported by the Na-
tional Science Foundation, NSF #0423845 and NSF #0438866,
with additional support from the National Geospatial Agency
and the ITIC KDD program.

9. REFERENCES
[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating

fuzzy duplicates in data warehouses. In VLDB, 2002.

[2] I. Bhattacharya and L. Getoor. Iterative record linkage for
cleaning and integration. In SIGMOD Workshop on Data

Mining and Knowledge Discovery, 2004.

[3] I. Bhattacharya and L. Getoor. Entity Resolution in Graphs,
chapter Entity Resolution in Graphs. Wiley, 2006.

[4] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and
S. Fienberg. Adaptive name matching in information
integration. IEEE Intelligent Systems, 18(5), 2003.

[5] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust
and efficient fuzzy match for online data cleaning. In SIGMOD,
2003.

[6] X. Dong, A. Halevy, and J. Madhavan. Reference reconciliation
in complex information spaces. In SIGMOD, 2005.

[7] D. Draper and S. Hanks. Localized partial evaluation of belief
networks. In UAI, 1994.

[8] A. Fuxman, E. Fazli, and R. Miller. Conquer: Efficient
management of inconsistent databases. In SIGMOD, 2005.

[9] M. Hernández and S. Stolfo. The merge/purge problem for
large databases. In SIGMOD, 1995.

[10] D. Kalashnikov, S. Mehrotra, and Z. Chen. Exploiting
relationships for domain-independent data cleaning. In SIAM
SDM, 2005.

[11] X. Li, P. Morie, and D. Roth. Semantic integration in text:
From ambiguous names to identifiable entities. AI Magazine.

Special Issue on Semantic Integration, 2005.

[12] A. McCallum, K. Nigam, and L. Ungar. Efficient clustering of
high-dimensional data sets with application to reference
matching. In KDD, 2000.

[13] A. McCallum and B. Wellner. Conditional models of identity
uncertainty with application to noun coreference. In NIPS,
2004.

[14] A. Monge and C. Elkan. The field matching problem:
Algorithms and applications. In KDD, 1996.

[15] Parag and P. Domingos. Multi-relational record linkage. In
KDD Workshop on Multi-Relational Data Mining, 2004.

[16] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser.
Identity uncertainty and citation matching. In NIPS, 2003.

[17] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In KDD, 2002.

