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Abstract

Entity resolution is the problem of reconciling database references corresponding to
the same real-world entities. Given the abundance of publicly available databases that
have unresolved entities, we motivate the problem of query-time entity resolution: quick
and accurate resolution for answering queries over such ‘unclean’ databases at query-time.
Since collective entity resolution approaches — where related references are resolved jointly
— have been shown to be more accurate than independent attribute-based resolution for
off-line entity resolution, we focus on developing new algorithms for collective resolution
for answering entity resolution queries at query-time. For this purpose, we first formally
show that, for collective resolution, precision and recall for individual entities follow a
geometric progression as neighbors at increasing distances are considered. Unfolding this
progression leads naturally to a two stage ‘expand and resolve’ query processing strategy.
In this strategy, we first extract the related records for a query using two novel expansion
operators, and then resolve the extracted records collectively. We then show how the
same strategy can be adapted for query-time entity resolution by identifying and resolving
only those database references that are the most helpful for processing the query. We
validate our approach on two large real-world publication databases where we show the
usefulness of collective resolution and at the same time demonstrate the need for adaptive
strategies for query processing. We then show how the same queries can be answered in
real-time using our adaptive approach while preserving the gains of collective resolution. In
addition to experiments on real datasets, we use synthetically generated data to empirically
demonstrate the validity of the performance trends predicted by our analysis of collective
entity resolution over a wide range of structural characteristics in the data.

1. Introduction

With the growing abundance of publicly available data in digital form, there has been in-
tense research on data integration. A critical component of the data integration process is
the entity resolution problem, where uncertain references in the data to real-world entities
such as people, places, organizations, events, etc., need to be resolved according to their
underlying real-world entities. Entity resolution is needed in order to solve the ‘deduplica-
tion’ problem, where the goal is to identify and consolidate pairs of records or references
within the same relational table that are duplicates of each other. It also comes up as the
‘fuzzy match’ problem, where tuples from two heterogeneous databases with different keys,
and possibly different schemas, need to be matched and consolidated. It goes by different
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names even within the data mining and database communities, including record linkage,
object consolidation, and reference reconciliation.

The problem has a long history, and recent years have seen significant and fruitful
research on this problem. However, in spite of the widespread research interest and the
practical nature of the problem, many publicly accessible databases remain unresolved, or
partially resolved, at best. The popular publication databases, CiteSeer and PubMed, are
representative examples. CiteSeer contains several records for the same paper or author,
while author names in PubMed are not resolved at all. This is due to a variety of reasons,
ranging from rapid and often uncontrolled growth of the databases and the computational
and other expenses involved in maintaining resolved entities.

Yet, millions of users access and query such databases everyday, mostly seeking informa-
tion that, implicitly or explicitly, requires knowledge of the resolved entities. For example,
we may query the CiteSeer database of computer science publications looking for books by
‘S Russell’ (Pasula, Marthi, Milch, Russell, & Shpitser, 2003). This query would be easy
to answer if all author names in CiteSeer were correctly mapped to their entities. But,
unfortunately, this is not the case. According to CiteSeer records, Stuart Russell and Peter
Norvig have written more than 100 different books together. One of the main reasons be-
hind databases containing unresolved entities is that entity resolution is generally perceived
as an expensive process for large databases. Also, maintaining a ‘clean’ database requires
significant effort to keep pace with incoming records. Alternatively, we may be searching
different online social network communities for a person named ‘Jon Doe’. In this case,
each online community may individually have records that are clean. Even then, query
results that return records from all of the sources aggregated together may have multiple
representations for the same ’Jon Doe’ entity. Additionally, in both cases, it is not sufficient
to simply return records that match the query name, ‘S. Russell’ or ‘Jon Doe’ exactly. In
order to retrieve all the references correctly, we may need to retrieve records with similar
names as well, such as ’Stuart Russel’ or ’John Doe’. And, most importantly, for the results
to be useful, we need to partition the records that are returned according to the real-world
entities to which they correspond. Such on-the-fly partitioning of returned results is also
necessary when accessing third-party or external databases that do not provide full access
possibly due to privacy and other concerns, and can be accessed only via specific query
interfaces.

In this paper, we propose an alternative solution for answering entity resolution queries,
where we obviate the need for maintaining resolved entities in a database. Instead, we
investigate entity resolution at query-time, where the goal is to enable users to query an
unresolved or partially resolved database and resolve the relevant entities on the fly. A user
may access several databases everyday and she does not want to resolve all entities in every
database that she queries. She only needs to resolve those entities that are relevant for a
particular query. For instance, when looking for all books by ‘Stuart Russell’ in CiteSeer,
it is not useful to resolve all of the authors in CiteSeer. Since the resolution needs to be
performed at query-time, the requirement is that the resolution process needs to be quick,
even if it is not entirely accurate.

Though entity resolution queries have not been addressed in the literature, there has
been significant progress on the general entity resolution problem. Recent research has fo-
cused on the use of additional relational information between database references to improve
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resolution accuracy (Bhattacharya & Getoor, 2004; Singla & Domingos, 2004; Dong, Halevy,
& Madhavan, 2005; Ananthakrishna, Chaudhuri, & Ganti, 2002; Kalashnikov, Mehrotra, &
Chen, 2005). This improvement is made possible by resolving related references or records
jointly, rather than independently. Intuitively, this corresponds to the notion that figuring
out that two records refer to the same underlying entity may in turn give us useful informa-
tion for resolving other record pairs that are related. Imagine that we are trying to decide if
two authors ‘Stuart Russell’ and ‘S Russell’ are the same person. We can be more confident
about this decision if we have already decided that their co-authors ‘Peter Norvig’ and ‘P.
Norvig’ are the same person.

As others have done, in our earlier work (Bhattacharya & Getoor, 2004, 2007), we have
demonstrated using extensive experiments on multiple real and synthetic datasets that
collective resolution significantly improves entity resolution accuracy over attribute-based
and naive relational baselines. However, its application for query-time entity resolution is
not straight-forward, and this is precisely the problem that we focus on in this paper. The
first difficulty is that collective resolution works for a database as a whole and not for a
specific query. Secondly, the accuracy improvement comes at a considerable computation
cost arising from the dependencies between related resolutions. This added computational
expense makes its application in query-time resolution challenging.

In this paper, which builds on and significantly extends the work presented in Bhat-
tacharya, Licamele, and Getoor (2006), we investigate the application of collective resolu-
tion for queries. First, we formally analyze how accuracies of different decisions in collective
resolution depend on each other and on the structural characteristics of the data. The re-
cursive nature of the dependency leads naturally to a recursive ‘expand and resolve’ strategy
for processing queries. The relevant records necessary for answering the query are extracted
by a recursive expansion process and then collective resolution is performed only on the ex-
tracted records. Using our analysis, we show that the recursive expansion process can be
terminated at reasonably small depths for accurately answering any query; the returns fall
off exponentially as neighbors that are further away are considered.

However, the problem is that this unconstrained expansion process can return too many
records even at small depths; and thus the query may still be impossible to resolve in
real-time. We address this issue using an adaptive strategy that only considers the most
informative of the related records for answering any query. This significantly reduces the
number of records that need to be investigated at query time, but, most importantly, does
not compromise on the resolution accuracy for the query.

Our specific contributions in this paper are as follows:

1. First, we motivate and formulate the problem of query-time entity resolution. Our
entity resolution approach is based on a relational clustering algorithm. To the best
of our knowledge, clustering based on queries in the presence of relations has received
little attention in the literature.

2. For collective resolution using relational clustering, we present an analysis of how the
accuracy of different resolution decisions depends on each other and on the structural
characteristics of the data. We introduce the notion of precision and recall for in-
dividual entities, and show how they follow a geometric progression as neighbors at
increasing distances are considered and resolved. Our analysis shows that collective
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use of relationships can sometimes hurt entity resolution accuracy. This has not been
previously reported in the literature. Our analysis additionally demonstrates the con-
vergent nature of resolution performance for the recursive query-resolution strategy
that we propose.

3. For resolving queries collectively, we propose a two-phase ‘expand and resolve’ al-
gorithm. It first extracts the related records for a query using two novel expansion
operators, and then resolves the query by only considering the extracted records. We
then improve on this algorithm using an adaptive approach that selectively considers
only the ‘most informative’ ones among the related records for a query. This enables
collective resolution at query-time without compromising on resolution accuracy for
the query.

4. We present experimental results on two large real-world datasets where our strategy
enables collective resolution in seconds. We compare against multiple baselines to
show that the accuracy achieved using collective query resolution is significantly higher
than those achieved using traditional approaches.

5. We also use synthetically generated data to demonstrate the gains of collective query
resolution over a wide range of attribute and relational characteristics. We addition-
ally show that the empirical results are in agreement with the trends predicted by our
analysis of collective resolution.

The rest of the paper is organized as follows. In Section 2, we formalize the relational
entity resolution problem and entity resolution queries, and also illustrate these with an
example. In Section 3, we briefly review the relational clustering algorithm that we employ
for collective entity resolution and then, in Section 4, investigate how resolution accuracy
for related entities depend on each other for collective resolution using this algorithm. In
Section 5, we extend collective resolution for queries, and describe and analyze an uncon-
strained recursive strategy for collectively resolving a query. We then modify this approach
in Section 6 and present our adaptive algorithm that extracts only the ‘most informative’
references for resolving a query. We present experimental results on real and synthetic data
in Section 7, review related work in Section 8 and finally conclude in Section 9.

2. Entity Resolution and Queries: Formulation

In this section, we formally introduce the entity resolution problem and also entity resolution
queries, and illustrate them using a realistic example — that of resolving authors in a
citation database such as CiteSeer or PubMed.

In the simplest formulation of the entity resolution problem, we have a collection of
references, R = {ri}, with attributes {R.A1, . . . ,R.Ak}. Let E = {ej} be the unobserved
domain entities. For any particular reference ri, we denote the entity to which it maps
as E(ri). We will say that two references ri and rj are co-referent if they correspond to
the same entity, E(ri) = E(rj). Note that in the case of an unresolved database, this
mapping E(R) is not provided. Further, the domain entities E and even the number of
such entities is not known. However, in many domains, we may have additional information
about relationships between the references. To model relationships in a generic way, we use
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Figure 1: An example set of papers represented as references connected by hyper-edges.
References are represented as ovals shaded according to their entities. Each paper
is represented as a hyper-edge (shown as a rectangle) spanning multiple references.

a set of hyper-edges H = {hi}. Each hyper-edge connects multiple references. To capture
this, we associate a set of references hi.R with each hyper-edge hi. Note that each reference
may be associated with zero or more hyper-edges.

Let us now look at a sample domain to see how it can be represented in our framework.
Consider a database of academic publications similar to DBLP, CiteSeer or PubMed. Each
publication in the database has a set of author names. For every author name, we have a
reference ri in R. For any reference ri, ri.Name records the observed name of the author
in the publication. In addition, we can have attributes such as R.Email to record other
information for each author reference that may be available in the paper. Now we come to
the relationships for this domain. All the author references in any publication are connected
to each other by a co-author relationship. This can be represented using a hyper-edge hi ∈ H
for each publication and by having rj ∈ hi.R for each reference rj in the publication. If
publications have additional information such as title, keywords, etc, they are represented
as attributes of H.

To illustrate, consider the following four papers, which we will use as a running example:

1. W. Wang, C. Chen, A. Ansari, “A mouse immunity model”

2. W. Wang, A. Ansari, “A better mouse immunity model”

3. L. Li, C. Chen, W. Wang,“Measuring protein-bound fluxetine”

4. W. W. Wang, A. Ansari, “Autoimmunity in biliary cirrhosis”

To represent them in our notation, we have 10 references {r1, . . . , r10} in R, one for each
author name, such that r1.Name = ‘W Wang’, etc. We also have 4 hyper-edges {h1, . . . , h4}
in H, one for each paper. The first hyper-edge h1 connects the three references r1, r2 and
r3 corresponding to the names ‘W. Wang’ , ‘C. Chen’ and ‘A. Ansari’. This is represented
pictorially in Figure 1.

Given this representation, the entity resolution task is defined as the partitioning
or clustering of the references according to the underlying entity-reference mapping E(R).
Two references ri and rj should be assigned to the same cluster if and only if they are
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coreferent, i.e., E(ri) = E(rj). To illustrate, assume that we have six underlying entities for
our example. This is illustrated in Figure 1 using a different shading for each entity. For
example, the ‘Wang’s of papers 1, 2 and 4 are names of the same individual but the ’Wang’
from paper 3 is a reference to a different person. Also, the ‘Chen’s from papers 1 and 3 are
different individuals. Then, the correct entity resolution for our example database with 10
references returns 6 entity clusters: {{r1, r4, r9}, {r8}, {r2}, {r7}, {r3, r5, r10}, {r6}}. The
first two clusters correspond to two different people named ‘Wang’, the next two to two
different people named ‘Chen’, the fifth to ‘Ansari’ and the last to ‘Li’.

Any query to a database of references is called an entity resolution query if answering
it requires knowledge of the underlying entity mapping E(R). We consider two different
types of entity resolution queries. Most commonly, queries are specified using a particular
value a for an attribute R.A of the references that serves as a ‘quasi-identifier’ for the
underlying entities. Then the answer to the query Q(R.A = a) should partition or group
all references that have r.A = a according to their underlying entities. For references to
people, the name often serves as a weak or noisy identifier. For our example bibliographic
domain, we consider queries specified using R.Name. To retrieve all papers written by
some person named ‘W. Wang’, we issue a query using R.Name and ‘W. Wang’. Since
names are ambiguous, treating them as identifiers leads to undesirable results. In this case,
it would be incorrect to return the set {r1, r4, r8} of all references with name ‘W Wang’ as
the answer to our query. This answer does not indicate that r8 is not the same person as
the other two. Additionally, the answer should include the reference r9 for ‘W W Wang’,
that maps to the same entity as the author of the first paper. Therefore, the correct answer
to the entity resolution query on ‘W Wang’ should be the partition {{r1, r4, r9}, {r8}}.

Entity resolution queries may alternatively be specified using a specific reference. Imag-
ine a CiteSeer user looking at a paper that contains some author name. The user may be
interested in looking up other papers written by the same author, even though they may
not know who that author is precisely. Then the correct answer to a query on the reference
r is the group of references that are coreferent to r, or, in other words, correspond to the
same underlying entity. In our example, consider a query specified using the reference r1

corresponding to the name ‘W. Wang’ in the first paper. Then the correct answer to the
query is the set of references {r1, r4, r9}. To distinguish it from the first type of entity
resolution query, note that it does not include the cluster {r8} corresponding to the other
entity that also has name ‘W. Wang’. This second query type may be answered by first
reducing it to an instance of the first type as Q(R.A = r1.A), and then selecting the entity
corresponding to reference r1. We denote this as σE(R)=E(r1)(Q(R.A = r1.A)). In the rest
of this paper, we focus only on queries of the first type.

3. Collective Entity Resolution and Relational Clustering

Although entity resolution for queries has not been studied in the literature, the general
entity resolution problem has received a lot of attention. We review related work in detail in
Section 8. In this section, we briefly review the different categories of proposed approaches
before discussing how they may be adapted for query-time entity resolution.

In most entity resolution applications, data labeled with the underlying entities is hard
to acquire. Our focus is on unsupervised approaches for resolving entities. Traditionally,
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attributes of individual references, such as names, affiliation, etc., for person references, are
used for comparing references. A similarity measure is generally employed over attributes,
and only those pairs of references that have attribute similarity above a certain threshold
are considered to be co-referent. This attribute-based entity resolution approach (A)
often runs into problems. In our example, it is hard to infer with just attributes that
references r1 and r8 are not co-referent although they have the same name, while r1 and r9

are co-referent although their names are different.
When relations between references are available, they may also be taken into account

for computing similarities in the naive relational entity resolution approach (NR)
(Ananthakrishna et al., 2002; Bhattacharya & Getoor, 2007). For computing similarities
between two references, this approach additionally considers the attributes of the related
references when comparing the attributes of their related references. In our example, this
approach returns a higher similarity between r1 (‘W. Wang’) and r9 (‘W. W. Wang’) than
the attribute-based approach, since they have co-authors r3 and r10 with very similar (iden-
tical, in this case) names. Although this approach can improve performance in some cases,
it does not always work. For instance, the two ‘W. Wang’ references r1 and r8 are not
co-referent, though they both have co-authors with identical names ‘C. Chen’.

Instead of considering the attribute similarities of the related references, the collective
entity resolution approach (Pasula et al., 2003; Bhattacharya & Getoor, 2004; Singla
& Domingos, 2004; McCallum & Wellner, 2004; Li, Morie, & Roth, 2005; Dong et al.,
2005; Kalashnikov et al., 2005) takes into account the resolution decisions for them. In our
previous example, the correct evidence to use for the pair of references r1 and r8 is that
their co-author references do not map to the same entity, although they have similar names.
Therefore, in order to resolve the ‘W. Wang’ references in the collective resolution approach,
it is necessary to resolve the ‘C. Chen’ references as well, instead of considering the similarity
of their attributes. The collective entity resolution approach has recently been shown to
improve entity resolution accuracy over the previous approaches but is computationally
more challenging. The references cannot be resolved independently. Instead, any resolution
decision is affected by other resolutions through hyper-edges.

In earlier work (Bhattacharya & Getoor, 2004, 2006, 2007), we developed a relational
clustering algorithm (RC-ER) for collective entity resolution using relationships. The goal
of this approach is to cluster the references according to their entities taking the relationships
into account. We associate a cluster label r.C with each reference to denote its current
cluster membership. Starting from an initial set of clusters C = {ci} of references, the
algorithm iteratively merges the pair of clusters that are the most similar. To capture the
collective nature of the cluster assignment, the similarity measure between pairs of clusters
considers the cluster labels of the related references. The similarity of two clusters ci and
cj is defined as a linear combination of their attribute similarity simA and their relational
similarity simR:

sim(ci, cj) = (1 − α) × simA(ci, cj) + α × simR(ci, cj) (1)

where α (0 ≤ α ≤ 1) is the combination weight. The interesting aspect of the collective
approach is the dynamic nature of the relational similarity. The similarity between two
references depends on the current cluster labels of their related references, and therefore
changes when related references change clusters. In our example, the similarity of the two
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clusters containing references ‘W. Wang’ and ‘W. W. Wang’ increases once their co-author
references named ‘A. Ansari’ are assigned to the same cluster. We now briefly review how
the two components of the similarity measure are defined.

Attribute Similarity: For each reference attribute, we use a similarity measure that
returns a value between 0 and 1 for two attribute values indicating the degree of similarity
between them. Several sophisticated similarity measures have been developed for names,
and popular TF-IDF schemes may be used for other textual attributes such as keywords.
The measure that works best for each attribute may be chosen. Finally, a weighted linear
combination of the similarities over the different attributes yields the combined attribute
similarity between two reference clusters.

Relational Similarity: Relational similarity between two clusters considers the similar-
ity of their ‘cluster neighborhoods’. The neighborhood of each cluster is defined by the
hyper-edges associated with the references in that cluster. Recall that each reference r is
associated with one or more hyper-edges in H. Therefore, the hyper-edge set c.H for a
cluster c of references is defined as

c.H =
⋃

r∈R∧r.C=c

{h | h ∈ H ∧ r ∈ h.R} (2)

This set defines the hyper-edges that connect a cluster c to other clusters, and are the
ones that relational similarity needs to consider. To illustrate, when all the references in
our running example have been correctly clustered as in Figure 1(b), the hyper-edge set
for the larger ‘Wang’ cluster is {h1, h2, h4}, which are the hyper-edges associated with the
references r1, r4 and r9 in that cluster.

Given the hyper-edge set for any cluster c, the neighborhood Nbr(c) of that cluster c is
the set of clusters labels of the references spanned by these hyper-edges:

Nbr(c) =
⋃

h∈c.H,r∈h

{cj | cj = r.C} (3)

For our example ‘Wang’ cluster, its neighborhood consists of the ‘Ansari’ cluster and one
of the ‘Chen’ clusters, which are connected by its edge-set. Then, the relational similarity
measure between two clusters, considers the similarity of their cluster neighborhoods. The
neighborhoods are essentially sets (or multi-sets) of cluster labels and there are many pos-
sible ways to define the similarity of two neighborhoods (Bhattacharya & Getoor, 2007).
The specific similarity measure that we use for our experiments in this paper is Jaccard
similarity1 :

simR(ci, cj) = Jaccard(Nbr(ci), Nbr(cj)) (4)

Clustering Algorithm: Given the similarity measure for a pair of clusters, a greedy
relational clustering algorithm can be used for collective entity resolution. Figure 2 shows
high-level pseudo-code for the complete algorithm. The algorithm first identifies the can-
didate set of potential duplicates using a ‘blocking’ approach (Hernández & Stolfo, 1995;
Monge & Elkan, 1997; McCallum, Nigam, & Ungar, 2000). Next, it initializes the clusters

1. Jaccard similarity for two sets A and B is defined as Jaccard(A,B) = |A∩B|
|A∪B|
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Algorithm RC-ER (Reference set R)
1. Find similar references in R using blocking
2. Initialize clusters using bootstrapping

3. For clusters ci, cj such that similar(ci, cj)
4. Insert 〈sim(ci, cj), cj , cj〉 into priority queue

5. While priority queue not empty
6. Extract 〈sim(ci, cj), ci, cj〉 from queue
7. If sim(ci, cj) less than threshold, then stop
8. Merge ci and cj to new cluster cij

9. Remove entries for ci and cj from queue
10. For each cluster ck such that similar(cij , ck)
11. Insert 〈sim(cij , ck), cij , ck〉 into queue
12. For each cluster cn neighbor of cij

13. For ck such that similar(ck, cn)
14. Update sim(ck, cn) in queue

Figure 2: High-level description of the relational clustering algorithm

of references, identifies the ‘similar’ clusters — or potential merge-candidates — for each
cluster, inserts all the merge-candidates into a priority queue and then iterates over the
following steps. At each step, it identifies the current ‘closest pair’ of clusters from the can-
didate set and merges them to create a new cluster. It identifies new candidate pairs and
updates the similarity measures for the ‘related’ cluster pairs. This is the key step where
evidence flows from one resolution decision to other related ones and this distinguishes re-
lational clustering from traditional clustering approaches. The algorithm terminates when
the similarity for the closest pair falls below a threshold or when the list of potential can-
didates is exhausted. The algorithm is efficiently implemented to run in O(nk log n) time
for n references where each ‘block’ of similar names is connected to k other blocks through
the hyper-edges.

3.1 Issues with Collective Resolution for Queries

In previous work, we (and others) have shown that collective resolution using relationships
improves entity resolution accuracy significantly for offline cleaning of databases. So, nat-
urally, we would like to use the same approach for query-time entity resolution as well.
However, while the attribute-based and naive relational approaches discussed earlier can
be applied at query-time in a straight-forward fashion, that is not the case for collective
resolution. Two issues come up when using collective resolution for queries. First, the
set of references that influence the resolution decisions for a query need to be identified.
When answering a resolution query for ‘S. Russell’ using the attribute-based approach, it is
sufficient to consider all papers that have ‘S. Russell’ (or, similar names) as author name.
For collective resolution, in contrast, the co-authors of these author names, such as ‘P.
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Norvig’ and ‘Peter Norvig’, also need to be clustered according to their entities. This in
turn requires clustering their co-authors and so on. So the first task is to analyze these
dependencies for collective resolution and identify the references in the database that are
relevant for answering a query. But this is not enough. The set of references influencing a
query may be extremely large, but the query still needs to be answered quickly even though
the answer may not be completely accurate. So the second issue is performing the resolution
task at query-time. These are the two problems that we address in the next few sections.

4. Analysis of Collective Resolution using Relational Clustering

For collective entity resolution, we have seen that resolution performance for the query
becomes dependent on the resolution accuracy of the related entities. Before we can analyze
which other references influence entity resolution for the query and to what extent, we need
to analyze the nature of this dependence for collective resolution in general. In this section,
we identify the structural properties of the data that affect collective entity resolution and
formally model the interdependent nature of the resolution performance. This analysis
also helps us to understand when collective resolution using relational clustering helps,
and, equally importantly, when it has an adverse effect as compared against traditional
attribute-based resolution.

The goal of an entity resolution algorithm is to partition the set R = {ri} of references
into a set of clusters C = {ci} according to the underlying entities E = {ei}. The accu-
racy of the resolution depends on how closely the separation of the references into clusters
corresponds to the underlying entities. We consider two different measures of performance.
The first measure is recall for each entity. For any entity ei, recall counts how many pairs
of references corresponding to ei are correctly assigned to the same computed cluster. The
second measure is precision for each computed cluster. For any cluster ci, precision counts
how many pairs of references assigned to ci truly correspond to the same underlying entity.
(Alternatively, imprecision measures how many pairs of references assigned to the cluster
do not correspond to the same entity.) In the next two subsections, we analyze how these
two performance metrics are influenced, first, by the attribute values of the references, and
then, by the observed relationships between them.

4.1 Influence of Attributes

First, consider an entity resolution algorithm that follows the traditional attribute-based ap-
proach and the analysis of its performance. Such an algorithm only considers the attributes
of individual references. It uses a similarity measure defined over the domain of attributes,
and considers pair-wise attribute similarity between references for resolving them. Let us
define two references to be ǫ-similar if their attribute-similarity is at least ǫ. Then, given
a resolution threshold ǫ, the attribute-based approach assigns a pair of references to the
same cluster if and only if they are ǫ-similar. To illustrate using our example, using any
similarity measure defined over names and an appropriately determined similarity threshold
ǫ, the attribute-based approach would assign the three ‘W. Wang’ references (r1, r4, r8) to
one cluster c1 and the ‘W. W. Wang’ reference (r9) to a different cluster c2. This resolution
of the Wang references is not perfect in terms of precision or recall, since references r1, r4

and r9 map to one entity e1 and r8 maps to a second entity e2. Cluster c1 has precision less
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than 1, since it incorrectly includes references for two different entities, and recall is less
than 1 for entity e1, since its references are dispersed over two different clusters.

In order to analyze the performance of this attribute-based resolution approach given
an arbitrary dataset, we now characterize a dataset in terms of the attribute values of
its references. Intuitively, the attribute-based approach works well when the references
corresponding to the same entity are similar in terms of their attributes, and when the
references corresponding to different entities are not. To capture this formally, we define
two probabilities that measure the attribute-similarity of references that map to the same
entity, and the attribute-similarity of those that map to different entities:

• attribute identification probability aI(e, ǫ): the probability that a pair of ref-
erences chosen randomly from those corresponding to entity e are ǫ-similar to each
other.

• attribute ambiguity probability aA(e1, e2, ǫ): the probability that a pair of refer-
ences chosen randomly such that one corresponds to entity e1 and the other to entity
e2 are ǫ-similar to each other.

To illustrate using the four ‘Wang’ references, r1, r4 and r9 correspond to the same
entity e1 and r8 corresponds to a different entity e2. Also, assume that for some similarity
measure for names and an appropriate threshold ǫ, references r1, r4 and r8 are ǫ-similar to
each other. Then, of the 3 pairs of references corresponding to entity e1, only one (r1 and
r4) is ǫ-similar, so that the attribute identification probability aI(e1, ǫ) for entity e1 is 0.33.
On the other hand, of the three pairs of references such that one maps to e1 and the other
to e2, two (r1 and r8, r4 and r8) are ǫ-similar. This means that the attribute ambiguity
probability aA(e1, e2, ǫ) between e1 and e2 is 0.66.

As can be seen from the above example, the performance of the attribute-based clus-
tering algorithm can be represented in terms of these two probabilities. For any specified
threshold ǫ, the pairs of references for any entity that are correctly recalled are the ones that
are ǫ-similar, which is exactly what aI(e, ǫ) captures. Therefore, the recall for any domain
entity e is R(e, ǫ) = aI(e, ǫ). On the other hand, consider the cluster assignment for all the
references that correspond to two entities e1 and e2. The pairs that are incorrectly clustered
together are those that correspond to two different entities, and yet are ǫ-similar. This is
what aA(e1, e2, ǫ) captures. Therefore the imprecision of the cluster assignment of reference
pairs corresponding to entities e1 and e2 is I(e1, e2, ǫ) = aA(e1, e2, ǫ). Alternatively, the
precision is given by P (e1, e2, ǫ) ≡ 1 − I(e1, e2, ǫ) = 1 − aA(e1, e2, ǫ).

4.2 Influence of Relationships

Now, we consider the collective entity resolution approach that additionally makes use of
relationships, and analyze its impact on entity resolution accuracy. Recall that we have
a set H = {hj} of observed co-occurrence relationships between the references. Such co-
occurrences between references are useful for entity resolution when they result from strong
ties or relations between their underlying entities. Specifically, we assume that references to
any entity ei co-occur frequently with references to a small set of other entities {e1

i , . . . , e
k
i },

which we call the entity neighbors, denoted N(ei), of entity ei.
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Figure 3: Illustration of (a) identifying relation and (b) ambiguous relation from running
example. Dashed lines represent co-occurrence relations.

Assuming such a neighborhood relationship among the underlying entities allows us
to analyze the performance of the relational clustering approach. For those reference pairs
that are ǫ-similar in terms of attributes, the attribute evidence is enough for resolution. But
now, unlike attribute-based clustering, any pair of references that are δ-similar in terms of
attributes, for some δ < ǫ, are considered as candidates for being clustered together. Not all
of them actually get assigned to the same cluster. For reference pairs that are in the ring of
uncertainty between ǫ and δ, their relationships play a role in determining if they are similar
enough, and consequently, if they should be clustered together. Specifically, if references ri

and rj co-occur through hyper-edge h and references r′i and r′j co-occur through hyper-edge
h′, then the relational similarity of the pair (ri, r′i) is more when (rj , r′j) belong to the same
cluster. In general, multiple such relationships may be needed for tipping the balance, but
for simplicity, we assume for now that a single pair of related references is sufficient. In
other words, ri and r′i get assigned to the same cluster if rj and r′j are in the same cluster.

We now analyze the impact that this approach has on entity resolution performance.
Without loss of generality, assume that the (rj, r

′
j) pair get clustered together first by the

relational clustering algorithm. This results in the other pair (ri, r
′
i) also getting clustered

at some later iteration by considering this relational evidence. To see if this is accurate, we
consider two situations, as we did with attribute evidence. The first is shown in Figure 3(a),
where both pairs truly correspond to the same entity. Then the collective resolution decision
is correct and we say that hyper-edges h and h′ are identifying relationships for that entity.
Formally,

IRel(h, h′, e) ≡ ∃ ri, rj ∈ h.R, r′i, r
′
j ∈ h′.R,

E(ri) = E(r′i) = e, E(rj) = E(r′j) (5)

On the other hand, we may have a different scenario, in which both pairs of references cor-
respond to two different entities. This second scenario is depicted in Figure 3(b). Then the
first decision to resolve (rj , r

′
j) as co-referent is incorrect, and relational evidence obtained

through hyper-edges h and h′ consequently leads to the incorrect resolution of (ri, r
′
i). In

this situation, collective resolution hurts accuracy, and we say that h and h′ form ambiguous
relationships for both pairs of entities, whose references may be incorrectly clustered as a
result of these relationships. Formally,

IAmb(h, h′, e, e′) ≡ ∃ ri, rj ∈ h.R, r′i, r
′
j ∈ h′.R,
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E(ri) = e, E(r′i) = e′, e 6= e′,

E(rj) 6= E(r′j) (6)

In general, a reference ri can have a co-occurrence relation h that includes more than
one other reference. We may think of this as multiple co-occurrence pairs involving ri.
Cluster labels of all these other references in the pairs influence resolution decisions for ri.
When resolving ri with another reference r′i that participates in co-occurrence relation h′,
the fraction of common cluster labels between h and h′ determines whether or not ri and
r′i will be clustered together. If they are assigned to the same cluster, h and h′ are labeled
identifying or ambiguous relationships based on whether ri and r′i are actually co-referent
or not.

Formally, we define:

• identifying relationship probability rI(e, δ): the probability that a randomly cho-
sen pair of δ-similar references corresponding to entity e has identifying relationships
h and h′ with some other entity.

• ambiguous relationship probability rA(e1, e2, δ): the probability that a pair of
δ-similar references, chosen randomly such that one corresponds to entity e1 and the
other to entity e2, has ambiguous relationships h and h′ with some other pair of
entities.

To illustrate these probabilities using our example, we have two ‘Wang’ entities, e1

that has references r1, r4 and r9, and e2 that has reference r8. Assume that the attribute
threshold δ is such that all six pairs are considered potential matches. Of the three pairs of
references corresponding to e1, all of them have identifying relationships with the ‘Ansari’
entity. So, rI(e1, δ) = 1. To measure the relational ambiguity between the two ‘Wang’
entities, we consider the 3 possible pairs (r1 and r8, r4 and r8, r9 and r8). Of these only
one (r1 and r8) pair has ambiguous relationships with two different ‘Chen’ entities. So,
rA(e1, e2, δ) = 0.33.

Given these two probabilities, we can analyze the performance of our relational cluster-
ing algorithm that combines attribute and relational evidence for collective entity resolution.
It is not hard to see that the recall for any entity depends recursively on the recall of its
neighbor entities. Any pair of references for entity e is resolved correctly on the basis of
attributes alone with probability aI(e, ǫ) (the identifying attribute probability). Further-
more, it may still be resolved correctly in the presence of identifying relationships with a
neighbor entity, if the related reference pair for the neighbor is resolved correctly. Denoting
as R(e, ǫ, δ) the recall for entity e and that for its neighbors as R(N(e), ǫ, δ), we have:

R(e, ǫ, δ) = aI(e, ǫ) + (1 − aI(e, ǫ)) × rI(e, δ) × R(N(e), ǫ, δ) (7)

On the other hand, consider a pair of entities e1 and e2. The cluster assignment for
a pair of references corresponding to e1 and e2 is imprecise on the basis of its attributes
alone with probability aA(e1, e2, ǫ). Even otherwise, the cluster assignment can go wrong
by considering relational evidence. This happens in the presence of ambiguous relationships
with references corresponding to another pair of entities, if those references are also clustered
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together incorrectly. So the imprecision I(e1, e2, ǫ, δ) of the cluster assignment of reference
pairs corresponding to entities e1 and e2 turns out to be:

I(e1, e2, ǫ, δ) = aA(e1, e2, ǫ) + (1 − aA(e1, e2, ǫ)) × rA(e1, e2, δ) × I(N(e1), N(e2), ǫ, δ) (8)

In general, any entity e has multiple neighbors ei in its neighborhood N(e). To for-
malize the performance dependence on multiple neighbors, assume that if a co-occurrence
involving references corresponding to e is chosen at random, the probability of selecting a
co-occurrence with a reference corresponding to ei is pe

i . Then recall is given as:

R(e) = aI(e) + (1 − aI(e)) × rI(e) ×
|N(e)|∑

i=1

pe
iR(ei) (9)

Note that we have dropped ǫ and δ for notational brevity. For defining imprecision, observe
that a reference corresponding to any neighbor ei

1 of e1 may co-occur with a reference for
any neighbor e

j
2 of e2 with probability pe1

i pe2

j . Then imprecision is given as:

I(e1, e2) = aA(e1, e2) + (1 − aA(e1, e2)) × rA(e1, e2) ×
|N(e1)|∑

i=1

|N(e2)|∑

j=1

pe1

i pe2

j I(ei
1, e

j
2) (10)

Given similarity thresholds ǫ and δ, relational clustering increases recall beyond that
achievable using attributes alone. This improvement is larger when the probability of iden-
tifying relationships is higher. On the flip side, imprecision also increases with relational
clustering. Typically, a low attribute threshold ǫ that corresponds to high precision is used,
and then recall is increased using relational evidence. When the probability of ambiguous
relations rA is small, the accompanying increase in imprecision is negligible, and perfor-
mance is improved overall. However, the higher the ambiguous relationship probability
rA, the less effective is relational clustering. Thus the balance between ambiguous and
identifying relations determines the overall benefit of collective resolution using relational
clustering. When rA is high compared to rI , imprecision increases faster than recall, and
overall performance is adversely affected compared to attribute-based clustering. Eq. (9)
and Eq. (10) quantify this dependence of resolution performance for any entity on the nature
of its relationships with other entities. In the next section, we will use these equations to
design and analyze a relational clustering algorithm for answering entity resolution queries.

5. Collective Resolution for Queries

Our analysis of collective resolution using relational clustering showed that the resolu-
tion accuracy for any underlying entity depends on the resolution accuracy for its re-
lated/neighboring entities. For the problem of answering entity resolution queries, the goal
is not to resolve all the entities in the database. We need to resolve entities for only those
references that are retrieved for the query. We have seen that collective resolution leads to
potential performance improvements over attribute-based resolution. We now investigate
how collective resolution can be applied for answering queries to get similar improvements.
The obvious hurdle is illustrated by the expressions for performance metrics in Eq. (9) and
Eq. (10). They show that in order to get performance benefits for resolving the query using
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relational clustering, we need to resolve the neighboring entities as well. Furthermore, to
resolve the neighboring entities, we need to resolve their neighboring entities, and so on.
These other entities that need to be resolved can be very large in number, and resolving
them is expensive in terms of query-processing time. Also, none of them are actually going
to be retrieved as part of the answer to the query. So it is critical to identify and resolve
those entities that contribute the most for improving resolution accuracy for the query.
We propose a two-stage query processing strategy, consisting of an extraction phase, for
identifying all the relevant references that need to be resolved for answering the query, and
a resolution phase, where the relevant references that have been extracted are collectively
resolved using relational clustering. Unfolding Eq. (9) and Eq. (10) starting from the query
entities leads to a natural expansion process. In this section, we describe the extraction
process using two novel expansion operators and, in parallel, we analyze the improvement
in resolution accuracy that is obtained from considering co-occurrences.

Recall that an entity resolution query Q(R.A = a) is specified using an attribute A

and a value a for it. The answer to the query consists of a partitioning of all references
r that have r.A = a or some value δ-similar to a. The correct answer to the query, in
general, involves references from multiple entities {eq}. We measure resolution accuracy for
the query using two metrics as before. For each of the query entities eq, we measure recall
R(eq) and imprecision I(eq, e

′) with respect to any other entity e′. Entity e′ may or may
not belong to {eq}.

Before going into the details of our algorithm for collective resolution of queries, we
briefly recall the accuracy of the attribute-based strategy of resolving a query. This approach
considers all references r with r.A δ-similar to a, and resolves them using their attributes
only. The recall that results from this approach is R(eq, δ) = aI(eq, δ), and the imprecision
is given by I(eq, e

′, δ) = aA(eq, e
′, δ).

We propose two expansion operators for constructing the relevant set for an entity
resolution query. We denote as level-0 references all references that are δ-similar to the
query attribute. These are the references that the user is interested in, and the goal is
to resolve these correctly. The first operator we introduce is the attribute expansion
operator XA, or A-expansion for short. Given an attribute A and a value a for that
attribute, XA(a, δ) returns all references r whose attributes r.A exactly match a or are δ-
similar to a. For a query Q(R.A = a), the level-0 references can be retrieved by expanding
Q as:

Rel0(Q) = XA(a, δ)

The first step in Figure 4 shows A-expansion for the query Q(R.Name = W.Wang) in our
example. It retrieves the four references (r1,r4,r8,r9) that have name ‘W. Wang’ or ‘W. W.
Wang’.

To consider co-occurrence relations, we construct the level-1 references by including
all references that co-occur with level-0 references. For this, we use our second operator,
which we call hyper-edge expansion XH , or H-expansion. For any reference r, XH(r)
returns all references that share a hyper-edge with r, and for a set R of references XH(R)
returns

⋃
r∈R XH(r). Collective entity resolution requires that we consider all co-occurring

references for each reference. This is achieved by performing H-expansion on the references
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Figure 4: Relevant set for query Q(R.Name = W.Wang) using H-expansion and A-
expansion alternately

at level-0 to retrieve the level-1 references:

Rel1(Q) = XH(Rel0(Q))

Figure 4 illustrates this operation in our example, where XH(r1) retrieves references ‘C.
Chen’ (r2) and ‘A. Ansari’ (r3), and so on.

To perform collective resolution for the query, we additionally need to resolve the ref-
erences at level-1. One option for level-1 references is attribute-based resolution using a
conservative ǫ-similarity to keep imprecision to a minimum. We can use our analysis tech-
nique from before to evaluate the performance for this approach. Expanding from Eq. (9),
and substituting aI(e

i
q, ǫ) for the recall of each neighboring entity ei

q for eq, the recall for
any query entity is:

R(eq, ǫ, δ) = aI(eq, ǫ) + (1 − aI(eq, ǫ)) × rI(eq, δ) ×
k∑

i=1

p
eq

i aI(e
i
q, ǫ)

Similarly, on substituting aA(ei
q, e

j , ǫ) in Eq. (10) for the imprecision of each neighboring
entity ei

q, we get the following expression for imprecision:

I(eq, e
′, ǫ, δ) = aA(eq, e

′, ǫ) + (1 − aA(eq, e
′, ǫ)) × rA(eq, e

′, δ) ×
k∑

i=1

l∑

j=1

p
eq

i pe′

j aA(ei
q, e

′j , ǫ)

To appreciate more easily the implications of considering first-order neighbors, we may
assume that the attribute identification probability and the attribute ambiguity probability
are the same for all the entities involved, i.e., aI(e, ǫ) = aI(ǫ) and aA(e, e′, ǫ) = aA(ǫ). Then,
using

∑k
i=1 pe

i = 1 for any entity e, the expression for recall simplifies to

R(eq, ǫ, δ) = aI(ǫ) + (1 − aI(ǫ)) × rI(δ) × aI(ǫ)

= aI(ǫ)[1 + (1 − aI(ǫ))rI(δ)]
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Similarly, the expression for imprecision simplifies to

I(eq, e
′, ǫ, δ) = aA(ǫ)[1 + (1 − aA(ǫ))rA(δ)]

So we can see that attribute-clustering of the first level neighbors potentially increases
recall for any query entity eq, but imprecision goes up as well. However, when the bal-
ance between rA and rI is favorable, the increase in imprecision is insignificant and much
smaller than the corresponding increase in recall, so that there is an overall performance
improvement.

Can we do better than this? We can go a step further and consider co-occurrence
relations for resolving the level-1 references as well. So, instead of considering attribute-
based resolution for references in level-1 as before, we perform collective resolution for them.
We consider all of their δ-similar references, which we call level-2 references (Rel2(Q)), using
A-expansion:

Rel2(Q) = XA(Rel1(Q))

Note that we have overloaded the A-expansion operator for a set R of references: XA(R) =⋃
r∈R XA(r.A). The level-3 references are the second order neighbors that co-occur with

level-2 references. They are retrieved using H-expansion on the level-2 references:

Rel3(Q) = XH(Rel2(Q))

Finally, as with the level-1 references earlier, we resolve the level-3 references using ǫ-
similarity of their attributes alone.

In order to evaluate the impact on resolution accuracy for the query, we unfold the
recursions in Eq. (9) and Eq. (10) up to two levels, and now substitute aI(e

i
q, ǫ) for recall

and aA(ei, ej , ǫ) for imprecision for the second order neighbors. The trend in the expressions
becomes clearly visible if we assume, as before, that aI and aA is identical for all entities, and,
additionally, rI and rA are also the same, i.e., rI(e1, e2, ǫ) = rI(ǫ) and rA(e1, e2, δ) = rA(δ).
Then, we can work through a few algebraic steps to get the following expressions for recall
and precision for any query entity eq:

R(eq) = aI [1 + (1 − aI)rI + (1 − aI)
2r2

I ] (11)

I(eq, e
′) = aA[1 + (1 − aA)rA + (1 − aA)2r2

A] (12)

We can continue to unfold the recursion further and grow the relevant set for the query.
Formally, the expansion process alternates between A-expansion and H-expansion:

Reli(Q) = XA(Q) for i = 0
XH(Reli−1(Q)) for odd i

XA(Reli−1(Q)) for even i

As we proceed recursively and consider higher order co-occurrences for the query, ad-
ditional terms appear in the expressions for precision and recall. But this does not imply
that we need to continue this process to arbitrary levels to get optimum benefit. Using
our simplifying assumptions about the attribute and relational probabilities, the expres-
sions for both recall and imprecision for nth order co-occurrences turns out to be geometric
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progressions with n + 1 terms. The common ratio for the two geometric progressions are
(1 − aI(ǫ))rI(δ) and (1 − aA(ǫ))rA(δ) respectively. Typically, both of these ratios are sig-
nificantly smaller than 1, and therefore converge very quickly with increasing co-occurrence
level. So the improvement in resolution accuracy for the query Q falls off quickly with
expansion depth, and we can terminate the expansion process at some cut-off depth d∗

without compromising on accuracy:

Rel(Q) =
d∗⋃

i=0

Reli(Q)

Of course, the assumptions about the attribute and relational probabilities being entity-
independent do not hold in practice, so that the performance trends for increasing levels of
co-occurrence cannot be exactly captured by geometric progressions with a common ratio
for successive terms. But the converging trends for both of them still hold in general, and
the rate of convergence is still determined by the four probabilities aI , aA, rI and rA for the
entities that are encountered during the expansion process. Intuitively, smaller values for
rI and rA indicate less sensitivity to co-occurrences, and the convergence is quicker. On
the other hand, higher values of aI and aA mean that more entities are resolved based on
attributes alone — correctly or incorrectly — and the impact of co-occurrence relations is
smaller. Therefore convergence is quicker for higher values of aI and aA.

Apart from imposing a cutoff on the expansion depth, the size of the relevant set can
also be significantly reduced by restricting attribute expansion beyond level-0 to exact
A-expansion Xe

A(r). This only considers references with exactly the same attribute as
r and disregards other δ-similar references. Interestingly, we can show that the restricted
strategy that alternates between exact A-expansion and H-expansion does not reduce recall
significantly.

6. Adaptive Query Expansion

The limited depth query expansion strategy proposed in the previous section is an effective
approach that is able to answer queries quickly and accurately for many domains. However,
for some domains, the size of the relevant set that is generated can be extremely large even
for small expansion depths, and as a result, the retrieved references cannot be resolved
at query-time. In this section, we propose adaptive strategies based on estimating the
‘ambiguity’ of individual references that makes our algorithm even more efficient while
preserving accuracy.

The main reason behind this explosive growth of the relevant set with increasing levels
is that our query expansion strategy from the previous section is unconstrained — it treats
all co-occurrences as equally important for resolving any entity. It blindly expands all
references in the current relevant set, and also includes all new references generated by an
expansion operation. Given the limited time to process a query, this approach is infeasible
for domains that have dense relationships. Our solution is to identify the references that are
likely to be the most helpful for resolving the query, and to focus on only those references.
To illustrate using our example from Figure 4, observe that ‘Chen’ and ‘Li’ are significantly
more common or ‘ambiguous’ names than ‘Ansari’ — even different ‘W. Wang’ entities are
likely to have collaborators named ‘Chen’ or ‘Li’. Therefore, when h-expanding Rel0(rq) for
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‘W. Wang’, ‘Ansari’ is more informative than ‘Chen’ or ‘Li’. Similarly, when n-expanding
Rel1(rq), we can choose not to expand the name ‘A. Ansari’ any further, since two ‘A.
Ansari’ references are very likely to be coreferent. But we need more evidence for the
‘Chen’s and the ‘Li’s.

To describe this formally, the ambiguity of a value a for an attribute A is the proba-
bility that any two references ri and rj in the database that have ri.A = rj.A = a are not
coreferent: Amb(a) = P (E(ri) 6= E(rj) | ri.A = rj .A = a). The goal of adaptive expansion
is to add less ambiguous references to the relevant set and to expand the most ambiguous
references currently in the relevant set. We first define adaptive versions of our two expan-
sion operators treating the ambiguity estimation process as a black-box, and then look at
ways to estimate ambiguity of references.

6.1 Adaptive Expansion Operators

The goal of adaptive expansion is to selectively choose the references to expand from the
current relevant set, and also the new references that are included at every expansion step.
For adaptive hyper-edge expansion, we set an upper-bound hmax on the number of new
references that h-expansion at a particular level can generate. Formally, we want
|XH(Reli(Q))| ≤ hmax|Reli(Q)|. The value of hmax may depend on depth i but should be
small enough to rule out full h-expansion of the current relevant set. Then, given hmax, our
strategy is to choose the least ambiguous references from XH(Reli(Q)), since they provide
the most informative evidence for resolving the references in Reli(Q). To achieve this, we
sort the h-expanded references in increasing order of ambiguity and select the first k from
them, where k = hmax|Reli(Q)|.

Reliadapt(Q,hmax) = LeastAmb(k,XH(Reli−1
adapt(Q))) (13)

The setting for adaptive attribute expansion is very similar. For some positive num-
ber amax, exact a-expansion of Reli(Q) is allowed to include at most amax|Reli(Q)| refer-
ences. Note that now the selection preference needs to be flipped — more ambiguous names
need more evidence, so they are expanded first. So we can sort Xe

A(Reli(Q)) in decreasing
order of ambiguity and select the first k from the sorted list, where k = amax|Reli(Q)|. But
this could potentially retrieve only references for the most ambiguous name, totally ignoring
references with any other name. To avoid this, we choose the top k ambiguous references
from Reli(Q) before expansion, and then expand the references so chosen.

Reliadapt(Q,nmax) = Xe
A(MostAmb(k,Reliadapt(Q))) (14)

Though this cannot directly control the number of new references added, µr × k is a rea-
sonable estimate, where µr is the average number of references per name.

6.2 Ambiguity Estimation

The adaptive expansion scheme proposed in this section is crucially dependent on the es-
timates of name ambiguity. We now describe one possible scheme that worked quite well.
Recall that we want to estimate the probability that two randomly picked references with
value a for attribute A correspond to different entities. For a reference attribute A1, denoted

639



Bhattacharya & Getoor

Algorithm Query-time Resolve (R.Name name)
1. RSet = RelevantFrontier(name)
2. RC-ER(RSet)

Algorithm FindRelevantRefs(R.Name name)
1. Initialize RSet to {}
5. Initialize depth to 0
3. Initialize FrontierRefs to {}
4. While depth < d*
5. If depth is even or 0
6. R = XA(FrontierRefs)
7. else
8. R = XH(FrontierRefs)
9. FrontierRefs = R
10. Add FrontierRefs to RSet
10. Increment depth
11. Return RSet

Figure 5: High-level description of the query-time entity resolution algorithm

R.A1, a naive estimate for the ambiguity of a value of n for the attribute is:

Amb(r.A1) =
|σR.A1=r.A1

(R)|

|R|
,

where |σR.A1=r.A1
(R)| denotes the number of references with value r.A1 for A1. This esti-

mate is clearly not good since the number of references with a certain attribute value does
not always match the number of different entity labels for that attribute. We can do much
better if we have an additional attribute A2. Given A2, the ambiguity for value of A1 can
be estimated as

Amb(r.A1 | r.A2) =
|δ(πR.A2

(σR.A1=r.A1
(R)))|

|R|
,

where |δ(πR.A2
(σR.A1=r.A1

(R)))| is the number of distinct values observed for A2 in refer-
ences with R.A1 = r.A1. For example, we can estimate the ambiguity of a last name by
counting the number of different first names observed for it. This provides a better estimate
of the ambiguity of any value of an attribute A1, when A2 is not correlated with A1. When
multiple such uncorrelated attributes Ai are available for references, this approach can be
generalized to obtain better ambiguity estimates.

Putting everything together, high-level pseudo code for the query-time entity resolution
algorithm is shown in Figure 5. The algorithm works in two stages — first, it identifies the
relevant set of references given an entity name as a query, and then it performs relational
clustering on the extracted relevant references. The relevant references are extracted using
the recursive process that we have already seen. The relevant references at any depth i are
obtained by expanding the relevant references at depth i−1, the expansion being dependent
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of whether it is an odd step or an even step. The actual expansion operator that is used
may either be unconstrained or adaptive.

7. Empirical Evaluation

For experimental evaluation of our query-time resolution strategies, we used both real-
world and synthetically generated datasets. First, we describe our real datasets and the
experiments performed on them and then we move on to our experiments on synthetic data.

7.1 Experiments on Real Data

For real-world data, we used two citation datasets with very different characteristics. The
first dataset, arXiv, contains papers from high energy physics and was used in KDD Cup
20032. It has 58,515 references to 9,200 authors, contained in 29,555 publications. The num-
ber of author references per publication ranges from 1 to 10 with an average of 1.90. Our
second dataset is the Elsevier BioBase database3 of publications from biology used in the
recent IBM KDD-Challenge competition. It includes all publications under ‘Immunology
and Infectious Diseases’ between years 1998 and 2001. This dataset contains 156,156 pub-
lications with 831,991 author references. The number of author references per publication
is significantly higher than arXiv and ranges from 1 to 100 (average 5.3). All names in this
database only have initials for first and middle names (if available), unlike arXiv, which has
both initialed and complete names. The number of distinct names in BioBase is 303,693,
with the number of references for any name ranging from 1 to 193 (average 2.7). Unlike
arXiv, BioBase includes keywords, topic classification, language, country of correspondence
and affiliation of the corresponding author as attributes of each paper, all of which we use
as attributes for resolution in addition to author names. BioBase is diverse in terms of
these attributes, covering 20 languages, 136 countries, 1,282 topic classifications and 7,798
keywords.

For entity resolution queries in arXiv, we selected all ambiguous names that correspond
to more than one author entity. This gave us 75 queries, with the number of true entities
for the selected names varying from 2 to 11 (average 2.4). For BioBase, we selected as
queries the top 100 author names with the highest number of references. The average
number of references for each of these 100 names is 106, and the number of entities for the
selected names ranges from 1 to 100 (average 32), thereby providing a wide variety of entity
resolution settings over the queries.

7.1.1 Relevant Set Size Vs. Resolution Time

We begin by exploring the growth rate of the relevant set for a query over expansion depth
in the two datasets. Figure 6(a) plots the size of the relevant set for a sample query on the
name ‘T. Lee’ for arXiv and ‘M. Yamashita’ for BioBase. The growth rate for the arXiv
query is moderate. The number of references with name ‘T. Lee’ is 7, which is the number
of relevant references at depth 0, and the size grows to 7,500 by depth 7. In contrast, for
BioBase the plots clearly demonstrate the exponential growth of the relevant references

2. http://www.cs.cornell.edu/projects/kddcup/index.html

3. http://help.sciencedirect.com/robo/projects/sdhelp/about biobase.htm
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Figure 6: (a) Size of the relevant set for increasing expansion depth for sample queries
in arXiv and BioBase (b) Execution time of RC-ER with increasing number of
references

with depth for both name expansion strategies. There are 84 relevant references at depth
0. When references are expanded using name similarity expansion, there are 722 relevant
references at depth 1, 65,000 at depth 3 and more than 586,000 at depth 5. This is for a
very restricted similarity measure where two names are considered similar only if their first
initials match, and the last names have the same first character and differ overall by at most
2 characters. A more liberal measure would result in a significantly faster growth. We also
observe that for exact expansion, the growth is slower but we still have 45,000 references at
depth 3, 384,000 at depth 5 and 783,000 by depth 7. It is interesting to note that the growth
slows down beyond depth 5; but this is because most of the references in the entire dataset
are already covered at that depth (BioBase has 831,991 references in total). The growth
rates for these two examples from arXiv and BioBase are typical for all of our queries in
these two datasets.

Next, in Figure 6(b), we observe how the relational clustering algorithm RC-ER scales
with increasing number of references in the relevant set. All execution times are reported
on a Dell Precision 870 server with 3.2GHz Intel Xeon processor and 3GB of memory. The
plot shows that the algorithm scales well with increasing references, but the gradient is
different for the two datasets. This is mainly due to the difference in the average number of
references per hyper-edge. This suggests that for arXiv, RC-ER is capable of handling the
relevant sets generated using unconstrained expansion. But for BioBase, it would require
up to 600 secs for 40,000 references, and up to 900 secs for 65,000. So it is clearly not
possible to use RC-ER with unconstrained expansion for query-time resolution in BioBase
even for depth 3.

7.1.2 Entity Resolution Accuracy for Queries

In our next experiment, we evaluate several algorithms for entity resolution queries. We
compare entity resolution accuracy of the pair-wise co-reference decisions using the F1
measure (which is the harmonic mean of precision and recall). For a fair comparison, we
consider the best F1 for each of these algorithms over all possible thresholds for determining
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Table 1: Average entity resolution accuracy (F1) for different algorithms over 75 arXiv
queries and 100 BioBase queries

arXiv BioBase

A 0.721 0.701
A* 0.778 0.687
NR 0.956 0.710
NR* 0.952 0.753
RC-ER Depth-1 0.964 0.813
RC-ER Depth-3 0.970 0.820

duplicates. For the algorithms, we compare attribute-based entity resolution (A), naive
relational entity resolution (NR) that uses attributes of related references, and our relational
clustering algorithm for collective entity resolution (RC-ER) using unconstrained expansion
up to depth 3. We also consider transitive closures over the pair-wise decisions for the first
two approaches (A* and NR*). For attribute similarity, we use the Soft TF-IDF with
Jaro-Winkler similarity for names, which has been shown to perform the best for name-
based resolution (Bilenko, Mooney, Cohen, Ravikumar, & Fienberg, 2003), and TF-IDF
similarity for the other textual attributes.

The average F1 scores over all queries are shown in Table 1 for each algorithm in the
two datasets. It shows that RC-ER improves accuracy significantly over the baselines.
For example in BioBase, the improvement is 21% over A and NR, 25% over A* and 13%
over NR*. This demonstrates the potential benefits of collective resolution for answering
queries, and validates recent results in the context of offline entity resolution (Bhattacharya
& Getoor, 2004, 2007; Singla & Domingos, 2004; Dong et al., 2005; McCallum & Wellner,
2004). In our earlier work (Bhattacharya & Getoor, 2007) we have demonstrated using
extensive experiments on real and synthetic datasets how our relational clustering algorithm
(RC-ER) improves entity resolution performance over traditional baselines in the context
of offline data cleaning, where the entire database is cleaned as a whole. The numbers
in Table 1 confirm that similar improvements can be obtained for localized resolution as
well. As predicted by our analysis, most of the accuracy improvement comes from the
depth-1 relevant references. For 56 out of the 100 BioBase queries, accuracy does not
improve beyond the depth-1 relevant references. For the remaining 44 queries, the average
improvement is 2%. However, for 8 of the most ambiguous queries, accuracy improves by
more than 5%, the biggest improvement being as high as 27% (from 0.67 to 0.85 F1). Such
instances are fewer for arXiv, but the biggest improvement is 37.5% (from 0.727 to 1.0).
On one hand, this shows that considering related records and resolving them collectively
leads to significant improvement in accuracy. On the other hand, it also demonstrates that
while there are potential benefits to considering higher order neighbors, they fall off quickly
beyond depth 1. This also serves to validate our analysis of collective query resolution in
Section 4.
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Table 2: Average query processing time with unconstrained expansion

arXiv BioBase

A 0.41 9.35
A* 0.41 9.59
NR 0.43 28.54
NR* 0.428 28.69
RC-ER Depth-1 0.45 11.88
RC-ER Depth-3 1.36 606.98
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Figure 7: Average precision and recall at different similarity thresholds for (a-b) BioBase
and (c-d) arXiv

The last two rows of Table 1 show the converging nature of entity resolution performance
with increasing depth. We verify this explicitly for precision and recall in Figure 7. The
top two plots show average precision and recall over BioBase queries at different similarity
thresholds for RC-ER. The bottom two plots show the same for arXiv. We can see that
the precision curve at depth 1 coincides with or stays marginally above the precision curve
at depth 3 for both BioBase and arXiv. The recall curves show the opposite trend — recall
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marginally improves for depth 3. This is in agreement with our derived expressions for
precision and recall for increasing depth in Eq. (12). The difference in recall between depths
1 and 3 can be quantified as aI(1−aI)

2r2
I , and the difference in precision as aA(1−aA)2r2

A.
The explanation for the small difference between average precision and recall in these two
plots is that both of these factors, when averaged over all queries, are significantly smaller
than 1 for arXiv and BioBase. We will investigate this converging nature of performance in
more detail by varying these structural properties in our experiments with synthetic data
in Section 7.2.

7.1.3 Reducing Time with Adaptive Expansion

The first set of experiments show the effectiveness of our two-phase query processing strategy
in terms of entity resolution performance. The challenge, as we have described earlier, is
in obtaining these benefits in real-time. So, next, we focus on the time that is required to
process these queries in the two datasets using unconstrained expansion up to depth 3. The
results are shown in Table 2. For arXiv, the average processing time for depth-3 expansion
is 1.36 secs, with 406 relevant references on average. This shows that our two-phase strategy
with unconstrained expansion is a practical processing strategy for entity resolution queries
— it resolves the query entities accurately, and extremely quickly as well. However, for
BioBase, the average number of references reached by depth 3 is more that 44,000, and the
time taken to resolve them collectively is more than 10 minutes. This is unacceptable for
answering queries, and next we focus on how the processing time is improved using our
proposed adaptive strategies. Note that the time taken for depth-1 expansion is around 12
secs, which is close to that for the attribute-based baseline (A) and less than the time for
the naive relational algorithm (NR).

Since unconstrained expansion is effective for arXiv, we focus only on BioBase for eval-
uating our adaptive strategies. For estimating ambiguity of references, we use last names
with first initial as the secondary attribute. This results in very good estimates of ambi-
guity — the ambiguity estimate for a name is strongly correlated (correlation coeff. 0.8)
with the number of entities for that name. First, we evaluate adaptive H-expansion. Since
H-expansion occurs first at depth 1, for each query, we construct the relevant set with cutoff
depth d∗ = 1, and use adaptive H-expansion for depth 1. The expansion upper-bound hmax

is set to 4. We compare three different adaptive H-expansion strategies: (a) choosing the
least ambiguous references, (b) choosing the most ambiguous references and (c) random
selection. Then, for each query, we evaluate entity resolution accuracy using RC-ER on
the relevant sets constructed using these three adaptive strategies. The average accuracies
for the three strategies over all 100 queries are shown in the first column of Table 3. Least
ambiguous selection, which is the strategy that we propose, clearly shows the biggest im-
provement and most ambiguous the smallest, while random selection is in between. Notably,
even without many of the depth-1 references, all of them improve accuracy over NR* by
virtue of collective resolution.

We perform a similar set of experiments for evaluating adaptive attribute expansion.
Recall that depth 2 is the lowest depth where adaptive attribute expansion is performed.
So for each query, we construct the relevant set with d∗ = 3 using adaptive A-expansion
at depth 1 and unconstrained H-expansion at depths 1 and 3. The expansion upper-bound

645



Bhattacharya & Getoor

Table 3: Avg. resolution accuracy in F1 with different adaptive expansion strategies

H-expansion A-expansion

Least Ambiguous 0.790 0.815
Most Ambiguous 0.761 0.821
Random 0.770 0.820

amax is set to 0.2, so that on average 1 out of 5 names are expanded. Again, we compare three
strategies: (a) expanding the least ambiguous names, (b) expanding the most ambiguous
names and (c) random expansion. The average accuracies for the three schemes over all
100 queries are listed in the second column of Table 3. The experiment with adaptive A-
expansion does not bring out the difference between the three schemes as clearly as adaptive
H-expansion. This is because we are comparing A-expansion at depth 2 and, on average,
not much improvement can be obtained beyond depth 1 because of a ceiling effect. But
it shows that almost all the benefit up to depth 3 comes from our proposed strategy of
expanding the most ambiguous names.

The above two experiments demonstrate the effectiveness of the two adaptive expansion
schemes in isolation. Now, we look at the results when we use them together. For each
of the 100 queries, we construct the relevant set Rel(rq) with d∗ = 3 using adaptive H-
expansion and adaptive exact A-expansion. Since most of the improvement from collective
resolution comes from depth-1 references, we consider two different experiments. In the
first experiment (AX-2), we use adaptive expansion only at depths 2 and beyond, and
unconstrained H-expansion at depth 1. In the second experiment (AX-1), we use adaptive
H-expansion even at depth 1, with hmax = 6. For both of them, we use adaptive expansion
at higher depths 2 and 3 with parameters hmax = 3 at 3 and amax = 0.2 at 2.

Table 4: Comparison between unconstrained and adaptive expansion for BioBase

Unconstrained AX-2 AX-1

relevant-set size 44,129.5 5,510.52 3,743.52
time (cpu secs) 606.98 43.44 31.28
accuracy (F1) 0.821 0.818 0.820

In Table 4, we compare the two adaptive schemes against unconstrained expansion with
d∗ = 3 over all queries. Clearly, accuracy remains almost unaffected for both schemes.
First, we note that AX-2 matches the accuracy of unconstrained expansion, and shows
almost the same improvement over depth 1. This accuracy is achieved even though it
uses adaptive expansion that expands a small fraction of Rel1(Q), and thereby reduces the
average size of the relevant set from 44,000 to 5,500. More significantly, AX-1 also matches
this improvement even without including many depth-1 references. This reduction in the
size of the relevant set has an immense impact on the query processing time. The average
processing time drops from more than 600 secs for unconstrained expansion to 43 secs for
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Figure 8: Effect of (a) identifying relations on recall and (b) ambiguous relations on preci-
sion for collective clustering. Error bars show standard deviation.

AX-2, and further to just 31 secs for AX-1, thus making it possible to use collective entity
resolution for query-time resolution.

7.1.4 Adaptive Depth Selection

As a further improvement, we investigate if processing time can be reduced by setting the
expansion depth d∗ adaptively, depending on the ambiguity of the query name, as compared
to a fixed d∗ for all queries. In a simple setup, we set d∗ to 1 for queries where the number
of different first initials for a last name is less than 10 (out of 26), and explore depth 2 only
for more ambiguous queries. This reduces expansion depth from 2 to 1 for 18 out of the 100
queries. As a result, the average processing time for these queries is reduced by 35% to 11.5
secs from 17.7 secs with no reduction in accuracy. For three of these queries, the original
processing time at depth 2 is greater than 30 secs. In these preliminary experiments, we only
evaluated our original set of 100 queries that are inherently ambiguous. In a more general
setting, where a bigger fraction of queries have lower ambiguity, the impact is expected to
be even more significant.

7.2 Experiments using Synthetic Data

In addition to experiments on real datasets, we performed experiments on synthetically
generated data. This enables us to reason beyond specific datasets, and also to empirically
verify our performance analysis for relational clustering in general, and more specifically for
entity resolution queries. We have designed a generator for synthetic data (Bhattacharya
& Getoor, 2007) that allows us to control different properties of the underlying entities and
the relations between them, and also of the observed co-occurrence relationships between
the entity references. Among other properties, we can control the number of entities,
the average number of neighbor entities per entity, and the number and average size of
observed co-occurrences. Additionally, we can control the ambiguity of entity attributes,
and the number of ambiguous relationships between entities. We present an overview of the
synthetic data generation process in Appendix A.
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We have performed a number of different experiments on synthetic data. In the first set
of experiments, we investigate the influence of identifying relationships on collective reso-
lution using relational clustering. We generate 500 co-occurrence relations from the same
100 entities and 200 entity-entity relationships, using varying probability of co-occurrences
pR = {0.2, 0.5, 1.0} in the data. The probability of ambiguous relationships is held fixed,
so that higher pR translates to higher probability of identifying co-occurrences in the data.
Figure 8(a) shows recall at different similarity thresholds for three different co-occurrence
probabilities. The results confirm that recall increases progressively with more identifying
relationships at all thresholds. The curves for pR = 0.5 and pR = 1.0 flatten out only when
no further recall is achievable.

Next, we observe the effect of ambiguous relations on the precision of collective reso-
lution using relational clustering. We add 200 binary relationships between 100 entities in
three stages with increasing ambiguous relationship probability (pR

a = {0, 0.3, 0.6}). Then
we perform collective resolution on 500 co-occurrence relations generated from each of these
three settings. In Figure 8(b) we plot precision at different similarity threshold for three dif-
ferent values of pR

a . The plots confirm the progressive decrease in precision for all thresholds
with higher pR

a . For both experiments, the results are averaged over 200 different runs.

Next, we evaluate collective resolution for queries. Recall that the last two rows in Ta-
ble 1 clearly demonstrate the converging nature of performance over increasing expansion
levels for queries on real datasets. We ran further experiments on synthetic data to verify
this trend. In each run, we generated 2,500 co-occurrence relations from 500 entities having
an average of 2 neighbors per entity. Then we performed localized collective clustering
in each case, using as query the most ambiguous attribute value (that corresponds to the
highest number of underlying entities). In Figure 9(c) and (d), we show how recall and pre-
cision change with increasing expansion level for a query. Recall improves with increasing
expansion level, while precision decreases overall, as is predicted by our analysis. Impor-
tantly, recall increases at a significantly faster rate than that for the decrease in precision.
In general, the rate of increase/decrease depends on the structural properties of the data,
as we have shown in our analysis. In other experiments, we have seen different rates of
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change, but the overall trend remains the same. Our analysis also showed that precision
and recall converge quickly over increasing expansion levels. This too is confirmed by the
two plots where the curves flatten out by level 3.

7.3 Current Limitations

Finally, we discuss two of the current limitations of our collective entity resolution approach.
Recall that the similarity measure in Eqn. 1 involves a weighting parameter α for combining
attribute and relational similarity. For all of our experiments, we report the best accuracy
over all values of α for each query. Selecting the optimal value of α for each query is an
unresolved issue. However, our experiments reveal that even a fixed α (α = 0.5) for all
queries brings significant improvements over the baselines.

The second issue is the determination of the termination threshold for RC-ER. Note
that this is an issue for all of the baselines as well, and here we report best accuracy over
all thresholds. This is an area of ongoing research. Preliminary experiments have shown
that the best threshold is often query specific — setting the threshold depending on the
ambiguity of the query results in significantly better accuracy than a fixed threshold for all
queries. For an empirical evaluation, we cleaned the entire arXiv dataset offline by running
RC-ER on all its references together, and terminated at the threshold that maximizes
resolution accuracy over all references. This results in an overall accuracy (F1) of 0.98.
However, the average accuracy measured over the 75 queries in our test set is only 0.87. In
comparison, the best obtainable accuracy when resolving the queries individually each with
a different threshold is 0.97. This suggests that there may be potential benefits to localized
cleaning over its global counterpart in the offline setting.

8. Related Work

The entity resolution problem has been studied in many different areas under different
names — deduplication, record linkage, co-reference resolution, reference reconciliation,
object consolidation, etc. Much of the work has focused on traditional attribute-based
entity resolution. Extensive research has been done on defining approximate string similarity
measures (Monge & Elkan, 1996; Navarro, 2001; Bilenko et al., 2003; Chaudhuri, Ganjam,
Ganti, & Motwani, 2003) that may be used for unsupervised entity resolution. The other
approach uses adaptive supervised algorithms that learn similarity measures from labeled
data (Tejada, Knoblock, & Minton, 2001; Bilenko & Mooney, 2003).

Resolving entities optimally is known to be computationally hard even when only at-
tributes are considered (Cohen, Kautz, & McAllester, 2000). Therefore, efficiency has
received a lot of attention in attribute-based data cleaning. The goal essentially is to avoid
irrelevant and expensive attribute similarity computations using a ‘blocking’ approach with-
out affecting accuracy significantly (Hernández & Stolfo, 1995; Monge & Elkan, 1997; Mc-
Callum et al., 2000). The merge/purge problem was posed by Hernández and Stolfo (1995)
with efficient schemes to retrieve potential duplicates without resorting to quadratic com-
plexity. They use a ‘sorted neighborhood method’ where an appropriate key is chosen for
matching. Records are then sorted or grouped according to that key and potential matches
are identified using a sliding window technique. However, some keys may be badly distorted
so that their matches cannot be spanned by the window and such cases will not be retrieved.

649



Bhattacharya & Getoor

The solution they propose is a multi-pass method over different keys and then merging the
results using transitive closure. Monge and Elkan (1997) combine the union find algorithm
with a priority queue look-up to find connected components in an undirected graph. Mc-
Callum et al. (2000) propose the use of canopies to first partition the data into overlapping
clusters using a cheap distance metric and then use a more accurate and expensive distance
metric for those data pairs that lie within the same canopy. Chaudhuri et al. (2003) use
an error tolerant index for data warehousing applications for probabilistically looking up
a small set of candidate reference tuples for matching against an incoming tuple. This is
considered ‘probabilistically safe’ since the closest tuples in the database will be retrieved
with high probability. This is also efficient since only a small number of matches needs to
be performed. Swoosh (Benjelloun, Garcia-Molina, Su, & Widom, 2005) has recently been
proposed as a generic entity resolution framework that considers resolving and merging
duplicates as a database operator and the goal is to minimize the number of record-level
and feature-level operations. An alternative approach is to reduce the complexity of indi-
vidual similarity computations. Gravano, Ipeirotis, Koudas, and Srivastava (2003) propose
a sampling approach to quickly compute cosine similarity between tuples for fast text-joins
within an SQL framework. All of these approaches enable efficient data cleaning when only
attributes of references are considered.

Many recently proposed approaches take relations into account for data integration
(Ananthakrishna et al., 2002; Bhattacharya & Getoor, 2004, 2005; Kalashnikov et al., 2005;
Dong et al., 2005). Ananthakrishna et al. (2002) introduce relational deduplication in data
warehouse applications where there is a dimensional hierarchy over the relations. Kalash-
nikov et al. (2005) enhance attribute similarity between an ambiguous reference and the
many entity choices for it with relationship analysis between the entities, like affiliation and
co-authorship. In earlier work, we have proposed different measures for relational similar-
ity and a relational clustering algorithm for collective entity resolution using relationships
(Bhattacharya & Getoor, 2004, 2007). Dong et al. (2005) collectively resolve entities of mul-
tiple types by propagating relational evidences in a dependency graph, and demonstrate the
benefits of collective resolution in real datasets. Long, Zhang, Wú, and Yu (2006) have pro-
posed a model for general multi-type relational clustering, though it has not been applied
specifically for entity resolution. They perform collective factorization over related matrices
using spectral methods to identify the cluster space that minimizes distortion over relation-
ships and individual features at the same time. All of these approaches that make use of
relationships either for entity matching (where the domain entities are known) or entity
resolution (where the underlying entities also need to be discovered) have been shown to
increase performance significantly over the attribute-based solutions for the same problems.
However, the price they pay is in terms of computational complexity that increases due
to a couple of different reasons. Firstly, the number of potential matches increases when
relationships are considered and individual similarity computations also become more ex-
pensive. Secondly, collective resolution using relationships necessitates iterative solutions
that make multiple passes over the data. While some of these approaches have still been
shown to be scalable in practice, they cannot be employed for query-time cleaning in a
straight-forward manner.

The idea of multi-relational clustering also comes up in the Inductive Logic Programming
(ILP) literature. Emde and Wettschereck (1996) have used multi-relational similarity for
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instance-based classification of representations in first order logic. They define the similarity
of two objects, e.g., of two people, as a combination of the similarity of their attribute
values, such as their age, weight, etc., and the similarity of the objects that they are
related to, such as the companies they work for. This is similar to the naive relational
similarity that we discussed earlier, except that the similarity of the connected objects is
also defined recursively in terms of their connected objects. Kirsten and Wrobel (1998)
have used this recursive relational similarity measure for agglomerative clustering of first
order representations. While recursive comparison of neighbors is shown to be effective in
terms of accuracy of results, the computational challenge is again a major drawback.

Probabilistic approaches that cast entity resolution as a classification problem have been
extensively studied. The groundwork was done by Fellegi and Sunter (1969). Others (Win-
kler, 2002; Ravikumar & Cohen, 2004) have more recently built upon this work. Adaptive
machine learning approaches have been proposed for data integration (Sarawagi & Bhamidi-
paty, 2002; Tejada et al., 2001), where active learning requires the user to label informative
examples. Probabilistic models that use relationships for collective entity resolution have
been applied to named entity recognition and citation matching (Pasula et al., 2003; Mc-
Callum & Wellner, 2004; Li et al., 2005; Singla & Domingos, 2004). These probabilistic
approaches are superior to similarity-based clustering algorithms in that they associate a
degree of confidence with every decision, and learned models provide valuable insight into
the domain. However, probabilistic inference for collective entity resolution is not known
to be scalable in practice, particularly when relationships are also considered. These ap-
proaches have mostly been shown to work for small datasets, and are significantly slower
than their clustering counterparts.

Little work has been done in the literature for query-centric cleaning or relational ap-
proaches for answering queries, where execution time is as important as accuracy of resolu-
tion. Approaches have been proposed for localized evaluation of Bayesian networks (Draper
& Hanks, 1994), but not for clustering problems. Recently, Chandel, Nagesh, and Sarawagi
(2006) have addressed efficiency issues in computing top-k entity matches against a dictio-
nary in the context of entity extraction from unstructured documents. They process top-k
searches in batches where speed-up is achieved by sharing computation between different
searches. Fuxman, Fazli, and Miller (2005) motivate the problem of answering queries over
databases that violate integrity constraints and address scalability issues in resolving in-
consistencies dynamically at query-time. However, the relational aspect of the problem,
which is the major scalability issue that we address, does not come up in any of these set-
tings. In our earlier work on relational clustering(Bhattacharya & Getoor, 2007), we used
the idea of ‘relevant references’ for experimental evaluation on the BioBase dataset. As
we have also discussed here, this dataset has entity labels only for the 100 most frequent
names. Therefore, instead of running collective resolution over the entire BioBase dataset,
we evaluated the 100 names separately, using only the ‘relevant references’ in each case.
The relevant references were the ones directly connected to references having the names of
interest. The concept of focused cleaning, the performance analysis of relational cluster-
ing, the expand-resolve strategy and, most importantly, the idea of adaptive expansion for
query-time resolution were not addressed in that paper.

One of the first papers to make use of relational features for classification problem was
by Chakrabarti, Dom, and Indyk (1998). They showed that for the problem of classifying
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hyper-linked documents, naive use of relationships can hurt performance. Specifically, if
key terms from neighboring documents are thrown into the document whose topic is to be
classified, classification accuracy degrades instead of improving. The parallel in our scenario
of clustering using relationships is that the naive relational model (NR) may perform worse
than the attribute model (A) in the presence of highly ambiguous relationships. Chakrabarti
et al. (1998) showed that relationships can however be used for improved classification
when the topic labels of the neighboring documents are used as evidence instead of naively
considering the terms that they contain. In our earlier work (Bhattacharya & Getoor, 2004,
2007), we have shown similar results for collective clustering using relationships, where the
cluster labels of neighboring labels lead to improved clustering performance compared to
naive relational and attribute-based clustering. The interesting result that we have shown
in this paper both in theory and empirically is that even collective use of relationships
can hurt clustering accuracy compared to attribute-based clustering. This happens when
relationships between references are dense and ambiguous, and errors that propagate over
relationships exceed the identifying evidence that they provide.

9. Conclusions

In this paper, we have motivated the problem of query-time entity resolution for accessing
unresolved third-party databases. For answering entity resolution queries, we have ad-
dressed the challenges of using collective approaches, which have recently shown significant
performance improvements over traditional baselines in the offline setting. The first hurdle
for collective resolution arises from the interdependent nature of its resolution decisions. We
first formally analyzed the recursive nature of this dependency, and showed that the preci-
sion and recall for individual entities grow in a geometric progression as increasing levels of
neighbors are considered and collectively resolved. We then proposed a two-stage ‘expand
and resolve’ strategy for answering queries based on this analysis, using two novel expansion
operators. We showed using our analysis that it is sufficient to consider neighbors up to small
expansion depths, since resolution accuracy for the query converges quickly with increasing
expansion level. The second challenge for answering queries is that the computation has to
be quick. To achieve this, we improved on our unconstrained expansion strategy to propose
an adaptive algorithm, which dramatically reduces the size of the relevant references —
and, as a result, the processing time — by identifying the most informative references for
any query. We demonstrated using experiments on two real datasets that our strategies
enable collective resolution at query-time, without compromising on accuracy. We addi-
tionally performed various experiments on synthetically generated data over a wide range
of settings to verify the trends predicted by our analysis. In summary, we have addressed
and motivated a critical data integration and retrieval problem, proposed algorithms for
solving it accurately and efficiently, provided a theoretical analysis to validate our approach
and explain why it works, and, finally, shown experimental results on multiple real-world
and synthetically generated datasets to demonstrate that it works extremely well in prac-
tice. While we have presented results for bibliographic data, the techniques are applicable
in other relational domains.

While we have shown the dramatic reduction in query processing time that comes with
adaptive expansion, more research is necessary to be able to answer entity resolution queries
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on the order of milli-seconds, as may be demanded in many scenarios. Interesting directions
of future research include exploring stronger coupling between the extraction and resolution
phases of query processing, where the expansion happens “on-demand” only when the
resolution process finds the residual ambiguity to be high and requires additional evidence
for taking further decisions. This would directly address the problem of determining the
expansion depth. While we have reported some preliminary experiments in this paper, more
work needs to be done on adaptive depth determination depending on ambiguity. In the
same context, we may imagine “soft” thresholds for adaptive expansion, where the expansion
operator automatically determines the number of hyper-edges or names to be expanded so
that the residual ambiguity falls below some specified level. Other interesting extensions
include caching of intermediate resolutions, where the related resolutions performed for any
query are stored and retrieved as and when required for answering future queries.
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Appendix A

Synthetic Data Generator

We have designed a synthetic data generator that allows us to control different structural
and attribute-based characteristics of the data(Bhattacharya & Getoor, 2007). Here we
present an overview of the generation algorithm.

The generation process has two stages. In the first stage, we create the collaboration
graph among the underlying entities and the entity attributes. In the second, we generate
observed co-occurrence relations from this collaboration graph. A high level description
of the generative process in shown in Figure 10. Next, we describe the two stages of the
generation process in greater detail.

The graph creation stage, in turn, has two sub-stages. First, we create the domain
entities and their attributes and then add relationships between them. For creating entities,
we control the number of entities and the ambiguity of their attributes. We create N entities
and their attributes one after another. For simplicity and without losing generality, each
entity e has a single floating point attribute e.x, instead of a character string. A parameter
pa controls the ambiguity of the entity attributes; with probability pa the attribute of a new
entity is chosen from values that are already in use by existing entities. Then M binary
relationships are added between the created entities. As with the attributes, there is a
parameter controlling the ambiguity of the relationships, as defined in Section 4. For each
binary relationship (ei, ej), first ei is chosen randomly and then ej is sampled so that (ei, ej)
is an ambiguous relationship with probability pR

a .

Before describing the process of generating co-occurrence relationships from the graph,
let us consider in a little more detail the issue of attribute ambiguity. What finally needs
to be controlled is the ambiguity of the reference attributes. While these depend on the
entity attributes, they are not completely determined by entities. Taking the example
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Creation Stage

1. Repeat N times

2. Create random attribute x with ambiguity pa

3. Create entity e with attribute x

4. Repeat M times

5. Choose entity ei randomly

6. Choose entity ej with prob pR
a of an ambiguous relationship (ei, ej)

7. Set ei = Nbr(ej) and ej = Nbr(ei)

Generation Stage

8. Repeat R times

9. Randomly choose entity e

10. Generate reference r using N (e.x, 1)
11. Initialize hyper-edge h = 〈r〉
12. Repeat with probability pc

13. Randomly choose ej from Nbr(e) without replacement

14. Generate reference rj using N (ej .x, 1)
15. Add rj hyper-edge h

16. Output hyper-edge h

Figure 10: High-level description of synthetic data generation algorithm

of names, two people who have names ‘John Michael Smyth’ and ‘James Daniel Smith’
can still be ambiguous in terms of their observed names in the data depending on the
generation process of observed names. In other words, attribute ambiguity of the references
depends both on the separation between entity attributes and the dispersion created by the
generation process. We make the assumption that for an entity e with attribute e.x, its
references are generated from a Gaussian distribution with mean x and variance 1.0. So,
with very high probability, any reference attribute generated from e.x will be in the range
[e.x − 3, e.x + 3]. So this range in the attribute domain is considered to be ‘occupied’ by
entity e. Any entity has an ambiguous attribute if its occupied range intersects with that
of another entity.

Now we come to the generation of co-occurrence relationships from the entity collabora-
tion graph. In this stage, R co-occurrence relationships or hyper-edges are generated, each
with its own references. For each hyper-edge 〈ri, ri1, . . . , rik〉, two aspects need to be con-
trolled — how many references and which references should be included in this hyper-edge.
This is done as follows. First, we sample an entity ei which serves the initiator entity for
this hyper-edge. Then other entities eij for this hyper-edge are repeatedly sampled (with-
out replacement) from the neighbors of the initiator entity ei. The size of the hyper-edge is
determined using a parameter pc. The sampling step for a hyper-edge is terminated with
probability pc after each selection eij . The process is also terminated when the neighbors
of the initiator entity are exhausted. Finally, references rij need to be generated from each
of the selected entities eij . This is done for each entity e by sampling from its Gaussian
distribution N (e.x, 1).

654



Query-time Entity Resolution

References

Ananthakrishna, R., Chaudhuri, S., & Ganti, V. (2002). Eliminating fuzzy duplicates in
data warehouses. In The International Conference on Very Large Databases (VLDB),
Hong Kong, China.

Benjelloun, O., Garcia-Molina, H., Su, Q., & Widom, J. (2005). Swoosh: A generic approach
to entity resolution. Tech. rep., Stanford University.

Bhattacharya, I., & Getoor, L. (2004). Iterative record linkage for cleaning and integra-
tion. In The SIGMOD Workshop on Research Issues on Data Mining and Knowledge
Discovery (DMKD), Paris, France.

Bhattacharya, I., & Getoor, L. (2005). Relational clustering for multi-type entity resolu-
tion. In The ACM SIGKDD Workshop on Multi Relational Data Mining (MRDM),
Chicago, IL, USA.

Bhattacharya, I., & Getoor, L. (2006). Mining Graph Data (L. Holder and D. Cook, eds.),
chap. Entity Resolution in Graphs. Wiley.

Bhattacharya, I., & Getoor, L. (2007). Collective entity resolution in relational data. ACM
Transactions on Knowledge Discovery from Data (TKDD), 1 (1).

Bhattacharya, I., Licamele, L., & Getoor, L. (2006). Query-time entity resolution. In The
ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD),
Philadelphia, PA, USA.

Bilenko, M., & Mooney, R. (2003). Adaptive duplicate detection using learnable string
similarity measures. In The ACM International Conference on Knowledge Discovery
and Data Mining (SIGKDD), Washington DC, USA.

Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., & Fienberg, S. (2003). Adaptive name
matching in information integration.. IEEE Intelligent Systems, 18 (5), 16–23.

Chakrabarti, S., Dom, B., & Indyk, P. (1998). Enhanced hypertext categorization using
hyperlinks. In Proceedings of the ACM International Conference on Management of
Data (SIGMOD).

Chandel, A., Nagesh, P. C., & Sarawagi, S. (2006). Efficient batch top-k search for
dictionary-based entity recognition. In The IEEE International Conference on Data
Engineering (ICDE), Washington, DC, USA.

Chaudhuri, S., Ganjam, K., Ganti, V., & Motwani, R. (2003). Robust and efficient fuzzy
match for online data cleaning. In The ACM International Conference on Management
of Data (SIGMOD), San Diego, CA, USA.

Cohen, W., Kautz, H., & McAllester, D. (2000). Hardening soft information sources. In The
ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD),
Boston, MA, USA.

Dong, X., Halevy, A., & Madhavan, J. (2005). Reference reconciliation in complex in-
formation spaces. In The ACM International Conference on Management of Data
(SIGMOD), Baltimore, MD, USA.

655



Bhattacharya & Getoor

Draper, D., & Hanks, S. (1994). Localized partial evaluation of belief networks. In The
Annual Conference on Uncertainty in Artificial Intelligence (UAI), Seattle, WA, USA.

Emde, W., & Wettschereck, D. (1996). Relational instance based learning. In Proceedings
of the International Conference on Machine Learning (ICML).

Fellegi, I., & Sunter, A. (1969). A theory for record linkage. Journal of the American
Statistical Association, 64, 1183–1210.

Fuxman, A., Fazli, E., & Miller, R. (2005). Conquer: Efficient management of inconsistent
databases. In The ACM International Conference on Management of Data (SIG-
MOD), Baltimore, MD, USA.

Gravano, L., Ipeirotis, P., Koudas, N., & Srivastava, D. (2003). Text joins for data cleans-
ing and integration in an rdbms. In The IEEE International Conference on Data
Engineering (ICDE), Bangalore, India.

Hernández, M., & Stolfo, S. (1995). The merge/purge problem for large databases. In The
ACM International Conference on Management of Data (SIGMOD), San Jose, CA,
USA.

Kalashnikov, D., Mehrotra, S., & Chen, Z. (2005). Exploiting relationships for domain-
independent data cleaning. In SIAM International Conference on Data Mining (SIAM
SDM), Newport Beach, CA, USA.

Kirsten, M., & Wrobel, S. (1998). Relational distance-based clustering. In Proceedings of
the International Workshop on Inductive Logic Programming (ILP).

Li, X., Morie, P., & Roth, D. (2005). Semantic integration in text: From ambiguous names
to identifiable entities. AI Magazine. Special Issue on Semantic Integration, 26 (1).
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