Paired-Dual Learning for Fast Training of Latent Variable Hinge-Loss MRF's

Stephen H. Bach*
Bert Huang*

Jordan Boyd-Graber
Lise Getoor

* Equal contributors.

Abstract

Latent variables allow probabilistic graphical
models to capture nuance and structure in im-
portant domains such as network science, natural
language processing, and computer vision. Naive
approaches to learning such complex models can
be prohibitively expensive—because they require
repeated inferences to update beliefs about la-
tent variables—so lifting this restriction for use-
ful classes of models is an important problem.
Hinge-loss Markov random fields (HL-MRFs)
are graphical models that allow highly scalable
inference and learning in structured domains, in
part by representing structured problems with
continuous variables. However, this representa-
tion leads to challenges when learning with la-
tent variables. We introduce paired-dual learn-
ing, a framework that greatly speeds up training
by using tractable entropy surrogates and avoid-
ing repeated inferences. Paired-dual learning op-
timizes an objective with a pair of dual inference
problems. This allows fast, joint optimization of
parameters and dual variables. We evaluate on
social-group detection, trust prediction in social
networks, and image reconstruction, finding that
paired-dual learning trains models as accurate as
those trained by traditional methods in much less
time, often before traditional methods make even
a single parameter update.

1. Introduction

Latent variables can capture structure in complicated do-
mains and have been used extensively in social and bio-
logical network analysis, Web analytics, computer vision,
and many other domains that study large-scale, structured
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data. However, including latent variables sacrifices scala-
bility for expressiveness because the values of latent vari-
ables are—by definition—unknown. Algorithms for learn-
ing with latent variables often require repeated inference
to iteratively update parameters, and each inference alone
can be expensive for a large model. For example, infer-
ence methods like Gibbs sampling and belief propagation
require many iterations to converge, and learning methods
like EM alternate between fully inferring latent variable
values and updating parameters.

Latent variables are particularly valuable in rich, structured
models, but the computational costs become even more
challenging. Our contribution is a new learning frame-
work for rich, structured, continuous latent-variable mod-
els that addresses this computational bottleneck. Our focus
is on hinge-loss Markov random fields (HL-MRFs) (Bach
et al., 2013b), a class of probabilistic graphical models that
makes large-scale maximum a posteriori (MAP) inference
highly efficient by representing structured domains with
continuous variables. These models have been successfully
applied to user attribute (Li et al., 2014) and trust (Huang
et al., 2013; West et al., 2014) prediction in social net-
works, natural language semantics (Beltagy et al., 2014),
and drug discovery (Fakhraei et al., 2014). Researchers
have also begun to train HL-MRFs with latent variables for
tasks such as group detection in social media (Bach et al.,
2013a), online-education analytics (Ramesh et al., 2014),
and automobile-traffic modeling (Chen et al., 2014). Like
other approaches to learning with latent variables, these ap-
plications repeatedly solve inference problems to conver-
gence for each update of the parameters. Removing this
bottleneck is critical for retaining the existing scalability
benefits of HL-MRFs when training with latent variables.

Overcoming the need for repeated inference requires
contending with challenges that arise from a continu-
ous representation, including the need for efficient al-
ternatives to representing distributions over uncountable
state spaces and evaluating irreducible integrals. For
fully-supervised learning, large-margin methods can use
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the dual of loss-augmented inference to form a joint con-
vex minimization (Taskar et al., 2005; Meshi et al., 2010).
Schwing et al. (2012) extended this idea to latent-variable
learning for discrete MRFs, using a method specifically
formulated to pass messages corresponding to the discrete
states of the variables. While these methods are incompat-
ible with continuous models, dualization is also a key to
faster training of continuous models with latent variables.

In Section 3, we propose paired-dual learning, a frame-
work that quickly trains HL-MRFs with latent variables
by avoiding repeated inferences. Traditional methods for
learning with latent variables require repeated inferences
for two distributions to compute gradients. The unob-
served random variables are grouped into two sets, those
with training labels and those without, i.e., the latent vari-
ables. One distribution is joint over the labeled variables
and the latent variables, and the other is over the latent
variables conditioned on the labels. Paired-dual learning
uses an equivalent variational learning objective that sub-
stitutes dual problems for the two corresponding inference
problems, augmented with entropy surrogates to make the
learning problem well-formed. We describe how to design
suitable entropy surrogates that retain the useful proper-
ties of entropy while still admitting fast HL-MRF infer-
ence. We can therefore compute the gradient of the paired-
dual learning objective with respect to the parameters using
the intermediate states of inference, enabling a fast, block-
coordinate joint optimization.

We show in Section 4 that paired-dual learning drastically
reduces the time required for learning without sacrificing
accuracy on three real-world problems: social-group de-
tection, trust prediction in social networks, and image re-
construction. Paired-dual learning cuts training time by as
much as 90%, often converging before traditional methods
make a single update to the parameters.

2. Background

In this section, we review hinge-loss MRFs, the class of
models for which we derive paired-dual learning. We also
give an overview of MAP inference and variational learn-
ing with latent variables, which will serve as foundations
for our framework.

2.1. Hinge-Loss MRFs

HL-MRFs are Markov random fields with hinge-loss po-
tential functions defined over continuous variables.

Definition 1. Lety = (y1,. ..
ables and * = (x1,...,2z,) a vector of n' variables
with joint domain [0,1]"*"'. Let ¢ = (¢1,...,0m)
be m continuous potentials of the form ¢;(y,x) =
(max {¢;(y,x),0})Pi, where {; is a linear function of y

,Yn) be a vector of n vari-

and x and p; € {1,2}. Given a vector of nonnegative free
parameters, i.e., weights, w = (w1, ..., wy,), a hinge-loss
Markov random field P over y and conditioned on x is a
probability density function

P(y|z;w) = exp (—w' ¢(y,x)) ;

_
T;w)
Z(x;w) = / exp (f'qu&(y,a:)) dy .

HL-MREFs are very expressive. Hinge functions can model
logic-like implications, in which one variable should be
greater than another, and correlations, in which two vari-
ables are preferred to be close in value, by adding two
hinge-loss potentials to make a distance function. The ex-
ponent p; specifies the loss family.

2.2. MAP Inference for Hinge-Loss MRFs

HL-MRFs admit exact, highly scalable MAP inference that
optimizes a dual to the inference objective, which is con-
structed via techniques called consensus optimization and
the alternating direction method of multipliers, or ADMM
(Boyd et al., 2011, and references therein). This dual
problem is substituted into the learning objective to derive
paired-dual learning, so we review it in this subsection. The
convexity of the potentials and the non-negativity of the
weights make MAP inference for HL-MRFs the following
convex optimization:

argmax P(y|z;w) = argmin w' ¢(y,x). (1)
y€[0,1]" Y

For HL-MREFs, this objective can be solved efficiently us-
ing the following formulation as a consensus optimization.
Let f(v) = Y./", w; - ¢i(v?) be a separable function with
components corresponding to the potentials in Equation 1,
and let v = {v!,...,v™} consist of local copies for vari-
ables y so that each term in f(v) is a function of disjoint
components of v. To make the optimization over f(v)
equivalent to MAP inference, let v be a vector of n consen-
sus variables, each corresponding to entries in the HL-MRF
variable vector y, and let a consensus function c(v, v) be a
linear operator that outputs a vector of differences between
each pair of corresponding components of v and v. For
example, the element c(v, ¥); ;) is the difference between
consensus variable v; and its -th local copy v7. The func-
tion ¢ can be viewed as the violations for the constraint
that the local variables equal their corresponding consen-
sus variables. Finally, let each component of v and v be
real valued and introduce a constraint function on v, g(v),
whichis 0if © € [0, 1]™ and oo otherwise. Then Equation 1
is equivalent to

argmin f(v)+ g(v) suchthat c(v,9)=0.

v,
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This consensus optimization formulation can be solved ef-
ficiently with ADMM, which provides strong convergence
guarantees. ADMM relaxes the equality constraints of con-
sensus optimization by introducing dual variables c, with
one entry for each dimension of c(v, ), and forming the
augmented Lagrangian

L(v,a,9) = f(v) + g(v) + a c(v,9) + gI\C('v, v)||?

where 17 > 0 is a user-specified parameter. By alternating
maximization of L with respect to v and v, and then up-
dating o, ADMM converges to a MAP assignment to the
HL-MREF variables y = v*. For HL-MREF potentials, these
updates can be done efficiently (Bach et al., 2013b).

2.3. Variational Learning with Latent Variables

Paired-dual learning quickly optimizes a standard learning
objective, which we review in this subsection. When learn-
ing models with latent variables, the usual goal is to maxi-
mize the marginal likelihood of the labels ¥ given observed
variables &, marginalizing out over all possible configura-
tions of latent variables z. For a parameter setting w and
any state of the latent variables z, the log marginal likeli-
hood can be expressed as a log ratio of joint and conditional
likelihoods, which simplifies to the difference of two nor-
malizing partition functions:

log P (y|@; w) = log Z(x, §; w) — log Z(x; w) .

Each of these partition functions has a variational form
(Wainwright & Jordan, 2008), yielding the identity

log Z(x,§; w) — log Z(x; w)

= min max E, [w' z.y.2) — H
PEA(Y,z) qEA(Z) ‘)[ o(z.y )} (p) (2)

- ]Eq [qus(wa Q? Z)] + H(Q) )
where p is a joint distribution over the y and z variables
from the space of all joint distributions A(y, z), ¢ is a con-

ditional distribution over the the z variables from the space
of all conditional distributions A(z), and H is the entropy.

Using the variational form, Equation 2, regularized maxi-
mum likelihood is the following saddle-point optimization:

argmin  max min
w PEA(y,z) qEA(Z)

ol ~ By [wT g, y.2)] + Hp) O
+E, [wT¢(m,:&,Zﬂ — H(q)

where A > 0 is a tunable regularization parameter.! We
solve the learning problem in its variational form because it

"We use L2 regularization in our derivations and experiments,
but paired-dual learning is easily adapted to include any regular-
ization function whose subdifferentials are computable.

enables principled approximations of intractable problems
by restricting the spaces of distributions A(y, z) and A(z).

A traditional approach for optimizing Equation 3 computes
subgradients of the outer minimization over w by exactly
solving the inner min-max and differentiating. Another ap-
proach iteratively solves the conditional inference over 2/,
fixes z’, and solves the remaining min-max over w and ¥y, z
as a fully-observed maximum-likelihood estimation.> Each
of these approaches performs a block coordinate ascent-
descent that requires fully solving two (or more) inferences
per iteration of the outer optimization.

3. Paired-Dual Learning

In this section, we present paired-dual learning, a frame-
work for training HL-MRFs with latent variables. Opti-
mizing the variational learning objective, Equation 3, is
intractable because the expectations and entropies are ir-
reducible integrals. Traditional methods approximate the
objective by restricting the variational distributions p and ¢
to tractable families, and we adopt this approach as well.
However, traditional methods fit and refit p and g exactly
before each update of the parameters w. Paired-dual learn-
ing speeds up training by interleaving updates of w into
dual optimizations over p and ¢. Dualizing these inference
problems allows training to use the intermediate solutions
produced by ADMM. To enable this interleaved joint opti-
mization, we first construct surrogates for the entropy func-
tions H(p) and H(q) so that, when the variational fam-
ilies A(y, z) and A(z) are restricted to point estimates,
fitting the distributions p and ¢ is subsumed by MAP in-
ference, while still preserving the desired properties of en-
tropy functions in learning. To optimize over the model
parameters w, we consider the ADMM duals of both vari-
ational inference problems, forming a new saddle-point ob-
jective that can be differentiated with respect to w during
intermediate stages of ADMM.

3.1. Tractable Entropy Surrogates

As with many continuous models, optimizing Equation 3
exactly for HL-MREFs is intractable because the expecta-
tions and the entropies are irreducible integrals. To remove
this intractability, we first adopt the common approxima-
tion of restricting A(y, z) and A(z) to tractable families
of variational distributions. We restrict the variational fam-
ilies to point distributions, enabling highly scalable MAP
inference techniques to optimize over them. In other words,
the minimizing distribution p* places all probability on the
point (y, z) that minimizes w' ¢(x,y,2) — H(p), and

This strategy is equivalent to variational expectation maxi-
mization (EM), or “hard” EM if using point distributions, and it
generalizes the standard approach for latent structured SVM.
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q* places all probability on the point z that minimizes
w' ¢(x, 9, z) — H(q). Moreover, the entropies H (p) and
H(q) are always zero for point distributions, so finding p*
and ¢* for a particular w are instances of MAP inference.

Using this approximation alone, Equation 3 always has a
degenerate global optimum at w = 0. This degeneracy
reveals the importance of having nontrivial entropy terms
to reward high-entropy states. To remove this degenerate
solution, we need to include tractable surrogates for the
entropies in Equation 3 that behave as the true entropies
should: biasing the objective away from the labeled state
so that stronger weights are necessary to produce good pre-
dictions. Therefore, the surrogate entropy and the weight-
norm regularization will have opposite effects, removing
the degenerate zero solution.

We can preserve this non-degeneracy effect without com-
plicating MAP inference by choosing hinge functions as
entropy surrogates and treating them as potentials with
fixed weights. For example, if a HL-MRF variable y repre-
sents the degree to which a person is in each of two latent
groups—with y = 0.0 being completely in a group and
y = 1.0 being completely in the other—then, the follow-
ing pair of squared-hinge potentials can act as a suitable
entropy surrogate for the point distribution at y:

—w (max{y,0}* + max{1 — y,0}?) .

This entropy surrogate penalizes solutions where y devi-
ates from 0.5, making the learning objective prefer mod-
els strong enough to push y towards one extreme. During
learning, the associated parameter w is fixed, but during
MAP inference the surrogate can be treated as another pair
of hinge potentials, preserving the scalability of inference.

The function that acts as a surrogate does not need a prob-
abilistic interpretation, and the appropriate choice of these
surrogates can generalize the objectives of latent structured
SVM (LSSVM) (Yu & Joachims, 2009) and variants of ex-
pectation maximization (EM). The LSSVM objective uses
a loss between the current prediction y and the labels g as a
surrogate for H (p) and no surrogate, i.e., 0, for H(q). The
£1 loss function can be represented with simple hinge func-
tions, enabling HL-MRF inference (Bach et al., 2013b).
We discuss these connections further in Section 5.

Let h be any surrogate entropy of point distributions. The
tractable latent variable HL-MRF learning objective is

argmin max min

w Y,z z’
A
Flwl? —w'd@.y,2) +hiy.z) @

+w' P(x,9,2") — h(y,2).

3.2. Joint Optimization

The traditional approaches involving repeatedly perform-
ing complete inference, i.e., finding y, 2, and 2’ in Equa-
tion 4, can be very expensive in large-scale settings. In-
stead, we derive a method that exploits that HL-MREF infer-
ence can be solved via ADMM. In particular, this method
enables optimization using partial solutions to inference.
That is, the optimization can proceed before the inference
optimization completes its computation.

We form a new joint optimization by rewriting Equation 4
with the corresponding augmented Lagrangians used to
solve the inner optimizations. Let L., (v, ,v) be the
augmented Lagrangian for minimizing w' ¢(x,y,z) —
h(y, z). We subscript the augmented Lagrangian with the
parameters w to emphasize that it is also a function of the
current parameters. Let L. (v’,a’,v’) be the analogous
augmented Lagrangian for minimizing w ' ¢(x, ¥, 2') —
h(y, z"). Substituting them into Equation 4, we write the
equivalent paired-dual learning objective:

argmin max min min max
w v,0 a v, v’ o’
A 2 l Y (5)
§||’I.UH +Lw(v7av@)_Lw(U7avﬁ)'

Since the inner optimizations are guaranteed to converge to
the global optima for fixed w (Boyd et al., 2011), Equa-
tions 4 and 5 are identical. With this view, we no longer
need to solve the optimizations to completion as they ap-
pear in the primal Equations 4. Instead, a finer-grained
block-coordinate optimization over the variables that ap-
pear in the paired-dual Equation 5, interleaving subgradi-
ent steps over w and ADMM iterations over the other vari-
ables, reaches an optimum more quickly.

This objective is non-convex, and determining whether any
block-coordinate optimization scheme for it will converge
is an open question. If the inner optimizations were solved
to convergence between updates of w, then the optimiza-
tion provably converges as an instance of the concave-
convex procedure (Yuille & Rangarajan, 2003), in the same
manner as LSSVM (Yu & Joachims, 2009). Schwing et al.
(2012) derived a convergent algorithm for training discrete
Markov random fields with latent variables that dualizes
the optimization over (discrete) y and z and interleaves up-
dating the corresponding dual variables and the parameters
w—while still solving the optimization over z’ to conver-
gence at each iteration. This algorithm updates beliefs over
discrete variables but is not applicable to the continuous,
non-linear potentials of HL-MRFs. While no guarantees
for paired-dual learning are known, it always converges in
our diverse experiments (see Section 4).
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Algorithm 1 Paired-Dual Learning

Input: model P(y, z|x; w), labeled data 4,
initial parameters w
Form augmented Lagrangian L., (v, &, V)
for argmin, , w' ¢(x,y, z) — h(y, z)
Form augmented Lagrangian L. (v', &/, ?’)
for argmin,, w' ¢(x, ¥, 2') — h(f,2')
for ¢t from 1 to T do
for n from 1 to N or until converged do
a +— a+ne(v,v)
v < argmin, L, (v, o, D)
U« argming L, (v, o, D)
end for
for n from 1 to IV or until converged do
o+ o' +nc(v',v)
v’ + argmin,, L, (v, o/, ?’)
v’ + argming, L., (v, o/, ?’)
end for
if t > K then
VsV [%||w||2+L;ﬂ(v’, o, 0')— Ly (v, 0, 0)]

Update w via V,
end if
end for

3.3. Learning Algorithm

The complete learning algorithm is summarized in Algo-
rithm 1. We first construct the augmented Lagrangian
L, (v, o, v) for MAP inference in P(y, z|x;w) and the
analogous augmented Lagrangian L/ (v, &', v’) for infer-
ence in P(z|z,Y;w), as described in Section 2.2. Then, at
each iteration ¢, we first execute ADMM iterations, which
update the Lagrangian L., (v, &, ©) by taking a step in the
dual space over the variables «, then optimizing v, and fi-
nally optimizing v. We limit ADMM to N iterations before
moving on, where N is a user-specified parameter.® In our
experiments, we found that higher values result in slower
training, and in Section 4, we discuss results that suggest
setting N = 1, i.e., single updates of all variables, provides
the best speed and accuracy.

We then update the other Lagrangian L), (v’, o/, v"). At
the end of each iteration ¢, we update w via the derivative
of the joint objective, Equation 5. The gradients V,, for
L., and L., are straightforward. The gradient for a poten-
tial ¢ is the potential function value at the current setting

3If Lo, (v, a, D) converges for the current setting of w, we ter-
minate the inner loop early. Therefore, each inner loop performs
between 1 and N ADMM iterations at each outer iteration ¢. See
Appendix F for more on ADMM convergence criteria.

of the local copies v and v’. This computation only differs
from how one computes the gradient in the primal setting in
that it is evaluated for variable copies that might not agree
during this intermediate stage. Since the weights w do not
interact with any of the dual terms in the augmented La-
grangian, these terms do not affect the gradient.

Naive interleaving of learning with inference could be
implemented with early stopping and warm starting of
ADMM inference. Without the paired-dual view, one could
use the gradient of the primal objective using the consen-
sus variables © and ©’ (or some other estimate of the infer-
ence variables), but these gradients would not correspond
to Equation 5, or to any principled objective function. In-
stead, the paired-dual learning objective enables joint opti-
mization of a principled objective, with gradient computa-
tions no more complicated than in the primal setting.

Finally, one can “warm up” the ADMM variables by up-
dating v, «, v, v’, &/, and ¥’ for a few iterations before
beginning to update the parameters w. Setting warm-up pa-
rameter K greater than zero can improve the initial search
direction for w by reducing the gap between the paired-
dual gradient and the ADMM approximation for the initial
setting of w. In our experiments (Section 4), K = 0 often
suffices, but for one task, using K = 10 produces a bet-
ter start to optimization. The cost of this warmup is neg-
ligible, since learning often requires hundreds of ADMM
iterations, but the benefits of taking a better initial gradient
step can be significant in practice.

Variants of paired-dual learning easily fit into this frame-
work. We can stop after a fixed number of iterations or
when w has converged. We can transparently apply ex-
isting strategies for smoother gradient-based optimization,
e.g., adaptive rescaling (Duchi et al., 2011) or averaging.

4. Experiments

In this section, we evaluate paired-dual learning by com-
paring it with traditional learning methods on real-world
problems. We test two variants of paired-dual learning:
the finest grained interleaving with only two ADMM itera-
tions per weight update (/N = 1) and a coarser grained 20
ADMM iterations per update (N = 10). We compare with
primal subgradient, which evaluates subgradients of Equa-
tion 4 by solving the inner optimizations to convergence
(N = 00), and expectation maximization (EM), which fits
the parameters via multiple subgradient descent steps for
each point estimate of the latent variables z’.

We consider three problems that publications have ad-
dressed using HL-MRFs: group detection in social media,
social-trust prediction, and image reconstruction. For each
problem, we build HL-MRFs that include latent variables
and surrogate entropies, run each learning algorithm, and



Paired-Dual Learning for Fast Training of Latent Variable Hinge-Loss MRFs

evaluate on held-out test data. The iterations of ADMM
constitute most of the computational cost during learning,
so we measure the quality of the learned models as a func-
tion of the number of ADMM iterations taken during learn-
ing. Since each ADMM step is exactly the same amount
of computation, regardless of the learning algorithm or the
current model, the number of ADMM steps represents the
computational cost, avoiding confounding factors such as
differences in hardware used in these experiments. During
each outer iteration of each algorithm, we store the current
weights and later use these weights offline to measure the
primal objective, Equation 4, and predictive performance
on held out data. We provide high-level details on each
experiment and defer additional details to the appendix.

For all four methods, we update weights using a standard
subgradient descent approach for large-scale MRFs (e.g.,
Lowd & Domingos, 2007), in which we take steps in the di-
rection dictated by the subgradient, scaled by the number of
potentials sharing each weight, and return the final average
weight vector over all iterations of learning. EM and pri-
mal subgradient solve inference problems to convergence
for each update of the parameters, but we warm-start them
at each iteration from the optima for the previous iteration
to avoid artificially inflating their running times.

Discovering Latent Groups in Social Media Groups of
people can form online around common traits, interests,
or opinions. Often these groups are not explicitly defined
in social media, but can be discovered by modeling group
membership as latent variables that depend on user behav-
ior. To test paired-dual learning on this task, we use the
data of Bach et al. (2013a), who collected roughly 4.275M
tweets from about 1.350M Twitter users, from a 48-hour
window around the Venezuelan presidential election on
Oct. 7, 2012. We model the supporters of the two candi-
dates by introducing two latent groups.

We use a learning setup based on that of Bach et al. (2013a),
who build a model that relates language usage and so-
cial interactions to latent group membership. The 20 most
retweeted users in the data are considered top users. Others
that interacted with a top user and used at least one hashtag
are regular users, whose group affiliation are latent.

We construct HL-MRFs by introducing squared hinge-loss
dependencies between each user’s latent group and each
hashtag, and each user’s latent group to each top user. We
then introduce dependencies between pairs of regular users
for each online interaction they shared. These dependen-
cies among users’ latent groups makes the task a single,
joint structured prediction. We treat hashtag usage and in-
teractions with non-top users as observations «, interac-
tions with top users as labeled targets y, and latent group
membership as latent variables z. The dependencies share

parameters such that there is a parameter for each hashtag-
group pair and each group-top-user interaction pair. We
evaluate each model’s ability to predict interactions with
top users, measuring the area under the precision recall
curve (AuPR) using ten folds of cross-validation. In this
experiment, we set K = 0, immediately starting learning.

Paired-dual learning optimizes the objective value signif-
icantly faster than all other methods, and this faster opti-
mization translates to the faster learning of a more accu-
rate model on test data. In fact, the curves for primal sub-
gradient and EM begin at their first parameter updates, so
paired-dual learning reaches a high quality model before
the primal methods have learned anything. The top row of
Figure 4 plots the objective and AuPR for one fold and a
scatter plot of the AuPR on all ten folds for a subset of the
points. Full results are in Appendix B.

Latent User Attributes in Trust Networks HL-MRFs
have recently been shown to be state-of-the-art tools for
social-trust prediction, the task of predicting directed trust
relationships between pairs of users in social networks.
Huang et al. (2013) showed that HL-MRFs representing
social psychological theories produce more accurate joint
trust predictions than existing methods specifically de-
signed for trust prediction. We augment their model, which
is based on the social theory of structural balance, by using
latent variables to model the user attributes of trustworthi-
ness and willingness to trust. We describe here the addi-
tional latent variables and dependencies.

We introduce two latent attributes for each user, “trusting”
and “trustworthy.” We then introduce dependencies be-
tween each trusting property and all possible outgoing trust
relationships in which the corresponding user participates,
and between each trustworthy property and all possible in-
coming trust relationships. Full details on the model are
in Appendix C. These latent properties act as aggregators,
modeling the trends in each user’s trust relationships.

We evaluate on a subsample of roughly 2,000 users of Epin-
ions.com (Huang et al., 2013; Richardson et al., 2003). The
task is to predict user-user trust ratings given the observed
social network and partial observation of ratings. We again
set K = 0 and perform eight-fold cross-validation, and we
plot the objective and AuPR curves for held-out distrust re-
lationships from one fold and a scatter plot of the AuPR
for a subset of the points for all folds. (We show results
for distrust relationships because they account for roughly
10% of all relationships and are therefore harder to predict
with high precision and recall.)

The results again show a faster objective descent for paired-
dual learning, which learns a high-accuracy model well be-
fore the other methods begin learning. Though it is not the
purpose of our experiments, it is interesting to note that the
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Figure 1. Objective score and performance with respect to ADMM iterations for one fold, as well as a subset of points for all folds. On
all three problems—group detection, trust prediction, and image reconstruction—paired-dual learning (PDL) reduces the primal learning
objective and improves predictive performance much faster than expectation maximization (EM) or primal subgradient (Primal), often
reaching a good model before the existing algorithms complete their first parameter update. Full results are in Appendices B, C, and D.

AuPR scores on this data set are substantially better than
those achieved in previous work using fully-supervised
HL-MRFs. The full results are in Appendix C.

Image Reconstruction Reconstructing part of an ob-
structed image requires some amount of semantic under-
standing of physical objects that images depict. These la-
tent semantics make it an ideal test setting for latent vari-
able modeling. We follow the experimental setup of previ-
ous papers (Poon & Domingos, 2011; Bach et al., 2013b).
Using the 400-image Olivetti face data set, we reveal the
top half of each face image to the prediction algorithm,
and task it with predicting the bottom half. Bach et al.
(2013b) used fully-observed learning to fit non-latent, or
“flat”, HL-MRFs to this task, which were able to recon-

struct images with mean-squared error comparable to the
best latent-variable methods. These flat models had a large
number of parameters for potentials between neighboring
pixels and “mirror-image” pixels. Examining the outputs
from these HL-MRFs reveals that the models relied heav-
ily on trivial structural patterns, such as face symmetry.
This reliance is especially obvious in the reconstructions by
flat HL-MRFs for bottom-halves of faces, which seemed to
mimic the shadows of mouths by reflecting blurry images
of top-half eyes. Latent variables improve performance by
learning actual facial structures, rather than exploiting triv-
ial patterns. With all the parameters, variables, and depen-
dencies in the model for each pixel, the efficiency of paired-
dual learning becomes critical.
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We use a simpler HL-MRF with a latent layer. We include
squared hinge-loss potentials between six latent state vari-
ables and the input-half pixel intensities, rounded versions
of the input pixels, and, finally, the output-half intensities.
These potentials allow the values of the latent variables to
mediate interactions between the inputs and outputs. We
additionally include potentials between each latent state
that prefer contiguous regions of latent states, a prior poten-
tial for each pixel to learn an average or background value,
and a quadratic prior on all free variables, which serves as a
surrogate entropy. The full model is listed in Appendix D.
We omit any direct dependencies between output pixels to
isolate the effectiveness of latent variable modeling.

We train on 50 randomly selected images from the first
350, and test on the last 50 images, as was done previ-
ously. Because of the higher dimensionality of these pixel-
based models, we set K = 10, allowing the ADMM vari-
ables to warm up before updating the parameters w. (These
warmup ADMM iterations are included in the plots above.)

Again, paired-dual learning with one iteration of ADMM
is significantly faster at optimizing the objective, which di-
rectly translates to a reduction in test error, while the primal
methods and the more conservative 10-iteration paired-dual
approach are much slower to improve the objective. The
learned latent variable model fits latent states to archetypal
face shapes, as visualized in Appendix D.

5. Related Approaches for Discrete Models

There exist many approaches to learning discrete, discrim-
inative models with latent variables. Existing classes of
probabilistic models include hidden-unit conditional ran-
dom fields (van der Maaten et al., 2011), a class of undi-
rected graphical models similar to linear conditional ran-
dom fields, except that a latent variable mediates the in-
teraction between each observation and target variable on
the chain. This restricted structure allows the latent vari-
ables to be marginalized out during inference and learning
but cannot express more complex dependencies. More ex-
pressive discriminative models have been trained via spe-
cialized inference algorithms designed for specific models
(e.g., Kok & Domingos, 2007; Poon & Domingos, 2009).
Another class of probabilistic models are sum-product net-
works (Poon & Domingos, 2011), or SPNs, which repre-
sent distributions as networks of sum and product opera-
tions. Interior nodes in an SPN have a natural interpretation
as latent variables, and SPNs can be trained with EM.

The variational objective, Equation 4, relates to several im-
portant ideas in probabilistic inference and latent variable
learning. For discrete MRFs, surrogates enable efficient
and accurate inference (e.g., Heskes, 2006; Weiss et al.,
2007; Wainwright & Jordan, 2008; Meshi et al., 2009). Es-

pecially for learning, no statistical interpretation of the sur-
rogates is necessary. For example, using the family of point
distributions and replacing the entropy with a distance met-
ric between the point and the labels, we obtain the objec-
tive for LSSVM (Yu & Joachims, 2009). Similarly, using
point expectations and using null surrogates, i.e., h(p) = 0,
the objective becomes analogous to structured perceptron
(Collins, 2002; Richardson & Domingos, 2006). Lastly,
using tractable families of distributions for both the expec-
tation and the entropies makes the learning objective that
of variational EM (Neal & Hinton, 1999).

Replacing inference problems with duals to speed up learn-
ing has also been explored for discrete models. For fully-
supervised settings, Taskar et al. (2005) dualize the loss-
augmented inference problem as part of large-margin learn-
ing, making a joint quadratic program. Meshi et al. (2010)
improve on this approach to use dual decomposition for
LP relaxations of inference in discrete graphical models.
Schwing et al. (2012) extend this idea to latent-variable
models. By dualizing one of the two inference subrou-
tines and passing messages corresponding to the discrete
states, they speed up learning of discrete models with la-
tent variables. Related to this line of work, Domke (2013)
use dualization as part of a technique to reduce structured
prediction to non-structured logistic regression.

The same principles behind paired-dual learning can be
adapted for discrete models, and we are investigating the
benefits of dualizing both inferences, as opposed to just
one, as well as whether useful message-passing algorithms
exist for the paired-dual objective in discrete models.

6. Conclusion

This paper presents a new framework for fast training of
latent variable HL-MRFs. This contribution addresses a
variety of challenges that arise in the training of these pow-
erful continuous models. While traditional latent variable
learning methods require full inferences to compute gra-
dients of the learning objective, paired-dual learning eval-
uates gradients using incomplete dual inference optimiza-
tions. Therefore, it can learn without the expensive cost of
repeated, full inference. We demonstrate our approach on a
variety of real-world data sets, which show that paired-dual
learning is able to train accurate models in a small fraction
of the time required by traditional algorithms. This sub-
stantial speedup for training richly structured, continuous
models with latent variables will further enable their appli-
cation to large-scale, high-impact problems.
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