
Anonymization Techniques for URLs and
Filenames

Technical Report UCSC-CRL-03-05

Geoff Kuenning
geoff@cs.hmc.edu
Harvey Mudd College

Ethan L. Miller
elm@cs.ucsc.edu

University of California, Santa Cruz

Storage Systems Research Center
Jack Baskin School of Engineering
University of California, Santa Cruz

Santa Cruz, CA 95064
http://ssrc.cse.ucsc.edu/

September 2003



Abstract

Investigating the behavior of computer and network systems often involves collecting and analyzing
traces of user activity. Because traces are expensive to store and collect, and because it is desirable to repli-
cate experimental results, it is common to publish trace data for use by other researchers. To maintain the
privacy of users, traces are usually anonymized before publication. We discuss prior methods for anonymiz-
ing such traces, including weaknesses and drawbacks in those methods. We then present a new method
that can anonymize strings such as URLs while preserving a maximum amount of information useful to
researchers.



1 Introduction

In an experimental field such as computer systems science, it is common to study real-world behavior
as a means of gaining insight. One time-honored methodology is the collection of trace data, either as
a snapshot or over a period of time, for later replay or analysis. Such studies have analyzed file system
behavior [9, 10, 14, 17, 19, 23, 22, 28, 35, 36, 43, 45, 46, 47, 50, 51], network performance [6, 15, 25,
32, 38, 41, 39, 49, 57], and WWW behavior [1, 2, 3, 7, 8, 11, 12, 13, 16, 29, 33, 55]. These traces have
had a significant effect on system design, resulting directly in improved file-system designs [44], network
performance models [12, 25], and Web caching methods [8, 24, 55]

Many researchers have chosen to make their traces available to others because the collection of trace data
is difficult, time-consuming, and resource-expensive. Such trace sharing allows follow-on studies as well
as enabling independent verification of a study’s conclusions. However, sharing trace data also introduces
significant privacy problems, as described by Blaze [9]:

As in any research where data are collected about the behavior of human subjects, the privacy
of the individuals observed is a concern. Although the contents of files are not logged by the
toolkit, it is still possible to learn something about individual users from examining what files
they read and write. At a minimum, the users of a monitored system should be informed of
the nature of the trace and the uses to which it will be put. In some cases, it may be necessary
to disable the name translation from nfstrace when the data are being provided to others.
Commercial sites where filenames might reveal something about proprietary projects can be
particularly sensitive to such concerns.

Because of the privacy issues, many researchers have chosen to keep their trace data private rather
than risk violating the rights of the traced users or exposing valuable competitive information. Others,
especially before the expansion of the Internet, have chosen to publish the data anyway, assuming that
serious researchers will respect their users or will simply not be interested in analyzing individual behavior
on an identifiable personal level. Still others have attempted to find a compromise by anonymizing their
trace data to hide sensitive information while still making the scientific data available to the world.

In this paper, we present two methods for anonymizing Web and filesystem traces that avoid privacy
risks while still preserving nearly all of the information needed by systems researchers. Our methods are
efficient and secure, yet also provide researchers with maximum information from the traced system.

2 Related Work

Until recently, little has been published specifically on the subject of trace anonymization. Rather, most
discussions are limited to a few passing sentences, or are incidental asides to the primary thrust of the paper.
Nonetheless, it is useful to study what previous researchers have done to balance trace usefulness with the
need for privacy.

File system tracing, like CPU tracing, has a very long history. The results of the earliest file system
tracing projects [36] were available only on tape, if at all. This approach limited the distribution of the
traces, ensuring privacy by obscurity. With the advent of the Internet, however, it has become common to
make traces available when a study is published. As mentioned above, many researchers who distributed
traces have chosen to do so in their original form with full pathnames included [23, 50].

However, some traces inherently provide anonymity. For example, the Auspex traces [14] included only
hexadecimal file identifiers rather than full pathnames. Although back-mapping was theoretically possible



[9], the published Auspex traces apparently did not include enough information to enable such deductions.
Similarly, the Sprite traces [5] included per-file unique identifiers (i-node numbers) rather than pathnames.

With the advent of the Web, researchers have begun to address the privacy issues inherent in publish-
ing traces. Much of this work has been done at the IP-address level. For example, Paxson [40] provided
simple scripts that replace IP addresses by sequential numbers. A drawback of this method is that net-
work information is lost, so that it becomes difficult or impossible to identify closely related sites such as
www.ebay.com and cgi3.ebay.com. Peuhkuri [42] used MD5 hashing with padding by a secret key
(a trace compression technique was also folded into the anonymizer). Peuhkuri also preserved the network
portion of the IP address so that individual networks could be identified (this approach could potentially be
a problem for lightly populated Class C networks).

Minshall [31] approached the problem of network preservation in a different manner. The tcpdpriv
anonymizer uses a transformation that guarantees that any two addresses that match in the first k bits will be
anonymized to values that also match in the first k bits, while the remaining bits are randomized.1 Minshall’s
method is described only by the source code, but Xu [56, Section 3.1] explains the algorithm quite succinctly.
Xu also proposes a significant improvement to the algorithm, which eliminates the need for large tables, uses
a cryptographically secure hash, and allows parallel and distributed anonymization.

Traces that incorporate more extensive information, such as URLs or file pathnames, present a differ-
ent set of challenges. Gibson [22] “scrambled” pathnames using a variant of the MD5 one-way hashing
algorithm. Each individual component of the pathname was hashed to produce an 11-character result [21],
leaving the total number of components unchanged.

Douceur and Bolosky [18] chose a middle ground in releasing their detailed investigation of file sizes at
Microsoft [17]. Each directory component was individually hashed using a keyed one-way hash similar to
that described in Section 4.2.2. The same one-way hash was applied to the file name. The 3-character file
extension was encoded separately using a technique similar to sequential numbering. To prevent excessive
opacity, two small translation tables were then provided along with the traces, one giving the hashed encod-
ing for 8 common directory names and the other giving the encoding for the 1000 most common extensions.
This approach allowed other researchers to study some characteristics while maintaining a certain level of
privacy.

Wolman et al. [54] took perhaps the most aggressive approach in their Web study. URLs were passed
through MD5 in toto. MD5 was not used for IP addresses, however, since those could easily be cracked with
an exhaustive search. Instead, four non-algorithmic lookup tables encoded each octet separately. To provide
further protection, several bits of the IP address were deliberately destroyed before encoding so that even if
a reverse coding were discovered, it would be impossible to associate a particular behavior with a specific
IP address. Wolman’s traces are not publicly available; these precautions were taken internally as part of the
original trace collection so that maximum privacy could be ensured [53].

Anonymization is primarily an issue for traces that contain readily decipherable information, such as IP
addresses, file names, URLs, or commands. In theory, other traces, such as memory access streams or the
instructions executed by a CPU, could be used to reconstruct the data streams (including human-readable
names and paths) seen by executing programs. However, anonymization is much less of a concern for such
traces for several reasons. First, such reconstruction is quite difficult; merely simulating the trace may not
be sufficient without the source code for the program. Second, obscuring the instructions run and values
transferred may make the trace unusable because the decisions made by the CPU will be different if the
data is scrambled. Third, these types of traces typically are short in human time scales, covering seconds

1Potential users of tcpdpriv should note that there is a bug in the random-number generation if the symbol SVR4 is defined,
such that there are only about 27.5 bits of randomness rather than the intended 32.



or minutes of CPU time. The number of human actions in this time is small, so even a very large trace will
only reveal a few human actions.

3 Difficulties with Existing Approaches

The privacy problems with unanonymized publication of traces are clear, and will not be discussed further
here. However, anonymization has its own difficulties and drawbacks, as will be seen.

3.1 Information Lossage

As seen in Section 2, most researchers who have concerned themselves with privacy have tolerated signif-
icant loss of information as part of the process. The most common approach is to simply replace an entire
URL with some sort of encoded equivalent. Although this provides almost complete privacy for the traced
users, it also creates difficulties for subsequent researchers. Files or URLs can be uniquely distinguished,
but further analysis becomes impossible. Our previous work with filesystem traces has shown that details
of pathnames can be useful to the investigator; for example, we have at times found it useful to separately
characterize mail files [28] or temporary files [27]. Baker [4] has commented:

Pathnames were not available for the Sprite traces, and I don’t believe they were available for
the BSD ones either. This proved to be a mistake for me, since I noticed behavior afterwards
that I wanted to correlate if possible with file type. We had inumbers, so I was able to figure out
some of it, but not much of it.

Gibson [20, 22] points out another problem with tracing based on unique file identifiers such as inodes:
many programs such as emacs modify files by reading the original file, modifying it, writing back a new
file with a new unique identifier, and then deleting the original file. From the user’s point of view, only the
file’s modification date has changed, though the file system has actually processed both a file creation and
deletion. With traditional unique-identifier-based tracing, the link between the old and new file would be
not be available, but filename tracing would allow the relationship to be recorded.

Recording full pathnames may also be useful for long-term file-migration studies, as discussed by
Miller [30] and Strange [48]. One of the studies [48] reported that strange behavior in the trace was the
“result of various builds, including a recompilation of emacs.” This study further noted that “the large
spikes of activity on user disks are often the result of a user copying many files to or from a different disk
or to tape.” This observation would not be possible on a trace where files were identified solely by a unique
numeric value.

In Web tracing, knowing the URL is often critical to understanding the trace. URLs can encode such
information as whether content is static or dynamic, whether the content has been customized to the partic-
ular user, the language used to create or generate the page, or where the page resides in a subtree. Semantic
analysis can reveal even more information, much of which is useful in system design.

3.2 Failures of Anonymization

We have also found that some existing approaches to trace anonymization provide less privacy than might
first be assumed. In particular, unpadded algorithmic anonymization of individual components can be sus-
ceptible to both exhaustive search (since many components tend to be short) and informed guessing. In a
Web trace, computing the hash of common strings such as “cgi-bin,” “htm,” and “index” will allow



an adversary to identify critical directories and important classes of files. In a file trace, values such as
“bin,” “root,” and “Makefile” can be similarly used to identify home and source directories. Armed
with this sort of information, semi-exhaustive searches can look for common patterns or subpatterns such
as “.c” or “pw=.” Since a decoded component can be applied throughout the trace, such techniques can be
leveraged to uncover considerably more details than might originally be expected. A wise explorer would
do well to MD5-hash the names of all well-known system executables, popular Web sites, and Usenet news
groups (both directly and under common transformations such as MIME encoding) as a starting point for
discovering information thought to have been carefully hidden.

Other information such as page and file sizes (which are usually recorded in traces) and access patterns
can be associated with partially decoded pathnames to aid in the deanonymization process. For example, a
regularly accessed file in a trace might indicate a cron job, while one accessed only in the morning might
be “.profile.” In a Web trace, a moderately large file might be worth an exhaustive search of 5-character
names followed by the suffixes “.gif” and “.jpeg”, while a very large file might similarly deserve a search for
“.mp3” preceded by the names of popular songs. Some pages can be uniquely or nearly uniquely identified
by a combination of pathname and size; for example, Google’s home page is usually accessed with a null
pathname (http://www.google.com/) and has a size that is stable over long periods. An attacker
might also use an Internet archive such as The Wayback Machine [52] to correlate page sizes with specific
times and develop an attack.

3.3 Undefendable Attacks

Some attacks will remain possible unless nearly all of the information in a trace is destroyed. For example,
the idea of using page sizes as hints in an attack leads naturally to an extension, using the sizes as fingerprint.
Most nontrivial static Web sites contain a combination of page sizes that are unique to that location. If a
moderately large percentage of such a site appears in the trace, it will be possible to identify the site from
the combination of sizes alone. Once the site is known, it becomes possible to correlate trace records with
individual pages, which in turn may allow some common strings (such as “login.html” at the root of
a site) to be identified even if the pathname portion of the URL is anonymized in toto using a one-way
technique such as sequential numbering.

Peuhkuri [42] suggests an interesting chosen-plaintext attack that will work against almost any anon-
ymization method. The idea is that during trace collection, the attacker inserts accesses that will later be
identifiable through timing, size, or any other information that is preserved in the trace. Later, the trace can
be examined and the chosen plaintext can be correlated with its anonymized counterpart; this information
can then be used to deanonymize other trace records. In network traces, the attack can be enhanced by
forging source IP addresses so that the chosen plaintext appears to come from a victim site; this attack will
succeed even if a different anonymization encoding is used for each source IP.

We believe that there is no practical defense against these attacks, except for choosing not release traces
or to include only the most basic information (such as timestamp and packet size).

4 A Flexible Approach to Anonymizing Strings

For most purposes, we believe that Xu’s approach [56] represents the best compromise between informa-
tion preservation and privacy for IP addresses. However, because of the drawbacks associated with existing
string anonymization methods, we have developed a new approach. Our method seeks to find a new balance
between the privacy of users and the needs of researchers. To do this, we have placed fine-grained control

http://www.google.com/


of privacy into the researcher’s or even the users’ hands. In addition, our approach can use either of two en-
coding methods (sequential numbering and secret-key MD5 hashing), both of which are simple and efficient
yet resistant to most attacks including exhaustive search.

Our approach was designed with the following goals:

• Anonymization should preserve as much information as possible. In particular, it should be possible
to analyze an anonymized trace to discover important non-private information, such as which URLs
were static or which files contained source code.

• When possible, anonymization should be under the control of the researcher, the system administrator,
and the individual user. When users participate in the trace collection, a user should be able to hide
certain strings in a simple, convenient, and foolproof manner.

• Anonymization should be irreversible. It should not be possible to recover original names by pro-
cessing anonymized ones unless the attacker has access to information not contained in the traces. In
particular, exhaustive search should not be able to produce even partial information about anonymized
pathnames.

• Anonymization should not unnecessarily increase the size of trace files. Traces are large enough on
their own without additional expansion due to artifacts such as changing a 3-character path component
into a much longer encrypted version.

• When appropriate, it should be possible to apply string-based anonymization to DNS names, rather
than converting them to IP addresses and then using Xu’s method.

The reader will note that efficiency is not listed as a goal of our design. We feel that because anonymi-
zation is usually performed only once on a trace, it is acceptable if the process is somewhat inefficient. The
only caveat is that if trace collection is continuous, anonymization must be able to keep up with the average
rate of arrival of new records without reducing the rate of service to users.

4.1 General Approach

Our anonymizer operates on a single string (URL or pathname) at a time. When a string is to be anonymized,
a bit mask, equal in length to the string, is created. The mask records which parts of the string should be
anonymized. Initially, it is set to all ones, indicating complete anonymization.

The string is then matched, in order, against a series of regular expressions. If a particular expression
matches, the bits corresponding to the matched portions of the pathname are either set or cleared, depending
on the expression. For example, in a file trace, “/usr/.*” might cause bits to be cleared, indicating
that filenames in the /usr tree should not be anonymized, but a later expression /usr/games/.* could
nevertheless cause the names of games to be hidden.2 In a Web trace, “[ˆ/]*$” could be used to force
the final component of a URL to be passed in the clear; “[?&]pw=[ˆ&]*” could subsequently be used to
ensure that embedded passwords were still anonymized. The pattern “[A-Za-z0-9]*” is often used as a
final step to ensure that query elements, pathname components, extensions, etc. may be identified as such.3

2Of course, if this were the only hidden directory in /usr, it would not be difficult to figure out that some game was being
played.

3Because this choice is so common, a command-line switch offers it as an optimized path that avoids the cost of regular-
expression matching.



After all patterns have been processed, the bit mask will indicate which characters of the string need
to be anonymized. Each contiguous substring is then separately encoded and inserted into its proper place
among the unanonymized characters.

4.2 Encoding Methods

Once substrings have been been identified for anonymization, they are encoded to prevent anyone from
recovering the original values from the trace. We have investigated two different methods for doing this:
sequential numbering of unique pathname components, and keyed MD5 hashes of pathname components.
The first method is somewhat faster but requires a large lookup table; the second is more memory-efficient
and can dynamically anonymize traces collected across multiple machines or during different time periods.

To increase the portability and generality of our anonymizer, we have chosen an ASCII encoding format
even though binary would be more space-efficient. Text formats are amenable to processing by a wide
variety of general-purpose tools, and can be easily compressed or converted to a binary format if necessary.
However, none of our techniques are inherently restricted to text encoding. Since the extension to binary is
straightforward, we will not consider it further in this paper.

4.2.1 Sequential Component Numbering

The sequential-numbering method rests on a simple observation: anonymized components appear in a cer-
tain order that is dictated by the format and content of the trace file. Assuming that a particular component
is always encrypted to the same output string, an attacker can post-process any trace, no matter how com-
plex the encryption method, to replace the first-encountered component with the number “1”, the second
with “2”, and so forth. Thus, it is sufficient to use the same replacement methodology in our own encoding
method, since doing so only reveals information that could be reconstructed in any case.

To avoid collisions with strings that might appear naturally, the numbers are encoded in base 64 and
further delimited with a user-specified character (“|” by default), chosen to be unlikely or impossible to find
in actual trace data.

This encoding system is implemented by looking up a component in a hash table. Each component is
handled separately, so that (for example) “cgi” will be encoded the same way regardless of where it appears
in a string. The system doing the tracing need only keep a hash table translating components into integers.
We discuss the memory requirements for such a table in Section 5.

4.2.2 Keyed MD5 Hashes

Using a lookup table to generate encoded components works well, but has two drawbacks. First, it requires a
large amount of memory, which may be a scarce resource on a server. Second, it is difficult to “synchronize”
traces on different machines, or even on the same machine after a restart, because the lookup table determines
the encoding of a particular component. Thus, a request into a cluster of proxy caches might be encoded
differently depending on which cache it was sent to, making it difficult to study the overall stream of requests
to the proxy cache cluster.

Keyed MD5 hashing [42] provides an effective solution to these drawbacks. Rather than keeping a
lookup table converting components into integers, we simply append a short string constant to each com-
ponent, hash it using a secure hash algorithm such as MD5, and output the result. As long as the constant
is kept secret, there is no way to recover the original component. Hashed message authentication codes



(HMACs) [26] use a similar mechanism to provide integrity for messages transmitted over insecure net-
works.

This approach to encoding components allows traces to be gathered in separate locations (or at separate
times) with a minimum of overhead—all that need be distributed is a single, relatively short string. A 120-bit
key can be encoded into 20 characters, which is sufficient to protect privacy against exhaustive search. As
long as this key is not distributed, it will be impossible to recover the original component names. Moreover,
the key can be destroyed as a matter of routine before releasing the traces to the public. Because it is small,
it need never be recorded in a computer file at all, and could instead be an argument to the trace capture
program. A significant advantage of keyed hashing is that the anonymizer need not keep a lookup table of
all component values, dramatically reducing memory usage.

One potential drawback to recording full secure hashes is expansion of the trace length. Even if the
hashes are stored in binary, a 5-character component will be expanded from 40 to 128 bits by the MD5
algorithm, a problem that will be exacerbated if traces are kept in a more easily processed ASCII format. To
address the size problem, we reduce the size of the secure hash output to the trace. This does not affect its
security, but does increase the chance that two distinct components will result in the same value being output.
The chance that k randomly-chosen sequences of n bits will all be unique is e−k(k−1)/2n

≈ e−k2/2n
[34]. Since

1− e−x ≈ x for small x, the chance of a hashed component name collision is 1− e−k2/2n
≈ k2/2n. If we

assume 224 (16 million) unique components and fold the output of MD5 down to 64 bits, the probability
of confusing exactly two components in the entire trace is 0.0015% (2−16); the probability of multiple
collisions is only slightly higher. Moreover, to significantly affect the analysis of the trace, both of the
colliding components would have to be important to the analysis and appear frequently.

Reducing the hash length to 64 bits, however, still results in an expansion for short components; for
example, an ASCII encoding similar to base64 that records 6 bits per character will result in 11-character
hashes. To combat this problem, we tied the hash length to the length of the original component (see
Table 1). This approach minimized the increase in trace length while preserving anonymity, as shown in
Section 5.

4.3 Anonymization Control

A difficult question in designing a anonymizer is the issue of exactly how much information to hide. Previous
researchers have taken an all-or-nothing approach. The former method, while admirably protecting privacy,
often obscures information that would be valuable to the researcher but harmless to the traced user. The
latter, as discussed previously, is unacceptable in a modern computing environment.

Our anonymizer compromises between these two approaches by allowing fine-grained control of what
is hidden and revealed. The intention is to maximize the data available to the researcher while minimizing
the risk to the user. To this end, a control file defines the regular expressions used for anonymization. As
described in Section 4.1, the default is to anonymize the entire pathname, erring on the side of privacy if no
control file is given.

The control file is comprised of a number of one-line commands, each containing a keyword and a reg-
ular expression. Comments are indicated by the usual pound sign. The keyword is either pass or clean,
indicating that the pattern matches information that is to be passed through unchanged or anonymized, re-
spectively. Parenthesized subexpressions allow the anonymization change to be limited to a subset of the
matched string.

Figure 1 shows a simple control file appropriate for maintaining maximal privacy in URLs. Only the
most innocuous information is left in the clear; most web-page names and all query arguments are protected.
However, component-count information such as the depth of a particular page is preserved. This example



# Pass only some separators, common
# suffixes, and index pages.
pass \(\(index|main\)\.html?\)$
pass \(\(index|main\)\.html?\)[ˆa-zA-Z0-9.]
pass \(\.asp|\.html?|\.php3|\.gif\)$
pass \(\.asp|\.html?|\.php3\)[ˆa-zA-Z0-9.]
pass [/.?#=+&:;’",]
# Clean DNS names completely.
clean ˆ[a-zA-Z]*://([ˆ/]*)/

Figure 1: URL control file that errs on the side of privacy. Note that the IP address is anonymized separately.
For brevity, the suffix list is incomplete.

# Invert the default of cleaning everything
pass ˆ.*$
# Hide everything
# under /home/medium
clean /home/\(medium\)$
clean /home/\(medium/.*\)$

(a) Control file that provides intermediate privacy.

# Invert the default of cleaning everything
pass ˆ.*$
# Hide the names of saved mail files.
# The home directory name will be
# preserved.
clean /home/relaxed/\(mail|mail/.*\)$
# Hide game playing
clean /usr/games.*|/usr/share/games.*| \

/var/games.*|/var/lib/games.*

(b) Control file that provides very little privacy.

assumes that IP addresses are not anonymized separately. DNS names are anonymized as a unit (including
the username and password, if given).

Figure 2(a) shows a medium-level control file appropriate for a user named medium, who wants to
compromise on privacy by allowing system filenames to appear unchanged while hiding the names of all his
own personal files.4

Finally, Figure 2(b) shows a control file that allows almost everything to be seen, hiding the names of
only a few files that are known to be sensitive.

5 Measurements and Performance

Any method of obscuring sensitive information in traces must meet several performance criteria: sufficiently
low resource usage to avoid interfering with normal system operation, production of traces that accurately
reflect system behavior without revealing private information, and generation of traces that are not much
longer than the corresponding non-anonymized traces.

5.1 Component Frequencies

The number and relative frequencies of components are important factors in determining how well our
approaches to anonymization will work. We analyzed the number of unique components in Web traces from
the National Laboratory for Applied Network Research (http://www.nlanr.org/) to see how many
unique components of various sizes appeared in the trace. We performed this analysis on on the references
for an entire collection of traces for a single day (July 5th, 2001). DNS names were included verbatim and
treated as strings, rather than being converted to IP addresses.

4Since system programs are identified, a thorough investigator would still be able to identify many other files, such as sources,
browser bookmarks, window manager startup files, etc.

http://www.nlanr.org/


0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30

C
um

ul
at

iv
e 

pe
rc

en
t o

f a
ll 

co
m

po
ne

nt
s

Component length

Unique

Total hashed

Overall total

Figure 2: Cumulative component counts (as a percent of total) in our trace of 4.3 million URL references.
The “unique” line shows the number of unique components of each length and the “total hashed” line shows
the total count of components for each length. These counts do not include the unhashed components listed
in Figure 3. The “overall total” line shows the cumulative total count for all components, including those
shown in Figure 3.

co
m
www gif

im
ag

es jpg ne
t
ad

s
htm

l
im

g us cg
i
htm or

g
web bin

0

500

1000

1500

2000

2500

3000

3500

4000

O
cc

ur
en

ce
s 

(th
ou

sa
nd

s)

Component

Figure 3: Components not hashed for our anonymized WWW trace. In addition to the components shown,
edu, gov, shtml, jpeg, and mil were unhashed, but they were omitted from the graph because they
each made up less than 0.1% of the components in the trace.



As shown in Figure 2, a composite of eight proxy cache traces with over 4.3 million references had
34.7 million components, but only 1.28 million unique components. Moreover, nearly 40% of the com-
ponents in the trace were included among the 16 listed in Figure 3; these components would likely not be
anonymized unless there was a concern over the types of sites (.gov vs. .edu vs. .com, for example)
being accessed. There were fewer than 75,000 unique components of four characters or shorter, and no
component length had more than 157,000 unique components.

5.2 Anonymization Rate and Memory Requirements

The overall anonymization rate is dominated by three primary factors:

1. The number of unique components M anonymized in each record,

2. The number of regular expressions N in the control files, and

3. The matching efficiency of the regular expressions.

The time required by item 1 is approximately linear in M. In the sequence-number method, this value
is dominated by lookup time in our implementation (which uses hash tables). The lookup time is approxi-
mately constant for reasonably short component lengths. In the keyed-hashing method, the time per compo-
nent is dominated by the overhead of the MD5 algorithm and the cost of hashing the appended key, which
again are approximately constant.

Since each regular expression is searched for separately, the total anonymization time is linearly propor-
tional to N. For factor 3, we have found that most of the regular expressions used in practice are linear in
the length of the matched string, so that this factor can usually be ignored. However, if maximal speed is
important, it is critical to minimize the number of regular expressions and to avoid writing expressions that
will cause excessive backtracking.

Thus, the overall complexity of anonymization is O(MN).
To quantify the approximate performance of our anonymization methods, we ran our C++-based anonymizer

on the traces discussed in Section 5.1. Only the anonymization method was varied; all other factors remained
constant. All timing experiments were performed on a 400-MHz Pentium II processor with 256 MB of mem-
ory. All anonymization output used a base-64 ASCII output encoding for portability; we expect that binary
output would be faster by an approximately constant factor. All of our test runs made use of the optimized
code for separating components at non-alphanumerics.

5.2.1 Sequence Numbers

Anonymizing the composite trace of 4.3 million records to /dev/null using sequence numbers took 537 sec-
onds, achieving a rate of 8121 records/second. The average record contained 10.24 separately anonymized
components, so the anonymizer cleaned 83242 components/second.

As expected, adding control patterns had a significant effect on performance. When run with a control
file that passed the 21 components listed in Figure 3, using a single regular expression to match them, the
sequence-based anonymizer took 633 seconds to clean the trace, a rate of 6898 records/second and 70701
components/second (counting both cleaned and passed components for the purpose of calculating the latter
figure). When the 21 components were listed in 21 separate regular expressions, the time jumped over



tenfold: 6565 seconds, or 665 records and 6815 components per second. Clearly, it is critical to minimize
the number of regular expressions in our implementation.5

As discussed above, the lookup table contains one entry for each unique component. In our implemen-
tation (which has not been optimized for space), each entry occupies approximately 32 bytes plus the length
of the component. Since most components are short (see Figure 3), few entries occupy more than 40 bytes,
so the entire table can be stored in 50-100 MB, depending on the load factor chosen. Note that the table
size is primarily affected by the number of unique components in this large Web trace. A trace with fewer
unique strings, such as a typical filesystem trace, would require correspondingly less memory. When run on
the composite trace, the hash-based anonymizer grew to a maximum size of 95.2 MB.

5.2.2 Keyed Hashing

Keyed hashing was substantially slower; anonymizing the same trace with no patterns file took 778 seconds,
for a rate of 5612 records/second or 57521 components/second. However, as expected, the data size was
vastly smaller than for sequence numbers; the maximum process size during the same test was only 1.9 MB.

It is worth noting that even a fast Web server [37] can handle only about 1040 references per second
on the 400-MHz processor we used for our tests.6 Thus, anonymizing with keyed hashing would consume
less than 19% of the CPU on a dedicated Web server; with appropriate priority settings, traces can be
buffered during load spikes so that cost of anonymizing will not affect the peak performance of the server.
Alternatively, a single dedicated machine could anonymize the traces generated by 5 servers. Some Web
servers, such as Apache, can pipe their trace output directly to a program; others can be set up to write their
logs to a named pipe, making it possible to anonymize on the fly without ever recording unanonymized
information.

5.3 Reducing Trace Size

Some previous approaches to anonymization [18, 22] could cause increases in the trace size. Given the large
storage requirements of tracing, further size increases seem undesirable.

Our study confirms the widely-held belief that there are relatively few unique components even in a large
Web trace. We can use this knowledge to anonymize the trace without dramatically increasing the trace size.
In this section, we will discuss our two approaches to anonymizing traces without a size increase: secret
hashing of components, and the use of a lookup table to translate components into numbers.

5.3.1 Sequence Numbers

Sequentially numbering components is most efficient if the most frequently referenced components receive
the lowest numbers, similar to a Huffman code. Creating such an encoding would require multiple passes
through the input, which is not practical for online applications. In practice, however, our method still
reduced the overall trace size. When run on the composite NLANR trace with full anonymization enabled,
the output file was only 72% of the input size. Some of that reduction was due to the fact that IP addresses
were anonymized as a unit, cutting 12-15 characters to 4-6. Offsetting that advantage was the fact that all
anonymized strings were bounded by a unique character on both sides, so that no anonymized string was

5Alternatively, all of the expressions could be compiled into a single state machine. However, the library that we used did not
support this option.

6This figure was calculated by adjusting the value in Table 1 of [37] for clock rate.



Component Hash
length length

Ratio

1 4 4.0
2 4 2.0
3 6 2.0
4 6 1.5
5 8 1.6
6 8 1.3
7 10 1.4
8 10 1.25

9+ 10 < 1.1
Table 1: Hash lengths (in characters) for various sizes of path name components. Hashes pack 6 bits per
character using a scheme similar to base64 encoding.

shorter than 3 characters and all but 64 were 4 characters or longer, while many input components are very
short.

5.3.2 Keyed Hashing

Hashing each component as described in Section 4.2.2 will prevent trace consumers from figuring out which
components correspond to which plaintext words. However, the naive approach to storing the components
requires that a large hash be used for each component, increasing the size of the trace.

For example, the 4.3-million-reference Web trace we studied had 34.7 million components, of which
23 million were not among the unanonymized components listed in Figure 3. Hashing each anonymized
component into a 60-bit value derived from an MD5 hash would require 10 bytes (characters) per compo-
nent, for a total of 231 MB. The original components corresponding to this data would only require 150 MB;
the hashes would thus expand this portion of the trace by 54%. Reducing the hash size to 54 bits (9 charac-
ters) would still expand the components by 39%, and this approach would have a 2−14 chance of collision
for a one-day Web trace.

To further reduce the size of the trace, we varied the length of the hash value based on the length of
the component. This does not significantly weaken the anonymization because there are still far too many
combinations of components of fixed length to draw any conclusions based solely on component length.
Reducing the length of the hash for shorter components works because there are fewer components of
shorter lengths—hardly a surprise because there are limited numbers of shorter components, and many of
them make little sense in English. The variable-length hashes we used are summarized in Table 1.

Applying these shorter hash lengths further reduced the size of the components to 176 MB, for an
expansion factor of 18% over the unanonymized trace. By switching to 54-bit hashes for 7-character and
longer components, we further reduced the anonymized component size to 167 MB, or 112% of the original
component length. The expansion ratios of all of the hashing methods we tried are shown in Figure 4.

6 Conclusions

Tracing is an important tool in the arsenal of systems and network researchers. In the past, trace sharing has
been limited by the danger of revealing private information. Anonymization, when applied, has tended to be



Uns
an

itiz
ed

Has
he

d(
10

)

Has
he

d(
9)

Var
iab

le(
10

)

Var
iab

le(
9)

0%

20%

40%

60%

80%

100%

120%

140%

160%

P
er

ce
nt

 o
f  

un
sa

ni
tiz

ed
 c

om
po

ne
nt

 s
iz

e

Sanitization method

Figure 4: Expansion factors for various hashing approaches over the unanonymized components. These fac-
tors are worst-case values, and exclude portions of the trace not anonymized such as component separators,
timing information, and operation codes (GET, POST, etc.).

ad-hoc, has sometimes failed to achieve its goals, and has often introduced undesirable characteristics into
the traced data.

We have presented a new and flexible approach that allows anonymization to be limited to sensitive
component of the trace. We have also presented two anonymization methods that can guarantee anonymity
and privacy without excessive growth in the trace size or unacceptable CPU demands. One of the methods
runs faster and produces smaller traces at the expense of requiring a large database on a single system, while
the other produces larger traces but can be used in a distributed environment. Both methods are suitable for
general use.

Software Availability

The software used in this project is available for download at:
http://ssrc.cse.ucsc.edu/software.shtml.

Acknowledgments

Some of this research was supported by the Defense Advanced Research Projects Agency under contract
number N00174-91-C-0107. We would like to thank the National Laboratory for Applied Network Research
(supported by the National Science Foundation under grants NCR-9616602 and NCR-9521745) and Tim
Gibson for allowing us to use the traces they gathered in our study.

http://ssrc.cse.ucsc.edu/software.shtml


References

[1] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, and E. A. Fox. Caching proxies: Limitations
and potentials. In Proceedings of the Fourth International World Wide Web Conference, Dec. 1995.

[2] V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira. Characterizing reference locality in the
WWW. In Proceedings of the Fourth International Conference on Parallel and Distributed Information
Systems, Dec. 1996.

[3] M. F. Arlitt and C. L. Williamson. Web server workload characterization: The search for invariants. In
ACM SIGMETRICS Conference Proceedings, pages 126–137. ACM, May 1996.

[4] M. Baker, 2000. Personal communication.

[5] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Sherriff, and J. K. Ousterhout. Measurements of a
distributed file system. In Proceedings of the Thirteenth Symposium on Operating Systems Principles,
pages 198–211. ACM, Oct. 1991.

[6] H. Balakrishnan, S. Seshan, V. Padmanabhan, M. Stemm, and R. H. Katz. TCP behavior of a busy
internet server: Analysis and improvements. Technical Report 97-966, University of California, Berke-
ley, Aug. 1997.

[7] H. Balakrishnan, S. Seshan, M. Stemm, and R. H. Katz. Analyzing stability in wide-area network
performance. In ACM SIGMETRICS Conference Proceedings, Seattle WA, USA, June 1997. ACM.

[8] P. Barford, A. Bestavros, A. Bradley, and M. E. Crovella. Changes in web client access patterns:
Characteristics and caching implications. World-Wide Web Journal, 2:15–28, 1999.

[9] M. Blaze. NFS tracing by passive network monitoring. In USENIX Conference Proceedings, pages
333–343, San Francisco, CA, Jan. 1992. USENIX.

[10] G. P. Bozman, H. H. Ghannad, and E. D. Weinberger. A trace-driven study of CMS file references.
IBM Journal of Research and Development, 35(5–6):815–828, Sept.–Nov. 1991.

[11] H.-W. Braun and K. Claffy. Web traffic characterization: an assessment of the impact of caching docu-
ments from ncsa’s web server. In Proceedings of the Second International World Wide Web Conference,
Oct. 1994.

[12] M. E. Crovella and A. Bestavros. Self-similarity in world wide web traffic: evidence and possible
causes. ACM/IEEE Transactions on Networking, 5(6):835–846, Dec. 1997.

[13] C. Cunha, A. Bestavros, and M. Crovella. Characteristics of WWW client-based traces. Technical
Report 95-010, Boston University, Apr. 1995.

[14] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson. Cooperative caching: Using remote
client memory to improve file system performance. In Proceedings of the First USENIX Symposium
on Operating Systems Design and Implementation, pages 267–280. USENIX, Nov. 1994.

[15] P. Danzig, S. Jamin, R. Caceres, D. Mitzel, and D. Estrin. An empirical workload model for driving
wide-area TCP/IP network simulations. Journal of Internetworking: Research and Experience, 3(1):1–
26, Mar. 1992.



[16] C. Dharap and M. Bowman. A facility for tracing wide-area information access. Technical report,
Pennsylvania State University, Department of Computer Science, University Park, Pennsylvania, Nov.
1994.

[17] J. Douceur and W. Bolosky. A large-scale study of file-system contents. In ACM SIGMETRICS
Conference Proceedings, Atlanta, Georgia, USA, May 1999. ACM.

[18] J. R. Douceur and W. J. Bolosky. Sanitized data set from “A large-scale study of file-system
contents”. 6 CD-ROMs published by Microsoft Research, Redmond, WA, 1999. Contact
johndo@microsoft.com or bolosky@microsoft.com for availability.

[19] R. A. Floyd and C. S. Ellis. Directory reference patterns in hierarchical file systems. IEEE Transactions
on Knowledge and Data Engineering, 1(2):238–247, June 1989.

[20] T. J. Gibson. Long-term Unix File System Activity aand the Efficacy of Automatic File Migration. PhD
thesis, University of Maryland, Baltimore County, May 1998.

[21] T. J. Gibson, 2000. Personal communication.

[22] T. J. Gibson, E. L. Miller, and D. D. E. Long. Long-term file activity and inter-reference patterns. In
Proceedings of the 24th International Conference on Technology Management and Performance Eval-
uation of Enterprise-Wide Information Systems, pages 976–987, Anaheim, CA, Dec. 1998. Computer
Measurement Group.

[23] J. Griffioen and R. Appleton. Reducing file system latency using a predictive approach. In Proceedings
of the Summer USENIX Conference Proceedings, Boston, MA, June 1994. USENIX. Also available
as University of Kentucky Technical Report CS247-94.

[24] J. Gwertzman and M. Seltzer. World Wide Web cache consistency. In USENIX Conference Proceed-
ings, pages 141–152. USENIX, Jan. 1996.

[25] J. Heidemann, K. Obraczka, and J. Touch. Modeling the performance of HTTP over several transport
protocols. ACM/IEEE Transactions on Networking, 5(5):616–630, Oct. 1997.

[26] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message authentication. RFC
2104, Internet Request For Comments, Feb. 1997.

[27] G. H. Kuenning. Seer: Predictive File Hoarding for Disconnected Mobile Operation. PhD thesis,
University of California, Los Angeles, Los Angeles, CA, May 1997. Also available as UCLA CSD
Technical Report UCLA-CSD-970015.

[28] G. H. Kuenning, G. J. Popek, and P. Reiher. An analysis of trace data for predictive file caching in
mobile computing. In USENIX Conference Proceedings, pages 291–306. USENIX, June 1994.

[29] T. T. Kwan, R. E. McGrath, and D. A. Reed. User access patterns to NCSA’s world wide web server.
from web, 1995.

[30] E. L. Miller and R. H. Katz. An analysis of file migration in a UNIX supercomputing environment. In
USENIX Conference Proceedings, pages 421–433. USENIX, Jan. 1993.



[31] G. Minshall. Tcpdpriv. http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html, Aug.
1997.

[32] J. C. Mogul. Observing TCP dynamics in real networks. Technical Report 92.2, DEC Western Re-
search Laboratory, Apr. 1992.

[33] J. C. Mogul. Network behavior of a busy web server and its clients. Technical Report 95/5, DEC
Western Research Laboratory, Oct. 1995.

[34] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[35] L. B. Mummert and M. Satyanarayanan. Long term distributed file reference tracing: Implementation
and experience. Technical Report CMU-CS-94-213, Carnegie-Mellon UniversitySchool of Computer
Science, Pittsburgh, PA, Nov. 1994.

[36] J. K. Ousterhout, H. D. Costa, D. Harrison, J. A. Kunze, M. Kupfer, and J. G. Thompson. A trace-
driven analysis of the Unix 4.2 BSD file system. In Proceedings of the Tenth Symposium on Operating
Systems Principles, pages 15–24. ACM, Dec. 1985.

[37] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: A unified I/O buffering and caching sys-
tem. ACM Transactions on Computer Systems, 18(1):37–66, Feb. 2000. Available online at
http://www.acm.org/pubs/citations/journals/tocs/2000-18-1/p37-pai/.

[38] V. Paxson. Growth trends in wide-area TCP connections. IEEE Network Magazine, 8(4):8–17, July
1994.

[39] V. Paxson. End-to-end internet packet dynamics. ACM/IEEE Transactions on Networking, 5(5):601–
615, Oct. 1997. (Revised version of SIGCOMM paper).

[40] V. Paxson. Scripts for sanitizing TCPDUMP trace files.
http://ita.ee.lbl.gov/html/contrib/sanitize.html, 1997.

[41] V. Paxson and S. Floyd. Wide-area traffic: The failure of Poisson modeling. ACM/IEEE Transactions
on Networking, 3(3):226–244, Aug. 1995. An earlier version of this paper appeared in SIGCOMM 94,
pp. 257-268, August 1994.

[42] M. Peuhkuri. A method to compress and anonymize packet traces. In Proceedings of the First ACM
Internet Measurement Workshop, pages 257–261, San Francisco, CA, Nov. 2001. ACM, ACM.

[43] D. Roselli, J. R. Lorch, and T. E. Anderson. A comparison of file system workloads. In USENIX
Conference Proceedings, San Diego, CA, June 2000. USENIX.

[44] M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-structured file system.
ACM Transactions on Computer Systems, 10(1), Feb. 1992.

[45] C. Ruemmler and J. Wilkes. UNIX disk access patterns. In Proceedings of the Winter Usenix, pages
405–420. USENIX, Jan. 1993.

[46] M. Satyanarayanan. A study of file sizes and functional lifetimes. In Proceedings of the Eighth
Symposium on Operating Systems Principles, Dec. 1981.

http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html
http://www.acm.org/pubs/citations/journals/tocs/2000-18-1/p37-pai/
http://ita.ee.lbl.gov/html/contrib/sanitize.html


[47] K. W. Shirriff and J. K. Ousterhout. A trace-driven analysis of name and attribute caching in a dis-
tributed system. In USENIX Conference Proceedings, pages 315–331. USENIX, Jan. 1992.

[48] S. Strange. Analysis of long-term UNIX file access patterns for application to automatic file migration
strategies. Technical Report UCB/CSD 92/700, University of California, Berkeley, Aug. 1992.

[49] K. Thompson, G. J. Miller, and R. Wilder. Wide-area internet traffic patterns and characteristics (ex-
tended version). IEEE Network Magazine, 11(6):10–23, Nov/Dec 1997.

[50] M. Uysal, A. Acharya, and J. Saltz. Requirements of I/O systems for parallel machines: An
application-driven study. Technical Report CS-TR-3802, University of Maryland, College Park, MD,
May 1997.

[51] W. Vogels. File system usage in Windows NT 4.0. In Proceedings of the 17th Symposium on Operating
Systems Principles, Kiawah Island, SC, USA, Dec. 1999. ACM.

[52] The Wayback Machine. http://www.archive.org.

[53] A. Wolman, 2000. Personal communication.

[54] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, M. Brown, T. Landray, D. Pinnel, A. Karlin, and
H. Levy. Organization-based analysis of web-object sharing and caching. In Proceedings of the
USENIX Symposium on Internet Technologies and Systems, Boulder, Colorado, Oct. 1999. USENIX.

[55] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. Levy. On the scale and perfor-
mance of cooperative Web proxy caching. In Proceedings of the Seventeenth Symposium on Operating
Systems Principles, pages 16–31, Kiawah Island, South Carolina, Dec. 1999. ACM.

[56] J. Xu, J. Fan, M. Ammar, and S. B. Moon. On the design and performance of prefix-preserving IP
traffic trace anonymization. In Proceedings of the First ACM Internet Measurement Workshop, pages
263–266, San Francisco, CA, Nov. 2001. ACM, ACM.

[57] M. Yajnik, J. Kurose, and D. Towsley. Packet loss correlation in the MBone multicast network. In
Proceedings of the IEEE Global Internet, London, U.K., Nov. 1996. IEEE.

http://www.archive.org

	Introduction
	Related Work
	Difficulties with Existing Approaches
	Information Lossage
	Failures of Anonymization
	Undefendable Attacks

	A Flexible Approach to Anonymizing Strings
	General Approach
	Encoding Methods
	Sequential Component Numbering
	Keyed MD5 Hashes

	Anonymization Control

	Measurements and Performance
	Component Frequencies
	Anonymization Rate and Memory Requirements
	Sequence Numbers
	Keyed Hashing

	Reducing Trace Size
	Sequence Numbers
	Keyed Hashing


	Conclusions

