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ABSTRACT
File systems combining disk storage with non-volatile

RAM (NVRAM) promise large improvements in file system
performance. However, current technology allows for a rela-
tively limited amount of NVRAM, limiting the effectiveness
of such an approach. We are examining in-memory com-
pression techniques that allow for significantly more efficient
utilization of this limited resource. We focus on small ob-
jects - metadata and small files - and we have measured the
compressibility of these objects for a set of representative file
systems. Our results show that inodes are compressible by
at least 76–90% at a rate of 270–900 thousand inodes per
second for the best algorithms. For files in the range of 4–
128 KB, we achieved an average compressibility of 40–60%
at rates of 20–40 megabytes per second. Based on these mea-
surements, we believe that compression of both metadata and
small files should be included in any disk/NVRAM hybrid
file system.

1 INTRODUCTION
File systems combining non-volatile memory and disk

storage present the possibility of significant improvements in
file system performance as compared to traditional disk file
systems without the significant limits on storage capacity in-
herent in purely memory-resident file systems. Several sys-
tems along these lines have been proposed using both exist-
ing non-volatile memory technologies such as battery-backed
DRAM and flash memory as well as new technologies such as
magnetic RAM (MRAM). The performance benefits of a hy-
brid file system result from storing metadata and small files in
memory for fast random accesses, while allowing relatively
unrestricted storage of large files. With typical workstation
workloads, the majority of file system accesses are to meta-
data and small files, so overall performance will primarily be
determined by the in-memory file system performance [21].
Accesses to small objects are primarily limited by time to first
byte, making RAM-like technologies more attractive. For

larger objects, however, bandwidth becomes a larger concern,
making retrieval from disk more cost-effective.

Despite claims to the contrary [28], non-volatile memory
capacities can be expected to be limited for the foreseeable
future. While MRAM prices may be comparable to DRAM
in the long run, MRAM is an emerging technology and can
be expected to be limited in capacity in the near term. Prac-
tical battery-backed DRAM and SRAM cards are available,
but larger-capacity models are specialty products not typi-
cally available through mass-market retailers. Of currently-
available non-volatile memory technologies, flash memory
offers the best price-capacity balance, with prices only about
twice those of volatile DRAM, but flash memory has very
distinctive characteristics that present separate challenges to
file system design [11, 25, 33], and these issues would present
similar challenges to designs for hybrid file systems incorpo-
rating flash memory.

Since non-volatile memory capacities will remain small
relative to overall file-system sizes, hybrid file systems should
use that limited capacity as efficiently as possible. One wayto
help do so is to incorporate features such as compression; data
compression techniques and characteristics are of particular
interest because of the very high speed of current-generation
processors relative to the slow improvement of storage band-
width and latency [30].

Data compression works by exploiting similarities between
pieces of data; conventional algorithms can be used either on
a single stream of data or file, adaptively detecting those sim-
ilarities within the file/data stream, or they can be used as
static compressors, taking advantage ofa priori knowledge
regarding the class of data being compressed. One standard
example of the latter is text file compression using a dictio-
nary built using the known frequency of characters in a given
language; another is gamma compression which works on the
assumption that shorter bit strings (lower values) will be more
frequent than longer ones (higher values) [31].

This paper explores the potential space savings and per-
formance cost of compression. We focus on static compres-
sion methods for metadata and adaptive stream-based com-
pression for file data. We do not present a specific design for
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the disk/NVRAM hybrid file system, although our research
does make certain assumptions about the sort of system which
might be developed. In particular, we make certain assump-
tions about the range of systems and applications to be sup-
ported by a design intended for PC-class workstations and
low-end servers running Linux or a similar UNIX -like oper-
ating system, although we expect that compression will have
benefits for larger file systems as well. We do not assume the
use of any particular kind of non-volatile memory technology,
but on a few points assume that the NVRAM can be mapped
directly into the system address space. Finally, we assume
that NVRAM has predictable random access performance for
both reads and writes; because of the requirement for block
erase, flash memory fails on this point, although this could be
addressed at the cost of some additional complexity.

2 RELATED WORK
The use of non-volatile memory for file systems is not

new; Wu and Zwaenepoel [33] and Kawaguchi,et al. [15]
presented designs for flash memory-based file systems, and
existing flash memory devices may use any one of a num-
ber of file systems, including the Microsoft Flash File System
[11, 16] and JFFS2 [32]. While these file systems are, to some
degree, optimized to run on flash memory, most lack several
important features such as the ability to use disk for large files
and the ability to compress information to save space. JFFS2
is a log-structured file system [22] optimized for flash mem-
ory usage that does support compression of data and meta-
data, but it still cannot support mixed flash and disk storage,
and there is little information on the effectiveness of its com-
pression algorithms. JFFS2 is not the first file system to use
compression; other disk-based file systems have done so as
well [4].

Douglis,et al. [11] studied storage alternatives for mobile
computers, including two types of flash memory. They noted
that flash memory was slow, particularly for writes. This has
not changed; even a laptop hard drive is faster than most com-
pact flash memory cards. In such a system, compression is
useful even for small objects because it reduces transfer time
in addition to reducing space requirements.

There has been some recent work in hybrid disk/NVRAM
file systems, particularly as compact flash memory has
dropped in price and alternative technologies such as
MRAM [2, 26, 36] and Ovonyx Unified Memory [9] have
come closer to reality. The HeRMES file system [18]
and the Conquest file system [28] are examples of hybrid
disk/NVRAM file systems currently being developed. How-
ever, the two systems make different assumptions about the
type and quantity of available non-volatile memory. HeR-
MES, developed to take advantage of MRAM, assumes a
relatively modest amount of memory and a possible differ-
ence in performance between file system NVRAM and main
memory. Conquest, developed to take advantage of battery-

backed-up DRAM, assumes a copious amount of NVRAM
and uniform access times. Neither system uses a technol-
ogy with wide mainstream availability, although the Conquest
system does simulate its ideal technology and provide some
degree of battery-backup for memory by using a UPS to pro-
vide backup power to the system as a whole. The HeRMES
project suggests the use of compression or compression-like
techniques in order to minimize the amount of memory re-
quired for metadata; by contrast, Conquest minimizes the re-
quired memory used for metadata purely by using a stripped-
down version of the standard on-disk metadata structures.

There have been a number of studies of the distribution
of file sizes, and file lifetimes [1, 23, 21]. There has also
been some discussion of the distribution of file ownership and
permissions as it relates to file system security [13, 20].

Beyond work on file systems, there has been considerable
work evaluating the use of compression techniques for in-
memory structures. Douglis proposed the use of acompres-
sion cache, which would implement a layer of virtual memory
between the active physical memory and secondary storage
using a pool of memory to store compressed pages [10]. This
idea has been expanded upon in several directions; Wilson,
Kaplan, and Smaragdakis evaluated the use of different com-
pression mechanisms for memory data [14, 30], and Cortes,
et al. evaluated the performance of using such techniques on
a modern system [7]. Finally, there is an ongoing effort to
implement a compressed page cache on Linux [8].

A number of compression mechanisms could be used to
compress metadata, including any of the block- or stream-
based mechanisms evaluated by Wilson,et al. [30] and used
in the Linux-Compressed project [8]. However, simpler
mechanisms such as Huffman coding using a pre-computed
tree [6], gamma compression [31], and other prefix encod-
ings [31] can all be used to good effect without the same de-
gree of runtime processing overhead.

3 EXPERIMENTAL METHODOLOGY

To study the compressibility of metadata and small files,
we first gathered data on current systems to serve as a sam-
ple on which to try different compression algorithms. All of
the systems we analyzed used a version of UNIX ; thus, we
decided to use UNIX metadata for our study. Metadata in
UNIX is stored ininodes; in widely-used file systems such as
the Berkeley Fast File System (FFS) [17] and the Linux ext2
file system [3], each file has a single 128-byte inode that con-
tains information such as owning user ID (UID) and group ID
(GID), permission bits, file sizes, and various timestamps.In
addition, each inode in FFS and ext2 contains pointers to sev-
eral individual file blocks. In this section, we describe how
we collected our raw data, and the details of the compression
algorithms we used.
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3.1 Data Collection

Our data collection was done in two stages. To initially
verify the assumption that there is a high level of similarity
among file metadata on the class of systems being examined,
we used a short Perl script to produce statistics from directory
dumps.

The Perl script was run on a total of eight file systems:
5 general-purpose Linux workstations, one “clean install”of
Redhat Linux 8.0, one Windows 2000 system, and one large
multi-user UNIX server. Of these, all but the Windows 2000
system provided useful information. The data from the Win-
dows 2000 system proved mostly unusable because the di-
rectory dump provided by the Cygwin version ofls we were
using did not accurately reflect the NTFS permissions or own-
ership information. The file size distributions extracted were
similar to the file size distributions of the Linux systems and
to the results found in previous studies of file sizes [21, 25].

All six Linux systems followed a very similar pattern, with
permissions and file ownership very highly weighted to sys-
tem files owned by the superuser (root). File sizes, as with
the Windows 2000 system, roughly corresponded with the
distributions found by previous studies [21, 25]. Because the
distributions were based on the entire directory tree, and not
simply one file system, they were skewed somewhat by en-
tries in the dynamically generated/proc and/dev Linux
file systems, which are typically very small. The large UNIX

system, which was running SCO Openserver, a commercial
x86 UNIX implementation, had approximately 1.1 million
user files owned by 160 UIDs. The number of system files
and their distribution of combinations of UID, GID, and per-
mission bits were similar to those of the Linux systems, al-
though their number on this server was dwarfed by the num-
ber of user files. Overall, the number of permission combina-
tions was somewhat greater for the large system, though the
distribution of file sizes was very similar. We did some initial
compression tests on these dumps, as described in Section 4.1
and Figure 1.

Based on these initial tests, we proceeded to gather ad-
ditional traces of large multi-user file systems from our de-
partmental file systems because the most “difficult” system
to compress was the large UNIX server. We performed the re-
mainder of the analysis on the departmental file systems, the
UNIX server file system, and representative file systems from
a Linux workstation, as summarized in Table 1, which shows
various characteristics of each of the seven file systems. Ta-
ble 1 lists, for each file system, the number of files (active in-
odes with more than one link to them), the number of unique
access control lists (ACLs), the percentage of system files as
determined by the number of files owned byroot, adm, or
bin, the number of UIDs owning at least 0.1% of all files,
and the most common size class of files as grouped by pow-
ers of two.

3.2 Compression Mechanisms
We evaluated six different compression techniques. As

a control, we used a conventional adaptive compressor,
deflate, from thezlib compression library [12]. We
tested this algorithm for file compression, and ran both on
binary copies of individual inodes and on a single binary file
containing the full set of inodes. Three of the remaining com-
pressors were standard static compressors, tuned specifically
for inodes; the last two were alternative adaptive compressors
for data file compression.

The first compression mechanism we evaluated for com-
pressing inodes was a very simpleall or nothingprefix com-
pressor that encoded fields as shown in Table 2.

The second compression mechanism we evaluated for in-
ode compression was the use of pre-generated Huffman
codes, based on the distribution of frequencies of values in
various inode fields across all of the inodes in each file sys-
tem. For fields with a limited set of discrete values, such
as UID/GID pairs, the Huffman codes represented the actual
values for those fields. For fields with a range of bit lengths,
the Huffman codes represented prefixes which were followed
by the indicated number of data bits.

In order to handle variation between the file system pro-
filed to generate the tree and the file system where inodes
were being compressed, we added a value to the tree to in-
dicateOTHER with a certain minimum frequency, which
would be used to represent values not known at the time the
tree was generated for discrete-value codes, or to represent
the full standard length of the field in a regular ext2 inode for
bit-length codes. In either case, theOTHER code would be
followed by the full regular value for an ext2 inode.

One downside to Huffman codes is that, given a distribu-
tion with many low-frequency values, the tree used to gen-
erate prefix codes can become quite deep. To limit the max-
imum depth and size of the tree, we eliminated values with
frequencies below a certain threshold, which we set at be-
low 0.1%, and added the total frequency of all eliminated
values to theOTHER value when it was inserted. This ap-
pears to have had little effect on the average case, because the
items being replaced were very low frequency to begin with.
On the other hand, it dramatically limited the length of the
longest codes, reducing the worst-case length of each field.
Although this may be less than optimal, we believe the trade-
off is reasonable to guarantee a lower maximum length for a
compressed inode.

The third mechanism we evaluated for compressing in-
odes was gamma compression, a method of efficiently cod-
ing variable-length numeric values [31], shown in Table 3.
It represents each value as a unary prefix (k 1 bits followed
by a single0 bit) followed by a binary field of length deter-
mined by looking at entryk entry in a small table. Gamma
compression further reduces sizes by offsetting the start of
“bucket” k by the sum of the size of the buckets for smaller
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Table 1. File system profiles.

System Files ACLS System files UIDs Common file size

Linux workstation root 213569 119 98.8% 5 4–8 KB
Linux server root 431615 165 59.5% 4 1–2 KB
Linux home directories 378842 78 4.5% 4 64–128KB
UNIX server (all files) 1618855 10417 28.8% 158 0.5–1 KB
Faculty directories 1048577 2299 – – 2–4 KB
Grads directories 1141004 7554 – – 128–256B
SSRC shared dirs 789376 1229 – – 1–2 KB

Table 2. Rules for the all-or-nothing compressor. There are two different types of fields, A and B. User ID would likely be
an A-type field (single most common value—root), while file length would likely be a B-type field (most file lengths can be
represented in relatively few bits).

Type Compress field if value: Compressed representationUncompressed representation

A Matches the single most-common caseSingle bit: ‘0’ ‘1’ followed by entire field
B Can be represented inn bits or fewer ‘0’ followed byn bits ‘1’ followed by entire field

Table 3. Sample table for gamma compression.

Unary Length in bits Minimum value Range

0 1 0 0–1
10 3 1 2–9
110 7 9 10–137
1110 12 137 138– 4233

values ofk. Gamma compression is particularly efficient for
certain common types of distributions: those that have large
quantities of small values. We used a very simple method of
building the tables using the frequency distributions collected
for the Huffman tables which produced very good results for
the distribution of values on most fields; we did not specif-
ically examine whether an algorithm to develop an optimal
table exists.

One additional refinement we used with gamma compres-
sion was to implement a pseudo-ACL mechanism. This sys-
tem replaced the UID, GID, and Mode fields with references
into a table containing UID/GID/Mode triplets. This reduced
48 bits to a maximum of 14, and reduced the number of com-
pression operations per inode by two, at the expense of the
table lookup operations. It also, in theory, would allow for
the easy replacement of the standard Unix user–group per-
mission system with a more flexible ACL mechanism.

The three adaptive compressors we evaluated for file data
compression were all block compressors of the Lempel-Ziv
family. Deflate from the zlib library [12] is a relatively
recent variant of LZ77 [34] intended for general purpose file
compression. We compared the effectiveness and speed of
deflate against two compressors which which are specif-

ically optimized for speed and low resource requirements,
LZO (Lempel-Ziv-Oberhumer) [19] and LZRW1 (Lempel-
Ziv-Ross-Williams) [29]. The selection of these particular
compressors was motivated in part in order to parallel prior
work on swap compression; both LZRW1 and LZO have been
evaluated for that purpose [7, 10, 30].

3.3 Inode Compression Implementation

The ext2 file system uses a 128-byte inode, similar to sev-
eral other UNIX implementations. In ext2, 74 bytes are used
for block pointers and reserved free space; the remaining 54
bytes contain information that must be kept for each file. This
is very close to the size of inodes used by the Conquest file
system—Conquest’s file metadata is 53 bytes long, and con-
sists of only the fields needed to conform to POSIX speci-
fications [28]. This was used as a baseline for the memory
requirements of an in-memory inode, and represents a reduc-
tion in size of 46% simply by stripping out the unused fields.
Note, however, that some replacement for the block pointers
will be necessary for larger files which would spill over to
disk. If these are kept in memory, compression techniques
would be applicable to them as well.

The first piece of code we implemented was an inode scan-
ner, which dumped a raw binary copy of the file system’s in-
use inodes to a one file and a text listing of the inodes’ fields
to another file. This used thelibext2fs library, and was
loosely based on thee2image utility [27]. We also modified
the same scanner to compress the inodes withzlib using
both the block-compression and stream-compression modes
[12], and to output 54-byte Conquest-like uncompressed in-
memory inodes.

4



We wrote a small Java application to scan the text file of
inode fields and produce frequency lists and Huffman trees
for each of the interesting fields. After examining the output
for correctness, we modified the output to produce a machine-
parseable source file with array representations of the Huff-
man trees for the decoder; this was later modified to also pro-
duce gamma-compression tables. It should be noted that no
effort was made to optimize or time the process of assembling
frequency lists and building Huffman trees. In a production
environment, this process would be done infrequently—only
during the one-time creation of a static compressor, in which
case performance is not a significant issue.

Finally, we wrote a compression test harness in C++. The
first version simply calculated the effectiveness of all-or-
nothing compression, without actually doing any compres-
sion, and provided some preliminary results. The second ver-
sion implemented all three compression mechanisms and was
also better suited to doing compression-rate estimates; addi-
tionally, we implemented a decompressor for Gamma com-
pression in order to verify the correct functioning of at least
one of the compressors and to confirm our expectation that
decompression would be quicker than compression.

4 EXPERIMENTAL RESULTS
4.1 Inode Compression

Our initial results came from the first version of the scanner
and test harness. In particular, it estimated the size ofall-or-
nothingcompressed inodes as a proof of concept, but did not
perform actual compression using bitwise operations. This
was tested against only one of the file systems we eventually
tested against, the root file system of a Linux workstation; the
overall number of inodes in-use was 213,569 (out of 641,280
total) of which 3,541 were non-files with no blocks. The vast
majority (about 98%) of these were system files owned by
the root user (UID 0); home directories for were on a sepa-
rate file system. Copied to a disk file, the total space taken
by the in-use inodes was about 27 MB (27,336,832 bytes) un-
compressed. The process of reading in all inodes, both in-
use and not in-use, took approximately 3.5 seconds, averaged
over 10 runs measuring to the nearest second, without writing
any of the dump files to disk. When we repeated this test with
Conquest-like in-memory inodes, the space used was about
11 MB (11,532,726 bytes). These runs were not timed, as no
processing was being done on the inodes; fields were simply
dropped.

To test compressibility and establish a control, we tried
compressing the entire file of raw inodes and the file of
stripped inodes withgzip andbzip2 to gauge the likely
limits of compressibility. Our initial results for the first
suite of compression tests are shown in Figure 1. We found
that gzip achieved roughly 8:1 compression, andbzip2
achieved approximately 10:1 compression. This is corre-
sponds to about 9 bytes per inode on the Conquest-like in-
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Figure 1. Initial compression results. “CQ-like” inodes are
those stripped in a way similar to that in Conquest [28].

odes. While it is still beyond what our compressors can
achieve, it is a reasonable, if perhaps unreachable, goal.

The simple all-or-nothing compression algorithm reduced
space utilization to about 5.1 MB, or an average of just less
than 23 bytes per inode—an improvement of about 55% over
the 54-byte Conquest-like stripped inodes. It is also more
than an 80% improvement over the standard 128-byte inode,
but most of this is simply a matter of dropping the disk-
specific information. Running this compressor, without any
file writes, took roughly 3.5 seconds, averaged over 10 runs
as before. This was identical to the time required to read the
inodes without compressing them. In order to have a com-
parison to thezlib-compressor’s performance, the test was
repeated writing the compressed inodes, and over 10 runs the
compressor consistently ran in 6 seconds.

We repeated the scan, compressing the raw ext2 inodes us-
ing thezlib deflate compressor. Initially, we used the
zlib block-at-a-time call on each inode, but the resulting
performance was poor—two test runs took 115 and 116 sec-
onds. The scanner was revised to open azlib compressed
file and write each inode to the stream. This was almost 20
times faster, taking approximately 6.5 seconds, averaged over
10 runs. Interestingly, the output produced by both methods
was identical; the compressed stream was apparently treating
eachwrite call as a separate block, but the performance was
vastly improved. Thezlib compressed image was roughly
5.9 MB, somewhat larger than the results of our all-or-nothing
compressor. However, according to thezlib documenta-
tion, there is a 12 byte header per block [12], so nearly 50%
of the compressed file was block headers.

Based on the encouraging results from our first set of com-
pression tests, we proceeded to run more extensive tests us-
ing different compression mechanisms. As discussed in Sec-
tion 3.1, we first gathered more complete inode informa-
tion on additional UNIX systems. We generated profiles—
frequencies, gamma tables, and Huffman trees—for each of
the seven file systems on which we ran tests, and then man-
ually coded all-or-nothing compressors for each of the file
systems. For each file system, we tested each compressor, us-
ing first using the profile produced from that file system, and
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Figure 2. Average bytes per inode using the best and worst
profiles for each file system. The colored bar for each com-
pression technique shows the compressed size using the best
profile, and the thin bar shows the range of compressed sizes
using different file system profiles.

then the other profiles from the other file systems. For each,
we measured the total elapsed time to compress all the inodes
and the total size of the compressed inodes; from these we
calculated the average bytes per inode and the compression
rate for that file system/compressor/profile.

As expected, the best compression was achieved in all
seven cases when the profile matched the file system being
compressed. In four cases out of seven, Huffman compres-
sion achieved the greatest space reduction; in the remain-
ing three, gamma compression performed best. In all seven
cases, all-or-nothing compression performed worse than ei-
ther gamma or Huffman compression. It should also be noted
that the difference between best and worst profiles was less
significant for gamma compression than either Huffman or
all-or-nothing.

As shown in Figure 2, best-case compressed inode sizes
ranged from 14 to 19 bytes, when using the best compressor
and the profile generated from the original file system. Select-
ing the worst possible profile for each file system/compressor
combination resulted in a compressed inode size that ranged
from 30 to 37 bytes.

The speed of compression is also a very relevant factor
because inode compression and decompression must be fast
for the technique to be used in a regular file system. Fortu-
nately, we found that the compression techniques we choose
were sufficiently fast that they would not limit file system
throughput. All compression tests were run on a 1.8 GHz
Pentium 4 processor; these tests read the full set of inodes into
memory and pre-allocated buffers for the compressed inodes
before attempting any compression. The rates of compres-
sion for the gamma and Huffman overlapped slightly, with
Huffman running at 270,000–600,000 inodes per second, and
Gamma processing 480,000–600,000 inodes per second. The
all-or-nothing compressor was somewhat faster, compressing
800,000–950,000 inodes per second. Decompressing inodes
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Figure 3. Compression rate, in millions of inodes per second,
for the best and worst profiles on each file system. The top of
the shaded bar is the rate for the worst profile, and the top of
the thin bar is the rate for the best profile.

was significantly faster, achieving a rate of 2.2–2.7 million
inodes per second.

Our gamma and Huffman compressors included variables
to track the best, worst, and average bit width of each field.
We retained these for certain interesting fields, and the results
show the strengths of each compressor for certain types of
data. Figure 4 compares uncompressed size with the mea-
sured best, average, and worst cases for the Huffman and
gamma compressors averaged across all seven file systems.

The results for the timestamp values show the difficulty in
compressing these values; the typical cases for both codes are
still quite long, and in one case shows that a degenerate case
may belonger than the standard 32-bit value. This already
included several optimizations, including storing the creation
time (CTime) as a delta from the millennium rather than the
Unix epoch, and the modification time (MTime) and access
time as deltas from the CTime and MTime respectively.

It is not clear that these values can be compressed signifi-
cantly on an individual basis, but one mechanism worth con-
sidering is a common point from which files could measure
deltas, such as the directory creation time, possibly improv-
ing the degree of compression. Alternatively, if the file sys-
tem had some cleaning mechanism for compressed inodes,
along the lines of LFS [4, 22], a mechanism which reduced
the timing resolution of older inodes could also be used to
save space.

Additional space could be saved by transforming several
fields in concert. One simple example of this is the pseudo-
ACL mechanism we implemented. As noted by Reidel,
et al. [20], the number of unique permission sets in a file sys-
tem is relatively small, and, as shown in Section 3.1, many
files fall into the category of “system files” and could be rep-
resented by a small encoding in either Huffman or gamma
compression.

It is interesting to note is that a significant part of the
compression—shared across all three compressors—comes
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bar, and the error bars reflect the minimum and maximum field sizes. Note that gamma compression treats user IDs and mode
bits as a single field; thus, it uses 0 bits for the individual fields.

from required fields that are very seldom used on low-end
Linux installations, such as the file flags, the deletion time,
and the POSIX file and directory ACL entries. These fields
are essentially treated as optional under the current encoding
schemes; it would be useful to examine to what extent these
are ever actually used in production systems, and if so, what
kind of distributions they fit. Similarly, any of the encod-
ing methods allows for very efficient encoding of ”extended”
fields where upper values are seldom used, such as the exten-
sions for 32-bit UID and GID or the 64-bit extension for file
size.

4.2 Compressing Small Files
Storing only metadata in fast persistent storage would be

of limited value if access to the corresponding data always re-
quired a disk access. While compression is normally thought
of as a technique that is applied to large files in order to save
storage space on disk, today neither storage space nor band-
width are particularly limiting factors compared to latency.
Storing files in memory reduces the access latency, but as
long as memory is a relatively limited resource, most large
files will need be stored on disk, while smaller files may be
stored in memory. By increasing the effective capacity of the
fast but small memory, compression allows a greater num-
ber of files to be stored in memory and thus accessed with
reduced latency.

Compressing file data is a somewhat different problem
from compressing metadata. While metadata is structured
and relatively regular, file data is neither inherently unstruc-
tured nor regular; a file on UNIX or similar operating sys-
tems is simply an arbitrary sequence of bytes. While files of
a given type can be fairly regular, the file’s type is not reliably
recorded as part of the file metadata on UNIX -like operating
systems. Without some knowledge of the file’s type, the best
option is to use a general-purpose block/stream compressor.
The most popular of these are dictionary-based compressors
in the Lempel-Ziv family [34, 35], although one broadly used
compression program, bzip2 [24], uses a block-sorting algo-
rithm based on Burrows-Wheeler transforms [5].

Our compression tests were performed on three of the
file systems used for the inode compression tests, the Linux
workstation file system and the news-server/home and
/root file systems because neither the large UNIX server
nor the departmental file server1 was available for these tests.
The compression tests were also performed on an additional
Linux workstation that had a combined file system including
both the root and home directories. The tests consisted of
loading each file under a given size limit into memory and
then averaging the time across several compression and de-
compression cycles while measuring the total space saved by
compression for each file.

We ran these tests for three algorithms described briefly
in Section 3.2:deflate, LZO, and LZRW1. We focused
on the compressibility of files containing up to 128 KB of
uncompressed data. This threshold was selected based on
two assumptions: first, that a threshold much larger than this
would likely require relatively very large amounts of memory,
and second, that files much larger than 128 KB were likely to
include some media files that were likely already compressed.
Also, we expected that the very smallest files would not be
particularly compressible.

The results for the two Linux workstation systems, and the
root file system of the news server closely matched expecta-
tions. We averaged files across size groups at 512-byte in-
crements; all three compressors showed very similar curves
on all three file systems. The curve showed a flat average
degree of compression for files between 4 KB and 32 KB.
Files between 32 KB and 128 KB showed a similar or slightly
higher average degree of compressibility in overall, but had a
degree of variation between different size groups. Files be-
low 4 KB showed a decreased degree of compressibility. Fig-
ure 5(a) shows the compression effectiveness by file size on
the Linux workstation root file systems. The rate of com-
pression was also similar across those three systems, with
all three of the compressors reaching their average rate of

1The departmental server, in particular, had issues with privacy of user
data.
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Figure 5. Compressibility and speed of compression for the
files on the root file system of the Linux workstation. Both
measurements are calculated across a range of file sizes. For
both graphs, LZRW1 is the top line anddeflate is the bot-
tom line.

compression above a certain minimum size file. Figure 5(b)
shows the average compression rates by file size on the same
Linux workstation file system. Decompression rate followed
similar patterns, but was much faster, averaging around 125–
150 MB/sec.

Figure 5 shows thatdeflate provided significantly bet-
ter compression than either LZRW1 or LZO at the expense of
significantly worse performance than either. LZO provided
slightly better compression than LZRW1, at the expense of
slightly worse performance. The overall average compression
ratio and the average compression rates in megabytes per sec-
ond are shown in Table 4. The figures in Table 4 were mea-
sured on the Linux workstation root file system, but results
for the other file systems except for the news server home
directories were similar. Note that, even for the slowest com-
pression algorithm,deflate, the file system would be able

Table 4. Average file compression and speed by compression
technique.

Compressor Average Compression Average Rate
Deflate 61% 6.3 MB/sec
LZO 50% 36.8 MB/sec
LZRW1 44% 42.5 MB/sec
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Figure 6. Cumulative space required for compressed files.

to transfer over 600 10 KB files per second. For the faster al-
gorithms, the file system could transfer 3500–4000 such files.

Unlike the other file systems, the home directory file sys-
tem on the news server did not meet our expectations; it had
particularly irregular distributions for both compressibility
and rate of compression. A close examination of the disk’s
contents, showed this to be because of a very large number
of JPEG images ranging from thumbnails (2–6 KB) to much
larger files. Compressed file formats such as JPEG typically
cannot be compressed further by the lossless compression
techniques we were using, and attempting to recompress them
tends to be a relatively slow process. This problem could be
usefully addressed if the file system metadata could reliably
be queried for file type, or if the file system had a good heuris-
tic for determining file type, such as looking at the extension
(i. e.,.jpg).

Finally, the usefulness of compression can be emphasized
by examining the cumulative space taken by compressed and
uncompressed files of a given size, shown in Figure 6. Files
of up to 128 KB on the Linux workstation root file system
occupied about 1.3 GB of total space. However, the total
compressed size of the same files ranged from approximately
800 MB with LZRW1 down to 570 MB withdeflate.
These savings are very significant, although they also un-
derscore that file data compression on its own may not be
enough; the lowest figure of 570 MB remains sizeable even
by the standards of volatile workstation main memory.

Compression may be most useful for very small files—
those smaller than 16–32KB. Files smaller than 16 KB oc-
cupied over 750 MB in the uncompressed file system, but re-
quired just 325–400MB using compression. This represents
a savings of over $100 in today’s memory prices, with the
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only drawback being the inclusion of file compression in the
operating system. Compressing files on NVRAM has sev-
eral additional advantages: lower transfer time, lower clean-
ing overhead, and potentially longer NVRAM lifetime. By
keeping less data on potentially slower NVRAM, the file sys-
tem can reduce the latency to read or write such files. A log-
structured NVRAM file system such as JFFS2 [32] must pay
an overhead to clean “segments;” the cleaning rate is pro-
portional to the rate at which data is written to the file sys-
tem [22]. By reducing the size of files via compression, we
can reduce the overhead necessary to perform segment clean-
ing. Similarly, some NVRAM technologies such as flash
memory degrade as they are written repeatedly. Compression
reduces the total amount of bytes written to the NVRAM, ex-
tending its lifetime, without reducing the amount of user data
that can be stored on it.

5 FUTURE WORK

We have taken the simulation results discussed here as a
positive step, and are implementing the inode and data com-
pression in an in-memory file system on Linux. Specific engi-
neering decisions for that system are beyond the scope of this
paper, but present a number of open questions. For exam-
ple, how is memory for compressed allocated? What policy
is used to migrate files to disk when space becomes tight?
How are compressed inodes stored to allow for both space
efficiency and fast read and write access? How is on-disk
allocation handled?

In the area of compression techniques, there are a number
of possible avenues that can still be explored. One is the effi-
cient encoding of time values, which tend to be fairly long bit
strings if encoded individually. Additionally, while all of our
tests up to now focused on using a single type of compressor
for every field in an inode, it might be possible to improve
the total reduction in size with a hybrid compressor which
applied the best type of compressor for each particular field.
Similarly, for file compression, some advance knowledge of
the file type, perhaps encoded into the inode as done in some
file systems, would allow for more intelligent selection of a
compressor.

The use of multiple compression profiles on a single sys-
tem, either for different file systems or at the inode or di-
rectory level, could yield higher compression rates. This
could be further refined with adaptive techniques, either with
knowledge about different classes of files, or by trying to
compress a given inode with several profiles in parallel and
save the smallest resulting compressed inode along with a
prefix to indicate which decompressor to use. Another in-
teresting question is to what degree the description of on-disk
data, either using block pointers or extents, is compressible.
Implementation of a fast adaptive block or stream based com-
pressor on groups of inodes might on the one hand eliminate

the high cost of a block header per individual inode while
maintaining low-cost random access to any inode.

6 CONCLUSIONS
Compression of small objects such as metadata and small

files has long been neglected because there is little point to
compressing small objects that must suffer the long latency
of disk storage. As long as such objects live permanently on
disk and are only cached in memory, compression will re-
main optional. For disk/NVRAM hybrid file systems, how-
ever, compression is an important tool for reducing NVRAM
capacity requirements and system cost.

We have shown that both file metadata and small files are
highly compressible at relatively low cost. By using tuned
compression techniques, we can save more than 50% of the
space required by previous disk/NVRAM file systems. Simi-
larly, compressing small files can improve file system perfor-
mance by keeping small, latency-sensitive files in NVRAM
while reducing NVRAM capacity requirements by over 50%.

Although there is a cost in CPU cycles associated with
compressing or decompressing a piece of data, our perfor-
mance numbers indicate that on a modern processor this cost
is negligible compared to the latency of a request to disk. For
inodes, the slowest compressor we evaluated averaged less
than four microseconds per inode, an improvement of 250:1
over a 1 millisecond disk access. The fastest compressors we
evaluated were 3–4 times faster still. Similarly, for file data
compression, on modern processors the average compression
rates for LZRW1 and LZO can match the typical data rates
of typical desktop disk systems. With the higher speeds of
all three decompressors, decompression is very nearly free;
1 KB reads decompress in around 30–100 microseconds, 20–
100timesfaster than a single disk access.

Overall, our results indicate that even with a relatively low
cache miss rate, a hybrid file system including a compressed
non-volatile memory component will offer a significant speed
improvement over a typical disk-only file system, while at the
same time requiring significantly fewer resources than hybrid
file systems that do not take advantage of compression.
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