
Performance and Design Evaluation of the RAID-II Storage Server

Performance and Design Evaluation
of the RAID-II Storage Server

Peter M. Chen, Edward K. Lee, Ann L. Drapeau, Ken
Lutz, Ethan L. Miller, Srinivasan Seshan, Ken Shirriff,

David A. Patterson, Randy H. Katz

Abstract: RAID-II is a high-bandwidth, network-
attached storage server designed and implemented at
the University of California at Berkeley. In this paper,
we measure the performance of RAID-II and evaluate
various architectural decisions made during the design
process. We first measure the end-to-end performance of
the system to be approximately 20 MB/s for both disk
array reads and writes. We then perform a bottleneck
analysis by examining the performance of each individ-
ual subsystem and conclude that the disk subsystem lim-
its performance. By adding a custom interconnect board
with a high-speed memory and bus system and parity
engine, we are able to achieve a performance speedup
of 8 to 15 over a comparative system using only off-the-
shelf hardware.

1 Introduction
RAID-II is a high-bandwidth, network file server

designed and implemented at the University of Califor-
nia at Berkeley as part of a project to study high-perfor-
mance, large-capacity, highly-reliable storage systems.
RAID-II is designed for the heterogeneous computing
environments of the future, consisting of diskless super-
computers, visualization workstations, multi-media plat-
forms, and UNIX workstations.

Other papers [Lee92, Katz93] discuss in detail the
architecture and implementation of RAID-II. The goal
of this paper is to evaluate the decisions made in design-
ing RAID-II. We evaluate those decisions by measuring
the performance of RAID-II and its components and
comparing it to the performance of RAID-I, a prototype
network file server assembled at U.C. Berkeley using
off-the-shelf parts. We are particularly interested in
evaluating the novel architectural features of RAID-II,
which are the crossbar-based interconnect, the high-
speed data path between the network and the disk sys-
tem, the separate network path for small and large file
accesses, and the exclusive-or unit for fast parity com-
putation.

The rest of the paper is organized as follows. Sec-
tion 1 provides motivation and reviews previous work;
Section 2 describes RAID-II’s architecture and high-
lights its novel features; Section 3 reports the perfor-
mance of RAID-II at the component and system level
and draws conclusions about our design decisions.

1.1 Motivation
The development of RAID-II is motivated by three

key observations. First, we notice a trend toward band-
width-intensive applications: multi-media, CAD, large-
object databases, and scientific visualization. Even in
well established application areas such as scientific
computing, reductions in the cost of secondary storage
and the introduction of faster supercomputers have
caused a rapid growth in the size of datasets, requiring

faster I/O systems to transfer the increasing amounts of
data.

The second observation is that most of today’s
workstation-based file servers are incapable of support-
ing high-bandwidth I/O. This was demonstrated in expe-
rience with our first prototype, RAID-I. Moreover, the
future I/O performance of server workstations is likely
to degrade relative to the overall performance of their
client workstations even if applications do not become
more I/O-intensive. This is because today’s worksta-
tions achieve high performance by using large, fast
caches without significantly improving the performance
of the primary memory and I/O systems. This problem
is mentioned by Hennessy and Jouppi [Hennessy91] in
their paper discussing how interactions between tech-
nology and computer architecture affect the perfor-
mance of computer systems.

Third, recent technological developments in net-
works and secondary storage systems make it possible
to build high-bandwidth, supercomputer file servers at
workstation prices. Until recently, anyone wishing to
build a high-bandwidth, supercomputer I/O system had
to invest millions of dollars in proprietary, high-band-
width network technology and expensive parallel-trans-
fer disks. But with the standardization of high-
performance interconnects and network, such as HIPPI
and FDDI, and the commercialization of the disk arrays,
high-bandwidth networks and secondary storage sys-
tems have suddenly become affordable. What is lacking,
and the point that RAID-II addresses, is a storage archi-
tecture that can exploit these developments.

1.2 Related Work
There are currently many existing file server archi-

tectures. We examine a few of them to serve as a back-
ground for the discussion of various aspects of RAID-II.
First we examine RAID-I, a workstation-based file
server with off-the-shelf disk controllers and disks. Next
we look at the Auspex NS5000 file server, which pro-
vides scalable high-performance NFS file service.
Finally, we examine several mass storage systems
(MSS) currently used by supercomputing centers for
high-capacity, shared storage.

1.2.1 RAID-I
 We constructed RAID-I to see how well a work-

station-based file server could provide access to the high
data and I/O rates supported by disk arrays. The proto-
type was constructed using a Sun 4/280 workstation
with 128 MB of memory, 28 5-1/4 inch SCSI disks and
four dual-string SCSI controllers.

Experiments with RAID-I show that it is good at
sustaining small random I/Os, performing approxi-
mately 300 4 KB random I/Os per second [Cherve-
nak91]. However, RAID-I has proven woefully
inadequate for high-bandwidth I/O, sustaining at best
2.3 MB/s to a user-level application on RAID-I. In com-
parison, a single disk on RAID-I can sustain 1.3 MB/s.
There are several reasons why RAID-I is ill-suited for
high-bandwidth I/O. The most serious is the memory
contention experienced on the Sun 4/280 server during
I/O operations. The copy operations performed in mov-
ing data between the kernel DMA buffers and buffers in
user space saturate the memory system when I/O band-
width reaches 2.3 MB/s. Second, because all I/O on the

This paper appeared in the International Parallel Processing Symposium Workshop on I/O in Parallel Computer
Systems, Newport Beach, CA, April 1993, pages 110–120.

Performance and Design Evaluation of the RAID-II Storage Server

Sun 4/280 goes through the CPU’s virtually addressed
cache, data transfers experience interference from cache
flushes. Finally, high-bandwidth performance is limited
by the low bandwidth of the Sun 4/280’s VME system
bus. Although nominally rated at 40 MB/s, the bus
becomes saturated at 9 MB/s.

The problems RAID-I experienced are typical of
many ‘‘CPU-centric’’ workstations that are designed for
good processor performance but fail to support adequate
I/O bandwidth. In such systems, the memory system is
designed so that the CPU has the fastest and highest-
bandwidth path to memory. For busses or backplanes
farther away from the CPU, the available bandwidth to
memory drops quickly. Our experience with RAID-I
indicates that the memory systems of workstations are,
in general, poorly suited for supporting high-bandwidth
I/O.

1.2.2 Auspex NS5000
The Auspex NS5000 [Nelson90] is designed for

high-performance, NFS file service [Sandberg85]. NFS
is the most common network file system protocol for
workstation-based computing environments. It is prima-
rily designed to support operations on small and
medium sized files. Because NFS transfers files in small
individual packets, it is inefficient for large files.

In NFS, as with most network file systems, each
packet requires a relatively constant CPU overhead to
process device interrupts and manage the network pro-
tocol. Because of this per-packet overhead, current
workstations lack sufficient processing power to handle
the large numbers of small NFS packets that are gener-
ated at high data transfer rates. Additionally, NFS is
designed to support many clients making small file
requests independent of each other. Although an indi-
vidual client’s request stream may exhibit locality, the
sequence of requests seen by the server will include
interleaved requests from many clients and thus show
less locality. Finally, NFS was designed for workstation
clients that typically handle small files. As a result, the
protocols are optimized for files that can be transferred
in relatively few packets.

The NS5000 handles the network processing, file
system management, and disk control using separate
dedicated processors. Thisfunctional multiprocessing,
in contrast to symmetric multiprocessing, makes syn-
chronization between processes explicit and allows the
performance of the file server to scale by adding proces-
sors, network attachments and disks. Typical NFS file
servers, on the other hand, perform all functions on a
single processor. In such systems, performance can be
scaled to only a very limited degree by adding network
attachments and disks because the processor will
quickly become a bottleneck. Due to this functional
multiprocessing, the NS5000 can support up to 770 NFS
I/Os per second with 8 Ethernets and 16 disks [Hor-
ton90].

Although the NS5000 is good at supporting small
low-latency NFS requests, it is unsuitable for high-
bandwidth applications. The use of a single 55 MB/s
VME bus to connect the networks, disks and memory
limits the aggregate I/O bandwidth of the system. NFS
is also very inefficient for large files because it always
breaks up files into small packets which are sent individ-
ually over the network. This results in fragmentation of

the available network bandwidth and forces the receiv-
ing system to handle a large number of interrupts.

1.2.3 Supercomputer Mass Storage Systems
Almost all supercomputer mass storage systems

use a mainframe as a high-performance file server. The
mainframe runs the file system and provides a high-
bandwidth data path between its channel-based I/O sys-
tem and supercomputer clients via a high-performance
channel or network interface. There are several prob-
lems with today’s supercomputer mass storage system.
First, most supercomputer mass storage systems are
designed primarily for capacity, so very few support
data transfer rates over 10 MB/s. For performance,
supercomputer applications rely on locally attached par-
allel-transfer disks. Second, supercomputer mass stor-
age systems are not designed to service a large number
of small file requests and are rarely used as primary stor-
age systems for large numbers of client workstations.
Third, mainframes are very expensive, costing millions
of dollars. The following briefly describes the MSS-II,
NCAR, LSS, and Los Alamos National Labs mass stor-
age systems

MSS-II [Tweten90], the NASA Ames mass stor-
age system, uses an Amdahl 5880 as a file server. MSS-
II achieves data transfer rates up to 10 MB/s by striping
data over multiple disks and transferring data over mul-
tiple network channels. The practice of striping data
across disks to provide higher data transfer rates has
been used for some time in supercomputer environ-
ments.

The mass storage system at NCAR [Nelson87], the
National Center for Atmospheric Research, is imple-
mented using Hyperchannel and an IBM mainframe
running MVS. The NCAR mass storage system is
unique in that it provides a direct data path between
supercomputers and the IBM mainframe’s channel-
based storage controllers. On a file access, data can
bypass the mainframe and be transferred directly
between the storage devices and the supercomputers.

The Lawrence Livermore National Laboratory’s
LINCS Storage System (LSS) [Foglesong90], is one of
the systems upon which the Mass Storage System
(MSS) Reference Model [Coleman90] is based. A nota-
ble aspect of LSS is that control and data messages are
always transmitted independently. This allows the con-
trol and data messages to take different paths through
the system. For example, a control message requesting a
write might be sent to the bitfile server via an Ethernet
but the data itself would be sent directly to the storage
server via a high speed HIPPI channel, bypassing the
bitfile server.

Los Alamos National Labs’s High-Performance
Data System [Collins91] is an experimental prototype
designed to support high-bandwidth I/O for the LANL
supercomputers. The LANL design is quite close to the
RAID-II architecture. It directly connects an IBM RAID
Level 3 disk array to a HIPPI network and controls the
data movement remotely (over an Ethernet) from a IBM
RISC/6000. Los Alamos has demonstrated data rates
close to the maximum data rate of the IBM disk array,
which is close to 60 MB/s. The main difference between
LANL’s High-Performance Data System and RAID-II is
that LANL uses a bit-striped, or RAID Level 3, disk
array, whereas RAID-II uses a flexible, crossbar inter-

Performance and Design Evaluation of the RAID-II Storage Server

connect that can support many different RAID architec-
tures. In particular, RAID-II supports RAID Level 5,
which supports many independent I/Os in parallel.
RAID Level 3, on the other hand, supports only one I/O
at a time.

In summary, although most supercomputer mass
storage systems can transfer data at rates up to 10 MB/s,
this is still insufficient to support diskless supercomput-
ers. Furthermore, they neglect the performance of small
NFS-type requests in order to optimize the performance
of high-bandwidth data transfers. Finally, even if the
supercomputer mass storage systems were optimized to
support NFS-type requests, it would be economically
infeasible to use mainframes as file servers for worksta-
tions. The mass storage system closest to RAID-II is the
Los Alamos High-Performance Data System, which
uses a HIPPI-attached IBM disk array, but this disk
array only supports one I/O at a time.

2 RAID-II Architecture
RAID-II is a high-performance file server that

interfaces a SCSI-based disk array to a HIPPI network.
Our goal in designing RAID-II is to provide high-band-
width access from the network to a large disk array
without transferring data through the relatively slow file

LINKLINKLINKLINKLINK
8 Port Interleaved

Memory (128 MByte)

8 x 8 x 32-bit
Crossbar

VME VME VME VME

VME

XOR

4 Port Interleaved
Memory (32 MB)

4-by-8 by 32-bit
Crossbar

VME VME VME VME
VME

XORHIPPIS

HIPPD

XBUS
Card

HIPPIS

HIPPID
HIPPI

VME
Disk

Controller

Control
Bus

Ethernet(Control and Low Latency Transfers)

TMC

TMC

High Bandwidth
Transfers

LINK

HIPPIS Bus
HIPPID Bus

Server
File

VME

Four VME Disk Controllers

LINK

VME Ribbon
Cable Segments
Control Paths

Figure 1: RAID-II Organization . A high-bandwidth crossbar interconnect ties the network interface
(HIPPI), the disk controllers, a multiported memory system, and a parity computation engine. An internal
control bus provides access to the crossbar ports, while external point-to-point VME links provide control
paths to the surrounding SCSI and HIPPI interface boards. Up to two VME disk controllers can be attached
to each of the four VME interfaces. The design originally had 8 memory ports and 128 MB of memory;
however, we built a four memory port version to reduce manufacturing time.

VME
Disk

Controller

server (a Sun4/280 workstation) backplane. To do this,
we designed a custom printed-circuit board called the
XBUS card. The main purpose of the XBUS card is to
provide a high-bandwidth path between the major sys-
tem components: the HIPPI network, four VME busses
that connect to VME disk controllers, and an inter-
leaved, multiported semiconductor memory. The XBUS
card also contains a parity computation engine that gen-
erates parity for writes and reconstruction on the disk
array. The entire system is controlled by an external Sun
4/280 file server through a memory-mapped control reg-
ister interface. Figure 1 shows a block diagram for the
controller. To minimize the design effort, we used com-
mercially available components whenever possible.
Thinking Machines (TMC) provided a board set for the
HIPPI network interface; Interphase Corporation pro-
vided VME-based, dual SCSI, Cougar disk controllers;
Sun Microsystems provided the Sun 4/280 file server;
and IBM donated disk drives and DRAM.

2.1 XBUS Card Architecture
The XBUS card implements a 4x8 (four memory

ports and eight client ports), 32-bit wide crossbar, which
we call the XBUS. All XBUS transfers involve one of
the four memory ports as either the source or the desti-
nation of the transfer. Each memory port is designed to

Performance and Design Evaluation of the RAID-II Storage Server

transfer bursts of data at 50 MB/s and sustain transfers
at 40 MB/s, for a total sustainable memory bandwidth
on the XBUS card of 160 MB/s.

The XBUS is a synchronous multiplexed
(address/data) crossbar-based interconnect that uses a
centralized strict priority-based arbitration scheme. All
paths to memory can be reconfigured on a cycle-by-
cycle basis. Each of the eight 32-bit XBUS ports oper-
ates at a cycle time of 80 ns.

The XBUS supports reads and write transactions.
Between 1 and 16 words are transferred over the XBUS
during each transaction. Each transaction consists of an
arbitration phase, an address phase, and a data phase. If
there is no contention for memory, the arbitration and
address phases each take a single cycle; data is then
transferred at the rate of one word per cycle. The mem-
ory may arbitrarily insert wait cycles during the address
and data cycles to compensate for DRAM access laten-
cies and refreshes. The shortest XBUS transaction is a
single word write, taking three cycles (one each for the
arbitration, address, and data phases).

Data is interleaved across the four banks in 16-
word interleave units. Although the crossbar is designed
to move large blocks between memory, network, and
disk interfaces, it is still possible to access a single word
when necessary. The external file server can access the
on-board memory through the XBUS card’s VME con-
trol interface.

Of the eight client XBUS ports, two interface to
the TMC I/O bus (HIPPIS/HIPPID busses). The HIPPI
board set also interfaces to this bus. These XBUS ports
are unidirectional and can sustain transfers of up to 40
MB/s, with bursts of up to 100 MB/s into 32 KB FIFO
interfaces.

Four of the client ports are used to connect the
XBUS card to four VME busses, each of which can con-
nect to one or two dual-string disk controllers. Because
of the physical packaging of the array, 6 to 12 disks can
be attached to each disk controller in two rows of three
to six disks each. Thus, up to 96 disk drives can be con-
nected to each XBUS card. Each VME interface has a
maximum transfer bandwidth of 40 MB/s; however, in
our experience, the Sun 4 VME can usually realize at
most 8-10 MB/s [Chervenak91]. The VME disk control-
lers that we use, Interphase Cougar disk controllers, can
transfer data at 8 MB/s1, for a total maximum bandwidth
to the disk array of 32 MB/s.

Of the remaining two client ports, one interfaces to
a parity computation engine. The last port links the
XBUS card to the external file server. It provides access
to the on-board memory as well as the board’s control
registers (through the board’s control bus). This makes it
possible for file server software, running on the control-
ler, to access network headers and file meta-data in the
controller cache.

2.2 Design Issues
The first design issue is whether memory/XBUS

contention significantly degrades system performance in
the XBUS design.

1. This is the transfer rate for SCSI-1 drives; with SCSI-
2, the Cougar disk controllers can transfer at higher
rates.

Before deciding upon the XBUS, we considered
using a single, wide bus interconnect. Its main attraction
was conceptual simplicity. However, a 128-bit wide bus
would have required a huge number of FIFO and bus
transceiver chips. While we could have used a small
number of time-multiplexed 128-bit ports, interfaced to
narrower 32-bit and 64-bit busses, the result would have
been a more complex system.

A disadvantage of using a crossbar interconnect
with multiple, independent memories is the possibility
of contention for memory. For example, if there were
four client ports (each transferring at 40 MB/s) access-
ing a random memory, then on average 1.26 memory
ports would be idle and 50 MB/s of the available mem-
ory bandwidth would be wasted. The original XBUS
design had eight memory ports to minimize this conten-
tion; however, we later reduced the number of memory
ports to four due to problems routing the original design
[Katz93].2 The total sustainable demand of all client-
ports is 150 MB/s (40 MB/s for each non-VME port and
6 MB/s for each VME), so the XBUS could be close to
fully utilized and memory contention could seriously
degrade system performance.

While contention for memory modules is a con-
cern, actual contention should be infrequent. Most
XBUS ports perform large accesses at least of at least a
few KB so that when two accesses conflict, the loser of
the arbitration deterministically follows the winner
around the memory modules, avoiding further conflicts.
Each XBUS port buffers 4-32 KB of data to/from the
XBUS to even out fluctuations.

The second design issue is the necessity of two net-
works, one for high bandwidth, one for low latency.

The remote connection of the HIPPI network to
the XBUS card increases the latency of sending a HIPPI
packet. Thus, while the XBUS’s HIPPI network pro-
vides high bandwidth, its latency is actually worse than
if we had directly connected it to the Sun4 file server.
Also, because it is a high-bandwidth network, even
small latencies waste a large fraction of its available
bandwidth and it is thus inefficient at transferring small
packets. Thus, RAID-II also supports an Ethernet that is
directly connected to the Sun4 file server for small
transfers where network latency dominates service time.
In this paper, we measure the latency of the high band-
width HIPPI to determine if having the low latency
Ethernet is necessary.

The third design issue is the performance benefit of
including a special purpose parity computation engine.

Disk arrays inherently require extra computation
for error correction codes. Several popular disk array
architectures, such as RAID Levels 3 and 5, use parity
as the error correction code [Patterson88, Lee91]. Parity
is computed when writing data to the disk array and
when reconstructing the contents of a failed disk. Parity
computation is a simple but bandwidth intensive opera-
tion that workstations, with their limited memory band-
width, perform too slowly. To address this concern, we
provide a simple parity computation engine on the
XBUS card to speed up disk writes and reconstructions.

2. We have since routed the full 8x8 version of the
XBUS card.

Performance and Design Evaluation of the RAID-II Storage Server

We measure the performance of this parity engine and
compare it to the performance of computing parity on
the workstation file server.

The fourth design issue this paper addresses is the
success or failure of connecting the network and disks to
the XBUS instead of to the file server.

A key feature of RAID-II’s architecture is the min-
imal use of the file server’s backplane. Data never goes
over the file server’s backplane; instead, data travels
directly from the HIPPI network to the XBUS memory
to the disks. The file server still controls this data move-
ment but never touches the data.3 By doing this, we
hope to achieve end-to-end performance that is limited
by XBUS’s performance rather than the file server back-
plane’s performance.

3 Performance and Design Evaluation
This section is organized in two parts. The first

part reports a series of system-level performance mea-
surements by sending data from the disk subsystem
to/from the network and analyzes the performance of
each system component to locate system bottlenecks.
The second part examines the design issues raised in
Section 2.

3.1 System Performance
For all system-level experiments, the disk system

is configured as a RAID Level 5 [Patterson88] with one
parity group of 24 disks. We break down system tests
into two separate experiments, reads and writes; Figure
2 shows the results. For reads, data is read from the disk
array into the memory on the XBUS card and from there
is sent over HIPPI back to the XBUS card into XBUS
memory. For writes, data originates in XBUS memory,
is sent over the HIPPI back to the XBUS card to XBUS
memory, parity is computed, then both data and parity
are written to the disk array. We use the XBUS card for
both sending and receiving the data because of our cur-
rent lack of another system that can source or sink data
at the necessary bandwidth.4 For both tests, the system
is configured with four Interphase Cougar disk control-
lers with six disks on each disk controller. Figure 2
shows that, for large requests, system-level read and
write performance tops out at about 20 MB/s. Writes are
slower than reads due to the increased disk and memory
activity associated with computing and writing parity.
While an order of magnitude faster than our previous
prototype, RAID-I, this is still well below our target of
40 MB/s. In the next sections, we measure the perfor-
mance of each component to determine what limits per-
formance.

3.2 HIPPI
Figure 3 shows the performance of the HIPPI net-

work and boards. Data is transferred from the XBUS
memory to the HIPPI source board to the HIPPI destina-
tion board and back to XBUS memory. Because the net-
work is configured as a loop, there is minimal network
protocol overhead—this test focuses on the network’s

3. The server does store and manipulate the meta-data,
such as inodes and directory structures.
4. We are in the process of connecting to a 100 MB/s
video microscope at Lawrence Berkeley Laboratories.

raw hardware performance. The overhead of sending a
HIPPI packet is about 1.1 ms, mostly due to setting up
the HIPPI and XBUS control registers across the slow
VME link (in comparison, an Ethernet packet takes
approximately 0.5 ms to transfer). Due to this control
overhead, small requests result in low performance. For
large requests, however, the XBUS and HIPPI boards
support 38 MB/s in both directions, which is very close
to the maximum bandwidth of each XBUS port. During
these large transfers, the XBUS card is transferring a
total of 76 MB/s, which is an order of magnitude faster
than FDDI and two orders of magnitude faster than
Ethernet. Clearly the HIPPI part of the XBUS is not the
liming factor in determining system level performance.

3.3 Parity Engine
Figure 4 shows the performance of the parity com-

putation engine, which is used in performing writes to
the disk array. After the file server writes control words
into the parity engine’s DMA, the parity engine reads
words from XBUS memory, computes the exclusive-or,
and then writes the resulting parity blocks back into
XBUS memory. Figure 4 graphs performance for all
combinations of buffer sizes that are powers of 2
between 1 KB and 1 MB and {1, 2, 4, 8, and 16} data
buffers. The amount of data transferred by the parity
engine is the size of each buffer times the number of
buffers plus one (for the result buffer). Performance
depends mainly on the total amount of data transferred

Figure 2: System Level Read and Write
Performance. This figure shows the overall
performance of the RAID-II storage server for disk
reads and writes. For disk reads, data is read from the
disk array into XBUS memory, transferred over the
HIPPI network and back to XBUS memory. For disk
writes, data starts in XBUS memory, is transferred over
the HIPPI network back to XBUS memory, parity is
computed, then the data and parity are written to the
disk array. CPU utilization limits performance for
small requests; disk system throughput limits
performance for large requests. Request size refers to
the total size of the request before it is broken into
individual disk requests.

0 500 1000 1500 2000
0

10

20

30

Request Size (KB)

T
hr

ou
gh

pu
t (

M
B

/s
)

Disk Array Reads
Disk Array Writes

Performance and Design Evaluation of the RAID-II Storage Server

Figure 3: HIPPI Loopback This figure shows the
performance of the HIPPI network. Data is transferred
from the XBUS memory to the HIPPI source board to
the HIPPI destination board and back to XBUS
memory. The overhead of sending a HIPPI packet is
about 1.1 ms, mostly due to setting up the HIPPI and
XBUS control registers. The measured data is shown
as symbols; the dashed line represents performance
derived from a simple model with a constant overhead
of 1.1 ms and a maximum throughput of 38.5 MB/s.

1 10 100 1000 10000
0

10

20

30

40

HIPPI Request Size (KB)

T
hr

ou
gh

pu
t (

M
B

/s
)

Figure 4: Parity Engine Performance. This figure
shows the performance of the parity computation
engine. The symbols represent measured data, gathered
from workloads with buffer sizes that are powers of 2
between 1 KB and 1 MB, and {1, 2, 4, 8, and 16} data
buffers. The line represents performance derived from
a simple model with a constant overhead of 0.9 ms and
a maximum throughput of 38.5 MB/s. Throughput
measures the total number of bytes transferred
(including both data and parity) divided by elapsed
time.

1 10 100 1000 10000
0

10

20

30

40

KB Transferred by Parity Engine

T
hr

ou
gh

pu
t (

M
B

/s
)

rather than the number of data buffers. The line in Fig-
ure 4 represents performance derived from a simple
model with a constant overhead of 0.9 ms and a maxi-
mum throughput of 38.5 MB/s. As with the HIPPI, the
parity engine is not a bottleneck, though the fixed over-
head of 0.9 ms degrades performance when less than
100 KB is transferred.

3.4 Disk Subsystem
Figure 5 and Figure 6 show how well RAID-II per-

formance scales with the number of disks. All graphs
use 64 KB requests. The dashed lines indicate the per-
formance under perfect, linear scaling. Figure 5a and
Figure 6a show how the performance of one string on
one Interphase Cougar disk controller scales as the num-
ber of disks varies from 1 to 5. Each string can support
the full bandwidth of two disks; with more than two
disks, the maximum string throughput of 3.1 MB/s lim-
its performance. For all other graphs, we use three disks
per string.

Figure 5b and Figure 6b show how well each Cou-
gar disk controller supports multiple strings. In these
figures, we graph how performance increases as we go
from one string per controller to two. We see that using
two strings per controller almost doubles performance
over using one string per controller, topping out at 5.3
MB/s for disk reads and 5.6 MB/s for disk writes. For
the rest of the graphs, we use two strings per controller.

Figure 5c and Figure 6c vary the number of disk
controllers per VME bus from one to two. Performance
per VME bus is limited to 6.9 MB/s for disk reads and
5.9 MB/s for disk writes due to a relatively slow syn-
chronous design of the XBUS VME interface [Katz93]5.
For the remainder of the paper, we use one disk control-
ler per VME bus.

Figure 5d and Figure 6d increase the number of
VME busses active on the XBUS from one to five6. Per-
formance of the XBUS card scales linearly with the
number of controllers for both reads and writes.

It is clear from these graphs that the limiting factor
to overall system performance is the disk subsystem. In
designing RAID-II, we expected each string to support 4
MB/s. Thus, with four dual-string controllers, the total
RAID-II disk bandwidth should be 32 MB/s. However,
with three disks per string, each string transfers only 3.1
MB/s for disk writes and 2.6 MB/s for disk reads, so the
maximum total string bandwidth is 25 MB/s for disk
writes and 21 MB/s for disk reads. Other than string per-
formance, the system scales linearly with one disk con-
troller on each VME bus.

3.5 Evaluation of Design
In this section, we examine the four design ques-

tions raised in Section 2:

5. To implement the VME interface as quickly as possi-
ble, we designed a simple, synchronous VME interface.
This interface takes approximately 5 XBUS cycles per
VME word. By pipelining data words and using a faster
VME clock rate, this interface could be sped up signifi-
cantly.
6. The disk controller on the fifth VME bus used only
one string due to lack of sufficient cabling.

Performance and Design Evaluation of the RAID-II Storage Server

• Does memory/XBUS contention significantly
degrade system performance?

• Is it necessary to have two networks: one (HIPPI)
attached to the XBUS card for high bandwidth, one
(Ethernet or FDDI) attached to the file server for low
latency?

Figure 5: Disk Read Performance. This figure shows how disk read performance scales with increasing
numbers of disks. Figure (a) uses one string on one Interphase Cougar and varies the number of disks from 1 to 5.
Figure (b) fixes the number of disks per string at three and varies the number of strings per Cougar from 1 to 2.
Figure (c) varies the number of Cougars per VME bus from 1 to 2, fixing the number of disks per string at three and
the number of strings per Cougar at two. Figure (d) varies the number of VME busses attached to the XBUS card
from one to four, fixing the number of disks per string at three, the number of strings per Cougar at two, and the
number of Cougars per VME bus at one. Dotted lines show linear speedup.

0 1 2 3 4 5
0

1

2

3

4

5

6

Number of Disks (One String)

T
hr

ou
gh

pu
t (

M
B

/s
)

Number of Controllers

(a) Varying Disks Per String (b) Varying Strings Per Controller

(c) Varying Controllers Per VME Bus (d) Varying Number of Disks in
System

0 1 2
0

1

2

3

4

5

6

Number of Strings

T
hr

ou
gh

pu
t (

M
B

/s
)

0 1 2
0

5

10

15

20

T
hr

ou
gh

pu
t (

M
B

/s
)

0 10 20 30
0

10

20

30

Number of Disks

T
hr

ou
gh

pu
t (

M
B

/s
)

• How much does the parity computation engine
improve performance?

• Does attaching the network to the XBUS card
instead of the file server increase performance?

First, we examine memory/XBUS contention.
Table 1 shows that when the HIPPID, HIPPIS and parity
engine ports are simultaneously active, the XBUS expe-

Performance and Design Evaluation of the RAID-II Storage Server

riences no contention for memory and can support the
full bandwidth of each (38 MB/s). This lack of conten-
tion is due to two reasons. First, memory is interleaved
on a fine-grained basis (16 words), so the memory ports
are evenly load balanced; that is, no memory port is
more heavily loaded than any other memory port. Sec-

Figure 6: Disk Write Performance. This figure shows how disk write performance scales with increasing
numbers of disks. Figure (a) uses one string on one Interphase Cougar and varies the number of disks from 1 to 5.
Figure (b) fixes the number of disks per string at three and varies the number of strings per Cougar from 1 to 2.
Figure (c) varies the number of Cougars per VME bus from 1 to 2, fixing the number of disks per string at three and
the number of strings per Cougar at two. Figure (d) varies the number of VME busses attached to the XBUS card
from one to four, fixing the number of disks per string at three, the number of strings per Cougar at two, and the
number of Cougars per VME bus at one. These tests measure raw disk write performance—the disk array is
configured without redundancy. Dotted lines show linear speedup.

0 1 2 3 4 5
0

1

2

3

4

5

6

Number of Disks (One String)

T
hr

ou
gh

pu
t (

M
B

/s
)

0 1 2
0

1

2

3

4

5

6

7

Number of Strings

T
hr

ou
gh

pu
t (

M
B

/s
)

0 1 2
0

5

10

15

20

Number of Controllers

T
hr

ou
gh

pu
t (

M
B

/s
)

0 10 20 30
0

10

20

30

Number of Disks

T
hr

ou
gh

pu
t (

M
B

/s
)

(a) Varying Disks Per String (b) Varying Strings Per Controller

(c) Varying Controllers Per VME Bus (d) Varying Number of Disks in System

ond, if two accesses collide by trying to access the same
memory port, one access must wait for the other. But,
after this initial waiting period, the loser follows the
winner around the memory banks deterministically.
Because the average access is many times larger than

Performance and Design Evaluation of the RAID-II Storage Server

the unit of interleaving, the initial waiting period is
insignificant relative to the total transfer time.

Performance suffers, however, when the disk sub-
system begins to read data from the disks to the mem-
ory. There are two factors leading to this degradation.
First, each VME port can sustain less than 8 MB/s,
which is less than one-fourth the bandwidth of a single
memory port. Memory requests from other XBUS ports
must hence wait behind the slow VME access Second,
we have configured the disk controllers to transfer only
32 32-bit words per VME access. These two factors
cause the access pattern generated by a disk port is thus
similar to small, random memory accesses, resulting in
a much higher degree of contention for memory. Since
the VME bus supports transfer sizes of up to 128 32-bit
words, XBUS and memory contention could be
decreased by increasing the size of VME accesses. This
may decrease overall performance, however, by increas-
ing the time control words wait for the VME bus. We

Disk Array Read
Performance

Disk Array Write
Performance

Write Performance
Degradation

RAID-I 2.4 MB/s 1.2 MB/s 50%

RAID-II 20.9 MB/s 18.2 MB/s 13%

RAID-II speedup 8.7 15.2

Table 1: Performance Comparison between RAID-II and RAID-I. This table compares the performance of
RAID-II to that of RAID-I. Because RAID-II has a special purpose parity engine, disk array write performance
is comparable to disk array read performance. All writes in this test are full-stripe writes [Lee91]. For RAID-II
reads, data is read from the disk array into XBUS memory then sent over the HIPPI network back to XBUS
memory. For RAID-I reads, data is read from the disk array into Sun4 memory, then copied again into Sun4
memory. This extra copy equalized the number of memory accesses per data word. For RAID-II writes, data
starts in XBUS memory, is sent over HIPPI back into XBUS memory, parity is computed, and the data and
parity are written to the disk subsystem. For RAID-I writes, data starts in Sun4 memory, gets copied to another
location in Sun4 memory, then is written to disk. Meanwhile, parity is computed on the Sun4. RAID-I uses a 32
KB striping unit with 8 disks; RAID-II uses a 64 KB striping unit with 24 disks.

Test
Aggregate XBUS

Bandwidth
Average Bandwidth

Per Active Subsystem

HIPPID + HIPPIS + Parity Engine 114 MB/s 38 MB/s

HIPPID + HIPPIS + Parity Engine +
Disk Subsystem

110 MB/s 28 MB/s

Table 2: XBUS contention. When using only the HIPPID, HIPPIS, and parity engine, the XBUS experiences
no contention for the memory banks, supporting the full bandwidth of each port. However, performance suffers
when the disk subsystem is simultaneously reading data from the disks to the memory. There are two factors
leading to this degradation. First, each VME port can sustain less than 8 MB/s, which is less than one-fourth the
bandwidth of a single memory port. Memory requests from other XBUS ports must hence wait behind the slow
VME access Second, we have configured the disk controllers to transfer only 32 32-bit words per VME access.
These two factors cause the access pattern generated by a disk port is thus similar to small, random memory
accesses, resulting in a much higher degree of contention for memory. Even with this degradation, the XBUS can
still support 37 MB/s of disk write (using only the HIPPID, parity engine, and disk subsystem) or disk read
activity (using the HIPPIS and disk subsystem).

are currently tuning performance by varying the size of
VME accesses.

Table 1 shows XBUS contention when all four
ports (HIPPID, HIPPIS, parity engine, and disk sub-
system) are active. Real application environments will
not have the network configured to loop back, so only
one of the network ports would be active for disk reads
or disk writes. In such an environment, the XBUS could
easily support the full port bandwidth (38 MB/s) for
both disk reads (exercising the HIPPIS and disk sub-
system) or disk writes (exercising the HIPPID, parity
engine, and disk subsystem).

Next, we examine the benefit of using two net-
works, one for high bandwidth and one for low latency.
We saw in Figure 3 that the overhead of initiating a
HIPPI access was a surprisingly low 1.1 ms, comparable
tothe Ethernet latency of about 0.5 ms. In this short
time, however, the HIPPI could have transferred 40 KB.

Performance and Design Evaluation of the RAID-II Storage Server

Because of the 1.1 ms overhead and the high transfer
rate of HIPPI, network packet sizes of 120 KB are nec-
essary to achieve 75% utilization of the HIPPI. In such a
situation, small packets (less than 40 KB) are best trans-
ferred over a lower latency network for two reasons.
First, small packets waste a disproportionately large
amount of the available HIPPI bandwidth. Second, since
large average HIPPI packets are needed to efficiently
utilize the HIPPI, small packets which encounter a large
packet currently being transferred must wait many milli-
seconds before they can use the network. We thus con-
clude that having two networks benefits performance
both for small and large packets, small packets because
they need not wait while large packets use the network,
large packets because the available bandwidth of the
HIPPI is not lost due to inefficient small packets. In
addition, adding an Ethernet connection costs essen-
tially nothing, since all workstations already come with
an Ethernet connection.

Third, we examine how much the parity engine
enhances disk array write performance. To do so, we
compare read and write performance of RAID-II, which
has a parity engine, to the read and write performance of
our first prototype, RAID-I, which has no parity engine
and must use its Sun4 file server to compute parity
[Chervenak91]. Both RAID-II and RAID-I tests use the
same number of memory transfers.7 Table 2 shows
RAID-II full-stripe writes [Lee91] are only 13% slower
than reads, where RAID-I full-stripe writes are 50%
slower than reads. Without the parity engine, computing
parity on RAID-II would have been even slower than on
RAID-I, because the data over which parity is computed
resides on the XBUS card and would have to first be
transferred over a VME link into the Sun4’s memory
before parity could be computed. Even once data resides
in Sun4 memory, parity can only be computed at a few
megabytes per second. Clearly hardware parity is neces-
sary for high-performance in RAID Level 5 systems.

Last, we examine our decision to attach the HIPPI
network to the XBUS card instead of to the Sun4 file
server. To do so, we again compare RAID-II perfor-
mance to RAID-I performance. Table 2 shows that
RAID-II achieves 8.7 to 15.2 times the performance of
RAID-I. If we had simply connected the HIPPI to the
Sun4’s VME bus instead of to the XBUS card, RAID-
II’s performance would have been comparable to RAID-
I’s performance, because RAID-I’s performance is lim-
ited by the speed of its memory bus, so using more disks
and a fast network would not have increased perfor-
mance [Chervenak91].

4 Conclusions
In this paper, we have evaluated the performance

of RAID-II, a network-attached storage server. We have
demonstrated end-to-end system performance of 20
MB/s for both disk array reads and writes. We have also
examined four major design issues in the design of
RAID-II. We first measured contention for the main
interconnect of RAID-II, the XBUS, and found marginal
levels of contention, due to the fine-grained interleaving

7. We compensate for the lack of a fast network (HIPPI)
on RAID-I by replacing the network send with a mem-
ory to memory copy (kernel to user space).

of the memory ports and the relatively large accesses
made by the HIPPI and parity ports. We next examined
the necessity of using two networks, one for high band-
width and one for low latency. We concluded that, due
to the high bandwidth of the HIPPI network, even the
moderate 1.1 ms network overhead per request would
waste a large fraction of network bandwidth for small
requests, thus justifying our use of a second, low-
latency network. We then examined the performance
benefit of the parity computation engine for disk array
writes and concluded that it allowed full-stripe writes to
achieve almost the same performance as full-stripe
reads. Last, we examined the wisdom of attaching the
HIPPI directly to the XBUS card by comparing perfor-
mance to RAID-I. We concluded that this allowed sys-
tem performance to scale with the XBUS rather than
being limited by the speed of the Sun4 memory bus.

We have been quite pleased by the functionality
and performance of RAID-II. Using identical Sun4 file
servers and essentially the same disks and controllers as
RAID-I, we achieved a speedup of 8 to 15 over RAID-I.
The use of the XBUS card, with its custom XBUS inter-
connect and parity engine, enabled performance to scale
well beyond the limits of the Sun4 memory bus. The
XBUS card fully supported the bandwidth requirements
of 24 disks and achieved end-to-end performance of 20
MB/s.

5 Acknowledgments
This work was supported in part by NASA/-

DARPA grant number NAG 2-591, NSF MIP 8715235,
and NFS Infrastructure Grant No. CDA-8722788.
RAID-II was made practical through donations by IBM,
Thinking Machines Corporation, IDT, and Sun Micro-
systems. We gratefully acknowledge contributions in
the design of RAID-II by Garth Gibson, Rob Pfile, Rob
Quiros, and Mani Varadarajan. Lance Lee at Interphase
and Steve Goodison at Andataco were instrumental in
providing quick delivery of five Interphase Cougar
VME disk controllers for evaluation.

6 References
[Chervenak91] Ann L. Chervenak and Randy H. Katz.

Performance of a Disk Array Prototype.
In Proceedings of the 1991 ACM
SIGMETRICS Conference on
Measurement and Modeling of
Computer Systems, volume 19, pages
188–197, May 1991. Performance
Evaluation Review.

[Coleman90] Sam Coleman and Steve Miller. Mass
Storage System Reference Model:
Version 4, May 1990.

[Collins91] Bill Collins, Lynn Jones, Granville
Chorn, Ronald Christman, Danny Cook,
and Christina Mercier. Los Alamos
High-Performance Data System: Early
Experiences. Technical Report La-UR-
91-3590, Los Alamos, November 1991.

Performance and Design Evaluation of the RAID-II Storage Server

[Foglesong90] Joy Foglesong, George Richmond,
Loellyn Cassell, Carole Hogan, John
Kordas, and Michael Nemanic. The
Livermore Distributed Storage System:
Implementation and Experiences.Mass
Storage Symposium, May 1990.

[Hennessy91] John L. Hennessy and Norman P.
Jouppi. Computer Technology and
Architecture: An Evolving Interaction.
IEEE Computer, pages 18–29,
September 1991.

[Horton90] William A. Horton and Bruce Nelson.
The Auspex NS 5000 and the SUN
SPARCserver 490 in One and Two
Ethernet NFS Performance
Comparisons. Technical Report Auspex
Performance Report 2, Auspex, May
1990.

[Katz93] Randy H. Katz, Peter M. Chen, Ann L.
Drapeau, Edward K. Lee, Ken Lutz,
Ethan L. Miller, Srinivasan Seshan, and
David A. Patterson. RAID-II: Design
and Implementation of a Large Scale
Disk Array Controller.1993 Symposium
on Integrated Systems, 1993. University
of California at Berkeley UCB/CSD
92/705.

[Lee91] Edward K. Lee and Randy H. Katz.
Performance Consequences of Parity
Placement in Disk Arrays. In
Proceedings of the 4th International
Conference on Architectural Support
for Programming Languages and
Operating Systems (ASPLOS-IV), pages
190–199, April 1991.

[Lee92] Edward K. Lee, Peter M. Chen, John H.
Hartman, Ann L. Chervenak Drapeau,
Ethan L. Miller, Randy H. Katz,
Garth A. Gibson, and David A.
Patterson. RAID-II: A Scalable Storage
Architecture for High-Bandwidth
Network File Service. Technical Report
UCB/CSD 92/672, University of
California at Berkeley, February 1992.

[Nelson87] Marc Nelson, David L. Kitts, John H.
Merrill, and Gene Harano. The NCAR
Mass Storage System.IEEE Symposium
on Mass Storage, pages 12–20,
November 1987.

[Nelson90] Bruce Nelson. An Overview of

Functional Multiprocessing for NFS
Network Servers. Technical Report
Technical Report 1, Auspex
Engineering, July 1990.

[Patterson88] David A. Patterson, Garth Gibson, and
Randy H. Katz. A Case for Redundant
Arrays of Inexpensive Disks (RAID). In
International Conference on
Management of Data (SIGMOD), pages
109–116, June 1988.

[Sandberg85] Russel Sandberg, David Goldberg,
Steve Kleiman, Dan Walsh, and Bob
Lyon. Design and Implementation of the
Sun Network Filesystem. InSummer
1985 Usenix Conference, 1985.

[Tweten90] David Tweten. Hiding Mass Storage
Under Unix: NASA’s MSS-II
Architecture. Tenth IEEE Symposium
on Mass Storage, pages 140–145, May
1990.

