
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profi t or commercial advantage and that copies bear this notice and the full citation on the fi rst page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee.
SCM 2005, September 5-6, 2005, Lisbon, Portugal. Copyright © 2005 ACM

Observations on Versioning of Off-the-Shelf
Components in Industrial Projects (short paper)

Reidar Conradi1,2 and Jingyue Li1

1Department of Computer and Information Science,
Norwegian University of Science and Technology (NTNU),

NO-7491 Trondheim, Norway
2Simula Research Laboratory, P.O.BOX 134, NO-1325 Lysaker, Norway

{conradi, jingyue}@idi.ntnu.no

Abstract. Using OTS (Off-The-Shelf) components in software projects has be-
come increasing popular in the IT industry. After project managers opt for OTS
components, they can decide to use COTS (Commercial-Off-The-Shelf) com-
ponents or OSS (Open Source Software) components. We have done a series of
interviews and surveys to document and understand industrial practice with
OTS-based development in Norwegian, German, and Italian IT industry. The
perspective is that of a software architect or system integrator, not a developer
or maintainer of such components. The study object is a completed develop-
ment project using one or several OTS components. This paper reports on the
versioning aspects of OTS components in such projects. We found that one
third of the COTS components actually provided source code, in addition to all
OSS components. However, OTS components were seldom modified (i.e. re-
used �as-is�), even if source code was available. Although backward compati-
bility of new releases did not cause noticeable problems for a single OTS com-
ponent, using several different OTS components in a project caused difficulties
in maintenance planning of asynchronous releases and system integration of
new releases. Several new research questions have been formulated based on
the results of this study.

1. Introduction

Software reuse in the form of component-based software development (CBSD) has
long been proposed as a �silver bullet�. It is supposed to offer lower cost, shorter
time-to-market, higher quality, and stricter adherence to software standards. Software
developers are therefore increasingly using COTS (Commercial-Off-The-Shelf) and
OSS (Open Source Software) components in their projects, commonly called OTS
(Off-the Shelf) components. COTS components are owned by commercial vendors,
and their users normally do not have access to the source code [1]. On the other hand,
OSS components are provided by open source communities, with full access to the
source code [6].

34 Reidar Conradi and Jingyue Li

The granularity of an OTS component can be different. Some regard that OTS
components could or should include very large software packages such as Microsoft
Office. Others limit OTS components to GUI libraries. In this study, we focus on
OTS components as software components. Such a component is a unit of composi-
tion, and must be specified so that it can be composed with other components and in-
tegrated into a system (product) in a predictable way [10]. That is, a component is an
�Executable unit of independent production, acquisition, and deployment that can be
composed into a functioning system.� We also limit ourselves to components that
have been explicitly decided either to be built from scratch or to be acquired exter-
nally as an OTS-component. That is, to components that are not shipped with the op-
erating system, not provided by the development environment, and not included in
any pre-existing platform. That is, platform (�commodity�) softwares are not consid-
ered, e.g. an OS like Linux, DBMSes, various servers, or similar softwares. This
definition implies that we include not only components following COM, CORBA,
and EJB standards, but also software libraries like those in C++ or Java. This defini-
tion is consistent with the scope used in the component marketplace [9].

To record, understand, and possibly improve industrial practice wrt. OTS-based
development, we have carried out several empirical studies of on the usage of COTS
and OSS components. This paper will report some results from these studies wrt. ver-
sioning of such components. The remainder of this paper is organized as follows:
Section two motivates and states the research questions and the research method. Sec-
tion three describes the results and section four discusses these. Finally, conclusions
and future research are presented in section five.

2. Research questions, research method, and data collection

2.1 Motivation and some context

There is a growing literature on OTS-based development, but alas with few represen-
tative studies on industrial practice. For instance, Torchiano and Morisio [7] inter-
viewed 7 small IT companies in Norway and Italy on their experience with COTS-
based development. Even by this tiny study, they stated six theses that refute many
assumptions from the literature. For instance, they claim that OSS and COTS compo-
nents are used very much in a similar way, e.g. that components are normally not
modified even if source code is available.

Based on their study, we first performed a pre-study on COTS components as
structured interviews of 16 COTS-based projects in 13 Norwegian IT companies [4].
From the pre-study, we gathered some new insights on COTS-based development and
clarified our research questions and hypotheses. The study presented in this paper ex-
tended the pre-study in two dimensions. First, it included OSS components because
they represent an alternative to COTS components. Second, this study included sam-
ples from Norway, Italy and Germany. In addition, the sample was selected randomly
instead of on convenience as in the pre-study. The study was performed as a survey

2

35Observations on Versioning Off-the-Shelf Components in Industrial Projects

with a web-questionnaire, using a randomized sample of 133 projects from small,
medium, and large IT companies [2, 5]. The perspective was largely that of a system
integrator.

2.2 Research questions

To investigate the state-of-the-practice of versioning problems in OTS-based devel-
opment, we first designed research question RQ1 to study separate OTS components.
We then designed research question RQ2 to study the whole OTS-based project,
which might use several different OTS components.

2.2.1 Research question RQ1: In RQ1, we want to know whether and to what extent
OTS components are actually modified locally. The source code is namely available
not only for OSS components, but also for many COTS components [4]. But even if
the need and opportunity is there, will such changes actually be performed? The first
research question is therefore:

RQ1: To what extent are OTS components actually modified locally?
2.2.2 Research question RQ2: Some OTS-based projects integrate several OTS
components. Updates (releases) to these components may contain unpredictable func-
tionality and come at different intervals � on which a system integrator has little con-
trol. Previous studies indicate that the number of different OTS components used in
one project has a strong relationship with maintenance effort [1, 3], even postulates
that maintenance costs depend on the square of the number of components. The sec-
ond research question is:

RQ2: Is system maintenance perceived to carry a risk due to future versioning in-
compatibilities?

2.3 Research design

To clarify RQ1 and RQ2 we will use data from the mentioned survey [5]. However,
the survey questions were not designed to collect comprehensive data on versioning-
related issues. We have selected the survey questions given below, with boldfacing as
in the original questionnaire.

For RQ1, we first asked the respondent to select the most important OTS compo-
nent in their project, i.e. providing the most functionality for the actual application.
This is named Comp.1 below. Then we asked questions Q5.4, Q5.5, Q5.6 and Q5.10.

� Q5.4: What was the source code status of the selected component Comp.1?
The options are:
- OSS, i.e. with source code available
- COTS, but with source code available
- COTS, without source code

� Q5.5: Have you read parts of the source code of OTS-component Comp.1?
We used a five-point Likert scale (very little, little, some, much, very much -

36 Reidar Conradi and Jingyue Li

plus don�t know) to measure the answers to this question. The answers were
mapped to ordinal values 1 to 5 later.

� Q5.6: Have you modified parts of the source code of OTS-component
Comp.1? We used the same measurement scale as in Q5.5.

� Q5.10 Did you encounter some of the following aspects (risks) with the se-
lected OTS component Comp.1? The relevant option is:
- Q5.10.d: The recent OTS component versions were not backward-

compatible with the pervious version.
We used only yes, no, and don�t know to measure the answer to this question.

For RQ2, we asked about possible versioning-maintenance problems of the whole
project through question Q4.1 and three sub-questions:

� Q4.1 What is your opinion on the following aspects (risks) of your OTS-
based project? The relevant sub-questions are:
- Q4.1.k: It was difficult to plan system maintenance, e.g. because differ-

ent OTS components had asynchronous release cycles.
- Q4.1.l: It was difficult to update the system with the last OTS compo-

nent version.
- Q4.1.m: OTS components were not satisfactorily compatible with the

production environment when the system was deployed.
For each sub-question, we used another five-point Likert scale (don�t agree at all,

hardly agree, agree somewhat, agree mostly, strongly agree - and don�t know) to
measure the answer. The answers were mapped to ordinal values 1 to 5 later.

For RQ2, we also investigated whether the number of different OTS components
used in the project will influence integration effort as measured in Q4.1. We gathered
the relevant information through question Q5.1: How many different OTS compo-
nents have been used in the project?

2.4 Data collection and analysis

The unit of study for RQ1 and RQ2 is a completed software development project.
Sampling is described elsewhere [2], and data was mostly collected via a web-tool.
According to the focus of the different research questions, we used different data
analysis methods:
� For RQ1, we first clustered OTS components into two categories, with source

code and without source code, according to the answers of Q5.4. We then analyzed
the distribution of answers to questions Q5.5 and Q5.6 concerning OTS compo-
nents with source code. After that, we calculate the distribution of answers to ques-
tion Q5.10.

� For RQ2, we first studied the distribution of answers to Q4.1. We then calculate
the correlation between the possible risks (Q4.1.k, Q4.1.l and Q4.1.m) with the
number of different OTS components used in the project (Q5.1).

4

37Observations on Versioning Off-the-Shelf Components in Industrial Projects

3. Research results

We have gathered results from 133 projects (47 from Norway, 48 from Germany, and
38 from Italy). Three companies gave results for more than one project. In these 133
projects, 83 used only COTS components, 44 used only OSS components, and six
used both COTS and OSS components. For these six projects, five of them gave de-
tailed information of one COTS component, and one gave information of an OSS
component. In total, we gathered detailed information on 88 COTS components and
45 OSS components.

3.1 Answers to research question RQ1

For RQ1, the answers to Q5.4 show that 29 (or 1/3) of 88 COTS components actually
made available the source code to their users, i.e. software integrators.

The general distribution of answers to Q5.5 is shown in Figure 1. It shows that the
median value concerning reading of COTS components is 3 (meaning some). The
median value of OSS components is the same. This means that 1/3 of the COTS com-
ponents (having available source code) and all the OSS components are read to some
degree.

Figure 1. Answers to Q5.5: Has the source code been read?

The detailed answers to question Q5.5 is shown in Table 1. We observe that COTS
components with source code were actually read slightly more frequently than their
OSS counterparts.
 Table 1. Detailed answers of Q5.5 (source code reading)

Valid answers Read somewhat
(with value more than 3)

COTS components with
source code

26 out of 29 20 out of 26 (77%)

OSS components 44 out of 45 30 out of 44 (68%)

38 Reidar Conradi and Jingyue Li

Figure 2 and Table 2 below shows similarly the answers to Q5.6. Figure 2 shows
that the COTS components with source code have been somewhat modified, i.e. with
a median value of 2 (meaning little). OSS components � all with source code � had
also been somewhat modified and with the same median value. The distribution indi-
cates that users less frequently modify than read the source code of OTS components,
even it such source was available. In Table 1 above, we saw that COTS components
with source code were more frequently read than their OSS counterparts. Table 2
shows that OSS components were more frequently modified than their COTS coun-
terparts. In the pre-study [4], respondents often expressed that they wanted to perform
certain source code modifications of a component, but decided not to perform these
for fear of costly maintenance and re-integration with future releases.

 Figure 2. Answers to Q5.6: Has the source code been modified?

 Table 2. Detailed answers of Q5.6 (source code modification)

Valid answers Modified somewhat
(with value more than 3)

COTS components with
source code

27 out of 29 4 out of 27 (15%)

OSS components 44 out of 45 16 out of 44 (36%)

The result of Q5.10 (backward compatibility) is finally shown in Table 3. The re-
sults show that only 17% (10 out of 59) of COTS components and 11% (3 out of 27)
of OSS components had back compatibility problems. From this we can conclude that
versioning-maintenance problems were not frequent in the selected OTS components.
It also shows that there is no significant difference of backward compatibility prob-
lems between COTS and OSS components.

6

39Observations on Versioning Off-the-Shelf Components in Industrial Projects

 Table 3. Result of Q5.10 on backward compatibility problems.
Yes No Don’t know All (N)

COTS component 10 59 19 88
OSS component 3 27 15 45

3.2. Answers to research question RQ2

For RQ2, the answers of sub-questions Q4.1.k (asynchronous release cycles), Q4.1.l
(last version gives system update problems), and Q4.1.m (last version gives problems
with production environment) are shown in Figure 3. We do not tell the differences
between projects using COTS and OSS because they are facing the same versioning
risk, i.e. that OTS component versioning is out of the OTS component users� control.

Results of Q4.1 show that the median values of Q4.1.k, Q4.1.l, and Q4.1.m are all
2 (meaning hardly agree). It means most OTS component users did not regard the
versioning mismatches as a serious maintenance risk in general.

129123123N =

Q.4.1.MQ.4.1.LQ.4.1.k

6

5

4

3

2

1

0

 Figure 3. Answers to Q4.1 on some project versioning risks.

To investigate the correlation between the above versioning risks and the number
of different OTS components in one project, we used Spearman rank correlations in
SPSS 11.0. Although the number of different OTS components is an interval (integer)
variable, we used it as an ordinal variable. That is, we gave a project using less OTS
component a lower rank than a project using more OTS components. The relationship
between answers to Q4.1.k, Q4.1.l, and Q4.1.m and the number of different OTS
components is shown in Table 4.
 Table 4. Correlation between “versioning problems” and number of different
 OTS components

Correlation coefficient Significance (2-tailed)
4.1.k with number .182 .047*
4.1.l with number .289 .001*
4.1.m with number .027 .760

*Correlation is significant at the .05 level (2-tailed).

40 Reidar Conradi and Jingyue Li

From Table 4, we can see that the number of different OTS components used in
the project have a significant effect on the asynchronous release-cycle problem
(Q4.1.k), on the last-version-gives-system-update problem (Q4.1.l).

4. Discussion

This study is basically a state-of-the-practice survey, where we observed some basic
trends in OTS-based development in industry. These observations invoked several
new research questions that we would like to investigate in the future.

4.1 New Research Question NRQ1: Why OTS source code was seldom modified?

For this study, we discovered that most OTS component users do read the source
code when it is available. However, OTS component users did not change the source
code very much. Some studies assume that users didn�t need to see or modify, or
lacked the knowledge, skills or resources to do so [7]. Another possible reason is that
the users fear costly future maintenance (cost of reintegration) when a new OTS com-
ponent version is released [4]. If the reason is the latter one, a new research question
NRQ1 will be: If it is necessary to locally modify the source code in an OTS compo-
nent, how to support integration of new OTS component versions (releases) with the
local modifications? An obvious remedy is to apply (semi-)automatic merge tools, of-
ten as part of common SCM tools. In the OSS community there is heavy use of OSS�s
own bug tracking tool, Bugzilla [8] that again uses the open CVS tool for versioning.
Furthermore, there is a commitment in the OSS community to report back local modi-
fications. Thus the merge/integration job may possibly be delegated to the �owner� of
an OSS component. However, we have no specific information in this survey on such
integration or any use of SCM tools.

4.2 New Research Question NRQ2: How to manage versioning problems when
using several OTS components in the same project?

Results of Q5.10 show that the versioning problems of reusing a single OTS compo-
nent are very few. However, the versioning risk will increase as the number of differ-
ent OTS components increases. Our data gives further support the findings in [3], that
the most significant factor that influences lifecycle cost of a COTS-based system is
the number of COTS packages that must be synchronized within a release.

However, our study shows that using more than one OTS component in a project is
sometimes unavoidable. 90 of the 133 projects used more than one OTS component.
Therefore, another interesting research question NRQ2 is: How to estimate the “op-
timal” number of OTS components in a project to balance initial development sav-
ings with later maintenance costs? Moreover, some of our investigated projects had
very few versioning problems, even if they used more than 10 different OTS compo-

8

41Observations on Versioning Off-the-Shelf Components in Industrial Projects

nents in their project. Summarizing their experience by case studies to give guidelines
on OTS- based development could be yet another, new research question.

4.3 Possible treats to validity

Construct validity In this study, most variables and alternatives are taken directly, or
with little modification, from existing literature. The questionnaire was pre-tested us-
ing a paper version by 10 internal experts and 8 industrial respondents before being
published on a web tool. About 15% of the questions have been revised based on pre-
test results. However, a possible threat to construct validity is that we forgot to give a
clear �no� alternative in questions Q5.5 and Q5.6 (not only �very little�, �little� etc.).

Internal validity We promised respondents in this study a final report and a seminar
to share experience. The respondents were typically persons who wanted to share
their experience and wanted to learn from others. We therefore think that the respon-
dents answered the questionnaire truthfully. However, different persons in the same
project might have different opinions on the same project. Asking only one person in
each project might not be able to reveal the whole picture of the project. Due to
length limitation of a questionnaire, we asked the respondent to fill in information for
only one component in the project. The possible threat is that other OTS components
in the same project might lead to different answers to our questions.

Conclusion validity This study is a state-of-the-practice study. We studied what had
happened in industrial projects. However, we did not investigate the cause-effect rela-
tion of the phenomena discovered in this study. The sample size is generally suffi-
cient for valid statistical conclusions.

External validity We used different randomization to select samples in different
countries. However, the sample selection processes were not exactly the same due to
resource limitations [2]. Another possible threat to external validity is that our study
focused on fine-grained OTS components. Conclusions may be different in projects
using complex and large OTS packages, such as ERP, content management systems,
and web services in general.

5. Conclusion and future work

This paper has presented results of a state-of-the practice survey on OTS-based de-
velopment in industrial projects. The results of this study have answered two ques-
tions relevant for software configuration management:
� RQ1: To what extent are OTS components actually modified locally?

Our results show that most OTS component users took advantage of the available
source code and read it. However, few of them actually modified it.

42 Reidar Conradi and Jingyue Li

� RQ2: Is system maintenance perceived to carry a risk due to future versioning
incompatibilities?

Our results show that versioning problems when using a single OTS component
were few. However, the key challenge is to coordinate versioning when several OTS
components were used in the project.

Results of this study have shown state-of-the-practice data. By observing the cur-
rent trend in industry, we discovered several interesting research questions to be stud-
ied in the future. The next step is to do a larger qualitative study with personal inter-
views to further study some of the new research questions.

Acknowledgements

This study was partially funded by the INCO (INcremental COmponent based devel-
opment, http://www.ifi.uio.no/~isu/INCO) project. We thank the colleagues in this
project, and all the participants in the survey. We also thank the local OSS enthusiast
Thomas Østerlie for valuable comments.

References

1. Basili, V. R. and Boehm, B.: COTS-Based Systems Top 10 List. IEEE Computer, 34(5):91-
93, May/June 2001.

2. Conradi, R., Li, J., Slyngstad, O. P. N., Bunse, C., Kampenes, V.B., Torchiano, M., and
Morisio, M.: Reflections on conducting an international CBSE survey in ICT industry.
Submitted to 4th International Symposium on Empirical Software Engineering (ISESE�05),
17-18 Nov. 2005, Noosa Heads, Australia, 11 pages.

3. Donald, J. R., Basili, V., Boehm, B., and Clark, B.: Eight Lessons Learned during COTS-
Based Systems Maintenance. IEEE Software, 20(5):94-96, Sep./Oct. 2003.

4. Li, J., Bjørnson, F. O., Conradi, R., and Kampenes, V. B.: An Empirical Study of Variations
in COTS-based Software Development Processes in Norwegian IT Industry. Submitted to
the Journal of Empirical Software Engineering, 29 pages.

5. Li, J., Conradi, R., Slyngstad, O. P. N., Bunse, C., Khan, U., Torchiano, M., and Morisio,
M.: An Empirical Study on Off-the-Shelf Component Usage in Industrial Projects. Proc. 6th

International Conference on Product Focused Software Process Improvement
(PROFES'2005), 13-16 June, 2005, Oulu, Finland, Springer Verlag LNCS Volume 3547,
pp. 54 - 68

6. Open Source Initiative (2004): http://www.opensource.org/index.php
7. Torchiano, M. and Morisio, M.: Overlooked Aspects of COTS-based Development. IEEE

Software, 21(2):88-93, March/April 2004.
8. Bugzilla tool used for OSS (2005): http://www.bugzilla.org/
9. ComponentSource (2004): http://www.componentsource.com/
10. Crnkovic, I., Hnich, B., Jonsson, T., and Kiziltan, Z.: Specification, Implementation, and

Deployment of Components. Communication of the ACM, 45(10):35 � 40, October 2002.

10

