
Analysis of Signature Change Patterns
Sunghun Kim, E. James Whitehead, Jr., Jennifer Bevan

Dept. of Computer Science
Baskin Engineering

University of California, Santa Cruz
Santa Cruz, CA 95060 USA

{hunkim, ejw, jbevan}@cs.ucsc.edu

ABSTRACT
Software continually changes due to performance improvements,
new requirements, bug fixes, and adaptation to a changing
operational environment. Common changes include modifications
to data definitions, control flow, method/function signatures, and
class/file relationships. Signature changes are notable because
they require changes at all sites calling the modified function, and
hence as a class they have more impact than other change kinds.

We performed signature change analysis over software project
histories to reveal multiple properties of signature changes,
including their kind, frequency, and evolution patterns. These
signature properties can be used to alleviate the impact of
signature changes. In this paper we introduce a taxonomy of
signature change kinds to categorize observed changes. We report
multiple properties of signature changes based on an analysis of
eight prominent open source projects including the Apache HTTP
server, GCC, and Linux 2.5 kernel.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – Product metrics, K.6.3
[Management of Computing and Information Systems]:
Software Management – Software maintenance

General Terms
Measurement, Experimentation

Keywords
Software Evolution, Signature Change Patterns, Software
Evolution Path

1. INTRODUCTION
Software continually changes due to performance improvements,
new requirements, bug fixes, and adaptation to a changing
operational environment [1]. Software changes include function
body modification, local variable renaming, moving functions
from one file to another, and function signature changes [2].
Among these changes, function signature changes have a
significant impact on parts of the source code that use the changed
functions. Most signature changes cause a signature mismatch
problem. Understanding the character and evolution patterns of
function signature changes is important to researchers concerned
with alleviating the impact of signature changes.

Others have observed code changes, though none have examined
signature changes at the same level of detail. Kung et al. identified
kinds of code changes [2] and Counsell et al. discussed the trends
of changes in Java code [3]. Both of them identified large
granularity change kinds, such as method body changes, method
addition, method deletion and whether the signature changed.
Their categorization of changes is useful for understanding
software changes in overview. Our analysis of signature changes

is motivated by the goal of eventually providing automated
support for fixing signature mismatches, and for this we need a
very fine-grain understanding and characterization of signature
changes. Previous work did not examine signature changes at this
level of detail, being concerned only with whether the signature
did, or did not, change, but not what kind of change.

We focus on fine-grain changes in function signatures,
categorizing them based on whether they increase, decrease, or do
not modify the data flow between caller and callee. Within these
broad categories, change kinds are further refined. We show the
properties of function signature change patterns by answering the
following research questions: How often do signatures change?
What are the common signature change kinds? How often does
each kind appear? Do they have a common evolution pattern?

The answers, along with analysis of the results, can be used to
predict future signature changes, provide automatic change
accommodation algorithms, develop glue code generators, or
develop refactoring algorithms.

We analyzed eight prominent open source projects listed in Table
1. These eight open source projects are written in the C
programming language. For our analysis, we used Kenyon, a data
extraction, preprocessing, and storage backend designed to
facilitate software evolution research [4]. Using Kenyon, we
checked out all revisions or copied all releases of source code
from each project, and extracted function signatures. We grouped
signatures by function name, and observed the changes over
revisions or releases to find properties of signature changes. We
implemented an automatic signature change kind identification
tool, but some change patterns are not automatically identifiable,
such as concept splitting and merging. We also compared the
number of signature changes over all functions to find the
frequency of each signature change kind. Finally we looked for
sequence patterns in the common evolution paths of function
signature changes.

The remaining sections of the paper are as follows: In Section 2,
we describe our analysis process with detailed information from
the open source projects we analyzed. Sections 3, 4, 5, and 6
provide answers to our research questions. We discuss the
limitations of our analysis in Section 7, and conclude in Section 8.

2. ANALYSIS PROCESSES
We analyzed eight open source projects, listed in Table 1, using
the Kenyon system. Kenyon checks out all revisions from a SCM
repository and invokes a fact extractor we implemented to extract
function signatures. The extracted signatures are grouped by
function names. The grouped signatures are ordered by revisions
and stored in a signature change history file.

Table 1. Open source projects we analyzed. LOC indicates number of lines in .h and .c source files, including comments. The
period shows the project history period for projects for which we directly accessed the SCM repository, otherwise we list release

numbers. The number of revisions indicates the number of revisions we extracted or the number of releases we analyzed.

Project Software type LOC SCM Period/Releases # of revisions/releases
Apache Portable Runtime (APR) Portable C library 72,630 Subversion Jan 1999 ~ Jan 2005 5832 revisions
Apache HTTP 1.3 (Apache 1.3) HTTP server 116,393 Subversion Jan 1996 ~ Jan 2005 7508 revisions
Apache HTTP 2.0 (Apache 2) HTTP server modules 104,417 CVS Jul 1999 ~ Aug 2003 3877 revisions
Subversion SCM software 183,740 Subversion Aug 2001 ~ Feb 2005 5886 revisions
CVS SCM software 62,415 CVS Dec 1994 ~ Sep 2003 2873 revisions
Linux Kernel 2.5 (Linux) Linux OS 5,140,625 N/A 2.5.1 ~ 2.5.75 75 releases
GCC C/C++ compiler 506,931 N/A 1.35, 1.36, …, 2.7.2 15 releases
Sendmail SMTP server 127,733 N/A 8.7.6, 8.8.3, …, 8.13.3 37 releases

For the projects we analyzed, the revision history was stored using
either the CVS or Subversion SCM system. An important issue in
software evolution research is the extraction of logical
transactions from the SCM repository. Since Subversion assigns a
revision number per commit, there is no need to recover
transactions for Subversion-managed projects [5]. CVS does not
keep the original transaction information, usually requiring a
process of transaction recovery [6]. Kenyon provides CVS
transaction recovery using the Sliding Time Windows algorithm
[4, 6]. Recently, the Apache Software Foundation (ASF) changed
its SCM repository to Subversion from CVS using the cvs2svn
converting tool. We analyzed some ASF projects, including
Apache 1.3 and APR, whose repositories were converted. Since
the cvs2svn tool uses the fixed time window algorithm [6] to
convert CVS data for Subversion, using the converted data won’t
affect our analysis results.

We manually observed the signature change history file to identify
common signature change kinds. After analyzing the signature
change history files from various open source projects, we found
the common change kinds shown in Table 3. While most of the
change patterns can be automatically identified by a static
software analysis, some change kinds, such as concept
merging/splitting changes are not automatically identifiable,
requiring project knowledge concerning the project and parameter
concepts.

We implemented an automatic signature change kind identifier
that reads a signature change history file, and annotates the file
based on the identified kinds. After the signature change history
file annotation, we calculate the frequency of each change kind.
We also examine the sequence of signature change kinds of a
given function to see if there was a common pattern in the
signature evolution. The results of our analysis are presented in
following sections.

3. SIGNATURE CHANGE KINDS
Before presenting our results, we describe our fine-grain
taxonomy of signature change kinds. First we define the basic
elements of a function signature: parameter, argument, return
parameter, and the signature.

Definition 1 (Parameter, Argument, Return parameter, Signature)
 Parameter Param ≡ {modifier, type, name, array/pointer, order}
 Argument Arg ≡ a set of zero or more Param
 Return parameter R ≡ {modifier, type, array/pointer}
 Signature S ≡ {R, function name, Arg}

The modifier indicates a data type modifier such as const, register,
and static. A type is the data type of a parameter, and name
indicates the parameter name. The array/pointer is the count of
* or [] when a parameter is an array or pointer type. This
represents both the array/pointer type and its dimension. Using
these basic definitions, we now identify and define signature
change kinds. In the remainder of the definitions, we use the
subscript new to indicate a later revision and old a previous revision.
If we omit the equality of elements, assume the other elements are
the same. For example, in Definition 2 we define N if the nameold
and namenew are different. We assume all other elements such as
type and modifier are the same.

Definition 2 (Name change)
Function name change FN ≡ function namenew ≠ function nameold
Parameter name change N ≡ namenew ≠ nameold

The name change category has two kinds: function name change
and parameter name change. Table 2 shows an example of
parameter name changes. A parameter name change does not
introduce a signature mismatch problem since the parameter name
is used internal to the function. However, parameter name changes
may cause semantic errors. For example, as shown in Table 2, if
the change of parameter from ‘service_name’ to ‘display_name’
indicates a change in parameter meaning, call sites will compile
without error, but the software may not work as expected due to
the change in meaning.

Table 2. A parameter name change in Apache 1.3,
os/win32/service.c file, ValidService function. The old version
is on top, the new version is on bottom. Changes between
versions are shown in bold.

BOOL ← char *service_name
BOOL ← char *display_name

Definition 3 (Ordering change)
 Order ≡ the position of an argument

Ordering change O ≡ ordernew ≠ orderold
 Only ordering change o ≡ O and |Argnew| = |Argold|
 Ordering change by addition OA≡ O and |Argnew| > |Argold|
 Ordering change by deletion OD ≡ O and |Argnew| < |Argold|

The parameter ordering changes occur when the order of two or
more parameters has been changed. The typical motivation behind
these changes is parameter order consistency with other function
signatures. Sometimes adding or deleting parameters causes
signature ordering changes.

Definition 4 (Parameter modifier change)
 Parameter modifier change M ≡ modifiernew ≠ modifierold

Modifier changes happen when developers alter a modifier
without changing the data type. We mostly observed the addition
or removal of the ‘const’ modifier in the C programs of our data
set.

Table 3. A taxonomy of signature change kinds. The * item
indicates that the item is manually identifiable, and hence the
frequency is not reported in this paper.

Data flow
invariant

*Function name change (MN)
Parameter only ordering change (o)
Parameter name change (N)
Parameter modifier change (M)
*Concept merge/splitting change (CM/CS)
Array/Pointer operation change (P)
*Return type change (R)
Primitive type change (T)
Complex type name change (CN)

Data flow
increasing

Parameter addition (A)
Ordering change by addition (OA)
*Return type addition (RA)
*Complex type inner variable addition (CA)

Data flow
decreasing

Parameter deletion (D)
Ordering change by deletion (OD)
*Return type deletion (RD)
*Complex type inner variable deletion (CD)

Definition 5 (Parameter array/pointer change)
 Parameter array/pointer change P ≡ array/pointernew ≠ array/pointerold

Array/pointer dimension changes occur when developers add or
delete dimensions of pointer or array parameters. An example of
this change is shown in Table 4.

Table 4. A pointer change example in APR,
threadproc/unix/procsup.c file, ap_detach function.

ap_status_t ← ap_proc_t **new, ap_pool_t *cont
ap_status_t ← ap_proc_t *new, ap_pool_t *cont

Definition 6 (Parameter addition/deletion)
 Parameter addition A ≡ p ∈ Argnew and p ∉ Argold
 Parameter deletion D ≡ p ∉ Argnew and p ∈ Argold

The parameter addition and deletion changes are common change
kinds; an example is shown in Table 5.

Table 5. Parameter addition changes in the Linux kernel,
kernel/sched.c file, try_to_wake_up function. First sync was
added, then later the variable state was added.

static int ← task_t * p
static int ← task_t * p, int sync
static int ← task_t * p, unsigned int state, int sync

One of the most interesting change kinds is the concept
splitting/merging change defined in Definition 7. Usually concept
splitting/merging changes look like parameter addition or deletion
changes. But if we observe the changes carefully, the new
parameters can be derived from existing or deleted parameters.
For example, suppose a function takes ‘first name’ and ‘last name’

as its arguments. In the next version, the function takes only
‘name’. It seems the ‘first name’ and the ‘last name’ parameters
are deleted while the new ‘name’ parameter is added. In fact, the
new parameter, ‘name’, is a combination of the deleted parameters,
‘first name’ and ‘last name’. In this case, a derivation function F
exists.

Definition 7 (Concept merging/splitting change)
 Asub ⊆ Argold
 Concept merging CM ≡ A and ∃ a derivation function F,

such that padded = F(Asub) and |Asub|>1
 Concept splitting CS ≡ A and ∃ a derivation function F,

such that padded = F(Asub) and |Asub|=1

The ‘name’ parameter can be derived using a derivation function
F: ‘name’ = F (‘first name’, ‘last name’). We define this kind of
changes as a concept merging change. If the evolution goes in the
opposite direction, we define it as a concept splitting change.

Definition 8 (Primitive types and Complex types)
Primitive type set PTS ≡ {char, int, long, float, double}

 Is primitive type PT(t) ≡ true iff t ∈ PTS, else false
 Is complex type CT(t) ≡ true iff t ∉ PTS, else false

Definition 9 (Primitive type change)

Primitive type change ≡ typenew ≠ typeold and
 PT(typenew) and PT(typeold)
Definition 10 (Complex type change)

Type variable set TVS ≡ a set of variables used in a complex type
 Complex type name change CN ≡ typenew ≠ typeold

and (CT(typenew) or CT(typeold))
Complex type inner variable addition
 CA ≡ CT(typenew) and CT(typeold)

and typenew = typeold and |TVSnew| >|TVSold|
Complex type inner variable deletion
 CD ≡ CT(typenew) and CT(typeold)

and typenew = typeold and |TVSnew|<|TVSold|
Definition 11 (Return parameter change)

Return type change R ≡ modifiernew ≠ modifierold or
typenew ≠ typeold or array/pointernew ≠ array/rpointerold

 and typenew ≠ void and typeold ≠ void
 Return type addition RA ≡ typenew ≠ typeold and typeold = void
 Return type deletion RD ≡ typenew ≠ typeold and typenew = void

We define primitive type and complex types in Definition 8, and
based on this definition we define primitive type and complex
type changes.
The primitive type change indicates one of the parameter types
has been changed while the parameter name remains unchanged.
For example, if a parameter, ‘int age’ is changed to ‘long age’, it
is a primitive type change. If the primitive type and the parameter
name of an argument change together, it is a parameter
addition/deletion change.

0

10

20

30

40

50

60

70

80

APR Apache 1.3 Apache2 Subversion CVS Linux GCC Sendmail Average
Figure 1. The percentage of the primitive data types used in

function signatures of each project.

0

10

20

30

40

50

60

70

80

90

Name change Ordering
change

Additon Deletion Modifier
change

Array/Pointer Complex type
change

Primitive type
change

APR

Apache 1.3

Apache 2

Subversion

CVS

Linux

GCC

Sendmail

Average

Figure 2. The percentages of each change kind frequency of the eight open source projects and average.
In the open source projects we observed, on average 55% of data
types in signatures are complex data types (class, typedef, struct
or union); see Figure 1. If one of the complex data types is
changed, we define this change as a complex type change. These
changes are different from parameter addition or deletion changes
in that the old and new data types are related. Usually, when there
are major changes in a class or structure, developers change the
class/structure name. If there are only minor changes to the
structure or class, such as adding a member variable, the
structure/class name will not be changed. Since we are analyzing
only signatures, we cannot automatically identify changes inside
of structures or classes. To identify these changes, we need to
monitor the structure/class body for changes in each revision. We
may observe this in future work.

To define the major categories of our taxonomy, we use a data
flow model between a function and a client. A client calls a
function by passing arguments (Arg) and expecting returns (R) as
shown in Figure 3. The total data flow is the union of Arg and R,
defined in Definition 12. Broadly, when parameters or return
values are added, there is an increase in the amount of data
flowing between caller and callee, while parameter deletion or
removal of return values results in reduction of data flow.
Modifier changes or parameter name changes have no impact on
the data flow.

Figure 3. Data flow model.
Definition 12 (Data Flow)
 DF≡ Arg ∪ R

Data flow invariant ≡ |DFold| = |DFnew|
 Data flow increasing ≡ |DFold| < |DFnew|
 Data flow decreasing ≡ |DFold| > |DFnew|

4. FREQUENCY OF CHANGE KINDS
After identifying signature change kinds, we computed the
frequencies of each kind. Figure 2 shows the signature change
kind frequency percentages of each project. To simplify the graph
we aggregated ordering changes (Ordering change = o+OA+OD).
Figure 2 shows percentages for each change kind; the percentage
is calculated by taking the number of observations of a particular
change kind, and dividing it by the total number of signature
changes observed for that system. For example, in Apache 1.3, we
observed 202 parameter additions, and 327 total signature
changes, resulting in a frequency percentage of 61%.

Note that one signature change can include more than one change
kind. For example a signature change can include parameter
addition, parameter deletion, and ordering changes. As a result,
the summation of each percentage is greater than 100%. For
example, the sum of all the CVS project change kinds is 157 %. It
means that whenever a function has a signature change in the
CVS project, the signature change includes 1.57 different kinds of
change, on average. If there is more than one instance of a
particular change kind in a signature change, we count the kind
only once. For example, if a signature change includes a
parameter addition change three times, we count only one
parameter addition change.
Figure 2 shows that the most common change kinds are parameter
addition (average 52.13%), complex type changes (average
30.5%), and parameter deletion (average 22.75%). The
array/pointer and primitive type change are relatively uncommon
change kinds.

5. RATIO OF SIGNATURE CHANGES
To show the distribution of signature changes across functions,
we counted the number of functions having n signature changes,
with n varying from 0 to 16 signature changes (see Figure 4 for
the signature change distribution for Subversion). Figure 4 shows
that 5466 functions (77%) never changed their signature and 95%
of the functions had fewer than three signature changes.
Another interesting ratio of signature changes can be obtained by
comparing the number of signature changes and number of
function body changes. We may examine this in future work.

1

10

100

1000

10000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of signature changes

N
u
m

b
e
r
 o

f
fu

n
c
tio

n
s
 i
n
 t
h
e

L
o
g
a
ri
th

m
ic

 s
c
a
le

Figure 4. Count of signature changes of functions in the
Subversion project. The x-axis indicates the number of
signature changes, and the y-axis indicates the number of
functions (log scale).

6. SIGNATURE EVOLUTION PATH
We wondered whether common signature evolution paths could
be used to predict future software changes. For example, we

Function Client
Arg

R

might detect that the most common signature changes occurred in
this order: parameter addition (A), parameter deletion (D),
ordering change (O), return type change (R), and parameter
addition (A). In the future, when a known signature change
evolution sequence occurred, such as A, D, O and R, we could
predict the next signature change is likely to be a parameter
addition (A).
To determine whether or not such common evolutionary paths
exist, we noted all signature change evolution sequences. For
example, when the signature of a function changes in this order:
A, D, O, R, and A (See Table 3 for the change pattern
abbreviations), we generate a change sequence, ‘ADORA’. We
examined all signature change sequences whose length is larger
than three. We assumed that change sequences with fewer than
four changes are rarely associated with common evolution paths.
After having an array of the sequences, we looked for the most
common sequence (MCS) patterns using a modified longest
common sequence (LCS) search algorithm [7]. Table 6 shows the
top five common sequences of the Subversion project and overall
eight projects. The occurrence shows how many times we found
the change sequence patterns over all patterns, and percentage
shows how common each occurrence is as a fraction of all
observed occurrences (1,428 for the Subversion project and 2,025
for overall). We need to determine the conditional probabilities of
each change kind to see if it depends on previous changes, and
that the dependency rate is high enough to predict future change
kinds. We weren’t able to find predictable evolution paths from
common sequences.

Table 6. The top five common function signature change
pattern sequences of the Subversion project and across all
projects. # means the count of occurrences of the pattern,

and % means the percentage of times this sequence occurs.
Subversion Project Overall projects

Common
Sequence # % Common

Sequence # %

ACDA 186 13% AADA 198 9%
AADA 183 12% ACDA 186 9%
AACD 159 11% ADDD 171 8%
ADDD 152 10% AACD 159 7%
ACAA 133 9% ADAD 141 6%

7. THREATS TO VALIDITY
The results presented in this paper are based on selected eight
open source projects. It includes major open source projects, but
other open source or commercial software projects may not have
the same properties we presented here. We analyzed only projects
written in the C programming language; software written in other
programming languages may have different signature change
patterns. Some open source projects have revisions that are not
compilable and contain syntactically invalid source code. In that
case, we had to guess at the signatures or skip the invalid parts of
the code. We ignored ‘#ifdef’ statements because we cannot
determine the real definition value; ignoring ‘#ifdef’ caused us to
add some extra signatures which will not be compiled in the real
program.

8. CONCLUSIONS AND FUTURE WORK
We have introduced a fine-grain taxonomy of signature change
kinds. Among change kinds, the common change kinds are
parameter addition (52.13%), complex type change (30.5%) and

parameter deletion (22.75%). In future work we hope to this result
can be used to alleviate signature change impact. If we can
provide an ontological framework that includes a conceptual
meaning for each parameter with its data type, it is possible to
accommodate ordering changes and parameter deletion changes
by generating glue code that resolves the signature mismatch
problem. We found that about 77% of functions never change
their signature and another 23% of functions change their
signature once or twice.

We used a function name as an identifier to keep track of
signature changes. Unfortunately, this means that if a function
name changes, we loose its previous history of signature changes.
The C++ and Java programming languages allow method
overloading – more than one method with the same name but
different parameters. When groups of overloaded methods evolve,
sometimes ambiguity prevented us from determining which old
method changed to which new method. Tu et al. introduced an
origin analysis algorithm to find the origins of new procedures or
files [8]. Origin analysis helps to find evolution paths when
function names are changed or methods are overloaded. However,
origin analysis requires heavy computation for entity analysis and
dependency analysis. Providing more accurate results using origin
analysis remains future work.

About 55% of parameters are complex data types such as
structures, unions, or classes. Even though the signature remains
unchanged, when a complex data type has changed internally,
such as the addition of a member variable, it should be regarded
as a signature change. Monitoring changes to each complex data
type used in a signature to observe this kind of change remains
future work.

Finally, further study is needed to explore the correlations
between signature evolution and whole system evolution.

9. ACKNOWLEDGMENTS
Thank you to Mark Slater, and the anonymous reviewers for their
valuable feedback on this paper. Work on this project is supported
by Samsung Electronics, NSF Grant CCR-01234603, and a
Cooperative Agreement with NASA Ames Research Center.

10. REFERENCES
[1] M. M. Lehman, "Rules and Tools for Software Evolution Planning and

Management," Proc. Int'l Workshop on Feedback and Evolution in
Software and Business Processes (FEAST 2000), Imperial College,
London, July 10-12, 2000.

[2] D. C. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen, "Change
Impact Identification in Object Oriented Software Maintenance," Proc. the
Int'l Conf. on Software Maintenance, Victoria, Canada, 1994, pp. 202-211.

[3] S. Counsell, et al., "Trends in Java code changes: the key to identification
of refactorings?" Proc. 2nd Int'l Conf. on Principles and Practice of
Programming in Java, Kilkenny City, Ireland, 2003, pp. 45 - 48.

[4] J. Bevan, "Kenyon Project Homepage," 2005 http://kenyon.dforge.cse.ucsc.edu
[5] B. Behlendorf et al., "Subversion Project Homepage," 2005

http://subversion.tigris.org/
[6] T. Zimmermann and P. Weißgerber, "Preprocessing CVS Data for Fine-

Grained Analysis," Proc. MSR 2004, Edinburgh, Scotland, 2004, pp. 2-6.
[7] D. S. Hirschberg, "Algorithms for the Longest Common Subsequence

Problem," Journal of the ACM (JACM), vol. 24, no. 4, pp. 664 - 675, 1977.
[8] Q. Tu and M. W. Godfrey, "An Integrated Approach for Studying

Architectural Evolution," Proc. Intl. Workshop on Program
Comprehension (IWPC 2002), Paris, June, 2002, pp. 127.

