

color with slight delineations when the numbers became too
high was suggested, however we still wanted an approach
that was consistent. We therefore used a combination of flow-
er position and number to create a sort of flower “code” that
could be used to display any number up to 99,999.

VII. Using Plants to Represent
Other Data Structures

In the deployed version of Xylem, we were able to rep-
resent loops containing integer variables, and integer linked
list variables. However, the plant metaphor used in Xylem
has substantial representational flexibility, and is capable of
handling additional types of data structures, even though they
were not implemented. These are described below.

Linked lists, stacks and queues can all be represented in
a similar fashion to the linear arrays that are currently in Xy-
lem. The “array length” tool may not be appropriate for these
data structures due to the way lists, stacks and queues are
more plastic in this dimension than arrays. A new way to de-
scribe the length of these structures would therefore have to
be investigated. Additional plant features could be added to
roots to represent more information about the data contained
in the data structure.

One way to visualize a two dimensional array is as a
flowering shrub. The array is mapped as a grid over the shrub,
and each cell of the array contains a discrete number of plant
features such as flowers and leaves which represent data con-
tained at each array index.

Tree data structures can be represented by plant kingdom
trees, which have many possible features (leaves, cones, fruit,
flowers, etc.) that can be used to represent types of informa-
tion contained by the data tree.

From a side view, rhizomatous plants appear to be a lin-
ear structure. When viewed from the top down however, it
becomes clear that actually they grow spread out over a large
area. Diagrams of rhizomatous plants from a bird’s eye view
strongly resemble abstract depictions of graph data struc-
tures. The “crowns” of these plants (where the above-ground
part of the plant comes through the soil) can have a variety
of features that can be used to describe data, such as shoots,
leaves, flowers, etc.

VIII. Future Work

In addition to the above standard data structures, a spec-
ulative modular design was created to handle any arbitrary
data structure that might find its way into the game.

Complex data structures tend to have multiple combina-
tions of primitive data structures, such as a tree where leaves
are lists, or lists of lists. The plant metaphor provides two
approaches to this problem. First, a berry bush can visualize
complex data structures, especially ones where the structure
is not known a priori. Data nodes are mapped to berries. Links
between nodes are berry stems and vines. These stems and
vines do not have to conform to botanical rules; they can be
constructed purely based on the needs of the data structure.
Currently accessible nodes are represented by ripe berries,
whereas nodes not currently accessible are shown as fruit that
is not yet ripe. If necessary, different levels of ripeness can be
employed to give the player further information.

An alternate approach is to adopt a zooming scheme,
where players zoom into and out of different plant features,
to uncover data at different levels of resolution. A botanical
tree, for example, may grow a flower which in itself repre-
sents a node on the data tree containing an array, with vari-

Fig. 4. Specifying dynamic ranges. The array variable here references a range of indices specified in the range editor panel. To edit the array index range,
players can toggle the range editor panel. (a) The “observation” here reads: every array entry within a specified range is undefined. (b) The range editor panel
is used to constrain the indices. Here the range of indices is related to the loop iteration number, specifically, describing one fewer array entry each iteration.

(a) (b)

ables represented by number of petals, visible seeds, stamen,
etc. This approach requires some foreknowledge of the kinds
of data structures involved, so appropriate visualizations can
be selected at each layer.

The value of a project like Xylem increases when it is
able to represent very complex loops which manipulate com-
plex data structures, as simpler loops can often have their
invariants discovered by automatic techniques. As loops
become more complex, the ability for automatic systems
to solve them goes down, and the utility of having human
solvers increases. However, this requires representing a wide
range of complex data structures. Xylem, in its current ver-
sion, is a start at solving this more complex problem, for just
simple integer loops, and array/list data structures. Research
into more complex data structures such as trees and graphs
is needed.

IX. Conclusion

Games that require a faithful depiction of computer soft-
ware face challenging visual representation issues. Xylem:
The Code of Plants needed to visually represent loops, in-
teger variables, and lists of integers, all using a consistent
visual metaphor that was appealing to a casual game audi-
ence. The approach adopted of using a plant and flower meta-
phor has sufficient expressive range to represent a wide range
of loop examples. Xylem has had over 2,100 downloads to
date, a respectable showing for a research game. While these
players (who are anonymous due to project constraints) have
not been surveyed as to their reaction to the visualization ap-
proach in Xylem, there is anecdotal evidence that audiences
who are not likely to be pulled into a mathematical game
were attracted by the game’s botanical theme and enjoyed the
experience of making discoveries about virtual flowers [15],
(although reviews were not universally positive [17]).

Our core contribution is a visual representation of loops,
integers and lists that is narratively coherent, and moves be-
yond the traditional boxes and arrows visual representation.
This visual metaphor holds promise for use in other future
software games – both those meant to aid in computer sci-
ence problems and those meant to teach computer science
concepts. Our hope is this will shift thinking about how to
visualize data structures and algorithms away from purely
utilitarian representations and into more expressive and ap-
pealing ones.

References

Kaiser, L, Unbiased Estimation in Line-Intercept Sampling, [1]	
Biometrics 39. pp 965–976. 1983.

Bridson, Diane M., and Leonard Forman. [2]	 The Herbarium
Handbook. Kew: Royal Botanic Gardens, 1992.

Baber, Robert, L. [3]	 The Language of Mathematics. John Wiley
& Sons, 2011.

Floyd, R. W. Assigning meanings to programs. Mathematical [4]	

aspects of computer science, 1967.

Diehl, Stephan. [5]	 Software visualization: visualizing the struc-
ture, behaviour, and evolution of software. Springer, 2007.

Furia, Carlo A., Bertrand Meyer, and Sergey Velder. “Loop [6]	
invariants: Analysis, classification, and examples.” ACM Com-
puting Surveys (CSUR) vol. 46, 3. 2014.

Baecker, Ronald M., with the assistance of David Sherman, [7]	
“Sorting Out Sorting”, 30 minute color sound film, Dynamic
Graphics Project, University of Toronto, 1981.

Eagle, Michael, and Tiffany Barnes. “Wu’s castle: teaching ar-[8]	
rays and loops in a game.” ACM SIGCSE Bulletin. Vol. 40. No.
3. ACM, 2008.

Boyce, Acey, and Tiffany Barnes. “BeadLoom Game: using [9]	
game elements to increase motivation and learning.” Proc.
of the Fifth Int’l Conference on the Foundations of Digital
Games. 2010.

Astrachan, Owen. Pictures as invariants. [10]	 ACM SIGCSE Bul-
letin. Vol. 23. No. 1. ACM, 1991.

Ginat, David. “Loop invariants and mathematical games.” [11]	
ACM SIGCSE Bulletin. Vol. 27. No. 1. ACM, 1995.

Shaffer, Clifford A., Cooper, Matthew L., Alon, Alexander [12]	
Joel D., Akbar, Monika, Stewart, Michael, Ponce, Sean, and
Edwards, Stephen H., “Algorithm Visualization: The State of
the Field.” ACM Trans. Computing Education, Vol. 10, No. 3,
Article 9, August 2010.

Price, Blaine A., Baecker, Ronald M., Small, Ian S., “A Prin-[13]	
cipled Taxonomy of Software Visualization.” Journal of Visual
Languages and Computing, Vol. 4, No. 3, Sept. 1993.

Tillmann, Nikolai, Jonathan De Halleux, Tao Xie, Sumit Gul-[14]	
wani, and Judith Bishop, “Teaching and Learning Program-
ming and Software Engineering via Interactive Gaming.” Proc.
35th International Conference on Software Engineering (ICSE
2013), Software Engineering Education (SEE), May 2013.

Rosenthal, Anne M. “Xylem: The Code of Plants.” SFNature [15]	
On Assignment. 2 Jan. 2014. Web. 30 Jan 2015. <http://www.
sfnatureblog.com/2014/01/xylem-code-of-plants.html>.

Logas, Heather, Whitehead, Jim, Mateas, Michael, Vallejos, [16]	
Richard, Scott, Lauren, Murray, John, et al. “Software verifica-
tion games: designing Xylem, the code of plants.” Foundations
of Digital Games, 2014.

Wang, Vincent. “’Xylem: The Code of Plants’—a (mostly [17]	
negative) review.” The Revolver’s Notepad. 8 Mar 2014. Web.
27 Feb 2015. <http://www.pi-identity.com/blog/2014/03/08/
xylem-the-code-of-plants-a-mostly-negative-review/>.

Dietl, Werner, Dietzel, Stephanie Dietzel, Michael D. Ernst, [18]	
Nathaniel Mote, Brian Walker, Seth Cooper, Timothy Pavlik,
and Zoran Popović, “Verification games: Making verification
fun.” Proc. of the 14th Workshop on Formal Techniques for
Java-like Programs. (Beijing, China), June 12, 2012.

