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Abstract

Efficient Bug Prediction and Fix Suggestions

by

Shivkumar Shivaji

Bugs are a well known Achilles’ heel of software development. In the last few years,

machine learning techniques to combat software bugs have become popular. However,

results of these techniques are not good enough for practical adoption. In addition,

most techniques do not provide reasons for why a code change is a bug.

Furthermore, suggestions to fix the bug would be greatly beneficial. An added

bonus would be engaging humans to improve the bug and fix prediction process.

In this dissertation, a step-by-step procedure which effectively predicts buggy

code changes (Bug Prognosticator), produces bug fix suggestions (Fix Suggester), and

utilizes human feedback is presented. Each of these steps can be used independently,

but combining them allows more effective management of bugs. These techniques are

tested on many open source and a large commercial project. Human feedback was used

to understand and improve the performance of the techniques. Feedback was primarily

gathered from industry participants in order to assess practical suitability.

The Bug Prognosticator explores feature selection techniques and classifiers

to improve results of code change bug prediction. The optimized Bug Prognosticator

is able to achieve an average 97% precision and 70% recall when evaluated on eleven

projects, ten open source and one commercial.
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The Fix Suggester uses the Bug Prognosticator and statistical analysis of key-

word term frequencies to suggest unordered fix keywords to a code change predicted to

be buggy. The suggestions are validated against actual bug fixes to confirm their utility.

The Fix Suggester is able to achieve 46.9% precision and 38.9% recall on its predicted

fix tokens. This is a reasonable start to the difficult problem of predicting the contents

of a bug fix.

To improve the efficiency of the Bug Prognosticator and the Fix Suggester, ac-

tive learning is employed on willing human participants. Developers aid the Bug Prog-

nosticator and the Fix Suggester on code changes that machines find hard to evaluate.

The developer’s feedback is used to enhance the performance of the Bug Prognosticator

and the Fix Suggester. In addition, a user study is performed to gauge the utility of

the Fix Suggester.

The dissertation concludes with a discussion of future work and challenges

faced by the techniques. Given the success of statistical defect prediction techniques,

more industrial exposure would benefit researchers and software practitioners.
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Chapter 1

Introduction

1.1 Motivation

The global software market has an estimated market size of 267 billion dollars

at the end of 2011. This is projected to reach 358 billion dollars in 2015 [127]. In

this rapidly growing sector, software systems are produced and maintained by humans.

Due to the fallibility of humans and the complexity of maintaining software, defects

invariably creep into these systems. Most software companies spend much money and

effort uncovering several bugs in a software system before releasing it to customers.

It is well known that software bugs constitute a huge burden for software

development firms. Software verification is a tough process [163]. To better manage

defects created by humans, additional personnel are hired as software testers. Kaner

et al. report that many of the firms they surveyed have a 1-1 developer to tester ratio

[36]. These include large firms such as Microsoft.
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It is clear that software development firms are strongly investing in software

quality if they are willing to hire as many testers as engineers. Software development

costs are a significant share of the almost 300 billion dollar global software market. A

huge portion of that amount is spent on testing software.

Despite spending large amounts on testing software, many defects are still

present in the final product and can have a devastating consequence on a firm’s rep-

utation. Telang et al. show that a single production security bug can reduce a large

company’s stock value by 0.6% and can have a more powerful impact on smaller firms

[152]. To reduce damage to a firm, it is important that software bugs are addressed as

early as possible.

A rough outline of the typical stages in a software development process modeled

after the famous but strict Waterfall model [137] is given below:

1. Gathering Requirements

2. Design

3. Implementation

4. Integration

5. Verification

6. Product Release

7. Post-Release Maintenance

2



In the traditional waterfall model, each stage is performed in isolation, often

lasting months. After the end of a stage, a quality check was performed before moving

on to the next one. Modern software projects might operate more dynamically and

prefer more flexible development processes. Newer software development processes have

more interplay amongst the stages, and the duration of a particular stage might be as

short as a few days. However, the stages listed above are still present in any process, as

all software needs to be designed, implemented, integrated, verified, and released.

A defect caught after a product release is expensive as the damage can be

seen by a customer and likely the general public. Defects caught close to the release

date are still expensive. Developers are typically scrambling at this stage to ensure that

deadlines are being met. A presence of a bug at this stage is highly likely to impact

the final release date. Tracing backwards in the list, it becomes clear that the earlier a

defect is addressed, the more collective employee time and money are saved.

A common belief in industrial software engineering is that software defects

cost logarithmically more to fix, the later they are found in the software development

life cycle. Boehm et al. stated in 1988, that a defect appearing in production can cost

50-200 times as much to fix than if it was corrected earlier [32]. In 2001, Boehm et al.

revised this ratio to 5:1 for small non-critical systems, instead of the earlier 100:1 [31].

As we cannot expect all systems to be small and non-critical, practical defect costs are

noticeably higher the longer they are ignored.

The research presented in this dissertation focuses on addressing bugs at a rea-

sonably early stage, the implementation stage. Table 1.1 contains detailed information

3



on the efficacy of popular techniques to fight bugs during this stage.

Unit Tests These are tests to ensure that an individual unit of code performs satis-

factorily independent of other code modules.

Unit tests are a good way to fight easy bugs but have a large setup time as de-

velopers need to program and configure a unit test from scratch. In addition,

maintenance costs on unit tests are expensive as they need to be constantly up-

dated to continue to be accurate tests. New features/interactions can potentially

break existing unit tests. However, unit tests are typically quick to run.

System Tests These are more comprehensive end to end tests that verify full system

functionality.

They take a while to setup, a while to execute, and also are expensive to maintain.

However, they are better predictors of hard bugs compared to unit tests.

Code Inspections Before submitting complex code to a source repository, an engineer

often asks a coworker to perform a code review. The idea is bugs within a code

change will be less likely to escape two minds.

Code inspections can provide reasonable utility on hard bugs but are expensive as

they make use of people’s time. This is compounded by the fact that there might

be only a few qualified people capable of conducting reviews on a particular code

change.

Static Analysis Tools can analyze code grammar and advise programmers of errors

4



in logic.

Static analysis can quickly point out obvious flaws in logic. It also has low setup

and execution times. However, a lot of false positives are produced. Kim et al in

[87] show that less than 5% of bugs revealed by static analysis are fixed. Thus,

static analysis typically finds bugs that are not critical.

Dynamic Analysis While running the program, certain types of errors can be caught.

Examples include memory leaks and code performance issues.

Dynamic analysis can help find hard bugs, but requires a considerable amount

of human interaction, and a huge setup cost as it is important to know what we

are looking for before starting a dynamic analysis session. Additionally, dynamic

analysis and system tests do not precisely point out the location of the faulty code.

All of the above techniques represent a way to reduce future bugs. However,

they suffer from multiple limitations and do not indicate faults at a low level of gran-

ularity, namely at the method or line of code level. An exception is code inspections

which are expensive due to needing humans.

In contrast, the Bug Prognosticator presented in chapter 5, is able to present

the location of faulty code, with a low execution cost, and can be used on hard and easy

bugs. In addition, the prediction of faulty code is made at the time of the commit, thus

alerting developers as early as possible. The setup cost is somewhat expensive for large

projects, however it is a one time cost for a software project.

The Bug Prognosticator is based on statistical bug prediction techniques. Sta-

5



Technique Setup Execution Utility Utility Utility Maintenance

Time Time on Easy on Hard in Predicting Cost

Bugs Bugs Defect Location

Unit

Tests

High Low Good Poor Good High

System

Tests

High High Poor Fair Poor High

Code In-

spection

High Medium Good Fair Good Low

Static

Analysis

Low Low Fair Poor Good Low

Dynamic

Analysis

High High Poor Fair Poor Low

Table 1.1: Summary of Methods To Manage Bugs

6



tistical bug prediction operates by looking for patterns in code that correlate with (or

rather predict) bugs. Typically, statistical techniques do not extensively utilize program

introspection techniques. Text from code or abstract syntax trees are often treated as

a bag of words. The general benefits of a statistical approach are:

• A focus on predicting bugs that will actually be fixed in practice. Wedyan et al.

have empirically analyzed bug reports by static analysis tools and found that less

than 3% of the suggestions are actually fixed in practice [156]. When interacting

with a few industrial settings, this number was found to be less than 0.5%.

• Project history is often leveraged and tailored for adaptive prediction of bug fixes

relevant to the future code changes of a particular project. Historical trends can

also be exploited. If a particular type of bug fix was popular at the onset of a

project but diminished in significance soon, statistical fix content prediction will

downplay the importance of that fix pattern.

The benefits to program analysis when compared to statistical approaches

including:

• Diagnosis typically reflects a clear defect that can be triggered on a program

execution path. In contrast, statistical approaches predict a program unit is buggy

probabilistically. As statistical approaches work probabilistically, they can only

predict the likelihood of a defect.

• Human understandable reasons for a bug prediction are typically provided.

7



Bug Prognosticator is an optimized statistical bug predictor on a code change.

To further speed up the bug fix process, which on average takes fourteen hours per fix

after a release [146], our solution helps understand the bug and provides assistance to

fix it.

In order to predict bugs, a mechanism that accurately classifies a code change

and indicates the top reasons for a code change being buggy or clean is of much value.

Chapter 5 introduces Bug Prognosticator, which classifies a code change as buggy or

clean using statistical methods. These improvements greatly enhance the speed and

accuracy of this technique.

If a code change is found to be buggy, top reasons for the bug are extracted

by the Bug Prognosticator. These are passed to the Fix Suggester in chapter 6, which

then computes programming language tokens that are most likely to appear in a bug

fix to the given buggy code change. Finally, these bug fix suggestions will be inves-

tigated by human experts to certify their validity. Their feedback is returned to the

Bug Prognosticator and Fix Suggester. The performance of the human optimized Bug

Prognosticator and Fix Suggester is compared to the pure machine driven approach of

chapter 5 in chapter 7. The next section addresses relevant research questions for the

approaches presented in the dissertation.

The next section illustrates the overall workflow with the Bug Prognosticator,

Fix Suggester, and Human Feedback working in concert. Each component is briefly

distilled to give the reader a background before contributions and research questions

are outlined.

8



Figure 1.1: Developer Interaction Workflow

1.2 Bug Prediction Workflow

An overview of the developer interaction workflow is depicted in Figure 1.1.

The steps of the process are:

• A code change is submitted.

• A prediction is made on whether the entire change is buggy or clean using the

Bug Prognosticator. The Bug Prognosticator performs an optimized code change

classification on change history [87, 144] to predict if a code change is buggy or

clean. A summary of the optimized change classification is presented in section

1.3. Change classification is detailed in chapter 3.

• If the code change is predicted to be buggy, suggest a partial code fix and expose

reasons for the bug to the developer. The predicted fix tokens are also presented

to the user. The Fix Suggester is briefly described in Section 1.3.

9



Figure 1.2: Enhanced Change Classification with the Bug Prognosticator

• The user can provide feedback to the Bug Prognosticator and the Fix Suggester.

This will help refine both the current and future predictions.

1.3 Bug Prognosticator

The change classification process is distilled in figure 1.2. The steps marked

with an asterisk are enhancements to the change classification process introduced by

the Bug Prognosticator. Change classification is fully described in chapter 3.

At a high level, past revision history is used to gather prior buggy and clean

changes. Features are extracted from these changes. A classifier is trained with the

code changes and labels. Future code changes can then be predicted as buggy or clean.

If a code change is predicted as buggy, reasons for that decision are used to

compose a partial bug fix. The next section briefly explores how this is done by the Fix

Suggester.

10



Figure 1.3: Fix Suggester

1.4 Fix Suggester

Figure 1.3 graphically introduces the Fix Suggester. Once a code change is

predicted as buggy, the Bug Prognosticator will provide reasons for the prediction. The

reasons are sent as token weights for the incoming code change to the Fix Suggester.

Internally, a Fix matrix is built using the token weights and past change data. The Fix

matrix then computes terms which are likely to occur in the bug fix to the incoming code

change. These terms are ranked and filtered before passing them on as fix suggestions

to a developer.

1.5 Human Feedback

Developers have an opportunity to contest bug reasons and the proposed fix

suggestions. Providing the optimal feedback mechanism is a tough challenge in practice.
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Chapter 7 employs active learning to correct initial labeling of a code change as buggy

or clean. Interestingly, using human feedback on a few revisions was able to significantly

improve performance of both the Fix Suggester and the Bug Prognosticator. Chapter

7 also conducts a user study on the practical utility of the Fix Suggester. The fix

suggestions were generally assessed by users to be useful.

The next section addresses the specific contributions and research questions.

1.6 Contributions and Research Questions

1. The Bug Prognosticator - an optimized method based on feature selection to

accurately predict if an impending code change contains a bug. The Bug Prog-

nosticator also updates the classifier to produce better input to the Fix Suggester.

• RQ1. Which variables lead to best bug prediction performance when using

feature selection?

The three variables affecting bug prediction performance that are explored in

this dissertation are: (1) type of classifier (Näıve Bayes, Support Vector Ma-

chine), (2) type of feature selection used (3) and whether multiple instances

of a feature are significant (count), or whether only the existence of a feature

is significant (binary).

• RQ2. Range of bug prediction performance using feature selection. How do

the best-performing classifiers perform across all projects when using feature

selection?

12



• RQ3. Feature Sensitivity. What is the performance of change classification

at varying percentages of features? What is the F-measure of the best per-

forming classifier when using just 1% of all project features?

• RQ4. Best Performing Features. Which classes of features are the most

useful for performing bug predictions?

RQ1-4 are addressed in chapter 5.

2. Fix Suggester - A method to predict partial content of a bug fix given a bug

inducing code change and input from the Bug Prognosticator. Throughout the

dissertation, the “content” of a bug fix refers to keywords of a bug fix.

• RQ5. What is the prediction accuracy of the Fix Suggester on varying points

of project history?

• RQ6. What kind of programming tokens are ideal for generating Fix Sugges-

tions?

RQ5-6 are addressed in chapter 6.

3. A method to further optimize the results of the previous contribution using human

feedback.

• RQ7. Using human feedback, how much can we improve on the results of Fix

Suggester?

4. A qualitative study to gauge the practical utility of the Fix Suggester.

13



• RQ8. When engineers inspect the bug fix change log, do they find that the

Fix Suggester’s keywords are relevant to the actual bug fix?

• RQ9. Does reviewing the Fix Suggester’s keywords influence the investigation

for the bug fix?

RQ7-9 are addressed in chapter 7.

The next chapter starts with a survey of related work. Following, the notion of

bug prediction on a code change, change classification is introduced. Next, performance

metrics are detailed. The stage is now set to discuss contributions. The first contribution

of improved bug prediction on a code change, the Bug Prognosticator, is presented.

The contribution of the Fix Suggester is then presented. An attempt to improve the

Bug Prognosticator and Fix Suggester using human feedback is the next contribution.

Finally, a qualitative study of the Fix Suggester is performed. Opportunities for future

work are then discussed followed by the conclusion.
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Chapter 2

Related Work

The major contributions of this dissertation address bug prediction, human

feedback, and fix suggestion. This chapter, reviews related work in each of these areas

while also touching upon broader areas. We start with a survey of defect prediction.

Some of these techniques were enhanced to have better results. Related work on feature

selection is discussed in order to better understand the results of chapter 5. Next,

related work on human feedback is addressed. We start from a broader level before

proceeding to related work within software engineering. Finally, related work on bug

fix suggestions is investigated. We start with motivating examples from expert systems

before moving to bug fixes on software artifacts.

2.1 Defect Prediction

Given a software project containing a set of program units (files, classes, meth-

ods or functions, or changes depending on prediction technique and language), a bug
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prediction algorithm typically outputs one of the following.

Totally Ordered Program Units. A total ordering of program units from most

to least bug prone [85] using an ordering metric such as predicted bug density for each

file [126]. If desired, this can be used to create a partial ordering (see below).

Partially Ordered Program Units. A partial ordering of program units into bug

prone categories (e.g. the top N% most bug-prone files in [88, 72, 126])

Prediction on a Given Software Unit. A prediction on whether a given software

unit contains a bug. Prediction granularities range from an entire file or class [73, 69]

to a single change (e.g., Change Classification [87]).

Bug prediction algorithms can also operate at a higher level to output:

Predictions of Bug Introducing Activities. Suspect behaviors or plans that lead

to defect introduction.

Predictions of Bug Characteristics. Information that can help identify charac-

teristics of a particular defect.

Related work in each of these areas is detailed below. As chapter 5 employs

feature selection, related work on feature selection techniques is also addressed.

2.1.1 Totally Ordered Program Units

Khoshgoftaar and Allen have proposed a model to list modules according to

software quality factors such as future fault density [86, 85]. The inputs to the model are

software complexity metrics such as LOC, number of unique operators, and cyclomatic

complexity. A stepwise multiregression is then performed to find weights for each factor.
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Briand et al. use object oriented metrics to predict classes which are likely to contain

bugs. They used PCA in combination with logistic regression to predict fault prone

classes [34]. Morasca et al. use rough set theory and logistic regression to predict risky

modules in commercial software [118]. Key inputs to their model include traditional

metrics such as LOC, code block properties in addition to subjective metrics such as

module knowledge. Mockus and Weiss predict risky modules in software by using a

regression algorithm and change measures such as the number of systems touched, the

number of modules touched, the number of lines of added code, and the number of

modification requests [117]. Knab et al. apply a decision tree learner on a number of

source code, modification, and defect measures to predict module defect density [92].

File defect densities were predicted with acceptable accuracy for the same release. They

found that the LOC has little predictive power with regard to defect density. Instead,

evolution data was a better predictor of defect density. Bernstein et al. propose a non-

linear model on temporal features to predict the number and location of bugs in program

code [23]. Using the Weka J48 decision tree learner, models were built for six plugins

of the Eclipse project. The input to the machine learner included features such as the

number of revisions and issues reported within the last few months. They conclude that

a non-linear model in combination with a set of temporal features is able to predict

the number and location of bugs with a high accuracy. Ostrand et al. identify the top

20 percent of problematic files in a project [126]. Using future fault predictors and a

negative binomial linear regression model, they predict the fault density of each file.

Data was gathered by linking VCS data and data from a modification request (MR)
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database. As MRs may also contain information on new features or larger changes

in addition to faults, they used a combination of heuristics and manual verification

to improve data quality. Graves et al. analyze VCS history from a legacy telephone

switching system [67]. They investigate how effective metrics from change history are

for predicting fault distribution in software modules. They show that in general metrics

based on change history are more useful in predicting fault rates when compared to

traditional metrics. For example, the number of times a module has been changed

is a better predictor of how many faults it will contain than its LOC or its McCabe

complexity. They also found that older modules are less likely to contain faults than

newer ones.

2.1.2 Partially Ordered Program Units

The previous section covered work which is based on total ordering of all

program modules. This could be converted into a partially ordered program list, e.g.

by presenting the top N% of modules, as performed by Ostrand et al. above. This

section deals with work that can only return a partial ordering of bug prone modules.

Askari and Holt investigate three probabilistic models that predict future modification

of files based on available change histories of software [16]. This information was also

used to predict which files will have bugs. A rigorous approach for evaluating predictive

models derived from the Natural Language Processing domain is also provided. The

accuracies of the three models are quite different.

Hassan and Holt use a caching algorithm to compute the set of fault-prone
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modules, called the top-10 list [72]. They use four factors to determine this list: soft-

ware units that were most frequently modified, most recently modified, most frequently

fixed, and most recently fixed. A recent study by Shihab et al. [143] investigates the im-

pact of code and process metrics on future defects when applied on the Eclipse project.

The focus is on reducing metrics to a reach a much smaller though statistically signif-

icant set of metrics for computing potentially defective modules. Kim et al. proposed

the bug cache algorithm to predict future faults based on previous fault localities [88].

In an empirical study of partially ordered faulty modules, Lessmann et al. [99] con-

clude that the choice of classifier may have a less profound impact on the prediction

than previously thought, and recommend the ROC AUC as an accuracy indicator for

comparative studies in software defect prediction.

2.1.3 Prediction on a Given Software Unit

Detailed comparison against relevant related work in this section is done in

section 5.8 of chapter 5. They are briefly presented in this section for the sake of

completeness.

Using decision trees and neural networks that employ object-oriented metrics

as features, Gyimothy et al. [69] predict fault classes of the Mozilla project across

several releases.

Aversano et al. [18] use KNN (K nearest neighbors) to locate faulty modules.

Hata et al. [73] show that a technique used for spam filtering of emails can be successfully

used on software modules to classify software as buggy or clean. Menzies et al. [113]
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achieve good results on their best projects.

Kim et al. show that using support vector machines on software revision

history information can provide good prediction accuracy. Elish and Elish [53] also

used SVMs to predict buggy modules in software.

Recently, D’Ambros et al. [46] provided an extensive comparison of various

bug prediction algorithms that operate at the file level using ROC AUC to compare

algorithms. The ROC AUC metric is described in chapter 4.

Challagulla et al. investigate machine learning algorithms to identify faulty

real-time software modules [37]. They find that predicting the number of defects in a

module is much harder than predicting whether a module is defective. They achieve best

results using the Näıve Bayes classifier. They conclude that “size” and “complexity”

metrics are not sufficient attributes for accurate prediction.

2.2 Predictions of Bug Introducing Activities

Zimmerman et al. apply data mining to software revision histories in order to

derive rules which alert programmers of related changes [171]. It is based on the spirit

of “Programmers who changed these functions also changed ..” Given a set of existing

changes, these rules can suggest and predict likely changes, display item coupling that

can escape program analysis, prevent changes due to incomplete changes. Zimmerman

et al. provide a tool suggesting further changes to be made and warns about missing

changes using historical data. After little training from software history, the tool could
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can correctly predict 26% of further files to be changed and 15% of precise functions or

variables. This is particularly useful for identifying missing co-changes.

The impact of design decisions on software quality is addressed by Schröter

et al in a study of 52 Eclipse plugins [141]. They found that software design as well

as past failure history can be used to build models that accurately predict fault-prone

components in new programs. The prediction is based on usage relationships between

software components. These are typically decided on before the coding phase. They

achieve good accuracy in predicting the top 5% of most failure-prone components.

2.3 Predictions of Bug Characteristics

Predicting Security Bugs

Neuhaus et al. introduce Vulture, a tool that predicts vulnerable components

in large software systems [124]. Vulture leverages project VCS history and a

project vulnerability database to locate components that had past vulnerabilities.

It then passes the import structure of software components as input to a support

vector machine. After some training, the support vector machine can predict if

a component is vulnerable or not based on its imports. Neuhaus et al. applied

Vulture to the Mozilla project and found that two-thirds of vulnerable components

were correctly identified. In practice, correctly predicting a bug as security related

will help both in assigning it to the right team/developer and might increase the

bug’s priority.
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In a related effort, Gegick et al. combat the problem of mislabeled security bugs

[63]. They claim that due to the lack of security domain knowledge, many security

bugs are mislabeled as non-security defects. To address this issue, Gegick et al.

apply text mining algorithms on the bug description field. After training on many

bug reports, the algorithms can classify a bug report as related to security or

not. This model was evaluated on a large Cisco software system with over ten

million lines of source code. A high percentage (78%) of non-security related

bugs taken from a sample of bug reports should have classified as security related.

Cisco security engineers validated several of these predictions, and Gegick et al.’s

approach was shown to have high precision, 98% on the sample run.

Zaman et al. empirically investigate security, performance, and other bug types

from the Firefox project [167]. They analyze differences in time to fix, developer

experience, and bug fix characteristics among security, performance and other

bug types. Security bugs require more developers with more experience when

compared to other bug types. However, they need less triage time and are fixed

faster than other bug types. Performance bugs also require more developers with

more experience to address them. The bug triage time is comparable to a typical

bug. This kind of analysis reveals utility in correctly classifying a bug type as

early as possible.

Automatically classifying bug reports as security related, or performance can

greatly improve efficiency in engineering organizations.
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Defect or an enhancement?

Antoniol et al. investigate whether the text of bug reports is enough to classify the

requested change as a bug or enhancement [9]. Decision trees, logistic regression,

and naive Bayes classifiers are used to perform the classification. On Mozilla,

Eclipse, and JBoss, they report an accuracy between 77 and 82 percent. The

results appear promising, however it is useful to investigate if a bug reporter’s

text is itself influenced by whether the issue is a defect or an enhancement. For

example, if the word fix appears in the text, the reporter might likely mark the

issue as a bug.

Predicting the severity of a bug

Lamkanfi et al. attempt to predict the severity of a bug by analyzing the text of

a bug report using text mining algorithms [96]. They report precision and recall

figures ranging between 65-75% for Mozilla and Eclipse and 70-85% for Gnome.

Automated means of predicting bug severity will help managers decide on how

soon a bug needs to be fixed. Here too, it is useful to investigate if developers

have a preconceived notion of the severity of a defect based on the report text.

For example, the terms crucial and important might strongly indicate a bug of

high severity. Nevertheless, research in this direction can help guard against bug

severity misclassification.

Predicting who should fix a bug

Anvik et al. use machine learning to figure out which developer to assign a bug
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to [10]. They perform the assignment based on the text in the bug report. They

achieve precision levels of 57% and 64% on the Eclipse and Firefox projects re-

spectively. Further research on this front can be useful for large engineering or-

ganizations. Fast assignment of a bug to the right person will typically speed up

resolution.

Predicting the lifetime of a bug

Weiss et al. present a mechanism that predicts the amount of man-hours a bug

fix will take [161]. Using the bug report as input, they return the average fix time

from a set of similar historical bug reports. On the jBoss project, the predicted

fix times were quite close to actual times. To be useful in practice, the predicted

average fix times have to continue to be accurate throughout the duration of a

project. Further research in this direction can help confirm if an adaptive real

world solution is feasible.

The next section moves on to work focusing on feature selection. Feature selection

was extensively performed in chapter 5.

2.4 Feature Selection

Detailed comparison against relevant related work in this section is done in

section 5.8.1 of chapter 5. In similar fashion to section 2.1.3, related work is briefly

presented in this section for the sake of completeness.

Hall and Holmes [70] compare six different feature selection techniques when
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using the Näıve Bayes and the C4.5 classifier [132]. Each dataset analyzed has about

one hundred features.

Song et al. [150] propose a general defect prediction framework involving

a data preprocessor, feature selection, and learning algorithms. They also note that

small changes to data representation can have a major impact on the results of feature

selection and defect prediction.

Gao et al. [62] apply several feature selection algorithms to predict defective

software modules for a large legacy telecommunications software system. They note

that removing 85% of software metric features does not adversely affect results, and in

some cases improved results.

2.5 Fix Suggestion

Suggestions for Bug Fixes can come from different techniques. The most com-

mon is via static analysis. Related work not using static analysis is also discussed.

2.5.1 Static Analysis Techniques

Predicting bug fix content is a challenging problem especially when using sta-

tistical techniques. The static analysis community has spent considerable effort in ex-

ploiting language semantics to suggest fixes to bugs. Popular tools using static anal-

ysis for fix suggestions include Findbugs [19], PMD [138], BLAST [121], FxCop [155]

amongst many others. There are also approaches from literature which do not yet have

downloadable tools available.
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Demsky et al. focused on data structure inconsistency [48, 47]. Their approach

checks data structure consistency using formal specifications and inserts run-time mon-

itoring code to avoid inconsistent states. This technique provides workarounds rather

than actual patches since it does not modify source code directly.

Arcuri et al. introduced an automatic patch generation technique [12, 15, 14].

They used genetic programming. Their evaluation was limited to small programs such

as bubble sort and triangle classification.

2.5.2 Fix Content Prediction without Static Analysis

Brun et al [35] use machine learning to detect program properties which are

known to result from errors in code. They rank and classify these properties from user

written code. They then warn the user if many such properties are present.

Nguyen et al. [125] recommend bug fixes for a class or method if a fix was

applied to a code peer. If a relevant bug fix was applied to a similar class, it is then

recommended. Code peers are defined as objects which work in a similar manner when

using a graph based representation of object usages.

Kim et al.’s Bugmem provides fix suggestions using past revision history [90]

. Bug and fix pairs are extracted from history. If an impending code change is similar

to a previous bug, the prior buggy change and bug fix are displayed, and the developer

is warned. This is a useful tool especially for developers who are new to a code base.

They can be alerted of mistakes from project history. The technique’s limitation is the

sheer amount of possible completions for a bug fix.
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Weimer et al. use genetic learning to suggest a fix based on mutations of the

ASTs of the source hunks [160]. If there is a comprehensive set of unit tests, and a bug

was introduced which broke a unit test, this technique can repair that unit test using

genetic learning and mutating AST of the source hunks until all unit tests pass again.

The limitation of this technique is the assumption that unit tests are comprehensive

and the fact that the fix suggested may not be optimal or even a feasible one.

Holmes and Murphy proposed an approach to extract structural components

from example code and use them to assist coding when developers are working on similar

code [75].

The approach presented in this chapter is similar to BugMem and Holmes et

al. in making suggestions for a code change. The difference is that the recommended

tokens are continuously validated against actual bug fixes. This ensures that the fix

recommendations are likely to appear in actual fixes.

In the field of information retrieval, matrices are often used to represent doc-

ument similarity [136]. While fix content prediction is a different problem, representing

bugs and fixes as problem spaces and relating these spaces using a matrix has a high

level parallel. The matrix relating buggy changes to fixes modeled a linear relation-

ship in this chapter. Future work can extend the concept to capture more complex

relationships between buggy and fix changes.
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2.6 Human Feedback

While leveraging human feedback has been prevalent in many domains [41, 38]

it has not been used extensively for understanding software bugs.

Active learning was used to classify software behavior in [33]. Active learning

operates under the following assumptions.

• There are many unlabeled data points. The number of unlabeled data points

dominate the amount of labeled ones.

• It takes a considerable amount of time to manually label a data point (using

human effort).

More specifically, active learning [5] is a semi supervised model which queries

humans iteratively on small units of unlabeled data to formulate a classifier. The benefits

are a small subset of data can be used to construct a model, thus saving time and

human effort. In addition, the active learner requests experts to create labels on tough

to classify data points but not on easier ones. This is a more efficient use of human time

and also makes the task more interesting for humans. The downside to active learning

is the technique learns from a small amount of data points. If these points are invalid

or illogical, the accuracy of the active learner will drop significantly.

Bowring et al [33] mention that classifying software behavior is a process that

naturally contains many unlabeled data points and a huge cost to label each of the

points. They also indicate that active learning provided results comparable to supervised

learning in their experiments.
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Xiao et al [166] use active learning for modeling software behavior in com-

mercial games. Their work was tested on Electronic Arts’ FIFA soccer game. Using

active learning, the program changed its strategy when humans found easy ways to

score goals. The learned strategies are then displayed to the user in a comprehensible

format. Xiao et al. conclude that actively learning helped achieved good scalability for

complex game scenarios while providing useful visual models to humans. To a certain

extent, our goals in chapters 6 and 7 are similar, to create scalable models which aid

human understanding of bugs in code.

A recent paper by Lo et al. incorporates incremental human feedback to

continuously refine clone anomaly reports [106]. They first present the top few anomaly

reports from a list of reports. Users can either accept or reject each presented clone

anomaly report. After feedback on a few reports, the classifier is essentially rebuilt

and the rest of the reports are re-sorted. The feedback algorithm used is at a batch

level in contrast to the active learning technique of Xiao et al. When batch feedback is

performed, a classifier is rebuilt after feedback on a set of data points is delivered. In

active learning mode, the classifier is rebuilt or re-adjusted after feedback is delivered

on a single point.
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Chapter 3

Change Classification

Kim et al [87] introduced the change classification technique to help identify

bug inducing changes. The motivation as mentioned before is the desire to classify a

code change quickly and precisely as buggy or clean. Once a developer gets feedback that

certain recent code changes are buggy, they can re-review those changes and potentially

fix them on the spot. A workflow of this process is detailed in section 3.1.

Kim et al achieved an accuracy of 78% and a buggy F-measure of 60% when

tested on twelve open source projects [87]. The definition of these performance metrics

is described in chapter 4.

3.1 Workflow

The primary steps involved in performing change classification on a single

project are as follows:

Creating a Corpus:
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1. File level change deltas are extracted from the revision history of a project,

as stored in its SCM repository (described further in Section 3.2).

2. The bug fix changes for each file are identified by examining keywords in

SCM change log messages (Section 3.2).

3. The bug-introducing and clean changes at the file level are identified by

tracing backward in the revision history from bug fix changes (Section 3.2).

4. Features are extracted from all changes, both buggy and clean. Features

include all terms in the complete source code, the lines modified in each change (delta),

and change meta-data such as author and change time. Complexity metrics, if available,

are computed at this step. Details on these feature extraction techniques are presented

in Section 3.3. At the end of Step 4, a project-specific corpus has been created, a set of

labeled changes with a set of features associated with each change.

Classification:

5. A classification model is trained.

6. Once a classifier has been trained, it is ready to use. New code changes can

now be fed to the classifier, which determines whether a new change is more similar to

a buggy change or a clean change. Classification is performed at a code change level

using file level change deltas as input to the classifier.
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3.2 Finding Buggy and Clean Changes

The process of determining buggy and clean changes begins by using the

Kenyon infrastructure to extract change transactions from either a CVS or Subversion

software configuration management repository [25]. In Subversion, such transactions

are directly available. CVS, however, provides only versioning at the file level, and

does not record which files were committed together. To recover transactions from CVS

archives, we group the individual per-file changes using a sliding window approach [172]:

two subsequent changes by the same author and with the same log message are part of

one transaction if they are at most 200 seconds apart.

In order to find bug-introducing changes, bug fixes must first be identified by

mining change log messages. We use two approaches: searching for keywords in log

messages such as “Fixed”, “Bug” [116], or other keywords likely to appear in a bug fix,

and searching for references to bug reports like “#42233”. This allows us to identify

whether an entire code change transaction contains a bug fix. If it does, we then need to

identify the specific file delta change that introduced the bug. For the systems studied

in this chapter, we manually verified that the identified fix commits were, indeed, bug

fixes. For JCP, all bug fixes were identified using a source code to bug tracking system

hook. As a result, we did not have to rely on change log messages for JCP.

The bug-introducing change identification algorithm proposed by Śliwerski,

Zimmermann, and Zeller (SZZ algorithm) [149] is used in this chapter. After identifying

bug fixes, SZZ uses a diff tool to determine what changed in the bug-fixes. The diff tool
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Table 3.1: Example bug fix source code change

1.23: Bug-introducing 1.42: Fix

. . . . . .

15: if (foo==null) { 36: if (foo!=null) {

16: foo.bar(); 37: foo.bar();

. . . . . .

returns a list of regions that differ between the two files; each region is called a “hunk”.

It observes each hunk in the bug-fix and assumes that the deleted or modified source

code in each hunk is the location of a bug. Finally, SZZ tracks down the origins of the

deleted or modified source code in the hunks using the built-in annotation function of

SCM (Source Code Management) systems. The annotation computes, for each line in

the source code, the most recent revision where the line was changed, and the developer

who made the change. These revisions are identified as bug-introducing changes. In

the example in Table 3.1, revision 1.42 fixes a fault in line 36. This line was introduced

in revision 1.23 (when it was line 15). Thus revision 1.23 contains a bug-introducing

change. Specifically, revision 1.23 calls a method within foo. However, the if-block is

entered only if foo is null.
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3.3 Feature Extraction

To classify software changes using machine learning algorithms, a classification

model must be trained using features of buggy and clean changes. In this section, we

discuss techniques for extracting features from a software project’s change history.

A file change involves two source code revisions (an old revision and a new

revision) and a change delta that records the added code (added delta) and the deleted

code (deleted delta) between the two revisions. A file change has associated meta-

data, including the change log, author, and commit date. Every term in the source

code, change delta, and change log texts is used as a feature. This means that every

variable, method name, function name, keyword, comment word, and operator—that

is, everything in the source code separated by whitespace or a semicolon—is used as a

feature.

We gather eight features from change meta-data: author, commit hour (0, 1,

2, . . . , 23), commit day (Sunday, Monday, . . . , Saturday), cumulative change count,

cumulative bug count, length of change log, changed LOC (added delta LOC + deleted

delta LOC), and new revision source code LOC.

We compute a range of traditional complexity metrics of the source code by

using the Understand C/C++ and Java tools [76]. As a result, we extract 61 complexity

metrics for each file, including LOC, number of comment lines, cyclomatic complexity,

and max nesting. Since we have two source code files involved in each change (old and

new revision files), we can use complexity metric deltas as features. That is, we can
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compute a complexity metric for each file and take the difference; this difference can be

used as a feature.

Change log messages are similar to e-mail or news articles in that they are

human readable texts. To extract features from change log messages, we use the bag-of-

words (BOW) approach, which converts a stream of characters (the text) into a BOW

(index terms) [142].

We use all terms in the source code as features, including operators, numbers,

keywords, and comments. To generate features from source code, we use a modified

version of BOW, called BOW+, that extracts operators in addition to all terms extracted

by BOW, since we believe operators such as !=, ++, and && are important terms

in source code. We perform BOW+ extraction on added delta, deleted delta, and

new revision source code. This means that every variable, method name, function

name, programming language keyword, comment word, and operator in the source code

separated by whitespace or a semicolon is used as a feature.

We also convert the directory and filename into features since they encode

both module information and some behavioral semantics of the source code. For ex-

ample, the file (from the Columba project) “ReceiveOptionPanel.java” in the directory

“src/mail/core/org/columba/mail/gui/config/ account/” reveals that the file receives

some options using a panel interface and the directory name shows that the source code

is related to “account,” “configure,” and “graphical user interface.” Directory and file-

names often use camel case, concatenating words breaks with capitals. For example,

“ReceiveOptionPanel.java” combines “receive,” “option,” and “panel.” To extract such
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words correctly, we use a case change in a directory or a filename as a word separator.

We call this method BOW++.

The next chapter details performance metrics used in this dissertation before

proceeding to the Bug Prognosticator.
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Chapter 4

Performance Metrics

There are four possible outcomes while using a classifier:

• tp, true positive. The classifier correctly predicts a positive outcome.

• tn, true negative. The classifier correctly predicts a negative outcome.

• fp, false positive. The classifier incorrectly predicts a positive outcome.

• fn, false negative. The classifier incorrectly predicts a negative outcome.

In this dissertation, classifiers were used both for change classification and fix

prediction. Thus, it is useful to express performance metrics for both contexts. A

classifier’s prediction is typically binary. When change classification is performed, a

code change is classified as buggy or clean.

During change classification, a true positive is correctly predicting a code

change as buggy. A true negative is correctly predicting a clean change. A false positive

is when a clean change is predicted as buggy. In practice, this can be quite annoying
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for developers. Finally, a false negative is when a classifier predicts a code change to

be clean when it is actually buggy. In some fields such as medicine, false negatives are

dangerous. Diagnosing a cancer-prone patient as healthy can lead to ethical and legal

issues. However, in typical software engineering work, false positives are more trou-

blesome than false negatives. Developers are far less motivated to use a system which

points out fake bugs.

The meaning of these outcomes differs for fix suggestion. During this process,

a prediction is made on every element of a promising group of code tokens. Each token

is classified as present or absent in eventual bug fix. A true positive means that a

predicted fix code token is present in the actual bug fix. A true negative means that

a token not predicted to be in the fix was absent in the actual fix. A false positive

indicates that a token predicted to be in the fix is not in the actual fix. Finally, a false

negative indicates that a token not predicted to be in the fix is present in the actual fix.

With a good set of training data, it is possible to compute the number of true

positives ntp, true negatives ntn, false positives nfp, and false negatives nfn.

Accuracy =
ntp + ntn

ntp + ntn + nfp + nfn

Accuracy is the number of correct predictions over the total number of predictions.

Bug prediction typically deals with more clean changes than buggy changes. Using this

measure could yield a high value if clean changes are being better predicted than buggy

changes. During fix content prediction, accuracy does not reveal the disparity between

false positives and false negatives. Overall, the accuracy figure is often less relevant

38



than precision and recall.

Precision, P =
ntp

ntp + nfp

For buggy change prediction, it is the number of code changes which are actually buggy

when predicted to be buggy. For fix content prediction, this represents the number of

correct predictions over the total number of tokens predicted to be in the fix.

Recall, R =
ntp

ntp + nfn

Also known as the true positive rate, this represents the number of correct bug

classifications over the total number of changes that were actually bugs. For fix content

prediction, it is the likelihood that a token in an actual bug fix was predicted by the

classifier.

F −measure =
2 ∗ P ∗R
P +R

This is a composite measure of buggy change precision and recall, more pre-

cisely, it is the harmonic mean of precision and recall. Since precision can often be

improved at the expense of recall (and vice-versa), F-measure is a good measure of

the overall precision/recall performance of a classifier, since it incorporates both values.

For this reason, we emphasize this metric in our analysis of classifier performance in

chapters 5 and 6.
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An extreme example is when the Fix Suggester predicts just token for a code

change. Let’s assume this token was correctly predicted. This results in a precision of

100% and a recall of 0%. Predicting all tokens in a vocabulary leads to 100% recall at

huge cost to precision. Presenting the F-measure allows one to better understand the

precision recall trade-off. Accordingly, chapter 6 relays fix content prediction F-measure

throughout project history for all corpus projects. Several data/text mining papers have

compared performance on classifiers using F-measure including [7] and [98].

In chapter 5, accuracy is also reported in order to avoid returning artificially

higher F-measures when accuracy is low. For example, suppose there are 10 code

changes, 5 of which are buggy. If a classifier predicts all changes as buggy, the resulting

precision, recall, and F-measure are 50%, 100%, and 66.67% respectively. The accuracy

figure of 50% demonstrates less promise than the high F-measure figure suggests.

An ROC (originally, receiver operating characteristic, typically called as ROC)

curve is a two-dimensional graph where the true positive rate (i.e. recall, the number

of items correctly labeled as belonging to the class) is plotted on the Y axis against

the false positive rate (i.e. items incorrectly labeled as belonging to the class, or

nc→b/(nc→b+nc→c)) on the X axis. The area under an ROC curve, commonly ab-

breviated as ROC AUC, has an important statistical property. The ROC AUC of a

classifier is equivalent to the probability that the classifier will value a randomly chosen

positive instance higher than a randomly chosen negative instance [56]. These instances

map to code changes when relating to bug prediction. Tables 5.4 and 5.5 contain the

ROC AUC figures for each project.
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For the Fix Suggester, the precision, recall, F-measure metrics refer to the class

of code tokens which are predicted to be part of a fix. For the Bug Prognosticator, these

metrics refer to changes which are predicted to be buggy. One can also use precision and

recall to refer to changes which are predicted to be clean or to predict tokens which are

not part of a future fix. For the sake of simplicity, this dissertation refers to precision and

recall in the straightforward context of predicting a change to be buggy and predicting

fix tokens of a future bug fix.

One potential problem when computing these performance metrics is the choice

of which data is used to train and test the classifier. We consistently use the standard

technique of 10-fold cross-validation [5] when computing performance metrics in chapter

5 (for all figures and tables) with the exception of section 5.7.3 where more extensive

cross-fold validation was performed. This avoids the potential problem of over fitting to

a particular training and test set within a specific project. In 10-fold cross validation,

a data set (i.e., the project revisions) is divided into 10 parts (partitions) at random.

One partition is removed and is the target of classification, while the other 9 are used

to train the classifier. Classifier evaluation metrics, including buggy and clean accuracy,

precision, recall, F-measure, and ROC AUC are computed for each partition. After these

evaluations are completed for all 10 partitions, averages are obtained. The classifier

performance metrics reported in this chapter are these average figures.

In chapter 6, overfitting was avoided by ensuring that Fix suggestions were

always made for future data using past data as training. For example, the first 10% of

project history can be used as the train set and the remaining 90% as the test set. A
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lot more revisions were gathered for the Fix Suggester corpus. The presence of more

historical data allows one to validate sufficiently with large train and test sets.

The next chapter discusses the Bug Prognosticator.
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Chapter 5

Bug Prognosticator

5.1 Introduction

Imagine if you had a little imp, sitting on your shoulder, telling you whether

your latest code change has a bug. Imps, being mischievous by nature, would occa-

sionally get it wrong, telling you a clean change was buggy. This would be annoying.

However, say the imp was right 90% of the time. Would you still listen to him?

While real imps are in short supply, thankfully advanced machine learning

classifiers are readily available (and have plenty of impish qualities). Prior work by

the second and fourth authors (hereafter called Kim et al. [87]) and similar work by

Hata et al. [73] demonstrate that classifiers, when trained on historical software project

data, can be used to predict the existence of a bug in an individual file-level software

change. The classifier is first trained on information found in historical changes, and

once trained, can be used to classify a new impending change as being either buggy
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(predicted to have a bug) or clean (predicted to not have a bug).

The traditional model of programming involves many weeks, months, or even

years of development before code written by developers is actively tested by quality

assurance teams. Once quality assurance teams start testing code, it can additionally

take weeks before bugs are discovered. Thus, the turn around time from a bug inducing

change, it being discovered by quality assurance, and the bug being fixed can vary

between several weeks to several months. An agile development process might reduce

the turnaround time to a few weeks [1]. However, this is still a considerable turnaround

time for many bugs. Further shortening the time will undoubtedly benefit organizations.

Change classification is a technique which can alert the developer within minutes if the

code change he/she just committed is buggy. The change classification technique was

described fully in chapter 3.

We envision a future where software engineers have bug prediction capability

built into their development environment [107]. Instead of an imp on the shoulder,

software engineers will receive feedback from a classifier on whether a change they

committed is buggy or clean. During this process, a software engineer completes a

change to a source code file, submits the change to a software configuration management

(SCM) system, then receives a bug prediction back on that change. If the change is

predicted to be buggy, a software engineer could perform a range of actions to find the

latent bug, including writing more unit tests, performing a code inspection, or examining

similar changes made elsewhere in the project.

Due to the need for the classifier to have up-to-date training data, the predic-
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tion is performed by a bug prediction service located on a server machine [107]. Since

the service is used by many engineers, speed is of the essence when performing bug

predictions. Faster bug prediction means better scalability, since quick response times

permit a single machine to service many engineers.

A bug prediction service must also provide precise predictions. If engineers

are to trust a bug prediction service, it must provide very few “false alarms”, changes

that are predicted to be buggy but are really clean [24]. If too many clean changes are

falsely predicted to be buggy, developers will lose faith in the bug prediction system.

The prior change classification bug prediction approach used by Kim et al.

and analogous work by Hata et al. involve the extraction of “features” (in the machine

learning sense, which differ from software features) from the history of changes made to a

software project. They include everything separated by whitespace in the code that was

added or deleted in a change. Hence, all variables, comment words, operators, method

names, and programming language keywords are used as features to train the classifier.

Some object-oriented metrics are also used as part of the training set, together with

other features such as configuration management log messages and change metadata

(size of change, day of change, hour of change, etc.). This leads to a large number of

features: in the thousands and low tens of thousands. For project histories which span

a thousand revisions or more, this can stretch into hundreds of thousands of features.

Changelog features were included as a way to capture the intent behind a code change,

for example to scan for bug fixes. Metadata features were included on the assumption

that individual developers and code submission times are positively correlated with bugs
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[149]. Code complexity metrics were captured due to their effectiveness in previous

studies ([120, 46] amongst many others). Source keywords are captured en masse as

they contain detailed information for every code change.

The large feature set comes at a cost. Classifiers typically cannot handle such

a large feature set, in the presence of complex interactions and noise. For example, the

addition of certain features can reduce the accuracy, precision, and recall of a support

vector machine. Due to the value of a specific feature not being known a-priori, it is

necessary to start with a large feature set and gradually reduce features. Additionally,

the time required to perform classification increases with the number of features, rising

to several seconds per classification for tens of thousands of features, and minutes for

large project histories. This negatively affects the scalability of a bug prediction service.

A possible approach (from the machine learning literature) for handling large

feature sets is to perform a feature selection process to identify that subset of features

providing the best classification results. A reduced feature set improves the scalability

of the classifier, and can often produce substantial improvements in accuracy, precision,

and recall.

This chapter investigates multiple feature selection techniques to improve clas-

sifier performance. Classifier performance can be evaluated using a suitable metric. For

this chapter, classifier performance refers to buggy F-measure rates. The choice of this

measure was discussed in chapter 4. The feature selection techniques investigated in-

clude both filter and wrapper methods. The best technique is Significance Attribute

Evaluation (a filter method) in conjunction with the Näıve Bayes classifier. This tech-
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nique discards features with lowest significance until optimal classification performance

is reached (described in section 5.5).

Although many classification techniques could be employed, this chapter fo-

cuses on the use of Näıve Bayes and SVM. The reason is due to the strong perfor-

mance of the SVM and the Näıve Bayes classifier for text categorization and numerical

data [79, 100]. The J48 and JRIP classifiers were briefly tried, but due to inadequate

results, their mention is limited to section 5.9.

The primary contribution of this chapter is the empirical analysis of multiple

feature selection techniques to classify bugs in software code changes using file level

deltas. An important secondary contribution is the high average F-measure values for

predicting bugs in individual software changes.

5.2 Research Questions

This chapter explores the following research questions.

Question 1. Which variables lead to best bug prediction performance when us-

ing feature selection?

The three variables affecting bug prediction performance that are explored in this chap-

ter are: (1) type of classifier (Näıve Bayes, Support Vector Machine), (2) type of feature

selection used (3) and whether multiple instances of a feature are significant (count), or

whether only the existence of a feature is significant (binary). Results are reported in

Section 5.7.1.
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Results for question 1 are reported as averages across all projects in the corpus.

However, in practice it is useful to know the range of results across a set of projects.

This leads to the second question.

Question 2. Range of bug prediction performance using feature selection. How

do the best-performing SVM and Näıve Bayes classifiers perform across all projects

when using feature selection? (See Section 5.7.2)

The sensitivity of bug prediction results with number of features is explored

in the next question.

Question 3. Feature Sensitivity. What is the performance of change classifica-

tion at varying percentages of features? What is the F-measure of the best performing

classifier when using just 1% of all project features? (See Section 5.7.4)

Some types of features work better than others for discriminating between

buggy and clean changes, explored in the final research question.

Question 4. Best Performing Features. Which classes of features are the most

useful for performing bug predictions? (See Section 5.7.5)

A comparison of this chapter’s results with those found in related work (see

chapter 5.8) shows that change classification with feature selection, the Bug Prognosti-

cator, outperforms other existing classification-based bug prediction approaches. Fur-

thermore, when using the Näıve Bayes classifier, buggy precision averages 97% with a

recall of 70%, indicating the predictions are generally highly precise, thereby minimizing

the impact of false positives.

In the remainder of the chapter, we begin by presenting a modification to the
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Change classification approach of chapter 3. This includes a new process for feature se-

lection. Next, we describe the experimental context, including our data set, and specific

classifiers (Section 5.6). The stage is now set, and in subsequent sections we explore

the research questions described above (Sections 5.7.1 - 5.7.5). A brief investigation of

algorithm runtimes is next (Section 5.7.8). The chapter ends with a comparison with

related work (Section 5.8), threats to validity (Section 5.9), and the conclusion.

5.3 Feature Selection

Change classification is applied as per the steps in chapter 3. Most of the steps

until this point are the same as in Kim et al [87]. The following step, taking place of

old step 5 is the new contribution to change classification in this chapter.

Feature Selection:

Step 5. Perform a feature selection process that employs a combination of

wrapper and filter methods to compute a reduced set of features. The filter methods

used are Gain Ratio, Chi-Squared, Significance, and Relief-F feature rankers. The

wrapper methods are based on the Näıve Bayes and the SVM classifiers. For each

iteration of feature selection, classifier F-measure is optimized. As Relief-F is a slower

method, it is only invoked on the top 15% of features rather than 50%. Feature selection

is iteratively performed until one feature is left. At the end of Step 5, there is a reduced

feature set that performs optimally for the chosen classifier metric.

Table 5.1 summarizes features generated and used in this chapter. Feature
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groups which can be interpreted as binary or count are also indicated.

Section 5.7.1 explores binary and count interpretations for those feature groups.

Table 5.2 provides an overview of the projects examined in this chapter and

the duration of each project examined.

For each project we analyzed, (see Table 5.2) the number of meta-data (M)

and code complexity (C) features is 8 and 150 respectively. Source code (A, D, N),

change log (L), and directory/filename (F) features contribute thousands of features

per project, ranging from 6 to 40 thousand features. Source code features (A, D, N)

can take two forms: binary or count. For binary features, the feature only notes the

presence or absence of a particular keyword. For count features, the count of the number

of times a keyword appears is recorded. For example, if a variable maxParameters is

present anywhere in the project, a binary feature just records this variable as being

present, while a count feature would additionally record the number of times it appears

anywhere in the project’s history.

5.4 Feature Selection Techniques

The number of features gathered during the feature extraction phase is quite

large, ranging from 6,127 for Plone to 41,942 for JCP (Table 5.2). Such large feature sets

lead to longer training and prediction times, require large amounts of memory to perform

classification. A common solution to this problem is the process of feature selection, in
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Table 5.2: Summary of Projects Surveyed

Project Period Clean Changes Buggy Changes Features

Apache 1.3 10/1996 - 01/1997 566 134 17,575

Columba 05/2003 - 09/2003 1,270 530 17,411

Gaim 08/2000 - 03/2001 742 451 9,281

GForge 01/2003 - 03/2004 399 334 8,996

JEdit 08/2002 - 03/2003 626 377 13,879

Mozilla 08/2003 - 08/2004 395 169 13,648

Eclipse 10/2001 - 11/2001 592 67 16,192

Plone 07/2002 - 02/2003 457 112 6,127

PostgreSQL 11/1996 - 02/1997 853 273 23,247

Subversion 01/2002 - 03/2002 1,925 288 14,856

JCP 1 year 1,516 403 41,942

Total N/A 9,294 3,125 183,054
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which only the subset of features that are most useful for making classification decisions

are actually used.

This chapter empirically compares a selection of wrapper and filter methods

for bug prediction classification effectiveness. Filter methods use general characteristics

of the dataset to evaluate and rank features [70]. They are independent of learning

algorithms. Wrapper methods, on the other hand, evaluate features by using scores

provided by learning algorithms. All methods can be used with both count and binary

interpretations of keyword features.

The methods are further described below.

• Gain Ratio Attribute Evaluation - Gain Ratio is a myopic feature scoring algo-

rithm. A myopic feature scoring algorithm evaluates each feature individually

independent of the other features. Gain Ratio improves upon Information Gain

[5], a well known measure of the amount by which a given feature contributes

information to a classification decision. Information Gain for a feature in our

context is the amount of information the feature can provide about whether the

code change is buggy or clean. Ideally, features that provide a good split between

buggy and clean changes should be preserved. For example, if the presence of

a certain feature strongly indicates a bug, and its absence greatly decreases the

likelihood of a bug, that feature possesses strong Information Gain. On the other

hand, if a feature’s presence indicates a 50% likelihood of a bug, and its absence

also indicates a 50% likelihood of a bug, this feature has low Information Gain
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and is not useful in predicting the code change.

However, Information Gain places more importance on features that have a large

range of values. This can lead to problems with features such as the LOC of

a code change. Gain Ratio [5] plays the same role as Information Gain, but

instead provides a normalized measure of a feature’s contribution to a classification

decision [5]. Thus, Gain Ratio is less affected by features having a large range of

values. More details on how the entropy based measure is calculated for Gain Ratio

(including how a normalized measure of a feature’s contribution is computed), and

other inner workings can be found in an introductory data mining book, e.g. [5].

• Chi-Squared Attribute Evaluation - Chi-squared feature score is also a myopic

feature scoring algorithm. The worth of a feature is given by the value of the

Pearson chi-squared statistic [5] with respect to the classification decision. Based

on the presence of a feature value across all instances in the dataset, one can

compute expected and observed counts using Pearson’s chi-squared test. The

features with the highest disparity between expected and observed counts against

the class attribute are given higher scores.

• Significance Attribute Evaluation - With significance attribute scoring, high scores

are given to features where an inversion of the feature value (e.g., a programming

keyword not being present when it had previously been present) will very likely

cause an inversion of the classification decision (buggy to clean, or vice-versa) [4].

It too is a myopic feature scoring algorithm. The significance itself is computed
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as a two-way function of its association to the class decision. For each feature,

the attribute-to-class association along with the class-to-attribute association is

computed. A feature is quite significant if both of these associations are high for

a particular feature. More detail on the inner workings can be found in [4].

• Relief-F Attribute Selection - Relief-F in an extension to the Relief algorithm [93].

Relief samples data points (code changes in the context of this chapter) at random,

and computes two nearest neighbors: one neighbor which has the same class as the

instance (similar neighbor), and one neighbor which has a different class (differing

neighbor). For the context of this chapter, the 2 classes are buggy and clean. The

quality estimation for a feature f is updated based on the value of its similar and

differing neighbors. If for feature f, a code change and its similar neighbor have

differing values, the feature quality of f is decreased. If a code change and its

differing neighbor have different values for f, f’s feature quality is increased. This

process is repeated for all the sampled points. Relief-F is an algorithmic extension

to Relief [135]. One of the extensions is to search for the nearest k neighbors in

each class rather than just one neighbor. As Relief-F is a slower algorithm than

the other presented filter methods, it was used on the top 15% features returned

by the best performing filter method.

• Wrapper Methods - The wrapper methods leveraged the classifiers used in the

study. The SVM and the Näıve Bayes classifier were used as wrappers. The

features are ranked by their classifier computed score. The top feature scores are
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those features which are valued highly after the creation of a model driven by the

SVM or the Näıve Bayes classifier.

5.5 Feature Selection Process

Filter and wrapper methods are used in an iterative process of selecting in-

crementally smaller sets of features, as detailed in Algorithm 1. The process begins by

cutting the initial feature set in half, to reduce memory and processing requirements

for the remainder of the process. The process performs optimally when under 10% of

all features are present. The initial feature evaluations for filter methods are 10-fold

cross validated in order to avoid the possibility of over-fitting feature scores. As wrap-

per methods perform 10-fold cross validation during the training process, feature scores

from wrapper methods can directly be used. Note that we cannot stop the process

around the 10% mark and assume the performance is optimal. Performance may not

be a unimodal curve with a single maxima around the 10% mark, it is possible that

performance is even better at, say, the 5% mark.

In the iteration stage, each step finds those 50% of remaining features that

are least useful for classification using individual feature rank, and eliminates them

(if, instead, we were to reduce by one feature at a time, this step would be similar

to backward feature selection [104]). Using 50% of features at a time improves speed

without sacrificing much result quality.

So, for example, selF starts at 50% of all features, then is reduced to 25% of
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all features, then to 12.5%, and so on. At each step, change classification bug predic-

tion using selF is then performed over the entire revision history, using 10-fold cross

validation to reduce the possibility of over-fitting to the data.

This iteration terminates when only one of the original features is left. At

this point, there is a list of tuples: feature %, feature selection technique, classifier

performance. The final step involves a pass over this list to find the feature % at which

a specific classifier achieves its greatest performance. The metric used in this chapter for

classifier performance is the buggy F-measure (harmonic mean of precision and recall),

though one could use a different metric.

It should be noted that algorithm 1 is itself a wrapper method as it builds

an SVM or Näıve Bayes classifier at various points. When the number of features for

a project is large, the learning process can take a long time. This is still strongly

preferable to a straightforward use of backward feature selection, which removes one

feature every iteration. An analysis on the runtime of the feature selection process

and its components is performed in section 5.7.8. When working with extremely large

datasets, using algorithm 1 exclusively with filter methods will also significantly lower

its runtime.

5.6 Experimental Context

We gathered software revision history for Apache, Columba, Gaim, Gforge,

Jedit, Mozilla, Eclipse, Plone, PostgreSQL, Subversion, and a commercial project writ-
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ten in Java (JCP). These are all mature open source projects with the exception of JCP.

In this chapter, these projects are collectively called the corpus.

Using the project’s CVS (Concurrent Versioning System) or SVN (Subversion)

source code repositories, we collected revisions 500-1000 for each project, excepting

Jedit, Eclipse, and JCP. For Jedit and Eclipse, revisions 500-750 were collected. For

JCP, a year’s worth of changes were collected. We used the same revisions as Kim et

al. [87], since we wanted to be able to compare our results with theirs. We removed two

of the projects they surveyed from our analysis, Bugzilla and Scarab, as the bug tracking

systems for these projects did not distinguish between new features and bug fixes. Even

though our technique did well on those two projects, the value of bug prediction when

new features are also treated as bug fixes is arguably less meaningful.

5.7 Results

The following sections present results obtained when exploring the four re-

search questions. For the convenience of the reader, each result section repeats the

research question that will be addressed.

5.7.1 Classifier performance comparison

Research Question 1. Which variables lead to best bug prediction performance

when using feature selection?

The three main variables affecting bug prediction performance that are ex-

plored in this chapter are: (1) type of classifier (Näıve Bayes, Support Vector Machine),
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(2) type of feature selection used (3) and whether multiple instances of a particular

feature are significant (count), or whether only the existence of a feature is significant

(binary). For example, if a variable by the name of “maxParameters” is referenced four

times during a code change, a binary feature interpretation records this variable as 1

for that code change, while a count feature interpretation would record it as 4.

The permutations of variables 1, 2, and 3 are explored across all 11 projects

in the data set with the best performing feature selection technique for each classifier.

For SVMs, a linear kernel with optimized values for C is used. C is a parameter that

allows one to trade off training error and model complexity. A low C tolerates a higher

number of errors in training, while a large C allows fewer train errors but increases the

complexity of the model. [5] covers the SVM C parameter in more detail.

For each project, feature selection is performed, followed by computation of

per-project accuracy, buggy precision, buggy recall, and buggy F-measure. Once all

projects are complete, average values across all projects are computed. Results are

reported in Table 5.3. Average numbers may not provide enough information on the

variance. Every result in Table 5.3 reports the average value along with the standard

deviation. The results are presented in descending order of buggy F-measure.

Significance Attribute and Gain Ratio based feature selection performed best

on average across all projects in the corpus when keywords were interpreted as binary

features. McCallum et al. [111] confirm that feature selection performs very well on

sparse data used for text classification. Anagostopoulos et al. [7] report success with

Information Gain for sparse text classification. Our data set is also quite sparse and
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performs well using Gain Ratio, an improved version of Information Gain. A sparse

data set is one in which instances contain a majority of zeroes. The number of distinct

ones for most of the binary attributes analyzed are a small minority. The least sparse

binary features in the datasets have non zero values in the 10% - 15% range.

Significance attribute based feature selection narrowly won over Gain Ratio

in combination with the Näıve Bayes classifier. With the SVM classifier, Gain Ratio

feature selection worked best. Filter methods did better than wrapper methods. This

is due to the fact that classifier models with a lot of features are worse performing and

can drop the wrong features at an early cutting stage of the feature selection process

presented under algorithm 1. When a lot of features are present, the data contains

more outliers. The worse performance of Chi-Squared Attribute Evaluation can be

attributed to computing variances at the early stages of feature selection. Relief-F is a

nearest neighbor based method. Using nearest neighbor information in the presence of

noise can be detrimental [60]. However, as Relief-F was used on the top 15% of features

returned by the best filter method, it performed reasonably well.

It appears that simple filter based feature selection techniques such as Gain

Ratio and Significance Attribute Evaluation can work on the surveyed large feature

datasets. These techniques do not make strong assumptions on the data. When the

amount of features is reduced to a reasonable size, wrapper methods can produce a

model usable for bug prediction.

Overall, Näıve Bayes using binary interpretation of features performed better

than the best SVM technique. One explanation for these results is that change classi-
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fication is a type of optimized binary text classification, and several sources ([7, 111])

note that Näıve Bayes performs text classification well.

As a linear SVM was used, it is possible that using a non linear kernel can im-

prove SVM classifier performance. However, in preliminary work, optimizing the SVM

for one project by using a polynomial kernel often led to degradation of performance in

another project. In addition, using a non linear kernel, made the experimental runs sig-

nificantly slower. To permit a consistent comparison of results between SVM and Näıve

Bayes, it was important to use the same classifier settings for all projects, and hence

no per-project SVM classifier optimization was performed. Future work could include

optimizing SVMs on a per project basis for better performance. A major benefit of the

Näıve Bayes classifier is that such optimization is not needed.

The methodology section discussed the differences between binary and count

interpretation of keyword features. Count did not perform well within the corpus,

yielding poor results for SVM and Näıve Bayes classifiers. Count results are mostly

bundled at the bottom of Table 5.3. This is consistent with McCallum et al. [111], which

mentions that when the number of features is low, binary values can yield better results

than using count. Even when the corpus was tested without any feature selection in the

prior work by Kim et al., count performed worse than binary. This seems to imply that

regardless of the number of features, code changes are better captured by the presence

or absence of keywords. The bad performance of count can possibly be explained by

the difficulty in establishing the semantic meaning behind recurrence of keywords and

the added complexity it brings to the data. When using the count interpretation, the
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top results for both Näıve Bayes and the SVM were from Relief-F. This suggests that

using Relief-F after trimming out most features via a myopic filter method can yield

good performance.

The two best performing classifier combinations by buggy F-measure, Bayes

(binary interpretation with Significance Evaluation) and SVM (binary interpretation

with Gain Ratio), both yield an average precision of 90% and above. For the remainder

of the chapter, analysis focuses just on these two, to better understand their character-

istics. The remaining figures and tables in the chapter will use a binary interpretation

of keyword features.

5.7.2 Effect of feature selection

Question 2. Range of bug prediction performance using feature selection. How

do the best-performing SVM and Näıve Bayes classifiers perform across all projects

when using feature selection?

In the previous section, aggregate average performance of different classifiers

and optimization combinations was compared across all projects. In actual practice,

change classification would be trained and employed on a specific project. As a result,

it is useful to understand the range of performance achieved using change classification

with a reduced feature set. Tables 5.4 and 5.5 below report, for each project, overall

prediction accuracy, buggy and clean precision, recall, F-measure, and ROC area un-

der curve (AUC). Table 5.4 presents results for Näıve Bayes using F-measure feature

selection with binary features, while Table 5.5 presents results for SVM using feature
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selection with binary features.

Observing these two tables, eleven projects overall (8 with Näıve Bayes, 3 with

SVM) achieve a buggy precision of 1, indicating that all buggy predictions are correct

(no buggy false positives). While the buggy recall figures (ranging from 0.40 to 0.84)

indicate that not all bugs are predicted, still, on average, more than half of all project

bugs are successfully predicted.

Comparing buggy and clean F-measures for the two classifiers, Näıve Bayes

(binary) clearly outperforms SVM (binary) across all 11 projects when using the same

feature selection technique. The ROC AUC figures are also better for the Näıve Bayes

classifier than those of the SVM classifier across all projects. The ROC AUC of a

classifier is equivalent to the probability that the classifier will value a randomly chosen

positive instance higher than a randomly chosen negative instance. A higher ROC AUC

for the Näıve Bayes classifier better indicates that the classifier will still perform strongly

if the initial labeling of code changes as buggy/clean turned out to be incorrect. Thus,

the Näıve Bayes results are less sensitive to inaccuracies in the data sets. [5].

Figure 5.1 summarizes the relative performance of the two classifiers and com-

pares against the prior work of Kim et al [87]. Examining these figures, it is clear that

feature selection significantly improves F-measure of bug prediction using change clas-

sification. As precision can often be increased at the cost of recall and vice-versa, we

compared classifiers using buggy F-measure. Good F-measures indicate overall result

quality.

The practical benefit of our result can be demonstrated by the following. For
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a given fixed level of recall, say 70%, our method provides 97% precision, while Kim

et al. provide 52.5% precision. These numbers were calculated using buggy F-measure

numbers from 5.4 and [87]. The buggy precision value was extrapolated from the buggy

F-measure and the fixed recall figures. High precision with decent recall allows devel-

opers to use our solution with added confidence. This means that if a change is flagged

as buggy, the change is very likely to be actually be buggy.

Kim et al.’s results, shown in Figure 5.1, are taken from [87]. In all but the

following cases, this chapter used the same corpus.

• This chapter does not use Scarab and Bugzilla because those projects did not

distinguish buggy and new features.

• This chapter uses JCP, which was not in Kim et al.’s corpus.

Kim et al. did not perform feature selection and used substantially more

features for each project. Table 5.3 reveals the drastic reduction in the average number

of features per project when compared to the paper by Kim et al.

Additional benefits of the reduced feature set include better speeds of clas-

sification and scalability. As linear SVMs and Näıve Bayes classifiers work in linear

time for classification [80], removing 90% of features allows classifications to be done

about ten times faster. We have noted an order of magnitude improvement in code

change classification time. This helps promote interactive use of the system within an

Integrated Development Environment.
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5.7.3 Statistical Analysis of Results

While the above results appear compelling, it is necessary to further analyze

them to be sure that the results did not occur due to statistical anomalies. There are a

few possible sources of anomaly.

• The 10-fold validation is an averaging of the results for F-measure, accuracy, and

all of the stats presented. It is possible that the variance of the cross validation

folds is high.

• Statistical analysis is needed to confirm that a better performing classifier is indeed

better after taking into account cross validation variance.

To ease comparison of results against Kim et al. [87], the cross validation

random seed was set to the same value used by them. With the same datasets (except for

JCP) and the same cross validation random seed, but with far better buggy F-measure

and accuracy results, the improvement over no feature selection is straightforward to

demonstrate.

Showing that the Näıve Bayes results are better than the SVM results when

comparing tables 5.4, 5.5 is a more involved process that is outlined below. For the

steps below, the better and worse classifiers are denoted respectively as cb and cw.

1. Increase the cross validation cycle to 100 runs of 10-fold validation, with the seed

being varied each run.

2. For each run, note the metric of interest, buggy F-measure or accuracy. This
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process empirically generates a distribution for the metric of interest, dmcb using

the better classifier cb.

3. Repeat steps 1, 2 for the worse classifier cw, attaining dmcw.

4. Use a one-sided Kolmogorov Smirnov test to show that the population CDF of

distribution dmcb is larger than the CDF of dmcw at the 95% confidence level.

The seed is varied every run in order to change elements of the train and test

sets. Note that the seed for each run is the same for both cw and cb.

In step four above, one can consider using a two sample bootstrap test to show

that the points of dmcb come from a distribution with a higher mean than the points

of dmcw [51]. However, the variance within 10-fold validation is the reason for the

statistical analysis. The Birnbaum-Tingey one-sided contour analysis was used for the

one-sided Kolmogorov-Smirnov test. It takes variance into account and can indicate if

the CDF of one set of samples is larger than the CDF of the other set [29, 110]. It also

returns a p-value for the assertion. The 95% confidence level was used.

Incidentally, step 1 is also similar to bootstrapping but uses further runs of

cross validation to generate more data points. The goal is to ensure that the results of

average error estimation via k-fold validation are not curtailed due to variance. Many

more cross validation runs help generate an empirical distribution.

This test was performed on every dataset’s buggy F-measure and accuracy

to compare the performance of the Näıve Bayes classifier to the SVM. In most of the

tests, the Näıve Bayes dominated the SVM results in both accuracy and F-measure at
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p < 0.001. A notable exception is the accuracy metric for the Gforge project.

While tables 5.4 and 5.5 show that the Näıve Bayes classifier has a 1% higher

accuracy for Gforge, the empirical distribution for Gforge’s accuracy indicates that this

is true only at a p of 0.67, meaning that this is far from a statistically significant result.

The other projects and the F-measure results for Gforge demonstrate the dominance of

the Näıve Bayes results over the SVM.

In spite of the results of tables 5.3 and 5.4, it is not possible to confidently

state that a binary representation performs better than count for both the Näıve Bayes

and SVM classifiers without performing a statistical analysis. Näıve Bayes using binary

features dominates over the performance of Näıve Bayes with count features at a p <

0.001. The binary SVM’s dominance over the best performing count SVM with the

same feature selection technique (Gain Ratio) is also apparent, with a p < 0.001 on the

accuracy and buggy F-measure for most projects, but lacking statistical significance on

the buggy F-measure of Gaim.

5.7.4 Feature Sensitivity

Research Question 3. Feature Sensitivity. What is the performance of change

classification at varying percentages of features? What is the F-measure of the best

performing classifier when using just 1% of all project features?

Section 5.7.2 reported results from using the best feature set chosen using a

given optimization criteria, and showed that Näıve Bayes with Significance Attribute

feature selection performed best with 7.95% of the original feature set, and SVM with
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Figure 5.1: Classifier F-measure by Project

Gain Ratio feature selection performed best at 10.08%. This is a useful result, since the

reduced feature set decreases prediction time as compared to Kim et al. A buggy/clean

decision is based on about a tenth of the initial number of features. This raises the

question of how performance of change classification behaves with varying percentages

of features.

To explore this question, for each project we ran a modified version of the

feature selection process described in Algorithm 1, in which only 10% (instead of 50%)

of features are removed each iteration using Significance Attribute Evaluation. After

each feature selection step, buggy F-measure is computed using a Näıve Bayes classifier.

The graph of buggy F-measure versus features, figure 5.2, follows a similar
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pattern for all projects. As the number of features decrease, the curve shows a steady

increase in buggy F-measure. Some projects temporarily dip before an increase in F-

measure occurs. Performance can increase with fewer features due to noise reduction

but can also decrease with fewer features due to important features missing. The dip in

F-measure that typically reverts to higher F-measure can be explained by the presence

of correlated features which are removed in later iterations. While correlated features

are present at the early stages of feature selection, their influence is limited by the

presence of a large number of features. They have a more destructive effect towards the

middle before being removed.

Following the curve in the direction of fewer features, most projects then stay

at or near their maximum F-measure down to single digit percentages of features. This

is significant, since it suggests a small number of features might produce results that are

close to those obtained using more features. The reason can be attributed to Menzies et

al. [113] who state that a small number of features with different types of information

can sometimes capture more information than many features of the same type. In the

experiments of the current chapter there are many feature types. Fewer features bring

two benefits: a reduction in memory footprint and an increase in classification speed.

A notable exception is the Gforge project. When trimming by 50% percent

of features at a time, Gforge’s optimal F-measure point (at around 35%) was missed.

Feature selection is still useful for Gforge but the optimal point seems to be a bit higher

than for the other projects.

In practice, one will not know a-priori the best percentage of features to use

70



Figure 5.2: Buggy F-measure versus Features using Näıve Bayes

for bug prediction. Empirically from figure 5.2, a good starting point for bug predic-

tion is at 15% of the total number of features for a project. One can certainly locate

counterexamples including Gforge from this chapter. Nevertheless, 15% of features is

a reasonable practical recommendation if no additional information is available for a

project.

To better characterize performance at low numbers of features, accuracy, buggy

precision, and buggy recall are computed for all projects using just 1% of features

(selected using the Significance Attribute Evaluation process). Results are presented

in Table 5.6. When using 1% percent of overall features, it is still possible to achieve

high buggy precision, but at the cost of somewhat lower recall. Taking Apache as an
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example, using the F-measure optimal number of project features (6.25%, 1098 total)

achieves buggy precision of 0.99 and buggy recall of 0.63 (Table 5.4), while using 1% of

all features yields buggy precision of 1 and buggy recall of 0.46 (Table 5.6).

These results indicate that a small number of features have strong predictive

power for distinguishing between buggy and clean changes. An avenue of future work is

to explore the degree to which these features have a causal relationship with bugs. If a

strong causal relationship exists, it might be possible to use these features as input to a

static analysis of a software project. Static analysis violations spanning those keywords

can then be prioritized for human review.

A natural question that follows is the breakdown of the top features. A software

developer might ask which code attributes are the most effective predictors of bugs. The

next section deals with an analysis of the top 100 features of each project.

5.7.5 Breakdown of Top 100 Features

Research Question 4. Best Performing Features. Which classes of features are

the most useful for performing bug predictions?

Table 5.7 provides a breakdown by category of the 100 most prominent fea-

tures in each project. The top three types are purely keyword related. Adding further

occurrences of a keyword to a file has the highest chance of creating a bug, followed

by deleting a keyword, followed finally by introducing an entirely new keyword to a

file. Changelog features are the next most prominent set of features. These are fea-

tures based on the changelog comments for a particular code change. Finally, filename
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features are present within the top 100 for a few of the projects. These features are

generated from the actual names of files in a project.

It is somewhat surprising that complexity features do not make the top 100

feature list. The Apache project has 3 complexity features in the top 100 list. This

was not presented in Table 5.7 as Apache is the only project where complexity metrics

proved useful. Incidentally, the top individual feature for the Apache project is the

average length of the comment lines in a code change.

The absence of metadata features in the top 100 list is also surprising. Author

name, commit hour, and commit day do not seem to be significant in predicting bugs.

The commit hour and commit day were converted to binary form before classifier anal-

ysis. It is possible that encoding new features using a combination of commit hour and

day such as “Mornings”, “Evenings”, or “Weekday Nights” might provide more bug

prediction value. An example would be if the hour 22 is not a good predictor of buggy

code changes but hours 20-24 are jointly a strong predictor of buggy changes. In this

case, encoding “Nights” as hours 20-24 would yield a new feature that is more effective

at predicting buggy code changes.

Five of the eleven projects had BOW+ features among the top features includ-

ing Gforge, JCP, Plone, PSQL, and SVN. The Näıve Bayes optimized feature (Table

5.4) contains BOW+ features for those projects with the addition of Gaim and Mozilla,

a total of seven out of eleven projects. BOW+ features help add predictive value.
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5.7.6 Alternative to 10-fold Validation

The tables presented in this chapter report results after 10-fold cross validation

was performed. An issue with 10-fold cross validation is that code changes are treated

as time independent. When reporting 10-fold metrics, the performance numbers might

potentially be inflated as future code changes could have be used to predict past changes

during a fold of 10-fold validation. This happens because changes are assumed to not

exhibit strong time characteristics and the content of each validation fold is randomized.

It is also possible that learning from a randomized subset of future changes will not

significantly impact results.

This section introduces a temporal equivalent of 10-fold validation. The data

is split into 10 chunks. The first chunk has the first 10% of code changes, the next

chunk has the next 20% etc. To attain a result similar to 10-fold, the first chunk is used

as training, and some data from the second chunk is used as test. The amount of data

used from the second chunk is calibrated such that the train data from the first chunk

is constitutes 90% of the data, and the test data constitutes 10% of the data. This

is repeated for each chunk. The results will be comparable to the traditional 10-fold

validation, and can be thought of as ‘temporal 10-fold validation’. In order to balance

results, averaged Buggy F-measure results of temporal 2-fold validation thru temporal

10-fold validation are presented for each project in table 5.8. This table operates on the

same limited feature data sets as table 5.4.

While the results of table 5.8 are slightly worse on buggy F-measure (four
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percentage points less on average) compared to table 5.4, they are still quite competi-

tive. In fact, the results can easily be further improved if the feature selection process

optimized results for temporal validation as opposed to traditional 10-fold validation.

Nevertheless, table 5.8 demonstrates that the bug prognosticator solution can perform

well if one is strictly time sensitive.

5.7.7 Alternatives to using the Standard Buggy F-measure

Standard usage of F-measure implies equally valuing precision and recall. In

practice, developers often value precision more than recall. Table 5.9 shows the adjusted

F-measure if one values precision and recall differently. The F0.5 column refers to an

F-measure which values recall half as much as precision (or values precision twice as

much as recall). The F2 column refers to a metric that values recall twice as much as

precision. The general formula for weighted F-measure when one values recall β times

more then precision is

Weighted F −measure =
(1 + β)2 ∗ (precision ∗ recall)

β2 ∗ precision+ recall
[154]

The results of table 5.9 show that the optimized results perform better if one

values precision more than recall. This is usually the case in practice. Developers

normally want to review code changes only when there is strong likelihood of the code

change being buggy. They are unlikely to want to re-review a lot of code for the sake

of uncovering a small bug. This would practically be akin to intensively searching for a

needle in a haystack.
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In the event that one values recall more than precision, the result quality

degrades. However, this can be rectified during the feature selection process. Instead of

aiming for optimize for F-measure, one can can instead optimize classifiers for a weighted

F-measure that values recall more than precision to improve the results of table 5.9.

Thus, if one knows the financial cost of a false positive and the cost of a false

negative for a particular project, it is possible to figure out a weighted F-measure based

on those values. For example, if a false positive costs two dollars and a false negative

costs one dollar, one should aim to optimize on the F0.5 measure when using the Bug

Prognosticator. Interestingly, in such a scenario, it is possible to compare the utility of

the classifier to not using one. To do so, one computes the cost of bugs missed when

not using a classifier. To get a dollar figure, this is just the number of bugs missed

multiplied by two. When using the classifier, one computes the number of incorrectly

flagged buggy changes multiplied by one added by the number of missed bugs multiplied

by two, to get a comparable dollar figure. In practice, it is hard to gauge a simple flat

cost figure for false positives and negatives.

5.7.8 Algorithm Runtime Analysis

The classifiers used in the study consist of linear SVM and Näıve Bayes. The

theoretical training time for these classifiers has been analyzed in the research literature.

Traditionally, Näıve Bayes is faster to train than a linear SVM. The Näıve Bayes classifier

has a training runtime of O(s∗n) where s is the number of non-zero features and n is the

number of training instances. The SVM traditionally has a runtime of approximately
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O(s∗n2.1) [80]. There is recent work in reducing the runtime of linear SVMs to O(s∗n)

[80].

Optimizing the classifiers for F-measure slows both down. In our experiments,

training an F-measure optimized Näıve Bayes classifier was faster than doing so for

the SVM though the speeds were comparable when the number of features are low.

The current chapter uses Liblinear [55], one of the fastest implementations of a linear

SVM. If a slower SVM package were used, the performance gap would be far wider.

The change classification time for both classifiers is linear with the number of features

returned after the training.

An important issue is the speed of classification on the projects without any

feature selection. While the SVM or Näıve Bayes algorithms do not crash in the presence

of a lot of data, training times and memory requirements are considerable. Feature

selection allows one to reduce classification time. The time gain on classification is an

order of magnitude improvement, as less than 10% of features are typically needed for

improved classification performance. This allows individual code classifications to be

scalable.

A rough wall-clock analysis of the time required to classify a single code change

improved from a few seconds to a few hundred milliseconds when about 10% of features

are used (with a 2.26 Ghz Intel Core 2 Duo CPU and 8GB of RAM). Lowered RAM

requirements allow multiple trained classifiers to operate simultaneously without exceed-

ing the amount of physical RAM present in a change classification server. The combined

impact of reduced classifier memory footprint and reduced classification time will per-

77



mit a server-based classification service to support substantially more classifications per

user.

The top performing filter methods themselves are quite fast. Significance At-

tribute Evaluation and Gain Ratio also operate linearly with respect to the number of

training instances multiplied by the number of features. Rough wall-clock times show

4-5 seconds for the feature ranking process (with a 2.26 Ghz Intel Core 2 Duo CPU

and 8GB of RAM). It is only necessary to do this computation once when using these

techniques within the feature selection process, algorithm 1. To return the top 5% of

features, the entire process takes about 30 seconds.

5.8 Comparison to Related Work

Change classification and faulty program unit detection techniques both aim

to locate software defects, but differ in scope and resolution. While change classification

focuses on changed entities, faulty module detection techniques do not need a changed

entity. The pros of change classification include the following:

• Bug pinpointing at a low level of granularity, typically about 20 lines of code.

• Possibility of IDE integration, enabling a prediction immediately after code is

committed.

• Understandability of buggy code prediction from the perspective of a developer.

The cons include the following:
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• Excess of features to account for when including keywords.

• Failure to address defects not related to recent file changes.

• Inability to organize a set of modules by likelihood of being defective

Using decision trees and neural networks that employ object-oriented metrics

as features, Gyimothy et al. [69] predict fault classes of the Mozilla project across

several releases. Their buggy precision and recall are both about 70%, resulting in a

buggy F-measure of 70%. Our buggy precision for the Mozilla project is around 100%

(+30%) and recall is at 80% (+10%), resulting in a buggy F-measure of 89% (+19%).

In addition they predict faults at the class level of granularity (typically by file), while

our level of granularity is by code change.

Aversano et al. [18] achieve 59% buggy precision and recall using KNN (K

nearest neighbors) to locate faulty modules. Hata et al. [73] show that a technique used

for spam filtering of emails can be successfully used on software modules to classify

software as buggy or clean. However, they classify static code (such as the current con-

tents of a file), while our approach classifies file changes. They achieve 63.9% precision,

79.8% recall, and 71% buggy F-measure on the best data points of source code history

for 2 Eclipse plugins. We obtain buggy precision, recall, and F-measure figures of 100%

(+36.1%), 78% (-1.8%) and 87% (+16%), respectively, with our best performing tech-

nique on the Eclipse project (Table 5.4). Menzies et al. [113] achieve good results on

their best projects. However, their average precision is low, ranging from a minimum

of 2% and a median of 20% to a max of 70%. As mentioned in chapter 4, to avoid op-
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timizing on precision or recall, we present F-measure figures. A commonality we share

with the work of Menzies et al. is their use of Information Gain (quite similar to the

Gain Ratio that we use, as explained in section 5.4) to rank features. Both Menzies and

Hata focus on the file level of granularity.

Kim et al. show that using support vector machines on software revision

history information can provide an average bug prediction accuracy of 78%, a buggy

F-measure of 60%, and a precision and recall of 60% when tested on twelve open source

projects [87]. Our corresponding results are an accuracy of 92% (+14%), a buggy F-

measure of 81% (+21%), a precision of 97% (+37%), and a recall of 70% (+10%).

Elish and Elish [53] also used SVMs to predict buggy modules in software. Table 5.10

compares our results with that of earlier work. Hata, Aversano, and Menzies did not

report overall accuracy in their results and focused on precision and recall results.

Recently, D’Ambros et al. [46] provided an extensive comparison of various

bug prediction algorithms that operate at the file level using ROC AUC to compare

algorithms. Wrapper Subset Evaluation is used sequentially to trim attribute size.

They find that the top ROC AUC of 0.921 was achieved for the Eclipse project using

the prediction approach of Moser et al. [120]. As a comparison, the results achieved

using feature selection and change classification in the current chapter achieved an ROC

AUC for Eclipse of 0.94. While it’s not a significant difference, it does show that change

classification after feature selection can provide results comparable to those of Moser et

al. which are based on code metrics such as code churn, past bugs, refactorings, number

of authors, file age, etc. An advantage of our change classification approach over that
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of Moser et al. is that it operates at the granularity of code changes, which permits

developers to receive faster feedback on small regions of code. As well, since the top

features are keywords (Section 5.7.5), it is easier to explain to developers the reason for

a code change being diagnosed as buggy with a keyword diagnosis instead of providing

metrics. It is easier to understand a code change being buggy due to having certain

combinations of keywords instead of combination of source code metrics.

The next section moves on to work focusing on feature selection.

5.8.1 Feature Selection

Hall and Holmes [70] compare six different feature selection techniques when

using the Näıve Bayes and the C4.5 classifier [132]. Each dataset analyzed has about

one hundred features. The method and analysis based on iterative feature selection

used in this chapter is different from that of Hall and Holmes in that the present work

involves substantially more features, coming from a different type of corpus (features

coming from software projects). Many of the feature selection techniques used by Hall

and Holmes are used in this chapter.

Song et al. [150] propose a general defect prediction framework involving

a data preprocessor, feature selection, and learning algorithms. They also note that

small changes to data representation can have a major impact on the results of feature

selection and defect prediction. This chapter uses a different experimental setup due

to the large number of features. However, some elements of this chapter were adopted

from Song et al. including cross validation during the feature ranking process for filter
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methods. In addition, the Näıve Bayes classifier was used, and the J48 classifier was

attempted. The results for the latter are mentioned in Section 7.5. Their suggestion

of using a log pre-processor is hard to adopt for keyword changes and cannot be done

on binary interpretations of keyword features. Forward and backward feature selection

one attribute at a time is not a practical solution for large datasets.

Gao et al. [62] apply several feature selection algorithms to predict defective

software modules for a large legacy telecommunications software system. Seven filter-

based techniques and three subset selection search algorithms are employed. Removing

85% of software metric features does not adversely affect results, and in some cases

improved results. The current chapter uses keyword information as features instead of

product, process, and execution metrics. The current chapter also uses historical data.

Finally, 11 systems are examined instead of 4 when compared to that work. However

similar to that work, a variety of feature selection techniques is used as well on a far

larger set of attributes.

5.9 Threats to Validity

There are six major threats to the validity of this study.

Systems examined might not be representative of typical projects.

Eleven systems are examined, a quite high number compared to other work reported

in literature. In spite of this, it is still possible that we accidentally chose systems that

have better (or worse) than average bug classification accuracy. Since we intentionally
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chose systems that had some degree of linkage between change tracking systems and

change log text (to determine fix inducing changes), there is a project selection bias.

Systems are mostly open source.

The systems examined in this dissertation mostly all use an open source development

methodology with the exception of JCP, and hence might not be representative of typical

development contexts, potentially affecting external validity [165]. It is possible that

more deadline pressures, differing personnel turnover patterns, and varied development

processes used in commercial development could lead to different buggy change patterns.

Bug fix data is incomplete.

Even though we selected projects that have decent change logs, we still are only able to

extract a subset of the total number of bugs (typically only 40%- 60% of those reported

in the bug tracking system). Since the quality of change log comments varies across

projects, it is possible that the output of the classification algorithm will include false

positive and false negatives. Recent research by Bachmann et al. focusing on the Apache

system is starting to shed light on the size of this missing data [21]. The impact of this

data has been explored by Bird et al. who find that in the presence of missing data,

the Bug Cache prediction technique [89] is biased towards finding less severe bug types

[27].

Bug introducing data is incomplete.

The SZZ algorithm used to identify bug-introducing changes has limitations: it cannot

find bug introducing changes for bug fixes that only involve deletion of source code. It

also cannot identify bug-introducing changes caused by a change made to a file different
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from the one being analyzed. It is also possible to miss bug-introducing changes when

a file changes its name, since these are not tracked.

Selected classifiers might not be optimal.

We explored many other classifiers, and found that Näıve Bayes and SVM consistently

returned the best results. Other popular classifiers include decision trees (e.g. J48),

and JRIP. The average buggy F-measure for the projects surveyed in this chapter using

J48 and JRip using feature selection was 51% and 48% respectively. Though reasonable

results, they are not as strong as those for Näıve Bayes and SVM, the focus of this

chapter.

Feature Selection might remove features which become important

in the future.

Feature selection was employed in this chapter to remove features in order to optimize

performance and scalability. The feature selection techniques used ensured that less

important features were removed. Better performance did result from the reduction.

Nevertheless, it might turn out that in future revisions, previously removed features

become important and their absence might lower prediction quality.

5.10 Conclusion

This chapter has explored the use of feature selection techniques to predict

software bugs. An important pragmatic result is that feature selection can be performed

in increments of half of all remaining features, allowing it to proceed quickly. Between
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3.12% and 25% of the total feature set yielded optimal classification results. The reduced

feature set permits better and faster bug predictions.

The feature selection process presented in section 5.5 was empirically applied to

eleven software projects. The process is fast performing and can be applied to predicting

bugs on other projects. The most important results stemming from using the feature

selection process are found in Table 5.4, which present F-measure optimized results for

the Näıve Bayes classifier. A useful pragmatic result is that feature selection can be

performed in increments of half of all remaining features, allowing it to proceed quickly.

The average buggy is precision is quite high at 0.97, with a reasonable recall of 0.70.

This result outperforms similar classifier based bug prediction techniques and the results

pave the way for practical adoption of classifier based bug prediction.

From the perspective of a developer receiving bug predictions on their work,

these figures mean that if the classifier says a code change has a bug, it is almost always

right. The recall figures mean that on average 30% of all bugs will not be detected by the

bug predictor. This is likely a fundamental limitation of history-based bug prediction,

as there might be new types of bugs that have not yet been incorporated into the

training data. We believe this represents a reasonable tradeoff, since increasing recall

would come at the expense of more false bug predictions, not to mention a decrease in

the aggregate buggy F-measure figure. Such predictions can waste developer time and

reduce their confidence in the system.

In the future, when software developers have advanced bug prediction tech-

nology integrated into their software development environment, the use of the Bug
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Prognosticator, classifiers with feature selection, will permit fast, precise, and accurate

bug predictions. The age of bug-predicting imps will have arrived.

The next chapter introduces the Fix Suggester, a method to predict partial

content of a bug fix.
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Algorithm 1 Feature selection process for one project

1. Start with all features, F

2. For feature selection technique, f, in Gain Ratio, Chi-Squared, Significance Evalu-

ation, Relief-F, Wrapper method using SVM, Wrapper method using Näıve Bayes,

perform steps 3-6 below.

3. Compute feature Evaluations for using f over F , and select the top 50% of features

with the best performance, F/2

4. Selected features, selF = F/2

5. While |selF | ≥ 1 feature, perform steps (a)-(d)

(a) Compute and store buggy and clean precision, recall, accuracy, F-measure,

and ROC AUC using a machine learning classifier (e.g., Näıve Bayes or SVM),

using 10-fold cross validation. Record result in a tuple list.

(b) If f is a wrapper method, recompute feature scores over selF .

(c) Identify removeF , the 50% of features of selF with the lowest feature eval-

uation. These are the least useful features in this iteration.

(d) selF = selF − removeF

6. Determine the best F-measure result recorded in step 5.a. The percentage of

features that yields the best result is optimal for the given metric.
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Table 5.6: Näıve Bayes with 1% of all Features

Project Features Accuracy Buggy Buggy

Name Precision Recall

Apache 175 0.90 1.00 0.46

Columba 174 0.82 1.00 0.38

Eclipse 161 0.97 1.00 0.69

Gforge 89 0.46 0.46 1.00

JCP 419 0.92 1.00 0.61

Jedit 138 0.81 1.00 0.48

Mozilla 136 0.88 1.00 0.60

Plone 61 0.89 1.00 0.45

PSQL 232 0.84 1.00 0.34

SVN 148 0.93 1.00 0.43

Gaim 92 0.79 1.00 0.45

Average 165.91 0.84 0.95 0.54
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Table 5.7: Top 100 Bug Predicting Features

Project Added Deleted New Changelog Filename

Name Delta Delta Revision Source Features Features

Apache 49 43 0 0 5

Columba 26 18 50 4 2

Eclipse 34 40 26 0 0

Gaim 55 40 3 2 0

Gforge 23 30 40 6 1

JCP 39 25 36 0 0

Jedit 50 29 17 3 1

Mozilla 67 9 14 10 0

Plone 50 23 19 6 2

PSQL 44 34 22 0 0

SVN 48 42 1 9 0

Average 44.09 30.27 20.72 3.63 1
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Table 5.8: Temporal Validation of the data sets of Table 5.4

Project Features Percentage Buggy Traditional 10-fold

Name of Features F-measure Buggy F-measure

Apache 1098 6.25 0.63 0.77

Columba 1088 6.25 0.77 0.77

Eclipse 505 3.12 0.89 0.87

Gaim 1160 12.50 0.76 0.79

Gforge 2248 25 0.71 0.84

JCP 1310 3.12 0.82 0.89

Jedit 867 6.25 0.81 0.85

Mozilla 852 6.24 0.81 0.89

Plone 191 3.12 0.82 0.77

PSQL 2905 12.50 0.71 0.74

SVN 464 3.12 0.73 0.76

Average 1153.45 7.95 0.77 0.81
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Table 5.9: Alternative F-measures on the data sets of Table 5.4

Project Features Percentage Buggy Buggy Buggy Buggy Buggy

Name of Features Precision Recall F-measure F0.5 F2

Apache 1098 6.25 0.99 0.63 0.77 0.89 0.68

Columba 1088 6.25 1 0.62 0.77 0.89 0.67

Eclipse 505 3.12 1 0.78 0.87 0.95 0.82

Gaim 1160 12.50 1 0.66 0.79 0.91 0.71

Gforge 2248 25 0.84 0.84 0.84 0.84 0.84

JCP 1310 3.12 1 0.80 0.89 0.95 0.83

Jedit 867 6.25 1 0.73 0.85 0.93 0.77

Mozilla 852 6.24 1 0.80 0.89 0.95 0.83

Plone 191 3.12 1 0.62 0.77 0.89 0.67

PSQL 2905 12.50 1 0.59 0.74 0.88 0.64

SVN 464 3.12 0.87 0.68 0.76 0.82 0.71

Average 1153.45 7.95 0.97 0.70 0.81 0.90 0.74
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Chapter 6

Bug Fix Suggester

6.1 Introduction

Recent years have witnessed an increase of research interest in bug prediction

techniques. A promising type of bug prediction algorithm uses machine learning tech-

niques to predict whether a specific project change, as committed to a configuration

management system, is a buggy change. Examples of such techniques can be found

in the last chapter (and in [145]), in addition to [87, 18, 73] with the best techniques

achieving high precision (changes predicted as buggy are very likely to be buggy), and

reasonable recall (while not all buggy changes can be detected, a usefully large fraction

are).

A notable challenge with such bug prediction algorithms is the nature of their

output. They provide just a simple “buggy/clean” prediction for each change made to

a project. That is, they take a change that a developer has just committed and then
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simply state that the change is buggy, with no further feedback. We suspect that such

bug prediction output might be more acceptable to developers should they additionally

receive useful suggestions on how to go about fixing the predicted bug.

Ideally, a developer would like reasons for a code change being predicted as

buggy along with suggestions on how to fix a bug. This chapter proposes a methodology

which uses project history to statistically predict the content of future bug fixes to a

buggy code change. Predicting the full content of a bug fix in verbatim is an extremely

difficult problem. Instead, the proposed solution predicts and suggests unordered pro-

gramming language tokens which are likely to appear in a future bug fix. “Fix Content”

in this dissertation refers to the unordered keywords of a bug fix.

A developer can use fix suggestions when constructing a bug fix. Table 6.1

contains a buggy change and a part of its fix from the Argouml project. The bug, issue

#1104, was reported as “UMLTextField generates propertyset events when handling

one”. The propertyset() method on a UMLTextField calls update(). Update() in turn

sets a property, calling propertyset() again. An event storm results.

The fix suggestion approach in this chapter, called “Fix Suggester”, predicted

that the first code change is indeed buggy. It also predicted that the bug fix will in-

volve the programming tokens “!getText().equals(.)”, “getText().equals()”, and “UML-

TextProperty.setProperty(,,)”. The actual bug fix was rather lengthy, but did modify

“!getText().equals” as indicated in line 3 of the bug fix. A conditional added in a

different intermediate commit is reflected in line 2 of the bug fix.

The goal of fix suggestions is to provide programming language tokens which
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are likely to be present in an actual bug fix. Correctly predicting a fair amount of tokens

present in the actual bug fix indicates a high level of precision. On the other hand, even

if Fix Suggester’s predicted tokens are in the actual fix, it might have missed many more

tokens in the fix. It is desirable to have good coverage of tokens in the bug fix. This is

also known as the recall of Fix Suggester. Having a reasonable degree of precision and

recall will enable the system to be useful in practice.

We envisage a future where engineers have bug prediction and fix suggestions

built in their development environment. They will receive a prediction on an impending

code change followed by a list of potential bug fix suggestions. The presented approach

starts with code changes from project history. It uses the change classification algorithm

presented in chapter 3 on historical code changes. It is also possible to use a different

algorithm that operates at the code change level. The set of fix changes for a particular

buggy code change are used as input. Reasons for the bug are then given. These are

typically keywords involved in a code change. Regions of the code change likely to

be addressed by a bug fix are separately computed using the Bug Fix matrix, section

6.4.2.1. These are distinct from the reasons for a bug.

The fix prediction process learns from code changes extracted from a project’s

source control history. After sufficient training from history, a bug prediction classifier

(possibly using the Bug Prognosticator of chapter 5) and a Bug Fix Matrix are built.

The matrix contains a mapping of term frequencies from tokens in buggy changes to

tokens in fix changes. Fix Suggestions for a new buggy code change are then predicted

by jointly using the bug prediction classifier and the Fix Matrix.
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6.2 Research Questions

This chapter explores the following research questions (all questions are men-

tioned in section 1.6).

RQ5. What is the prediction accuracy of the Fix Suggester on varying points

of project history?

RQ5 addresses the accuracy and utility of the Fix Suggester in practice. Fix

content is predicted at varying points of project history using only the information

before that point in history. A classifier and a Bug Fix Matrix are used in combination

to train and predict fix tokens that occur. Section 6.4.2 details the methods used

for predicting bug fix content. Section 6.5.1 describes the results obtained from the

approach. Validation is performed by comparing predictions against tokens present in

actual bug fixes.

Once the fix suggestions are shown to be quite usable, the next logical question

is which features are most important when predicting fix content. This leads to the next

research question.

RQ6. What kind of features are ideal for generating Fix Suggestions?

The top hundred features input to the bug fix matrix by the classifier are

investigated in further detail Section 6.5.2.

The primary contributions of this chapter is a novel method to predict bug fix

content using inputs from a Bug Fix matrix and a classifier.

In the remainder of the chapter, we start by introducing the corpus of projects.
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Next, the methodology proposed in the chapter are covered in section 6.4. This section

starts by describing the overall workflow, additions to change classification, followed by

the fix suggestion approach.

The stage is now set to discuss results. The chapter starts by detailing answers

to the research questions described above. The chapter ends with a comparison to

related work (Section 6.6), threats to validity (Section 7.5), and concluding remarks.

6.3 Corpus

The corpus of projects used in this chapter consist of ArgoUML1, Eclipse JDT

Core2, jEdit3, and Apache Lucene4. Instead of dealing with a small sample of revisions,

we have chosen to go over long revision periods in each of these projects. The rationale

was that open source project with long histories better resemble industrial projects.

Table 6.2 contains details about the projects which were analyzed for this study.

6.4 Methodology

In this section, we distill the methodology used in the chapter, starting with

the code change classifier followed by the Fix Suggester. An overview of the devel-

oper interaction workflow is depicted in Figure 6.1, repeated from the first chapter for

convenience. The steps of the process are:

1http://argouml.tigris.org/
2http://www.eclipse.org/jdt/core/index.php
3http://www.jedit.org/
4http://lucene.apache.org/
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Figure 6.1: Developer Interaction Workflow

1. A code change is submitted.

2. A prediction is made on whether the entire change is buggy or clean using change

classification. Change classification is explained in chapter 3.

3. If the code change is predicted to be buggy, suggest a partial code fix. The pre-

dicted fix tokens are presented to the user. The Fix content prediction algorithm

is described in Section 6.4.2.

The next subsections describe these steps in detail.

6.4.1 Updates to Change Classification

Change classification is the algorithm used to label and predict code changes

as buggy or clean. The workings of this algorithm were described in chapter 3. Updates

to the algorithm are described in subsequent sections.
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6.4.1.1 Feature Extraction

For this chapter, certain AST features were added to the typical change clas-

sification algorithm. The change distilling algorithm proposed by Fluri et al. [58] was

used to extract the difference between abstract syntax trees (ASTs) built from the old

and new revisions for each commit. The change distilling algorithm categorizes changes

of ASTs into 48 types, according to the taxonomy defined by their previous work [57].

The number of occurrences for each change type was used as a feature.

A vocabulary of features was built from the first 500 revisions for each project

in the corpus. This vocabulary of features was used by buggy, fix, and neutral revisions.

Any new token brought in after revision 500 were not be used for bug prediction or Fix

Suggestions. This was done In order to ensure that the Fix Suggester may be used after

revision 500 without adding additional rows or columns to the Fix Matrix.

Each of these features can have largely differing sets of values. With differing

value ranges, it is a challenging task to use the data. The next section deals with

pre-processing features so that their value ranges are comparable.

6.4.1.2 Feature Pre-processing

This section explores the different kinds of features present in the data sets

and techniques to align data for efficient analysis of code changes.

Keyword features can potentially have a large range of values if one uses their

frequency of occurrence in code changes. There is a choice on how to interpret this

feature, one can either record the presence of a keyword feature or record the number
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of times the keyword appears in a code change.

For example, if a variable ‘maxParameters’ is present anywhere in the project,

a binary interpretation of this feature records this variable as being present or absent,

respectively 1 or 0 for a code change. A count interpretation would instead record the

number of times it appears for a particular code change. It was observed that large

values when using count tended to skew bug fix prediction. Additionally, employing a

binary interpretation allows one to simplify fix prediction to the presence of a keyword

in a code change, instead of the number of times a keyword will appear in a fix. Thus,

a binary interpretation was used for keyword features. This limits the range of values

to 0 and 1 for keyword features.

Numeric meta-data features such as LOC, cumulative change count, cumula-

tive bug count, length of a change log can have unpredictable ranges as well. These were

numerically scaled to the [0, 1] range using rudimentary numerical transformations [140].

AST features presented a different problem. While AST feature values do have

a large range of values, the range is much smaller than keyword features. These were

scaled to the [0, 1] range, similar to numeric meta-data features.

Categorical features such as author name, commit hour (0-23), and commit day

(1-7) were not numerically scaled. One cannot conclude that a code change committed

at 2pm is twice as important as a 1pm code change. These features were thus converted

to binary terms. For example if commit day is 2, commit day is 2 would be 1 and

commit day is 1, commit day is 3, .., commit day is 7 will all have zero values. The

benefit of using binary values for these features is removing any numerical bias during

102



analysis.

The data is now transformed to the [0, 1] range.

Once the features are extracted, processed, and training is performed on suffi-

cient revisions, a new code change can be classified as buggy or clean. The next section

introduces an approach to predict bug fix content for a predicted buggy change.

6.4.2 Fix Suggester

The goal of the Fix Suggester is to accurately predict code tokens of a fix to the

current buggy change. Predicting code tokens of a fix typically means predicting them

in the order that they would appear in a fix. However, predicting the code tokens of a fix

in verbatim is a very difficult problem. Fix Suggester, in this chapter, instead predicts

unordered programming language tokens of a future bug fix to a presented buggy code

change. In this chapter, contents of a bug fix are synonymous with the terms of a bug

fix. These are in turn synonymous with fix suggestions.

We denote a buggy revision as Bn. The corresponding fix to this revision Fn

occurs later in time.

The inputs to fix prediction are:

• A code change predicted to be buggy, revision Bn.

• All previous revisions annotated as buggy, a bug fix, or neither.

The output is a set of code tokens that are likely to be present in revision

Fn. A good fix prediction will have a high intersection among predicted tokens and the

103



actual tokens of Fn.

A function that links tokens of Bn to the tokens of Fn is desirable for predicting

fix content accurately. As most of the features extracted are keyword features, a link

between buggy and fix keywords is helpful. This work focuses on statistical approaches

to link buggy and fix tokens. The next section details the Bug Fix Matrix, an approach

that predicts bug fix content using the modified data.

6.4.2.1 Bug Fix Matrix

The Bug Fix matrix generates a set of term frequencies among past buggy and

fix tokens. It can then be used to predict tokens of a new buggy revision.

Suppose we had the following three keywords in a few code changes: File,

File.open(), File.close(). An example fix matrix is depicted in Table 6.3. The ma-

trix indicates that if there is a “File” keyword in the bug, among all the bug fixes,

“File.close()” was present once in the bug fix. The bug fix in 2 cases added/modified

“File” and in one case added a “File.close” when “File” is in the bug inducing change.

When “File.open()” was present in the bug, the bug fix added a “File.close()”. The

matrix reflects a bug when a developer opens a file but forgets to close it. The bug fix

calls File.close().

The Fix matrix generates a buggy to fix frequency map between all terms of

the vocabulary generated after section 6.4.1.2. Feature i represents a particular token

of the vocabulary. The left column of the matrix represents a token from a buggy code

change. Each row of the matrix indicates the number of times a token shows up on the
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Figure 6.2: Fix Suggester

bug fix given presence of a token in the buggy change. For example, Mi,j = 1 means

that for all buggy changes where token i was present, in only one of them token j was

present in the bug fix. The Fix matrix can mention how often the same token i occurred

in both the buggy change and the fix via Mi,i. In order to make sense out of the Fix

Matrix’s output, all term frequencies were scaled to the [0, 1] range. This avoids bias

against frequently occurring tokens and simplifies the fix prediction process.

The Bug Fix Matrix can be used to predict fix content for an incoming buggy

change. The Fix Suggester’s algorithm is illustrated in Figure 6.2 and detailed in Algo-

rithm 2.

In step 2, the fix matrix entries are adjusted using information from the code

change classifier. The SVM algorithm assigns a weight to each feature, with a higher

weight indicating that this feature is more useful than others when separating buggy

changes from clean changes. We assume that these same features are also more useful
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Algorithm 2 Fix Content Prediction Algorithm

1. A potentially buggy code change is given as input.

2. Create a fix matrix on the training set of bug inducing changes and their respective

fixes up to this point.

3. Calculate the probability of occurrence in the bug fix for every token in the vo-

cabulary.

4. For a new bug inducing code change, use the bug prediction classifier to return

weights for all incoming buggy tokens.

5. Multiply the term frequency of each predicted fix token by the classifier weight

for the source buggy feature if it is present.

6. Store all candidate fix tokens in imp set.

7. Sort the list of features in imp set by their conditional probability.

8. Return top T percent of high probability fix tokens from imp set.
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for predicting which keywords will appear in bug fixes as well, and hence we wish to

emphasize these keywords in the fix matrix. To accomplish this, we multiply each matrix

entry associated with a token by its SVM weight (as found in the SVM primal weight

vector w in the Liblinear implementation [12]).

For each buggy token entry on the left side of the matrix, all tokens in the

columns followed by their weight are returned to imp set. Once the conditional prob-

ability of being a fix token is computed for all tokens in the vocabulary, a good cutoff

is needed for the final step of extracting high probability fix tokens from imp set. The

top 10 percent of tokens with the highest conditional probabilities were returned. Fix

Suggester’s results are summarized in section 6.5.1.

An important practical issue with the Fix Matrix is the huge size it can encom-

pass. Even using data from the first 500 revisions, the fix matrix vocabulary can still

consist of about 50 thousand features. Having a 50 thousand by 50 thousand matrix

can contain 2.5 billion entries. In order to make the algorithm perform well for this

research, only the top 10% of tokens returned by the classifier were entered into the

Fix Matrix. This is a radical compromise to simplify the problem. In order to increase

recall at the cost of precision, it might be useful to include more features and investigate

scalable solutions for large matrices.

A lesser practical issue is before predicting a bug fix for a buggy code change,

one may not know a priori if a particular code change is buggy to start with. The SZZ

algorithm for example, traces backward from a bug fix to a buggy change. Not knowing

if a change is buggy until a bug fix is performed would mean that fix content prediction
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itself could be less useful in practice.

However, the benefit of using a classifier driven approach is one can leverage

previous work to make a buggy/clean prediction on a code change and return fix content

only on those code changes which the classifier thinks are buggy. The code change

classifier performed well on all corpus projects, when training on a portion of past project

history to predict if future code changes are buggy or clean. A separate classifier was

used for each project. It is possible to use an entirely different bug prediction algorithm

to predict if a code change is buggy before applying fix prediction.

The next section details results from the Fix Suggester.

6.5 Results

6.5.1 Fix Suggester

The Fix Suggester was evaluated by training on p% of project history and

testing on (100-p)% of project histories for p ranging from about 5 percent to 100

percent in 1 percent increments. As the vocabulary was generated using the first 500

revisions, no fix suggestions were presented when there are less than 500 revisions. In

order to grade the efficiency of the Fix Suggester independent of the classifier, actual

bug fixes from test data were compared to the Fix Suggester’s fix tokens. In other words,

performance of the Fix Suggester was graded on actual future bug fixes by passing in

the buggy change and all history prior to the buggy change. Prior history was cleansed

to ensure that no information from the future was visible. For example, if a historical

108



Figure 6.3: Fix Suggester F-measure on Project History

code change was labeled buggy due to a future fix, it is modified to reflect a neutral

change in order to ensure that predictions do not unfairly use data from the future.

The Fix Suggester was able to achieve an average precision of 46.9% and a

recall of 38.9% when averaging the evaluation points over all projects in the corpus.

Table 6.4 contains averaged results by project. Figure 6.3 depicts a historical graph

of predicted fix content F-measure versus ratio of project history. Unsurprisingly, fix

prediction F-measure improves with more historical project data. It is encouraging that
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after 500 revisions of project history, fix suggestions are usable for all projects except

Argouml.

Overall, predicting bug fix content is a hard problem. Being able to correctly

predict close to 47% of the actual content of bug fixes while covering almost 39% of all

bug fix tokens is not a bad start. As precision can be improved at the cost of recall, and

vice-versa, Figure 6.3 displays F-measure results instead. If a developer desires more

precision at the cost of recall, it is possible to go beyond 47%.

A logical question that follows is what are the top bug reasons input to the Fix

Matrix? A software developer might ask which code attributes are the most effective

predictors of bugs. The next section deals with an analysis of the top 100 bug inducing

features of each project.

6.5.2 Breakdown of Top 100 Bug Inducing Features

The top 100 most bug inducing features after training on 50% of project history

are summarized in Table 6.5. The top 3 types are purely keyword related. Adding a

certain keyword has the highest chance of creating a bug, followed by deletion, and

introducing entirely new keywords to a file. New keyword features refer to the addition

of keywords not seen before in a file. Meta-data and Changelog features are the next

most prominent set of features.

Given that a small number of meta-data and changelog features are present in

the projects to start with, a breakdown of the information conveyed by these features

for each project is presented in Table 6.6. The name of the author seems to be an
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important predictor in all projects except jEdit. For Argouml, 10pm is a bad time

to commit code as is committing on a Wednesday. For Eclipse JDT, Thursday is not

a good day for submitting code. The benefit of leveraging meta-data and changelog

features is the potential to use this information across projects.

It is somewhat surprising that AST features do not make the top 100 feature

list. While AST features were useful for fix prediction, they did not feature in the top

100.

6.5.3 Algorithm Time Analysis

The Fix matrix can be arbitrarily large as it encompasses a mapping from

every term to every other term in the vocabulary. The vocabulary is built after the first

500 revisions. In order to reduce runtime, only the top 1% of terms were updated and

returned. It took roughly 1 minute and 15 seconds to build the Fix Matrix (with a 2.26

Ghz Intel Core 2 Duo CPU and 8GB of RAM). After a code change is classified as bug

inducing, compute fix terms using the Fix Matrix takes about 5-10 seconds (with a 2.26

Ghz Intel Core 2 Duo CPU and 8GB of RAM).

While one can build a Fix Matrix for every revision to suggest fixes, it is also

possible to reuse a Fix Matrix for say the next 50 revisions. The performance of the

Fix Suggester did not significantly degrade when this was attempted.

111



6.6 Comparison to Related Work

Suggestions for Bug Fixes can come from different techniques. The most com-

mon is via static analysis. Related work not using static analysis is also discussed.

6.6.1 Static Analysis Techniques

Predicting bug fix content is a challenging problem especially when using sta-

tistical techniques. The static analysis community has spent considerable effort in ex-

ploiting language semantics to suggest fixes to bugs. Popular tools using static anal-

ysis for fix suggestions include Findbugs [19], PMD [138], BLAST [121], FxCop [155]

amongst many others. There are also approaches from literature which do not yet have

downloadable tools available.

The method suggested in this chapter approaches the problem statistically.

Comparing statistical analysis and static analysis was already mentioned in the first

chapter but is repeated here for convenience. The general benefits of a statistical driven

approach are:

• A focus on predicting fix suggestions which will actually be fixed in practice.

Wedyan et al. has analyzed static analysis suggestions and found that less than

3% of the suggestions are actually fixed in practice [156]. When interacting with

a few industrial settings, this number was found to be less than 0.5%. In contrast,

the statistical driven approach presented has an average precision greater than

46% implying that almost half of the tokens returned by the Fix Suggester will
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be used in future bug fixes.

• Project history is leveraged and automatically tailored for adaptive prediction of

bug fixes relevant to the future code changes of a particular project. Historical

trends can also be exploited. If a particular type of bug fix was popular at the onset

of a project but diminished in significance soon, statistical fix content prediction

will downplay the importance of that fix pattern.

There are advantages to static analysis when compared to statistical approaches

including:

• The suggested bug fix is an exact solution which can often be proved in its effec-

tiveness. In contrasts, a statistical approach is a probabilistic statement on the

likely contents of a bug fix.

• The suggested fix and explanations can be well understood by humans.

6.6.2 Fix Content Prediction without Static Analysis

Kim et al.’s Bugmem provides fix suggestions using past revision history [90].

Bug and fix pairs are extracted from history. If an impending code change is similar

to a previous bug, the prior buggy change and bug fix are displayed, and the developer

is warned. This is a useful tool especially for developers who are new to a code base.

They can be alerted of mistakes from project history.

Holmes and Murphy proposed an approach to extract structural components

from example code and use them to assist coding when developers are working on similar
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code [75].

6.7 Threats to Validity

Systems examined might not be representative of typical projects.

Four systems with large histories were examined. In spite of this, it is still possible that

we accidentally chose systems that have better (or worse) than average fix suggestion

prediction accuracy. Since we intentionally chose systems that had some degree of

linkage between change tracking systems and change log text (to determine fix inducing

changes), there is a project selection bias.

Systems are open source.

This threat is detailed in section 5.9. In contrast to chapter 5, all projects presented in

this chapter are open source. This enlarges the relevance of the threat.

Bug fix and Bug Introducing data are incomplete.

This threat is detailed in section 5.9.

Selected classifiers might not be optimal.

We explored many other classifiers, and found that the SVM consistently returned the

best results and has the most suitable infrastructure for the Fix Suggester. It is however

possible that another classifier can do a better job.
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6.8 Conclusion

This chapter introduces a novel statistical Fix Suggester approach that can

predict unordered tokens of a bug fix. While predicting contents of a fix is a tough

problem, the proposed approach is able to predict fix content with 46.9% precision and

38.9% recall on average. Section 6.5.1 shows that results are better than these average

figures for many points in a project’s history.

In the future, when software developers have advanced bug prediction tech-

nology integrated into their software development environment, the use of a Bug Fix

matrix with a code change classifier will permit improved bug fix content prediction.

With widespread use of integrated bug and fix content prediction, future software en-

gineers can increase overall project quality by catching errors and deploying fixes in

reduced time.

The next chapter raises the question of human feedback and how it can be

leveraged to further enhance the Bug Prognosticator.
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Table 6.2: Projects

Name Revision # of Total Buggy Fix Neutral

Period Commits Commits Commits Commits

ArgoUML 01/26/1998 -
06/13/2011

17452 1516 536 15400

Eclipse JDT Core 06/05/2001 -
04/20/2011

17904 6640 4232 7032

jEdit 09/02/2001 -
07/02/2010

6050 3141 2046 863

Apache Lucene 09/11/2001 -
06/23/2011

5966 1923 1464 2579

Average N/A 11843 3305 2069.5 6468.5

Average Percentage N/A 100 27.9 17.5 54.6

Table 6.3: Bug Fix Matrix Example

File File.open() File.close()

File 2 0 1
File.open() 0 0 1
File.close() 1 0 0

Table 6.4: Average Fix Content Prediction rate per project from Project History

Project Precision Recall F-measure
Argouml 39.67 21.80 27.80

Eclipse JDT 45.26 43.81 44.47
jEdit 50.85 44.62 46.89

Lucene 51.93 45.18 48.28
Average 46.93 38.85 41.86
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Table 6.5: Top 100 Bug Reasons

Project Added Deleted New Source Meta-data and

Name Keywords Keywords Keywords Changelog Features

Argouml 72 0 1 27

Eclipse JDT 25 54 18 3

jEdit 94 0 1 5

Lucene 71 0 1 28

Average 65.5 13.5 5.25 15.75

Table 6.6: Meta-data and Changelog Features in the Top 100

Project Features

Argouml Author name, Changelog Messages and length,

Commit hour - 10pm, Commit day - Wednesday,

Cumulative bug count

Eclipse JDT Author name, Commit day - Thursday, File path

jEdit Changelog messages

Lucene Author name, # of files copied, Commit hour - 9pm,

Changed LOC, Cumulative bug count, Changelog messages

118



Chapter 7

Human Feedback

7.1 Introduction

While the results of fix content prediction in chapter 6 are a good start in

the tough area of fix content prediction, one has not yet engaged a key resource, the

users of the system. Both Bug and Fix predictions are ultimately going to be acted on

or discarded by humans. Too many incorrect predictions will discourage humans from

using the system in the future. It is vital to both engage humans in the defect prediction

and the fix suggestion process.

In many other fields, combining the power of man and machine has yielded

much fruit. Many internet firms use human feedback in various capacities to improve

their product, e.g. Google, Yahoo, Microsoft, Ebay, and Amazon. In the game of chess,

even an average chess player when playing in combination with a computer can outplay

a computer playing alone. This has lead to increased popularity in advanced chess
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tournaments where centaurs, man and machine combined, compete against each other

for prizes [84]. Gary Kasparov, a former world chess champion, has drawn a parallel to

the Moravec’s paradox by showing that human and computer skills complement each

other in the game of chess. He stated that in positions where computers are good,

humans are weak, and vice versa [84]. Moravec’s paradox states that simple human

intuition is hard for machines to emulate [119]. However, complex human reasoning is

typically easier for machines to compute. Thus, humans and machines can complement

their skills effectively when solving problems.

Going back to defect prediction, the goal is to use human insights to guide

bug predictions and fixes, while leveraging statistical machine power to guide human

intuition. The next section deals with using human feedback to understand and improve

bug prediction results.

7.2 Human Feedback on Fix Prediction

Before attempting human feedback, one has to consider practical constraints.

Engineers have hectic day jobs and very little time to spare. When interacting with

engineers from the industry on fix content feedback, it was quite difficult to get time

and attention. Given that human time is expensive, they should only be engaged on

the most critical code changes. Finally, making the feedback intriguing to humans is

desirable. With the limited time available to provide feedback, lack of captivation can

rapidly make matters worse.
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Figure 7.1: Example SVM Classifier in 2D

Algorithm 3 incorporates human feedback on bug prediction taking into ac-

count the above constraints.

The first two steps are self explanatory. Step 3 computes the bug predictors’

confidence for each revision in the train set. Bug prediction at this step appears unre-

lated to fix content prediction. However, if the probability of a change being buggy is

represented as PBuggy, and the accuracy of fix content prediction is PrFix, the overall

probability of the fix content being valid is strongly influenced by PBuggy. An extreme

case is when PBuggy is zero, in which case predicting fix content for that change is

meaningless. While multiplying PrFix by PBuggy to indicate the overall accuracy of fix

content prediction does not necessarily make logical sense, PBuggy cannot be ignored.

One of the constraints with human feedback is that humans should be engaged

for as short a duration as possible. While merely changing the label of a revision sounds

simplistic, it is a low hanging fruit as the results in section 7.4 show.

For an SVM based bug prediction classifier, a hyperplane separating bugs
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Algorithm 3 Human Feedback on Bug Prediction

1. A set amount of revisions from project history, e.g. p% is used as the train set.

2. The rest of project history is used as the test set, e.g. (100 - p)%.

3. Compute the prediction confidence score for each revision of the train set. The

confidence score is how confident the SVM classifier is on correctly predicting a

change as bug inducing or clean.

4. Mark the least confident incorrectly classified revision from the train set as a

candidate for human feedback.

5. Consult with human on whether the candidate revision is buggy, a bug fix, neither,

or both.

6. Apply algorithm 3 on the new data set.

7. Compare the precision and recall of fix prediction with and without human feed-

back.

8. Return a score to the human that is function of the delta in both precision and

recall.

9. Return to step 3.
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from clean changes is built. Figure 7.1 depicts a sample hyperplane in two dimensions.

Typically an SVM is more confident of points further away from the hyperplane as

opposed to those that are close. Points that are close to the boundary might easily be

misclassified if the current hyperplane needs to be adjusted. In other words, points close

to the hyperplane are most sensitive to a small change in the classifier. In figure 7.1,

the hyperplane separates triangles from circles. The white circle and triangle are out

of place. Both of those points are incorrectly classified and are in the wrong side of the

separating hyperplane. This hyperplane is a line in 2D. If the triangles and circles are

buggy and clean revisions, the top candidate for feedback would the revision represented

by the white circle. This revision is picked over the white triangle as it is closer to the

separating hyperplane.

Step 3 thus queries the point which the SVM is least confident on, and is in-

correct. A question might arise on why the more confident incorrect revisions are not

picked at this stage. The reason is to correct revisions one at a time, while improv-

ing classifier confidence gradually, starting from the least confident and proceeding to

regions of greater confidence if the human is willing.

Step 4 proceeds to present this point to humans for feedback. This is a greedy

algorithm as the model is recomputed based on a single point of feedback. Tong and

Koller [153] show that myopic solutions are commonly used and work well in text classifi-

cation. In order to relate this problem to the active learning context, every buggy/clean

label that was derived from SZZ is treated as unlabeled as these points are machine

labeled but not commented on by a human. In step four, the point most likely to have
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incorrectly derived label is presented to humans for review.

Non greedy algorithms were also tested in this step and found to perform worse.

An example of a non greedy algorithm is to present the N least confident revisions for

human feedback. Empirically, it was found that presenting five or more least confident

revisions to the user for human feedback was slower than presenting revisions one at a

time.

The reason for this can be explained with an illustrative example. Say there

are three revisions, R1, R2, and R3. R1 and R2 are buggy, and R3 is clean. If the

classifier is given initial input that all revisions are clean, and it’s confident that not all

revisions should be clean, it can ask for human feedback. A human can give feedback

one revision at a time or multiple revisions at a time. If the classifier deems that it is

least confident on R1, it can request feedback on it. Once a human labels that revision

as buggy, the classifier might be able to deduce that revision 2 is buggy as well, and

complete the cycle of feedback. In contrast, if the classifier returns the top two revisions

that it is less confident about, i.e. revision 1 and 2, a human would have to waste time

evaluating revision 2. The greedy algorithm gathers and applies feedback one revision

at a time. It has the benefit that less overall feedback has to be ultimately delivered by

a human.

Humans have a choice to label the presented revision as buggy, a bug fix, both,

or neither. Several code changes are both a buggy and a fix when using SZZ. Human

participants were allowed to look at the fix of the bug and the code change that it fixed

in the case of a bug fix. Human participants were only allowed to look at revisions in
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the train set. It is important to keep the test set totally hidden to get unbiased results.

The correct judgment of a code change was left entirely up to human discretion.

A score is returned to the human after every feedback. This serves a dual

purpose, to track the delta over a purely machine driven fix prediction algorithm and

to provide more motivation for humans to deliver feedback. The computed score is a

function of the precision and recall improved over the machine driven fix prediction

approach of chapter 6. The exact formula is

score = M ∗ (PrFPH − PrFPM +RFPH −RFPM )

where PrFPH is the precision of fix prediction when given human feedback and PrFPM

is the precision of fix prediction for the machine driven approach. Correspondingly,

RFPH and RFPM are the recall of the fix prediction process when driven by humans

and machines respectively. M is a multiplication scaling factor which transforms the

score into larger numbers for better human appreciation. M was set to 10 in the human

feedback experiments.

The next section details sample questions shown to users during the human

feedback process, this is followed by a user study on the practical utility of the Fix

Suggester.

7.2.1 Sample Questions Posed during the Human Feedback Process

A sample of actual questions with code hyperlinks are reproduced below. Click-

ing on a file will allow the user to inspect file contents.
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Commit Log

Update for 0.20. git-svn-id:

http://argouml.tigris.org/svn/argouml/trunk@9675

a161b567-7d1e-0410-9ef9-912c70fedb3f

Repository Snapshot

Type File

M documentation/manual/argomanual.xml

M www/features.html

Do you think:

This is a Bug Fix? Yes/No

This is buggy? Yes/No

This commit is classified as buggy

Bug Fixing Commits

43000

Commit Log

Increased maximum heap git-svn-id:

https://jedit.svn.sourceforge.net/svnroot/jedit/jEdit/trunk@7626

6b1eeb88-9816-0410-afa2-b43733a0f04e

Repository Snapshot

Type File

M build.xml

M package-files/linux/jedit

M package-files/os2/jedit.cmd

M package-files/windows/jedit.bat

M package-files/windows/win32installer.iss

Do you think:

This is a Bug Fix? Yes/No

This is buggy? Yes/No

This commit is classified as buggy
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Bug Fixing Commits

14569

14327

Commit Log

fixed compile error git-svn-id:

https://jedit.svn.sourceforge.net/svnroot/jedit/jEdit/trunk@4467

6b1eeb88-9816-0410-afa2-b43733a0f04e

Repository Snapshot

Type File

M doc/CHANGES.txt

M doc/TODO.txt

M modes/prolog.xml

M modes/python.xml

M org/gjt/sp/jedit/Buffer.java

M org/gjt/sp/jedit/EBComponent.java

M org/gjt/sp/jedit/EBMessage.java

M org/gjt/sp/jedit/EBPlugin.java

M org/gjt/sp/jedit/EditAction.java

M org/gjt/sp/jedit/EditBus.java

Previous 1 2 3 4 Next

Do you think:

This is a Bug Fix? Yes/No

This is buggy? Yes/No

Bug Introducing Commits

12666

12633

12771

12463

12667

12475

12602

12822

12712

12806

12366
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12344

12861

12190

12229

12328

12592

12587

12851

12422

12818

12862

12626

12362

12241

12566

12423

12456

12385

12231

This commit is classified as buggy

Bug Fixing Commits

14414

7.3 Fix Suggester User Study

The results of fix content prediction in chapter 6 seem quite promising. It

would seem that there is not much to ask beyond a good level of precision and re-

call. In practice, however, having a precision and recall of less than 50% each might

confuse humans when working on a bug fix. In addition, the utility of the proposed

keywords should be better understood. The final benefit of a user study focusing on

industrial software engineers is evaluating the suitability of corporate adoption of the
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Fix Suggester. The next section recaps the relevant research questions for convenience.

7.3.1 Research Questions

RQ8 When engineers inspect the bug fix change log, do they find that the Fix Sug-

gester’s keywords are relevant to the actual bug fix?

RQ9 Does reviewing the Fix Suggester’s keywords influence the investigation for the

bug fix?

The next section explains the user study process.

7.3.2 User Study Procedure

Fix Suggester results were shown to 19 users for both RQ8 and RQ9. To

make analysis convenient, the respondents were asked to complete an online survey

showing partial code diff data. SurveyMonkey was used for online delivery of surveys

The majority of participants were industrial software engineers. All participants had

some knowledge of Java.

In the case of RQ8, users were asked to indicate if the suggested keywords

intersected with the actual bug fix using a Likert scale of 3 options. Participants were

shown the Bug Fix change log, parts of the actual bug fix, and the Fix Suggester’s

keywords.

Not Helpful The predicted keywords did not intersect at all with the actual bug fix.
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Somewhat Helpful The predicted keywords partially intersect with the actual bug

fix.

Helpful The predicted keywords intersect with key portions of the bug fix.

A response of “Not helpful” indicates that despite statistical intersections, the

predicted keywords did not actually reflect in the presented extracts of the bug fix.

Somewhat helpful connotes clear intersection but not with key portions of the bug fix.

Helpful depicts that an intersection exists between the suggestions and key regions of

the bug fix.

For RQ9, subjects were shown the bug fix change log comment. They were also

shown parts of the actual buggy change. They were asked to form a set of candidate

keywords for the bug fix. After viewing the suggested keywords, they were asked if

their set of candidate keywords was altered after viewing the fix suggestions. This

experiment replicates potential industrial usage of the Fix Suggester. During a typical

business day, one can envisage that the content of the bug fix is not yet known, and the

Fix Suggester’s suggestions have to be evaluated on face value.

The bug fix change log comments were shown to the users in order to guide

their search for the fix. It is hard to isolate potential bug fixes on large set of code

changes without any direction. In practice, a bug report, or a customer experience with

a bug can be substitutes for the change log comment of the actual bug fix.

The feedback options for RQ9 include

Not Helpful My candidate keyword list was unaffected
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Somewhat Helpful My candidate keyword list changed somewhat due to the fix sug-

gestions

Helpful My candidate keyword list was influenced by the fix suggestions

The option “Not helpful” in this case means an unaltered candidate keyword

list. Somewhat helpful indicates that the candidate keyword list had a moderate change.

Helpful means the candidate code list was strongly influenced by the suggestions. Users

provided feedback on randomly selected code changes on every project for which fix

suggestions were computed.

The next section displays some actual user study questions shown to users.

This is followed by details of the improvement gained by human feedback on fix predic-

tion. Finally, the results of the qualitative study on the Fix Suggester are presented.

7.3.3 User Study Questions

Actual user study text follows, starting with preparatory instructions followed

by each question.

The instructions should be self-explanatory. The questions ask you to evaluate the Fix

Suggester’s keywords. In a industrial engineering environment, I want to assess the

utility of having access to the Fix Suggester’s keywords right in front of you before you

work on a bug fix.

Using information for code change history, the Fix Suggester predicts keywords
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and other properties of a fix.

Explanation for keywords

• new source * means that the * keyword is predicted as going to be added to a

new file for the bug fix.

• added delta * means that * will be added to an existing file.

• deleted delete * means that * will be deleted from an existing file.

1. Looking at the bug fix changelog, can you state if the predicted keywords

are relevant to the actual bug fix?

Predicted keywords:

new_source__i, new_source__id, new_source__if,

new_source__iff, new_source__lock, new_source__makelock,

new_source__implements, new_source__in,

new_source__index, new_source__indexreader, new_source__indirect

Fix Commit log: Decouple locking from Directory:

LUCENE-635 git-svn-id: http://svn.apache.org/repos/asf/lucene/java/

trunk@437897 13f79535-47bb-0310-9956-ffa450edef68

Sample Actual Bug Fix Text:

The plusses refer to added code and the minuses refer to removed code.

a/.. refers to the old file

and b/src.. refers to the new file.

The diff format is similar to a git diff.

--- a/src/java/org/apache/lucene/store/Directory.java

+++ b/src/java/org/apache/lucene/store/Directory.java

@@ -29,9 +29,18 @@ import java.io.IOException;

*

implementation of an index as a single file;

*
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*

+ * Directory locking is implemented by an instance of {@link

+ * LockFactory}, and can be changed for each Directory

+ * instance using {@link #setLockFactory}.

+ *

* @author Doug Cutting

*/

public abstract class Directory {

+

+ /** Holds the LockFactory instance (implements locking for

+ * this Directory instance). */

+ protected LockFactory lockFactory;

+

/** Returns an array of strings, one for each file

in the directory. */

public abstract String[] list()

throws IOException;

@@ -75,9 +84,43 @@ public abstract class Directory {

/** Construct a {@link Lock}.

* @param name the name of the lock file

*/

- public abstract Lock makeLock(String name);

+ public Lock makeLock(String name) {

+ return lockFactory.makeLock(name);

+ }

/** Closes the store. */

public abstract void close()

throws IOException;

+

+ /**

+ * Set the LockFactory that this Directory instance should

+ * use for its locking implementation. Each * instance of

+ * LockFactory should only be used for one directory (ie,

+ * do not share a single instance across multiple

+ * Directories).

+ *

+ * @param lockFactory instance of {@link LockFactory}.

+ */

+ public void setLockFactory(LockFactory lockFactory) {

+ this.lockFactory = lockFactory;

+ lockFactory.setLockPrefix(this.getLockID());

+ }
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+ /**

+ * Get the LockFactory that this Directory instance is using for its

+ locking implementation.

+ */

+ public LockFactory getLockFactory() {

+ return this.lockFactory;

+ }

+

+ /**

+ * Return a string identifier that uniquely differentiates

+ * this Directory instance from other Directory instances.

+ * This ID should be the same if two Directory instances

+ * (even in different JVMs and/or on different machines)

+ * are considered "the same index". This is how locking

+ * "scopes" to the right index.

+ */

+ public String getLockID() {

+ return this.toString();

+ }

}

Not Helpful The predicted keywords did not intersect with the actual bug fix at all

Somewhat Helpful The predicted keywords partially intersect with the actual bug

fix

Helpful The predicted keywords intersect with the key portions of the bug fix

Comments?

2. Looking at the bug fix changelog, can you state if the predicted keywords

are relevant to the actual bug fix?

Predicted keywords:

new_source__i, new_source__id, new_source__if,
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new_source__iff, new_source__implements, new_source__in,

new_source__cachingqueue, new_source__index, new_source__indexed,

new_source__indexreader, new_source__indexwriter

Fix Commit log: "LUCENE-1223: fix lazy field loading to not allow string

field to be loaded as binary, nor vice/versa git-svn-id:

http://svn.apache.org/repos/asf/lucene/java/trunk@636568

13f79535-47bb-0310-9956-ffa450edef68"

Sample modification from fix:

--- a/src/java/org/apache/lucene/index/FieldsReader.java

+++ b/src/java/org/apache/lucene/index/FieldsReader.java

@@ -235,15 +235,15 @@ final class FieldsReader {

}

private void addFieldLazy(Document doc, FieldInfo fi, boolean binary,

boolean compressed, boolean tokenize) throws IOException {

- if (binary == true) {

+ if (binary) {

int toRead = fieldsStream.readVInt();

long pointer = fieldsStream.getFilePointer();

if (compressed) {

//was: doc.add(new Fieldable(fi.name, uncompress(b),

// Fieldable.Store.COMPRESS));

- doc.add(new LazyField(fi.name, Field.Store.COMPRESS, toRead,

- pointer));

+ doc.add(new LazyField(fi.name, Field.Store.COMPRESS, toRead,

+ pointer, binary));

} else {

//was: doc.add(new Fieldable(fi.name, b, Fieldable.Store.YES));

- doc.add(new LazyField(fi.name, Field.Store.YES, toRead,

- pointer));

+ doc.add(new LazyField(fi.name, Field.Store.YES, toRead,

+ pointer, binary));

}

//Need to move the pointer ahead by toRead positions

fieldsStream.seek(pointer + toRead);

@@ -257,7 +257,7 @@ final class FieldsReader {

store = Field.Store.COMPRESS;

int toRead = fieldsStream.readVInt();

long pointer = fieldsStream.getFilePointer();

- f = new LazyField(fi.name, store, toRead, pointer);

+ f = new LazyField(fi.name, store, toRead, pointer, binary);
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//skip over the part that we aren’t loading

fieldsStream.seek(pointer + toRead);

f.setOmitNorms(fi.omitNorms);

@@ -266,7 +266,7 @@ final class FieldsReader {

long pointer = fieldsStream.getFilePointer();

//Skip ahead of where we are by the length of what is stored

fieldsStream.skipChars(length);

- f = new LazyField(fi.name, store, index, termVector, length,

- pointer);

+ f = new LazyField(fi.name, store, index, termVector, length,

+ pointer, binary);

f.setOmitNorms(fi.omitNorms);

}

doc.add(f);

@@ -385,17 +385,19 @@ final class FieldsReader {

private int toRead;

private long pointer;

- public LazyField(String name, Field.Store store, int toRead,

- long pointer) {

+ public LazyField(String name, Field.Store store, int toRead,

+ long pointer, boolean isBinary) {

super(name, store, Field.Index.NO, Field.TermVector.NO);

this.toRead = toRead;

this.pointer = pointer;

+ this.isBinary = isBinary;

lazy = true;

}

- public LazyField(String name, Field.Store store, Field.Index index,

- Field.TermVector termVector, int toRead, long pointer) {

+ public LazyField(String name, Field.Store store, Field.Index index,

+ Field.TermVector termVector, int toRead, long pointer,

+ boolean isBinary) {

super(name, store, index, termVector);

this.toRead = toRead;

this.pointer = pointer;

+ this.isBinary = isBinary;

lazy = true;

}

@@ -413,25 +415,27 @@ final class FieldsReader {

/* readerValue(), binaryValue(), and tokenStreamValue()

136



must be set. */

public byte[] binaryValue() {

ensureOpen();

- if (fieldsData == null) {

- final byte[] b = new byte[toRead];

- IndexInput localFieldsStream = getFieldStream();

- //Throw this IO Exc

Not Helpful The predicted keywords did not intersect with the actual bug fix at all

Somewhat Helpful The predicted keywords partially intersect with the actual bug

fix

Helpful The predicted keywords intersect with the key portions of the bug fix

Comments?

3. Given the changelog [comment] of the bug fix, mentally form a

set of keywords needed for the bug fix. Does your set of keywords change

after looking over the suggested keywords?

Fix Changelog: LUCENE-1959 Add MultiPassIndexSplitter. git-svn-id:

http://svn.apache.org/repos/asf/lucene/java/trunk@824798

13f79535-47bb-0310-9956-ffa450edef68

Predicted keywords:

new_source__its, new_source__contains, new_source__documents,

new_source__on, new_source__once, new_source__one, new_source__open,

new_source__copy, new_source__count, deleted_delta__new, new_source__id,

new_source__or, new_source__created, new_source__return,

new_source__if, new_source__org, new_source__current, new_source__other

Current "Buggy" Code change:
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--- /dev/null

+++ b/contrib/misc/src/java/org/apache/lucene/index/IndexSplitter.java

@@ -0,0 +1,163 @@

+/**

+ * Licensed to the Apache Software Foundation (ASF) under one or more

+ * contributor license agreements. See the NOTICE file distributed with

+ * this work for additional information regarding copyright ownership.

+ * The ASF licenses this file to You under the Apache License, Version 2.0

+ * (the "License"); you may not use this file except in compliance with

+ * the License. You may obtain a copy of the License at

+ *

+ * http://www.apache.org/licenses/LICENSE-2.0

+ *

+ * Unless required by applicable law or agreed to in writing, software

+ * distributed under the License is distributed on an "AS IS" BASIS,

+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

+ * See the License for the specific language governing permissions and

+ * limitations under the License.

+ */

+package org.apache.lucene.index;

+

+import java.io.File;

+import java.io.FileInputStream;

+import java.io.FileOutputStream;

+import java.io.IOException;

+import java.io.InputStream;

+import java.io.OutputStream;

+import java.text.DecimalFormat;

+import java.util.ArrayList;

+import java.util.List;

+

+import org.apache.lucene.store.FSDirectory;

+

+/**

+ * Command-line tool that enables listing segments in an

+ * index, copying specific segments to another index, and

+ * deleting segments from an index.

+ *

+ *

This tool does file-level copying of segments files.

+ * This means it’s unable to split apart a single segment

+ * into multiple segments. For example if your index is

+ * optimized, this tool won’t help. Also, it does basic
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+ * file-level copying (using simple

+ * File{In,Out}putStream) so it will not work with non

+ * FSDirectory Directory impls.

+ *

+ *

NOTE: The tool is experimental and might change

+ * in incompatible ways in the next release. You can easily

+ * accidentally remove segments from your index so be

+ * careful!

+ */

+public class IndexSplitter {

+ public SegmentInfos infos;

+

+ FSDirectory fsDir;

+

+ File dir;

+

+ /**

+ * @param args

+ */

+ public static void main(String[] args) throws Exception {

+ if (args.length < 2) {

+ System.err

+ .println("Usage: IndexSplitter -l (list the segments

+ and their sizes)");

+ System.err.println("IndexSplitter +");

+ System.err

+ .println("IndexSplitter -d (delete the following segments)");

+ return;

+ }

+ File srcDir = new File(args[0]);

+ IndexSplitter is = new IndexSplitter(srcDir);

+ if (!srcDir.exists()) {

+ throw new Exception("srcdir:" + srcDir.getAbsolutePath()

+ + " doesn’t exist");

+ }

+ if (args[1].equals("-l")) {

+ is.listSegments();

+ } else if (args[1].equals("-d")) {

+ List segs = new ArrayList();

+ for (int x = 2; x < args.length; x++) {
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+ segs.add(args[x]);

+ }

+ is.remove((String[]) se

Not Helpful My candidate keyword list was unaffected

Somewhat Helpful My candidate keyword list changed somewhat due to the Fix

Suggestions

Helpful My candidate keyword list was influenced by the Fix Suggestions

Comments?

7.4 Results

7.4.1 Human Feedback Improvement on Fix Prediction

Human feedback gave an average improvement of 13.2% precision and 8.8%

recall over machine generated fix prediction results (of chapter 6) after feedback was

given on only 10 revisions! This is a surprising result indicating that even minute

feedback can be very beneficial. Table 7.1 depicts the improvement by project. Users

were restricted to providing feedback on the first half of project history, with their

feedback being applied on the second half of project history. Table 7.1 shows a gain in

both precision and recall after ten revisions.

Successful human feedback mainly consisted of the following activities.
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Table 7.1: Average Bug Prediction Results after Feedback on 10 revisions per project

Project % Precision Gain % Recall Gain

Argouml 40.75 23.55

Eclipse JDT 3.02 6.59

Jedit 4.65 4.70

Lucene 4.19 0.43

Average 13.15 8.82

Correcting Incorrectly Labeled Fixes

These are code changes which are labeled as fixes in the change log, but are not

typical bug fixes. A few of these fixes included minor fixes to documentation, java

docs, and configuration files. There were also bug fixes that were code refactorings.

While these were labeled as fixes in the change log, human judgment indicated

otherwise. Notably, the machine learner also diagnosed these revisions as likely to

be incorrect and suggested during the feedback step that these were incorrectly

labeled.

De-emphasizing Minor Bug Fixes

A typical minor bug fix observed in a projects is a bug fix that removes compilation

warnings. Humans participating in the study judged the code change as not being

a true bug fix. Minor bug fixes were incorrectly lowering the precision and recall

of predicting bug fix content.
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As human feedback was only used for 10 revisions, low hanging fruit might

have been uncovered. It is possible that as feedback is given on many more revisions,

the kind of feedback would be rather different. The next section details feedback as a

case study.

7.4.1.1 Feedback Improvement Case Study

Feedback was conducted on ten humans, six of them are engineers working in

the industry and four are student researchers or faculty. Humans were given a score

for their feedback during the entirety of their participation. Each participant gave

feedback on ten revisions per project, for two different projects. For some individual

human evaluations, there were points of negative score gains in the interim, before ten

revisions were complete. Interestingly, this motivated humans to provide more feedback

and improve their score.

Overall, the industrial participants in particular were intrigued during the

process of providing feedback which can be used to predict bug fix content. After the

evaluation the participants discussed the possibility of adopting such a system in their

daily professional lives. Their concerns are listed below.

Speed of applying human feedback

The method provided in the chapter can take up to two minutes to apply human

feedback and request feedback on the next computed revision. This is due to the

fact that a new SVM is built after human feedback on a particular revision. The

bottleneck is computing the next revision for human feedback. In practice, this
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can be solved in a variety of ways. The simplest is to process human feedback

asynchronously. The feedback score and the next revision would be sent in an email

or by a comparable asynchronous solution. There is also research on improving

active learning speed with support vector machines [65]. Finally, using fast non

SVM based online learners like Vowpal Wabbit can speed up active learning [97]

. One of the participants indicated that providing feedback on incorrectly labeled

fixes especially when the feedback took two minutes to process is boring. He

mentioned that he would not mind providing feedback on incorrect fixes if the

feedback turn around time was a matter of seconds.

Human Feedback score

When participants see an improved positive score, they get a feeling that their

feedback was correct. Conversely, a negative score creates a negative feeling. In

reality, both feelings can be incorrect. While accurate feedback would converge

towards an increased delta on both precision and recall, it is well possible that

during the short-term, negative scores can result from correct feedback. An ex-

ample is when there are a few revisions the classifier is not confident on, say R1,

R2, and R3. The correct classification is a bug fix for all three, and currently

all three are marked as buggy. If feedback was only provided on R1, but not on

the others, it is possible that a model with R1 marked as a bug fix, but R2 and

R3 marked as buggy will score worse than the initial machine model of all three

marked as buggy. After feedback is provided on all three revisions, there can be a
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marked improvement over machine based fix prediction. An idea worth exploring

is displaying revisions that are most responsible for grading human feedback as

negative.

Collaborative Feedback

Incorporating feedback from a few humans on a particular revision can improve

the prediction process taking less time away from each human. Undoubtedly,

poor feedback from one or two humans can have an adverse effect on the system.

On the whole, given that human feedback on average substantially improved fix

content prediction as shown in table 7.1, a collaborative feedback model appears

promising.

The next section details results of the qualitative study performed on the Fix

Suggester.

7.4.2 Fix Suggester Qualitative Study

RQ8 states “When engineers inspect the bug fix change log, do they find that

the suggested keywords are relevant to the actual bug fix?” 69.5% of the surveyed

engineers found the suggested keywords to be somewhat or quite helpful. 30.5% of

engineers on the other hand found the suggested keywords to not be helpful, they did

not see any intersection with the actual bug fix.

RQ9 states “Does reviewing the Fix Suggester’s keywords influence the in-

vestigation for the bug fix?” 67.4% of engineers found the suggested keywords to be
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somewhat or quite helpful. 32.6% of engineers found the suggested keywords to be not

helpful, stating that their candidate keyword list was unaffected by the suggestions.

The distribution of utility of the suggestions for RQ1 and RQ2 is respectively

shown in figures 7.2 and 7.3. There was not much deviation from one project to another.

It is promising that engineers on average found the Fix Suggester to be somewhat useful

for both RQ8 and RQ9.

The general feeling was that the Fix Suggester is quite useful for engineers new

to a codebase. Typical co-occurrence patterns of a bug fix were exposed especially for

user interface driven projects such as Jedit and Argouml. The patterns are not limited

to simple co-occurrence. The Fix Suggester is perhaps a customized filtered version of a

co-occurrence driven solution based on fixes applied to similar bugs. These patterns tend

to help engineers new to a project. A practical example is the knowledge that getPre-

ferredSize, actionPerformed, setLayout, propertiesChanged are keywords that should be

included if bug fix involves changing a UI action in Jedit. Another is that a bug fix on

the Lucene index will require changing documents, created, current (document), open

(document), and (document) count.

However, there are a few areas for improvement. Firstly, about 30% of users

finding the suggestions ineffective is a clear area to work on for both research questions.

The more challenging issue is to sway users who found it to be ‘Somewhat Helpful’. The

following suggestions were based on the verbal feedback provided by the users.

Large Code Changes The Fix Suggester did not fare well on large code changes
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for both RQ8 and RQ9. For RQ8, it was especially hard for engineers to look

for intersections when code spanned several files. On RQ9, a large keyword list

tended to confuse engineers. It might be interesting to adaptively trim the set of

recommended keywords on a particular code change. It might also be possible to

trim the suggestion list based on how tolerant the user is. Those users finding it

not helpful would have benefited from a smaller set of suggestions.

Reducing Search Time Having extraneous keywords can confuse engineers in prac-

tice. For RQ9, this means the search for a bug fix can be derailed by poor/less

likely keyword choices. Engineers did not want to waste time on a suggested key-

word if it was unlikely to be needed for this fix. A model that tried to minimize

wasted time at the cost of missing out a few relevant keywords appealed to them.

At first, this appears to be a simple precision/recall tradeoff. However, it is ac-

tually a more complex request for lower recall but saving potentially significant

human time. Human time can be saved by not including plausible but ineffective

keywords. A plausible but incorrect keywords might lure unsuspecting engineers

to waste time while considering viabilities for these types of keywords.

More Detail To sway engineers from viewing the suggestions as somewhat helpful,

they seemed to desire more detail on why those keywords need to change in a bug

fix. One idea would be to integrate the keyword suggestions with static analysis

techniques before presenting them. Static analysis tools like Findbugs often report

several detailed violations. Engineers typically ignore the bulk of these violations.
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Not Helpful

30.5%

Somewhat Helpful

59.0%
Helpful

10.5%

Figure 7.2: RQ8 Feedback

If the violations can be filtered by the Fix Suggester, they might be more likely

to pay attention given that the Fix Suggester provides statistically relevant bug

fix information. Statistics backed by the explanation power of static analysis can

possibly be combined to make the suggestions effective.

User Personalization About 30% of users found the suggestions to be not helpful.

It might be useful to target suggestions at these users adaptively. If a user was

unhappy with a suggestion due to too many keywords, less keywords can be offered

the next time. Personalizing the Fix Suggester at the user level will likely increase

practical satisfaction.
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52.6%

Helpful

14.7%

Figure 7.3: RQ9 Feedback

7.5 Threats to Validity

All threats mentioned in chapters 5 and 6 are applicable here. Independent

threats include:

Humans consulted for feedback may not be representative.

We selected six people from the industry, and four from academia for improving bug

prediction. It is possible that these individuals provide better or worse feedback than the

typical industrial or academic participant. On the qualitative study for fix prediction,

almost all participants were from the industry. However, it is again possible that these

individuals do not reflect typical industrial engineers.

Humans could have lead classifiers in the wrong direction.

It is possible that incorrect feedback worsened the presented results. In practice, hu-

man feedback can potentially have negative effects and worsen the utility of the Fix
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Suggester. We expect that extended human feedback should lead to an overall increase

in performance.
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Chapter 8

Future Work

8.1 Introduction

Chapters 5, 6, and 7 introduce improvements in bug prediction, fix content

prediction, and human feedback respectively. This chapter discusses opportunities for

future work arranged by the area of contribution.

8.2 Opportunities

Human Feedback Increase the permitted types of human feedback.

Human Feedback Provide automated mechanisms to validate human feedback.

Fix Suggester Refine the Fix Matrix to hold complex relationships between buggy

and fix terms.

Bug Prognosticator Predict the severity of a buggy change.
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General Perform more industrial experiments.

General Combine statistical methods of bug prediction with program analysis.

8.3 Human Feedback

Increasing the permitted types of human feedback Currently, chapter 7 focuses

on active learning based feedback mechanism to correct the original label of a code

change (buggy or clean). The human feedback is delivered to the Fix Matrix and

can modify fix suggestions. However, it would be useful to consider direct feedback

on the fix suggestions. A challenge faced when trying this out is the sparsity of

bug and fix data. It’s not clear what the modifications to a classifier have to

occur when certain fix suggestions are incorrect. Without too many similar code

changes, it is hard to modify the classifier. Even if there are many similar changes,

it is unclear on how exactly the fix matrix should be modified to continue working

with reasonable accuracy.

A possible idea to investigate is to display similar code changes and decide if the

fix suggestions are invalid for the similar changes as well. An alternative solution

is to extract rules for a set of code changes from the feedback.

Providing automated mechanisms to validate human feedback Chapter 7 as-

sumes that human feedback is always accurate. This is also the norm in ML and

IR research. It is however possible that with a lot of training data, human feed-

back might make results worse. Mechanisms to validate or de-prioritize human
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feedback should be investigated.

8.4 Fix Suggester

Refining the Fix Matrix to hold complex relationships The fix matrix presented

in section 6.4.2.1 forms a linear term frequency relationship between buggy and

fix terms. More complex models exploiting relations between buggy and fix terms

should be tried. Simple enhancements include techniques to filter out correlated

bug terms (and possibly fix terms). More complex enhancements include con-

sidering non linear relationships between certain buggy and fix terms, perhaps

amongst the popular buggy and fix term pairs. Perhaps text mining techniques

such as LDA [30] can be exploited to improve the association between buggy

changes and their fixes.

8.5 Bug Prognosticator

Predicting the severity of a buggy change The Bug Prognosticator discussed in

chapter 5 does not distinguish bugs by severity. The performance of the predictor

is judged by its utility in predicting a buggy change correctly, whether it is a

minuscule or major issue.

It is worthy to investigate if bug prediction can also return severities for bugs.

A naive approach might construct multiple classifiers, each of which can predict

buggy changes of a certain severity. One can then weight the solution provided by
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multiple classifiers. This method can work if a clear link to historical link to bug

severity can be located. If not, predicting severity can be a much harder problem.

A more refined approach could use a classifier such as the multi-class SVM [162].

A multi-class SVM can be used to not only return if a code change is buggy but

also provide a severity. This assumes that bugs of every severity are present in

mass numbers in a bug repository.

8.6 General

Combine statistical methods of bug prediction with program analysis If sta-

tistical methods of bug prediction (and fix suggestion) can be combined with pro-

gram analysis techniques, one can potentially have the best of both worlds. For

example, if the Fix Suggester has a set of suggested tokens, it would be useful

to see if tools such as Findbugs and Coverity agree on the keywords. If so, one

can provide suggestions from these tools with the insight that both statistical

and static analysis tools are addressing the same solution. As already mentioned,

statistical methods reflect more practical bugs whereas program analysis covers

cases of well known bug patterns. Merging the two approaches can lead to known

solutions to practical bugs that need to be fixed. A qualitative study on the Fix

Suggester (section 7.4.2) has indicated human interest in fix suggestions which are

filtered using static analysis.

Perform more industrial experiments One commercial project was analyzed in
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chapter 5. While chapter 7 leveraged feedback from industrial practitioners, it

was restricted to open source projects in order to sidestep challenges from review-

ing proprietary code. Industrial validation is the ultimate goal of any software

research. More projects utilizing bug prediction and fix suggestion in industrial

settings will benefit both research and practice.

The next chapter concludes the dissertation.
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Chapter 9

Conclusions

This dissertation tackles the problems of bugs during a code change. Contri-

butions were made on:

Bug Prognosticator A method to improve bug prediction at the code change level.

Fix Suggester A technique that statistically predicts fix tokens for a buggy code

change.

Human Feedback A mechanism to improve the results of the Bug Prognosticator and

Fix Suggester using human feedback. By virtue of feedback, users of the system

will also better understand statistical insights of the above contributions.

A qualitative evaluation of the Fix Suggester.

Chapter 5 introduces the Bug Prognosticator. This solution improves code

change prediction to high levels of precision and recall of 0.97 and 0.7 respectively.

There is 97% likelihood of a code change being buggy if predicted. About 30% of buggy
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code changes are missed. Despite the latter figure, these numbers mean the technique

is quite usable in practice.

The feature selection process of chapter 5 is also generally applicable. For

example, it was used in [91] to predict crash-prone methods in code.

Chapter 6 introduces the Fix Suggester. While the Fix Suggester sports a

precision and recall of 46.9% and 38.9% respectively. While these numbers seem high

for the tough area of fix content prediction, the findings need further work to confirm

if the presented tokens can eventually help developers develop a bug fix faster.

Improvements to the above contributions using human feedback were detailed

in chapter 7. A substantial increase in the Fix Suggester’s performance was observed

when feedback was conducted on just ten revisions. Feedback can also increased human

involvement with the Bug Prognosticator and the Fix Suggester. A qualitative study

on the Fix Suggester’s output was also performed in chapter 7. While there is scope for

improvement, users typically found the Fix Suggester to be useful in practice.

Statistical bug prediction techniques have reached practical significance. It

should only be a matter of time before software developers get statistical bug prediction

techniques integrated into their software development environment. The use of the Bug

Prognosticator will help catch defects as soon as they are created. The Fix Suggester

will help developers construct bug fixes to existing bugs. Finally, human feedback will

empower developers to be actively involved in statistical defect prediction as opposed

to being a passive observer. The golden age of bug and fix predicting imps will have

arrived.
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