Overview of the Course
Databases and DBMS in a nutshell

Data
Views of data:

- **conceptual**: captures relationships in the data. (CPE 366)
- **logical**: captures the format of the data as understood by DBMS. (CPE 365)
- **physical**: represents the exact way the data is stored and accessed by DBMS. (CPE 468)

Logical View of data
Data models

- **historical**
 - network
 - hierarchical

- **modern**
 - relational
 - object-oriented
 - object-relational

- **emerging**
 - key-value/non-relational (“NoSQL”)
 - semistructured (XML, JSON)

Steps of Database Design

Step 1: Requirements analysis. Collect information from customer about

- data;
- desired features of the database;
- information needs.
Step 2: Conceptual Database Design. Develop high-level description of data, describe constraints.

- High-level design: often done using Entity-Relationship diagrams (E-R diagrams).

Step 3: Logical Database Design. Select a DBMS, convert high-level design into (relational) database design (database schema) in Data Definition Language (DDL) of the DBMS.

- DDL for relational databases is a part of SQL.

Steps 1 – 3 are main steps in database design. Thee more steps, enhance the Logical design.

Step 4: Schema Refinement. Logical database design is analyzed and (potentially) improved.

- Goal of schema refinement: have database schema in one of normal forms.

Step 5: Physical Database Design. Tailor the database schema to expected workloads (queries, information needs).

- Choose indexes.
- Tune database design.

Step 6: Security Design. Identify user groups, information (parts of the database) to be made available to different user groups. Represent security information in DDL.

- SQL has some mechanisms to maintain security of the data.
Querying Databases

For relational databases, the main query language is

\[\text{SQL = Structured Query Language.} \]

SQL consists of the following:

- SQL DDL - data definition language: define/manipulate relational schemas.
- SQL QL - query language: request information from the database.
- SQL/PL - programming language: create complex sequences of instructions for DBMS to execute.

History of SQL:

- SQL’77 — first standard, many DBMS used their version of SQL even after it.
- SQL-92 — first real standard. We will mostly study SQL-92.
- SQL:1999 — new standard. Includes new features for different types of databases, expands to cover object-relational databases.

Popular SQL Server Implementations:

- Oracle SQL — proprietary and very expensive.
- MySQL (Oracle) — open source (for now), acquired by Oracle in 2010.
 - MariaDB — open source fork of MySQL.
 - Percona — open source fork of MySQL.
- PostgreSQL — open source and usually more compliant to the SQL standard than MySQL.
- SQLite — open source. Uses flat files and no server.

DBMS

The purpose of DBMS:

- Allow users to describe data format (database schema).
- Store very large amounts of data.
- Answer to user information needs (queries).
- Control access to data from multiple users.
DBMS organization in a nutshell

- Query Parser: parses the incoming SQL statement.
- Query Compiler: recognizes the query, finds the best way to execute it.
 - Query Translator
 - Logical Plan Generator
 - Physical Plan Generator
- Query operations: used in query plans, execute queries.
- Buffer Manager: efficiently handles disk I/O.
- Transaction Manager: schedules data accesses for different users.
- Recovery Manager: ensures that database state can be recovered after severe crashes.

In This Course

- We study relational data model.
- We learn SQL (including SQL/PL).
- We use MySQL (MariaDB) DBMS.
- We use MySQL’s default client to access databases interactively or in a batch mode.
- We use JDBC (Java Database Connectivity) API to build database applications programs in Java.