Cal Poly Spring 2013	CPE/CSC 365				
Introduction to Database Systems		\quad Eriq Augustine $\quad .	$	Homework	
:---:	:---:				
Basic Relational Algebra					

Set Builder Notation

Expand the set builder expressions for the set X into long form sets. You can assume we are working with only non-negative integers. If the answer is an infinite set, show enough of the set to capture the pattern. Ex: $X=\{x \mid x \% 3=0\}$
Solution: $X=\{0,3,6,9, \ldots\}$
$X=\{(x, x+1)\}$
$X=\{$
$X=\{x \mid x>4$ and $x \leq 8$ and $x \neq 5\}$
$X=\{$

Given: $A=\{a \mid 0<a<5\}$ and $B=\{b \mid b \geq 3$ and $b<6\}$
$X=\{x \mid x \in A$ and $x \notin B\}$
$X=\{$

Relational Notation To SQL

Generate the CREATE TABLE statements for the following relations. For variatic types (like string types), guess a reasonable value for the size of the type.

Students(id:INT, email:STRING, firstName:STRING, lastName:STRING)

Authors(authorId, authorLastName, authorFirstName, address, city, state, zip)

Dogs(type, cuteness, hugability, weight, height, age, favoriteFood)

Basic Relation Operations

Compute the given operation on the pair of relations and diagram the resulting relation. Make sure to remember to include the names of the attributes.

Union (\cup)

R:		A:
A	B	C
1	a	a
2	b	b
3	c	c

Difference (-)

$\frac{\mathbf{R :}}{\mathrm{A}}$
1
2
3
:---
4
5

$\frac{\text { R: }}{\mathrm{A}}$
3
4
5

Cartesian Product (\times)

R:	S:
A	A
1	Z
2	X
3	Y

Students

Consider the following table of students:
Students:

id	lastName	firstName	unitsCompleted	quartersCompleted	gpa
1	Anderson	Alex	50	5	3.2
2	Cooper	John	180	15	3.9
3	Smith	Jane	140	10	2.2
4	Doe	Aldrin	80	5	1.2
5	Williams	Kim	20	1	2.9

Write the relational algebra statement for each operation.

Rename (ρ)

- Rename the Students relation to "CSCStudents".
- Keep the relation called "Students", but rename the attributes so that they are all caps with underscores separating the words.

Projection (π)

- Project Students so that only the name (first, last) is left.

Selection (σ)

- Find all the students that have completed more than five quarters.
- Find all the students with even id numbers.
- Find all the students that have complete an average of at least 16 units a quarter.
- Find the last name of the student with the highest gpa. For this problem, I will allow you to use a function called MAX which finds the maximum of a set. However, it can be done without MAX.
- Find the first and last names of all the students who have either completed more than 100 units and have less than a 3.0 gpa, or have completed less than 100 units with less than a 2.0 gpa.

