Cal Poly CPE/CSC 365 Eriq Augustiné
Spring 2013 Introduction to Database Systems

Stored Routines
Procedures and Functions

Stored Routines

Stored routines are pieces of code that are stored in the database. They can be used to execute code in the
database. Stored routines can be used as a validation or access control mechanism. They can also be used
to consolidate and centralize logic that would otherwise appear in the application layer, moving the logic
closer to the data.

This handout will cover a subset of all the functionality available to stored routines.

Procedures vs. Functions

Stored routines come in two different flavors: procedures and functions. There are two primary differences
between them:

1. Functions can only return one value while procedures can return many through the use of out param-
eters and implicit SELECTs.

2. Functions can be invoked inside SELECTS just like any other MySQL function (like RAND() or
NOW()), while procedures need to be invoked separately.

Pros & Cons

Pros

e Shares logic between all applications that use the database.

e Provides an abstraction layer between the database and other applications. Using stored routines, the
database can change under the application without the application having to change.

e Less network traffic because additional logic can be handled on the server.

Cons
e Increased load on server.
e More difficult to maintain program logic because logic is now in the application and the database.

e Migration to another DBMS (not MySQL) can be more difficult because much of the syntax and
functionality is MySQL exclusive.

Delimiters

In stored routines, you are allowed to have multiple SQL statements. However, declaring the stored routine
itself is a statement. Therefore, you will need to change the delimiter while defining routines.

You will want to choose a delimiter that is unlikely to occur within the routine. I like using “$$”. «//”
and “|” is also popular. For the rest of this lecture, assume “3” is the delimiter.

Delimiters can be set with the DELIMITER statement:

DELIMITER $$
After you finish your routine, make sure to set the delimiter back to semicolon:

DELIMITER ;

Allowable Statements

Only a subset of SQL statements are allowable in stored routines. The allowable subset differs between SQL
and MySQL, you will need to be aware of the difference if you want to write portable code.
Allowable in both SQL and MySQL:

e DML
e Transaction statements: START TRANSACTION, COMMIT, ROLLBACK.
e SET
MySQL only:
e DDL
e Direct SELECT:

Explicitly disallowed in MySQL:

e Any DDL statement that modifies a routine.

Creating Routines

CREATE PROCEDURE

CREATE PROCEDURE <name> ([[IN | OUT | INOUT] <parameter name> <parameter type> [, ...]])
[caracteristic ...]
BEGIN
<routine body>
ENDS$$

CREATE FUNCTION

CREATE FUNCTION <name>(<parameter name> <parameter type> [, ...]]) RETURNS <type>
[caracteristic ...]
BEGIN
<routine body>
ENDS$$

Parameter Types

Procedures support three different types of parameters.

e IN: The parameter is only used to pass data to the routine. This is the classical parameter type, the
default type for procedures, and the type used by functions.

e OUT: The parameter is only used to pass information back to the caller. The initial value for an OUT
parameter is always NULL.

e INOUT: The parameter may be used to pass a value to the function and back to the caller. The initial
value is whatever the callers passes and any modifications to it are seen by the caller.

Characteristics

e COMMENT ’string’: Allows a comment to be stored along with the routine.

e LANGUAGE SQL: Indicates the language that the routine is written in. Ignored in MySQL, only SQL
is supported.

e [NOT] DETERMINISTIC]: A DETERMINISTIC routine will always return the same result for the
same input data. The validity of declaring a routine deterministic is not assessed by the DBMS the
judgement of the user is trusted.

Doing a SELECT or using NOW() or RAND() can make a routine non-deterministic.

Mistakenly declaring a non-deterministic routine as DETERMINISTIC can result in unexpected
outputs because of optimizations made by the DBMS. While mistakenly declaring a deterministic
routine as NOT DETERMINISTIC can result in a decrease in performance because optimizations
are not taken.

e CONTAINS SQL: Indicates that the routine contains SQL statements. (Advisory only, does not affect
the evaluation of the routine).

e NO SQL: Indicates that the routine contains no SQL statements. (Advisory only, does not affect the
evaluation of the routine).

e READS SQL DATA: Indicates that the routine is read only. (Advisory only, does not affect the
evaluation of the routine).

e MODIFIES SQL DATA: Indicates that the routine may write data. (Advisory only, does not affect
the evaluation of the routine).

Returning Values

Function
To return values from a function, the RETURN statement is used.

RETURN 5;

RETURN myVariable;

—— Note that the following is a relational expression, not an assignment.
RETURN myVariable = 5;

Procedure

Since procedures do not directly return, getting values from them is slightly more complicated.

OUT Parameters
Out parameters can be used to return a result from a stored procedure:

CREATE PROCEDURE outParam (OUT myParam INT)
CONTAINS SQL
BEGIN
SET myParam = 5;
END$$

Implicit SELECT

In addition to parameters, procedures also have a different method for “returning” values. Any SELECT
statement in a procedures that is not captured by a variable or a cursor will have its result set emitted from
the procedure. These result sets cannot be captured by a variable, but various database connectors can
capture the result sets as they capture the output from a standard SELECT.

Invoking the following procedure:

CREATE PROCEDURE selectProcl ()
CONTAINS SQL
BEGIN

SELECT * FROM List LIMIT 2;
END$$

May result in one result set being emitted:

MariaDB [test]> CALL selectProcl();

R Fmmmmm e oo mmmmm o +
| lastName | firstName | grade | classroom |
e Fommmm o e oo +
| LEAPER | ADRIAN | 4 | 111 |
| GERSTEIN | AL | 5 | 109 |
o m Fmmmmm e e Hmmmmm o +

2 rows in set (0.00 sec)

However, a procedure may have as many un-captured SELECTSs as it wants. Therefore, it may emit
more than one result set:

CREATE PROCEDURE selectProc2 ()
CONTAINS SQL
BEGIN
SELECT % FROM List LIMIT 2;
SELECT * FROM List LIMIT 3;
END$$

MariaDB [test]> CALL selectProc2();

o Fmmm o Fmmm +
| lastName | firstName | grade | classroom |
Fommmm e o e +
| LEAPER | ADRIAN | 4 | 111 |
| GERSTEIN | AL | 5 | 109 |
o Fomm o o +

2 rows in set (0.00 sec)

R mmmmm o o Hmmmmm o +
| lastName | firstName | grade | classroom |
o Fommmm o e oo +
LEAPER	ADRIAN	4	111
GERSTEIN	AL	5	109
YUEN	ANIKA	1	103
o m o Fmmmmm o mmmm o +

3 rows in set (0.00 sec)

Variables

One for the most useful things about stored routines is the ability to use variables.

Declaring Variables

Variables in stored routines must appear at the top before cursor or handler declarations.

DECLARE <variable name> [, <variable name>] ... <variable type> [DEFAULT <value >];
Examples:

DECLARE myBool BOOLEAN;

DECLARE myStrl, myStr2 VARCHAR(32);

DECLARE myInt INTEGER DEFAULT 0;
Setting

Variables can be set in a few different ways.

SET
The simplest way to set a variable is with the SET statement:

SET mylnt = 5;
SET myStrl = ’Dogs’, myStr2 = ’Cats’;

SELECT INTO

You can use a SELECT statement that only returns one row to set the values of variables by using
the INTO clause. The INTO clause comes after the SELECT and before the FROM clauses. Besides
assigning the input into variables, the INTO clause does not affect how the query operates.

SELECT first , last
INTO myStrl, myStr2
FROM Teachers

WHERE last = ’COVIN’;

FETCH
When using a cursor, the current values from the cursor can be captured using the FETCH statement. Just

like a SELECT statement, a cursor can select multiple attributes.
Assume there is a cursor called teacherCursor for the following SELECT statement:

SELECT first , last
FROM Teachers;

Then the following FETCH statement can get the values from it:
FETCH teacherCursor INTO myStrl, myStr2;

Cursors

Cursors can be used to iterate through a pre-defined query.
The typical work flow with a cursor is:

1. Declare
2. Open
3. Iterate

4. Close

Declare

Cursors must be declared after variables and before handlers.
The syntax for declaring a cursor is:

DECLARE <cursor name> CURSOR FOR
<query>

Cursors may return as many columns and tuples as desired.

Examples

DECLARE goodsPriceCursor CURSOR FOR
SELECT pRICE
FROM Goods
WHERE pRICE > 5;

DECLARE teacherCursor CURSOR FOR
SELECT first , last
FROM Teachers;

DECLARE purchasesCursor CURSOR FOR
SELECT C. firstName , C.lastName, R.saleDate , COUNT(x)
FROM Customers C, Receipts R, Items I
WHERE R. customer = C.cld
AND R.rNumber = I.receipt
GROUP BY R.rNumber;

Open
After you declare a cursor but before you use it, you must open the cursor. The OPEN statement is what
will actually execute the query.

OPEN myCursor;

Iterate

A cursor is iterated using the FETCH statement. Each subsequent call to FETCH will return the next

tuple.
If FETCH is used with an empty cursor (when no more rows are available), a “No Data” condition

occurs. This must be detected with a handler (discussed later).

DECLARE teacherCursor CURSOR FOR
SELECT first , last
FROM Teachers;

OPEN teacherCursor;

— First tuple
FETCH teacherCursor INTO myStrl, myStr2;

— Second tuple
FETCH teacherCursor INTO myStrl, myStr2;

— Third tuple
FETCH teacherCursor INTO myStrl, myStr2;

Close
After you are done with a cursor, it should be closed so its resources can be freed.

CLOSE myCursor;

Control Flow

Stored routines offer basic control flow constructs.

Conditionals
IF

Stored routines supports the standard IF/ELSEIF/ELSE conditional construct:

IF mylInt > 0 THEN

< do something >
ELSEIF mylInt = 0 THEN

< do something else >
ELSE

< another thing >
END IF;

Like most IF constructs, the ELSE is optional and may only occur once. While the ELSEIF can occur zero
or more times.

CASE
Stored routines also support case (switch) statements.

CASE mylInt
WHEN —1 THEN
< do something>

WHEN 0 THEN
< do something else >
ELSE
< another thing >
END CASE;

Labels

Labels are used to name a block of code. Labels can be used with a generic block (defined by BEGIN ...
END), or with any looping structure (LOOP, REPEAT, or WHILE).

Labels can be associated with general blocks like so (see the LOOP section for how to associate a label
with a loop):

<label name>: BEGIN
<loop body>
END <label name>;

The label at the end of the block or loop is optional.
Labels allows the program to immediately jump out of blocks using the LEAVE statement:

LEAVE <label >;
When the LEAVE statement is used in a loop, it is the equivalent of the break statement in Java.

Handlers

Handlers are short callbacks that are invoked when one or more conditions occur. They are most often used

to observe the end of a cursor.
The syntax for declaring a handler is:

DECLARE <handler action> HANDLER FOR <condition> [, <condition> ...] <statement>
Handler Actions:
e CONTINUE: Execution of the current program continues.

e EXIT: Execution terminates for the BEGIN block in which the handler is declared. This is true even
if the condition occurs in an inner block.

e UNDO: Not supported in MySQL.
Condition Values:

e <MySQL error code>: An actual MySQL error code that is raised for MySQL errors like bad syntax
or a constraint violation.

e SQLSTATE [VALUE] <sqlstate value>: Similar to MySQL error codes.

e <condition name>: Used to catch a condition explicitly declared using the DECLARE CONDITION
statement.

e SQLWARNING: Shorthand for the class of SQLSTATE values that begin with '01’.

e NOT FOUND: shorthand for the class of SQLSTATE values that begin with ’02’. This is the type of
condition that rises when a cursor runs out of data.

e SQLEXCEPTION: shorthand for the class of SQLSTATE values that do not begin with '00’, ’01’, or
02’
Loops
Stored routines come with three different types of loops: LOOP, REPEAT, and WHILE.

LOOP

This LOOP construct is the simplest looping construct. Once entered the loop will continue to execute until
it is terminated with either a LEAVE or RETURN.

[<label >:] LOOP
<loop body>
END LOOP [<label >];

The LOOP construct works well with cursors and handlers:

DECLARE done BOOLEAN DEFAULT FALSE;
DECLARE firstName VARCHAR(32);
DECLARE lastName VARCHAR(32);

DECLARE teacherCursor CURSOR FOR
SELECT first , last
FROM Teachers;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;
OPEN teacherCursor;

teacherLoop: LOOP
FETCH teacherCursor INTO firstName, lastName;

IF done = TRUE THEN
LEAVE teacherLoop;
END IF;

SELECT firstName , lastName;
END LOOP;

WHILE

The WHILE looping construct in stored routines is similar to the classic while loop. The loop will continue
to run until it is either terminated (LEAVE or RETURN) or when the guard becomes FALSE.

[<label >:] WHILE <guard expression> DO
<loop body>
END WHILE [<label >];

Since there are no for loops in stored routines, you can easily use the WHILE looping construct instead:

CREATE PROCEDURE whileProc (IN num INT)
CONTAINS SQL
BEGIN

DECLARE count INT DEFAULT 0;

WHILE count < num DO
SELECT count;

SET count = count + 1;
END WHILE;
END$$

REPEAT
The REPEAT looping construct differs from the WHILE lopping structure in two ways:
1. The loop body will always be executed at least once (like a do-while loop).

2. The loop will continue to execute until the guard becomes TRUE.

[<label >:] REPEAT

<loop body>
UNTIL <guard expression>
END REPEAT [<label >];

CREATE PROCEDURE repeatProc (IN num INT)
CONTAINS SQL
BEGIN

DECLARE count INT DEFAULT 0;

REPEAT
SELECT count;

SET count = count + 1;
UNTIL count = num
END REPEAT;
END$$

Invoking Routines

Procedures

Procedures need to be explicitly invoked using the CALL statement. You cannot invoke procedures within
a SELECT statement.

CALL selectProcl ();
CALL whileProc (5);
CALL outParam(@val);

— outputs 5
SELECT Qval;

10

Functions

Functions can be invoked within a SELECT statement. They can be invoked the same as other MySQL
functions (like NOW() and RAND()).

SELECT myFunction ();
SELECT

FROM Teachers
WHERE lastName = someFunction (firstName);

Alter Routines

You can alter the characteristics of a routine by using the ALTER PROCEDURE/ROUTINE statements.
Only the characteristics can be altered. If you want to edit the function body, you will need to drop it and
create it again.

ALTER {PROCEDURE | FUNCTION} <routine name> <characteristic> [, <characteristic> ...];

Dropping Routines

You can drop a routine just like you can drop a table:
DROP {PROCEDURE | FUNCTION} [IF EXISTS] <routine name>;
The IF EXISTS qualifier will only try to execute the statement if the routine exists.

Viewing Stored Routines

You can view all routines using the SHOW STATUS statement:
SHOW {PROCEDURE | FUNCTION} STATUS;
You can view the statement used to create a procedure using the SHOW CREATE statement:
SHOW CREATE {PROCEDURE | FUNCTION} <routine name>;

Hint: you can use "\G’ in place of a semicolon to change how the output of a query is displayed. This can
be useful for long strings such as stored routines.

References
1. http://www.cs. jhu.edu/~nikhil/mysql-storedprocedures.pdf
2. http://net.tutsplus.com/tutorials/an-introduction-to-stored-procedures/

http://dev.mysql.com/doc/refman/5.0/en/stored-routines.html

- W

http://dev.mysql.com/doc/refman/5.0/en/create-procedure.html

5. http://www.mysqltutorial.org/mysql-stored-procedure-tutorial.aspx

11

http://www.cs.jhu.edu/~nikhil/mysql-storedprocedures.pdf
http://net.tutsplus.com/tutorials/an-introduction-to-stored-procedures/
http://dev.mysql.com/doc/refman/5.0/en/stored-routines.html
http://dev.mysql.com/doc/refman/5.0/en/create-procedure.html
http://www.mysqltutorial.org/mysql-stored-procedure-tutorial.aspx

