
. .

Cal Poly CPE/CSC 365 Alexander Dekhtyar
Spring 2013 Introduction to Database Systems Eriq Augustine
. .

Database Connectivity:
JDBC

Database Connectivity Basics

Application-level database connectivity:

• Host language (Java, C/C++, Ruby, Python, Perl, PHP, etc)

• Target DBMS (MySQL, PostgreSQL, Oracle, MS SQL, IBM DB2, etc)

• Client — Server environment

– Client: application program

– Server: DBMS

General structure:

1. Load database driver/database support functionality

2. Form a SQL statement

3. Connect to the DBMS

4. Pass SQL statement to the DBMS

5. Recieve result

6. Close connection

JDBC

JDBC originally, an abbreviation for Java Database Connectivity is the database connectivity package for
Java.

Loading the database driver

First task in any JDBC application is loading the JDBC driver for the right DBMS. This is done statically
by the driver’s class, so all you need to do is load the class into the runtime. This can by done by using the
Class.forName(String name) method. The argument passed to the Class.forName method is the name
of the JDBC driver for a specific DBMS server.

DBMS Driver name
MySQL com.mysql.jdbc.driver

PostgreSQL org.postgresql.Driver

Oracle oracle.jdbc.OracleDriver

Microsoft SQL Server com.microsoft.jdbc.sqlserver.SQLServerDriver

IBM DB2 COM.ibm.db2.jdbc.app.DB2Driver

1

Example. The following code loads Oracle’s JDBC driver or, if unsuccessful, reports an error.

try {
Class . forName (”com . mysql . jdbc . d r i v e r ”) ;

} catch (ClassNotFoundException ex) {
System . e r r . p r i n t l n (” Driver not found”) ;

} ;

Establishing a Connection

JDBC package contains a Connection class representing client-server connections between the client Java
applications and the DBMS servers. An instance of the Connection class will be created via the following
driver manager call:

Connection conn =
DriverManager . getConnect ion (connect ionStr ing , user , password) ;

Here,

connectionString is a connection URL specifying location and connection port for the database. See below
for syntax.

user is the DBMS user login account.

password is the password for the DBMS account of the user user.

Connection String

Connection string has the following syntax:
<driver>:<dbms>://<server>[:<port>]/<database>[?<additionalOption>=<value>[&<anotherOption>=<value>]*]

The connection string for the CoolKids database on our class MySQL server (using the standard MySQL
port (3306)) could be:

jdbc:mysql://csc-db0.calpoly.edu:3306/CoolKids?autoReconnect=true

Example. The following code establishes the connection to our MySQL server:

Connection conn = null ;

S t r ing u r l =
” jdbc : mysql : // csc−db0 . c a l p o l y . edu :3306/ CoolKids ? autoReconnect=true ” ;

S t r ing user = ” foo ” ;
S t r ing password= ”bar” ;

try {
conn = DriverManager . getConnect ion (ur l , user , password) ;

} catch (Exception ex) {
System . e r r . p r i n t l n (”Could not open connect ion ”) ;

}

2

Statements

Work with a Connection object within a Java program is straightforward: SQL statements are created and
passed via the connection, results are received in return. There are three classes for SQL statements:

Statement: general use statement class. Used for creation and execution of SQL statements, typically, once
during the run of the program.

PreparedStatement: statement class to be used in the following cases:

• a sequence of similar SQL statements, different only in values of some parameters needs to be
executed;

• a single time-consuming SQL statement needs to be executed, possibly multiple times.

SQL statements represented by instances of PreparedStatement class are pre-compiled and thus may
be more efficiently executed.

CallableStatement: statement class for execution of stored SQL (PL/SQL) procedures. A Statement can
also be used to execute stored procedures.

Instances of each class are obtained by invoking methods (see below) from the Connection class.
JDBC distinguishes two types of SQL statements:

Non-Query SQL statements: All DDL and DML statements, which do NOT return relational tables.

Queries: SELECT statements and their combinations, which return relational tables.

Because queries return tables while non-queries return only exit status, different methods are used to
pass these two types of SQL statements.

Class Statement

Obtaining Instances. Instances of class Statement can be obtained by invoking the createStatement()
method of the Connection class:

Statement s = conn . createStatement () ;

Executing Non-Queries

Non-queries (a.k.a. updates) are executed using method executeUpdate() of class Statement. While,
several method signatures exist, the method call to be used under most stanard circumstances is:

int executeUpdate (S t r ing s q l) throws SQLException

The method returns the number of rows affected by the update, or 0 if a DDL statement (CREATE
TABLE, etc.) was executed.

For example, the following sequence executes two statements: a table Employees is created and a record
is inserted into it.

S t r ing update = ”CREATE TABLE Employees (” +
” id INT PRIMARY KEY, ” +
” Name CHAR(30) , ” +
” Sa lary INT” +
”) ” ;

try {
System . out . p r i n t l n (s . executeUpdate (update)) ;

3

// Pr in t s ”0”.

s . executeUpdate (”INSERT INTO Employees VALUES(1 , ’ John Smith ’ , 30000) ”) ;
// Pr in t s ”1”.

} catch (SQLException e) {
}

Note, that the Statement instance is reusable. Generally speaking, in order to execute a sequence of
SQL statements, you only need to create one Statement instance.

Executing SQL queries

Use method executeQuery() of class Statement. The method returns an instance of the class ResultSet,
which is discussed below.

try {
St r ing query = ”SELECT ∗ FROM Employees WHERE Name = ’ Jones ’ ” ;
Resu l tSet r e s u l t s = s . executeQuery (query) ;

} catch (SQLException e) {
}

Class PreparedStatement

PreparedStatement should be used when the same query with possibly different parameters is to be executed
multiple times in the course of a program.

Instances of PreparedStatement are created with an SQL statement, possibly with parameter place-
holders associated with them, and that association cannot change.

Obtaining instances

Instances of class PreparedStatement can be obtained by invoking the prepareStatement(String sql)

method of the Connection class:

S t r ing s q l = ”INSERT INTO Employee VALUES(2 , ’Bob Brown ’ , 40000) ” ;
PreparedStatement ps = conn . prepareStatement (s q l) ;

This code creates a prepared SQL statement associated with the SQL statement INSERT INTO Employee

VALUES(2, ’Bob Brown’, 40000).

Parameterized Prepared Statements

The text of the SQL code for the PreparedStatement instance can contain ’?’ symbols: one symbol per
input parameter to the query. For example, in order to create a generic parameterized INSERT statement
for the Employee table, we can do the following:

S t r ing s q l = ”INSERT INTO Employee VALUES(? , ? , ?) ” ;
PreparedStatement ps = conn . prepareStatement (s q l) ;

prepareStatement() method parses the input SQL string and identifies locations of all parameters.
Each parameter gets a number (starting with 1).

4

Setting Parameter Values.

PreparedStatement uses the following methods to set values for parameters (note: all methods are void

and throw SQLException):
Method Explanation
setNull(int parIndex, int jdbcType) sets parameter parIndex to null
setBoolean(int parIndex, boolean x) sets parameter parIndex to a boolean value x

setByte(int parIndex, byte x) sets parameter parIndex to a byte value x

setInt(int parIndex, int x) sets parameter parIndex to an integet value x

setLong(int parIndex, long x) sets parameter parIndex to a long integer value x

setFloat(int parIndex, float x) sets parameter parIndex to a floating point value x

setDouble(int parIndex, double x) sets parameter parIndex to a double precision value x

setString(int parIndex, String x) sets parameter parIndex to a string value x

setDate(int parIndex, java.sql.Date x) sets parameter parIndex to a date value x

setTime(int parIndex, java.sql.Time x) sets parameter parIndex to a time value x

clearParameters() clears the values of all parameters

Executing Non-Query Statements

PreparedStatement class has the executeUpdate() method to execute non-query SQL statements. This
method takes no input arguments (since the SQL statement is already prepared).

The following example shows how parameters are set up and prepared updates are executed:

try {
// s e t f i r s t column va lue f o r the INSERT statement (ID)
ps . s e t I n t (1 , 3) ;

// s e t second column va lue (Name)
ps . s e t S t r i n g (2 , ’Mary Wil l iams ’) ;

// s e t t h i r d column va lue (Sa lary)
ps . s e t I n t (3 , 45000) ;

// execu te INSERT INTO Employee VALUES(3 , ’Mary Wil l iams ’ , 45000)
ps . executeUpdate () ;

} catch (SQLException e) {
}

Executing Queries

To execute queries, use executeQuery() method, which also does not take any arguments. This method
returns an instance of ResultSet.

The following code fragment shows the preparation and execution of SELECT statements which select
rows of the Employee table by salary.

try {
St r ing s q l = ”SELECT ∗ FROM Employee WHERE Salary > ?” ;
PreparedStatement ps = conn . prepareStatement (s q l) ;

ps . s e t I n t (1 , 35000) ;

// execu te SELECT ∗ FROM Employee WHERE Salary > 35000
Resu l tSet r e s u l t = ps . executeQuery () ;

// c l e a r a l l parameters

5

ps . c l earParameter s () ;

ps . s e t S t r i n g (1 , 4 20 0 0) ;

// execu te SELECT ∗ FROM Employee WHERE Salary > 42000
r e s u l t = ps . executeQuery () ;

} catch (SQLException e) {
}

Working with output: Class ResultSet

Results of SELECT statements (and other SQL statements that return tables) are stored in instances of
the ResultSet class.

An instance of a ResultSet maintains a cursor which points to the currently observed record (tuple) in
the returned table. The following methods can be used to navigate a ResultSet object:

Method Explanation

boolean next() move cursor to the next record.
boolean previous() move cursor to the previous record.
boolean first() move cursor in front of the first record.
boolean last() move cursor to the last row of the cursor.
boolean absolute(int row) move cursor to the record number row.
boolean relative(int rows) move cursor rows records from the current position.
boolean isLast() true if the cursor is on the last row.
void close() close the cursor, release JDBC resources.
boolean wasNull() true if the last column read had null value
int findColumn(String columnName) returns the column number given the name of the column

In addition to these methods, a collection of get methods is associated with ResultSet class. Note that
the cursor for a ResultSet begins BEFORE the first record. Each get method retrieves one value from
the current record (tuple) in the cursor. There are two families of get methods: one family retrieves values
by column number, the other — by column name. Remember, columns indexes start at 1.

get by Column Number get by Column Name Explanation

String getString(int colIndex) String getString(String colName) retrieve a string value
boolean getBoolean(int colIndex) boolean getBoolean(String colName) retrieve a boolean value
byte getByte(int colIndex) byte getByte(String colName) retrieve a byte value
short getShort(int colIndex) short getShort(String colName) retrieve a short integer value
int getInt(int colIndex) int getInt(String colName) retrieve an integer value
float getFloat(int colIndex) float getFloat(String colName) retrieve a floating point value
double getDouble(int colIndex) double getDouble(String colName) retrieve a double precision value
java.sql.Date getDate(int colIndex) java.sql.Date getDate(String colName) retrieve a string value

Example. The code fragment below prints out the values of the Name column from the Employee table
returned from the query.

Statement query = conn . createStatement () ;
Resu l tSet r e s u l t =

query . executeQuery (”SELECT ∗ FROM Employee WHERE Salary > 27000”) ;

// o r i g i n a l p o s i t i o n o f the cursor − b e f o r e f i r s t record .
while (r e s u l t . next ()) {

// ’Name ’ i s a v a l i d column name in the r e s u l t .
St r ing s = r e s u l t . g e t S t r i n g (”Name”) ;
System . out . p r i n t l n (s) ;

}

6

Types of ResultSet instances

ResultSet instances can be of one of three types:

• TYPE FORWARD ONLY: the result set is non-scrollable, the cursor can be moved using only the next()

and last() methods (no methods that go back can be used) (default).

• TYPE SCROLL INSENSITIVE: the result set is scrollable, i.e., the cursor can be moved both forward
(next(), last()) and backwards (previous(), first()). Also, the result set typically does not
change in response to changes in the database.

• TYPE SCROLL SENSITIVE: the result set is scrollable, i.e., the cursor can be moved both forward (next(),
last()) and backwards (previous(), first()). Also, the result set typically changes if the data in
the underlying database changes.

In addition, the result set may, or may not be updatable. This is controlled by the concurrency setting:

• CONCUR READ ONLY: the result set is read-only, no programmatic updates are allowed (default).

• CONCUR UPDATABLE: the result set can be updated programmatically.

The type of the ResultSet instance to be returned by executeQuery() statements can be selected at
the creation time of the SQL statement object:

• Class Statement: default result set type set by the createStatement() method is TYPE FORWARD ONLY,
and the concurrency setting is CONCUR READ ONLY.

To create a statement with a different type of result set use

createStatement(int scrollable, int concur)

Here, Scrollable is the scrollability type (one of TYPE FORWARD ONLY, TYPE SCROLL INSENSITIVE,
TYPE SCROLL SENSITIVE) and Concur is the concurrency setting (one of CONCUR READ ONLY, CONCUR UPDATABLE)1.

1 For the purposes of this course, we can live with the default concurrency setting, and do not even need to know about it.
However, Connection class does not have a version of createStatement() that sets only the scrollability setting, hence, a brief
description of the second argument is needed.

7

