
. .

Cal Poly CPE/CSC 365 Alexander Dekhtyar
Spring 2013 Introduction to Database Systems Eriq Augustine
. .

SQL: Structured Query Language
SELECT Statement

SELECT Statement

The core of SQL, is the SELECT statement. Basic SELECT statement looks as follows:

SELECT [DISTINCT] select-list
FROM from-list
[WHERE qualification]

More complex SELECT statements will be studied later.

• from-list contains the list of database relations from which the data is to be retrieved.

• select-list contains the list of relation attributes (possibly modified) to be returned in the answer to the
query.

• qualification contains the conditions which must be satisfied by a database record to be put into the
answer set.

Evaluation of SELECT statement:

1. from-list defines a cartesian product of all relations in it.

2. qualification defines selection and join conditions on the data.

3. select-list defines the final look of the output, i.e., the projection attributes.

4. distinct specifies duplicate elimination in the final answer set (default for select query: no duplicate
elimination).

SQL SELECT Statement and Relational Algebra

As one can guess from its evaluation, SELECT statement implements Relational Algebra operations selec-
tion, projection, cartesian product and join.

SELECT and selection

Relational algebra operation: σC(R)
SELECT statement

SELECT ∗
FROM R
WHERE C;

Note: “*” is a special notation for the selection list that includes all available attributes.
Example: RA: σsalary>20000(Employee)
SQL:

1

SELECT ∗
FROM Employee
WHERE s a l a r y > 20000 ;

SELECT and projection

Relational algebra operation: πF (R)
SELECT statement

SELECT DISTINCT F
FROM R;

Note: Relational algebra operations return sets (with no duplicates), hence to represent true relational
algebra projection, we need to use DISTINCT here. While we may ignore this sometimes, please, keep this
fact in mind.
Example: RA: πname,salary,position(Employee)
SQL:

SELECT DISTINCT name , sa la ry , position
FROM Employee ;

select and Cartesian Product

Relational algebra operation: R1 ×R2
select statement

SELECT ∗
FROM R1 , R2 ;

Note: As mentioned above, more than one relation in the from list represents Cartesian Product.
Example: RA: Employee× Client
SQL:

SELECT ∗
FROM Employee , C l i en t ;

select and Cartesian Product

Relational algebra operation: R1 ./R1.A=R2.B R2
SELECT statement

SELECT ∗
FROM R1 , R2
WHERE R1 .A = R2 .B

Note: For clarity, a simple equijoin is used here. This conversion can be extended to other types of join.
Example: RA: Employee ./Employee.manages=Client.id Client
SQL:

SELECT ∗
FROM Employee , C l i en t
WHERE Employee . manages = Cl i en t . id

2

From-list

from-list of the select statement has the following format:

TableName [TableAlias] [, . . .]

• TableName is a name of the existing database relation.

• TableAlias also known as range variable is an identifier that can be used instead of TableAlias.

While there can be two TableNames that have the same value in a from-list, all TableAliases are unique!
Table aliases allow representation of self-joins in SQL.

Example
Find all employees in John Smith’s department who have a bigger salary then John and output thier

records side by side.

SELECT ∗
FROM Employee E1 , Employee E2
WHERE E1 . department = E2 . department

AND E1 . s a l a r y < E2 . s a l a r y
AND E1 . name = ’ John Smith ’ ;

Select-list

A simple select-list is a comma-separated sequence of attribute names. However, more complex expressions
can appear in a select list.

• *: as mentioned above, this is a shortcut for “all attributes of all relations involved in the query in
their natural order”. If a ’*’ is used, no other attributes may be in the select-list.

• AttributeName: a simple attribute name can be part of a select-list if the attribute name alone is
sufficient to uniquely identify the attribute among all attributes involved in the query.

• TableName.AttributeName: if two different relations involved in the query have attributes with the
same name, table name must preface the attribute name to guarantee unambiguous identification.

• TableAlias.AttributeName: whenever table alias is defined for a relation it is always safe to reference
the attribute in this manner. This is also the only way to indicate the exact attribute to be included
into select-list in self-joins.

• Expression: An expression over different attributes involved in a query is can also be returned in
select-list.

• AttributeSpec as NewAttributeName: this form is used to rename the attribute in the result of the
query. It can be used to give names to the attributes that are results of expressions as well as to replace
TableName.AttributeName names with simpler attribute names.

• Aggregate Expressions: SELECT queries also allow for return of aggregate expressions (sums, averages,
minimums and maximums, etc.) of attributes. More on that later.

Set Operations in SQL

SELECT statement incorporates a combination of selection, projection, and cartesian product operations
(which also enables join). It does not, by itself, allow is to express set operations in relational algebra. The
latter is done using three special SQL statements.

3

Union in SQL

The format of the union statement is:

Expression UNION Expression

Here, Expression is any expression that resolves as a relational table. Typically, it will be a SELECT
statement.

The result of the statement is a relational table which is a union of the two table represented by the
right-hand side and left-hand side expressions. Duplicates are automatically eliminated.

For example, if A and B are two relations with the same schema, to compute their union, we use the
following query:

SELECT ∗ FROM A
UNION

SELECT ∗ FROM B

Difference in SQL

MySQL does not support a single difference operator.1

To replicate set difference, a semi-join can be used. (We will discuss SQL joins in detail later). For
example, to compute the difference between two tables A and B with the same schema, write the following
query:

SELECT ∗
FROM A LEFT JOIN B USING(someColumn)
WHERE B. someColumn IS NULL;

Intersection in SQL

List difference, MySQL does not support a single intersection operator.2

To replicate set intersection, a simple natural join can be used. For example, to compute the intersection
between two tables A and B with the same schema, write the following query:

SELECT ∗
FROM A NATURAL JOIN B;

Examples

1. Different attribute identifiers. Find all books that were borrowed at least twice in 2002 and output the
names of the two borrowers in each record in chronological order.

SELECT t i t l e , Book . id , P1 . name , P2 . name
FROM Books , Loans L1 , Loans L2 , Patrons P1 , Patrons P2
WHERE Books . id = L1 . bId AND Books . id = L2 . bId

AND P1 . id = L1 . pId AND P2 . id = L2 . pId
AND L1 . date < L2 . date AND L1 . date > DATE(’ 2001−12−31 ’) ;

Note: This query is a 5-way join that includes two self-joins: on Patrons and Loans. title attribute is
unambiguous as it exists only in Books. Book qualifier is needed for Book.id because Patrons relation
also has id field. Finally, P1 and P2 qualifiers for the two name attributes are needed to indicate
which attribute comes from which copy of the Patrons relation.

1Some other SQL servers such as Oracle SQL and PostgreSQL do support a difference operator usually called EXCEPT or
MINUS.

2Some other SQL servers such as Oracle SQL and PostgreSQL do support a difference operator usually called INTERSECT.

4

2. Expressions as columns. Output for each employee the sum of his/her salary and bonus.

SELECT name , s a l a r y + bonus
FROM Employee ;

3. Renaming output columns Output for each employee the sum of his/her salary and bonus.

SELECT name AS Employee Name , s a l a r y + bonus as Compensation
FROM Employee ;

Note: same query as above, only the first field is renamed “Employee Name” and the second field is
given a new name “Compensation”.

5

