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Many counting problems cannot be solved easily using the methods discussed in Chapter 6.
One such problem is: How many bit strings of length n do not contain two consecutive

zeros? To solve this problem, let an be the number of such strings of length n. An argument can
be given that shows that the sequence {an} satisfies the recurrence relation an+1 = an + an−1
and the initial conditions a1 = 2 and a2 = 3. This recurrence relation and the initial conditions
determine the sequence {an}. Moreover, an explicit formula can be found for an from the equation
relating the terms of the sequence. As we will see, a similar technique can be used to solve many
different types of counting problems.

We will discuss two ways that recurrence relations play important roles in the study of
algorithms. First, we will introduce an important algorithmic paradigm known as dynamic
programming. Algorithms that follow this paradigm break down a problem into overlapping
subproblems. The solution to the problem is then found from the solutions to the subproblems
through the use of a recurrence relation. Second, we will study another important algorithmic
paradigm, divide-and-conquer. Algorithms that follow this paradigm can be used to solve a
problem by recursively breaking it into a fixed number of nonoverlapping subproblems until
these problems can be solved directly. The complexity of such algorithms can be analyzed using
a special type of recurrence relation. In this chapter we will discuss a variety of divide-and-
conquer algorithms and analyze their complexity using recurrence relations.

We will also see that many counting problems can be solved using formal power series,
called generating functions, where the coefficients of powers of x represent terms of the sequence
we are interested in. Besides solving counting problems, we will also be able to use generating
functions to solve recurrence relations and to prove combinatorial identities.

Many other kinds of counting problems cannot be solved using the techniques discussed in
Chapter 6, such as: How many ways are there to assign seven jobs to three employees so that
each employee is assigned at least one job? How many primes are there less than 1000? Both
of these problems can be solved by counting the number of elements in the union of sets. We
will develop a technique, called the principle of inclusion–exclusion, that counts the number of
elements in a union of sets, and we will show how this principle can be used to solve counting
problems.

The techniques studied in this chapter, together with the basic techniques of Chapter 6, can
be used to solve many counting problems.

8.1 Applications of Recurrence Relations

Introduction

Recall from Chapter 2 that a recursive definition of a sequence specifies one or more initial terms
and a rule for determining subsequent terms from those that precede them. Also, recall that a
rule of the latter sort (whether or not it is part of a recursive definition) is called a recurrence
relation and that a sequence is called a solution of a recurrence relation if its terms satisfy the
recurrence relation.

In this section we will show that such relations can be used to study and to solve counting
problems. For example, suppose that the number of bacteria in a colony doubles every hour. If
a colony begins with five bacteria, how many will be present in n hours? To solve this problem,
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let an be the number of bacteria at the end of n hours. Because the number of bacteria doubles
every hour, the relationship an = 2an−1 holds whenever n is a positive integer. This recurrence
relation, together with the initial condition a0 = 5, uniquely determines an for all nonnegative
integers n. We can find a formula for an using the iterative approach followed in Chapter 2,
namely that an = 5 · 2n for all nonnegative integers n.

Some of the counting problems that cannot be solved using the techniques discussed in
Chapter 6 can be solved by finding recurrence relations involving the terms of a sequence, as
was done in the problem involving bacteria. In this section we will study a variety of counting
problems that can be modeled using recurrence relations. In Chapter 2 we developed methods
for solving certain recurrence relation. In Section 8.2 we will study methods for finding explicit
formulae for the terms of sequences that satisfy certain types of recurrence relations.

We conclude this section by introducing the algorithmic paradigm of dynamic programming.
After explaining how this paradigm works, we will illustrate its use with an example.

Modeling With Recurrence Relations

We can use recurrence relations to model a wide variety of problems, such as finding compound
interest (see Example 11 in Section2.4), counting rabbits on an island, determining the number
of moves in the Tower of Hanoi puzzle, and counting bit strings with certain properties.

Example 1 shows how the population of rabbits on an island can be modeled using a
recurrence relation.

EXAMPLE 1 Rabbits and the Fibonacci Numbers Consider this problem, which was originally posed by
Leonardo Pisano, also known as Fibonacci, in the thirteenth century in his book Liber abaci. A
young pair of rabbits (one of each sex) is placed on an island. A pair of rabbits does not breed
until they are 2 months old. After they are 2 months old, each pair of rabbits produces another
pair each month, as shown in Figure 1. Find a recurrence relation for the number of pairs of
rabbits on the island after n months, assuming that no rabbits ever die.

Reproducing pairs
(at least two months old)

Young pairs
(less than two months old)

Reproducing 
pairs

Young 
pairsMonth

Total 
pairs

1

2

3

4

5

6

0

0

1

1

2

3

1

1

1

2

3

5

1

1

2

3

5

8

FIGURE 1 Rabbits on an Island.
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Solution: Denote by fn the number of pairs of rabbits after n months. We will show that fn,
n = 1, 2, 3, . . . , are the terms of the Fibonacci sequence.

The rabbit population can be modeled using a recurrence relation. At the end of the first
month, the number of pairs of rabbits on the island is f1 = 1. Because this pair does not
breed during the second month, f2 = 1 also. To find the number of pairs after n months, add

The Fibonacci numbers
appear in many other
places in nature, including
the number of petals on
flowers and the number of
spirals on seedheads.

the number on the island the previous month, fn−1, and the number of newborn pairs, which
equals fn−2, because each newborn pair comes from a pair at least 2 months old.

Consequently, the sequence {fn} satisfies the recurrence relation

fn = fn−1 + fn−2

for n ≥ 3 together with the initial conditions f1 = 1 and f2 = 1. Because this recurrence relation
and the initial conditions uniquely determine this sequence, the number of pairs of rabbits on
the island after n months is given by the nth Fibonacci number. ▲

Example 2 involves a famous puzzle.

EXAMPLE 2 The Tower of Hanoi A popular puzzle of the late nineteenth century invented by the French
mathematician Édouard Lucas, called the Tower of Hanoi, consists of three pegs mounted on
a board together with disks of different sizes. Initially these disks are placed on the first peg
in order of size, with the largest on the bottom (as shown in Figure 2). The rules of the puzzle
allow disks to be moved one at a time from one peg to another as long as a disk is never placed
on top of a smaller disk. The goal of the puzzle is to have all the disks on the second peg in
order of size, with the largest on the bottom.

Let Hn denote the number of moves needed to solve the Tower of Hanoi problem with n

disks. Set up a recurrence relation for the sequence {Hn}.
Solution: Begin with n disks on peg 1. We can transfer the top n− 1 disks, following the rules
of the puzzle, to peg 3 using Hn−1 moves (see Figure 3 for an illustration of the pegs and disks
at this point). We keep the largest disk fixed during these moves. Then, we use one move to
transfer the largest disk to the second peg. We can transfer the n− 1 disks on peg 3 to peg 2
using Hn−1 additional moves, placing them on top of the largest disk, which always stays fixed
on the bottom of peg 2. Moreover, it is easy to see that the puzzle cannot be solved using fewer

Schemes for efficiently
backing up computer files
on multiple tapes or other
media are based on the
moves used to solve the
Tower of Hanoi puzzle.

steps. This shows that

Hn = 2Hn−1 + 1.

The initial condition is H1 = 1, because one disk can be transferred from peg 1 to peg 2,
according to the rules of the puzzle, in one move.

Peg 1 Peg 2 Peg 3

FIGURE 2 The Initial Position in the Tower of Hanoi.
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Peg 1 Peg 2 Peg 3

FIGURE 3 An Intermediate Position in the Tower of Hanoi.

We can use an iterative approach to solve this recurrence relation. Note that

Hn = 2Hn−1 + 1

= 2(2Hn−2 + 1)+ 1 = 22Hn−2 + 2+ 1

= 22(2Hn−3 + 1)+ 2+ 1 = 23Hn−3 + 22 + 2+ 1
...

= 2n−1H1 + 2n−2 + 2n−3 + · · · + 2+ 1

= 2n−1 + 2n−2 + · · · + 2+ 1

= 2n − 1.

We have used the recurrence relation repeatedly to express Hn in terms of previous terms of
the sequence. In the next to last equality, the initial condition H1 = 1 has been used. The last
equality is based on the formula for the sum of the terms of a geometric series, which can be
found in Theorem 1 in Section 2.4.

The iterative approach has produced the solution to the recurrence relation Hn = 2Hn−1 + 1
with the initial condition H1 = 1. This formula can be proved using mathematical induction.
This is left for the reader as Exercise 1.

A myth created to accompany the puzzle tells of a tower in Hanoi where monks are trans-
ferring 64 gold disks from one peg to another, according to the rules of the puzzle. The myth
says that the world will end when they finish the puzzle. How long after the monks started will
the world end if the monks take one second to move a disk?

From the explicit formula, the monks require

264 − 1 = 18,446,744,073,709,551,615

moves to transfer the disks. Making one move per second, it will take them more than 500 billion
years to complete the transfer, so the world should survive a while longer than it already has. ▲

Remark: Many people have studied variations of the original Tower of Hanoi puzzle discussed
in Example 2. Some variations use more pegs, some allow disks to be of the same size, and some
restrict the types of allowable disk moves. One of the oldest and most interesting variations is the
Reve’s puzzle,∗ proposed in 1907 by Henry Dudeney in his book The Canterbury Puzzles. The
Reve’s puzzle involves pilgrims challenged by the Reve to move a stack of cheeses of varying
sizes from the first of four stools to another stool without ever placing a cheese on one of smaller
diameter. The Reve’s puzzle, expressed in terms of pegs and disks, follows the same rules as the

∗Reve, more commonly spelled reeve, is an archaic word for governor.
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Tower of Hanoi puzzle, except that four pegs are used.You may find it surprising that no one has
been able to establish the minimum number of moves required to solve this puzzle for n disks.
However, there is a conjecture, now more than 50 years old, that the minimum number of moves
required equals the number of moves used by an algorithm invented by Frame and Stewart
in 1939. (See Exercises 38–45 and [St94] for more information.)

Example 3 illustrates how recurrence relations can be used to count bit strings of a specified
length that have a certain property.

EXAMPLE 3 Find a recurrence relation and give initial conditions for the number of bit strings of length n

that do not have two consecutive 0s. How many such bit strings are there of length five?

Solution: Let an denote the number of bit strings of length n that do not have two consecutive 0s.
To obtain a recurrence relation for {an}, note that by the sum rule, the number of bit strings of
length n that do not have two consecutive 0s equals the number of such bit strings ending with
a 0 plus the number of such bit strings ending with a 1. We will assume that n ≥ 3, so that the
bit string has at least three bits.

The bit strings of length n ending with 1 that do not have two consecutive 0s are precisely the
bit strings of length n− 1 with no two consecutive 0s with a 1 added at the end. Consequently,
there are an−1 such bit strings.

Bit strings of length n ending with a 0 that do not have two consecutive 0s must have 1
as their (n− 1)st bit; otherwise they would end with a pair of 0s. It follows that the bit strings
of length n ending with a 0 that have no two consecutive 0s are precisely the bit strings of
length n− 2 with no two consecutive 0s with 10 added at the end. Consequently, there are an−2
such bit strings.

We conclude, as illustrated in Figure 4, that

an = an−1 + an−2

for n ≥ 3.
The initial conditions are a1 = 2, because both bit strings of length one, 0 and 1 do not have

consecutive 0s, and a2 = 3, because the valid bit strings of length two are 01, 10, and 11. To
obtain a5, we use the recurrence relation three times to find that

a3 = a2 + a1 = 3+ 2 = 5,

a4 = a3 + a2 = 5+ 3 = 8,

a5 = a4 + a3 = 8+ 5 = 13. ▲

Any bit string of length n – 1 with
no two consecutive 0s

Any bit string of length n – 2 with
no two consecutive 0s 01

1

Total:        an = an–1 + an–2   

an–1

an–2

Number of bit strings
of length n with no
two consecutive 0s:

End with a 1:

End with a 0:

FIGURE 4 Counting Bit Strings of Length n with No Two Consecutive 0s.
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Remark: Note that {an} satisfies the same recurrence relation as the Fibonacci sequence. Because
a1 = f3 and a2 = f4 it follows that an = fn+2.

Example 4 shows how a recurrence relation can be used to model the number of codewords
that are allowable using certain validity checks.

EXAMPLE 4 Codeword Enumeration A computer system considers a string of decimal digits a valid
codeword if it contains an even number of 0 digits. For instance, 1230407869 is valid,
whereas 120987045608 is not valid. Let an be the number of valid n-digit codewords. Find
a recurrence relation for an.

Solution: Note that a1 = 9 because there are 10 one-digit strings, and only one, namely, the
string 0, is not valid. A recurrence relation can be derived for this sequence by considering how
a valid n-digit string can be obtained from strings of n− 1 digits. There are two ways to form
a valid string with n digits from a string with one fewer digit.

First, a valid string of n digits can be obtained by appending a valid string of n− 1 digits
with a digit other than 0. This appending can be done in nine ways. Hence, a valid string
with n digits can be formed in this manner in 9an−1 ways.

Second, a valid string of n digits can be obtained by appending a 0 to a string of length
n− 1 that is not valid. (This produces a string with an even number of 0 digits because the
invalid string of length n− 1 has an odd number of 0 digits.) The number of ways that this can
be done equals the number of invalid (n− 1)-digit strings. Because there are 10n−1 strings of
length n− 1, and an−1 are valid, there are 10n−1 − an−1 valid n-digit strings obtained by
appending an invalid string of length n− 1 with a 0.

Because all valid strings of length n are produced in one of these two ways, it follows that
there are

an = 9an−1 + (10n−1 − an−1)

= 8an−1 + 10n−1

valid strings of length n. ▲

Example 5 establishes a recurrence relation that appears in many different contexts.

EXAMPLE 5 Find a recurrence relation for Cn, the number of ways to parenthesize the product of n+ 1 num-
bers, x0 · x1 · x2 · · · · · xn, to specify the order of multiplication. For example, C3 = 5 because
there are five ways to parenthesize x0 · x1 · x2 · x3 to determine the order of multiplication:

((x0 · x1) · x2) · x3 (x0 · (x1 · x2)) · x3 (x0 · x1) · (x2 · x3)

x0 · ((x1 · x2) · x3) x0 · (x1 · (x2 · x3)).

Solution: To develop a recurrence relation for Cn, we note that however we insert parentheses
in the product x0 · x1 · x2 · · · · · xn, one “·” operator remains outside all parentheses, namely,
the operator for the final multiplication to be performed. [For example, in (x0 · (x1 · x2)) · x3,
it is the final “·”, while in (x0 · x1) · (x2 · x3) it is the second “·”.] This final operator appears
between two of the n+ 1 numbers, say, xk and xk+1. There are CkCn−k−1 ways to insert
parentheses to determine the order of the n+ 1 numbers to be multiplied when the final op-
erator appears between xk and xk+1, because there are Ck ways to insert parentheses in the
product x0 · x1 · · · · · xk to determine the order in which these k + 1 numbers are to be multi-
plied and Cn−k−1 ways to insert parentheses in the product xk+1 · xk+2 · · · · · xn to determine
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the order in which these n− k numbers are to be multiplied. Because this final operator can
appear between any two of the n+ 1 numbers, it follows that

Cn = C0Cn−1 + C1Cn−2 + · · · + Cn−2C1 + Cn−1C0

=
n−1∑

k= 0

CkCn−k−1.

Note that the initial conditions are C0 = 1 and C1 = 1. ▲

The recurrence relation in Example 5 can be solved using the method of generating func-
tions, which will be discussed in Section 8.4. It can be shown that Cn = C(2n, n)/(n+ 1) (see
Exercise 41 in Section 8.4) and that Cn ∼ 4n

n3/2√π
(see [GrKnPa94]). The sequence {Cn} is the

sequence of Catalan numbers, named after Eugène Charles Catalan. This sequence appears
as the solution of many different counting problems besides the one considered here (see the
chapter on Catalan numbers in [MiRo91] or [Ro84a] for details).

Algorithms and Recurrence Relations

Recurrence relations play an important role in many aspects of the study of algorithms and their
complexity. In Section 8.3, we will show how recurrence relations can be used to analyze the
complexity of divide-and-conquer algorithms, such as the merge sort algorithm introduced in
Section 5.4. As we will see in Section 8.3, divide-and-conquer algorithms recursively divide a
problem into a fixed number of non-overlapping subproblems until they become simple enough
to solve directly. We conclude this section by introducing another algorithmic paradigm known
as dynamic programming, which can be used to solve many optimization problems efficiently.

An algorithm follows the dynamic programming paradigm when it recursively breaks down
a problem into simpler overlapping subproblems, and computes the solution using the solutions
of the subproblems. Generally, recurrence relations are used to find the overall solution from
the solutions of the subproblems. Dynamic programming has been used to solve important
problems in such diverse areas as economics, computer vision, speech recognition, artificial
intelligence, computer graphics, and bioinformatics. In this section we will illustrate the use of
dynamic programming by constructing an algorithm for solving a scheduling problem. Before
doing so, we will relate the amusing origin of the name dynamic programming, which was

EUGÈNE CHARLES CATALAN (1814–1894) Eugène Catalan was born in Bruges, then part of France.
His father became a successful architect in Paris while Eugène was a boy. Catalan attended a Parisian school
for design hoping to follow in his father’s footsteps. At 15, he won the job of teaching geometry to his design
school classmates. After graduating, Catalan attended a school for the fine arts, but because of his mathematical
aptitude his instructors recommended that he enter the École Polytechnique. He became a student there, but after
his first year, he was expelled because of his politics. However, he was readmitted, and in 1835, he graduated
and won a position at the Collège de Châlons sur Marne.

In 1838, Catalan returned to Paris where he founded a preparatory school with two other mathemati-
cians, Sturm and Liouville. After teaching there for a short time, he was appointed to a position at the École

Polytechnique. He received his doctorate from the École Polytechnique in 1841, but his political activity in favor of the French
Republic hurt his career prospects. In 1846 Catalan held a position at the Collège de Charlemagne; he was appointed to the Lycée
Saint Louis in 1849. However, when Catalan would not take a required oath of allegiance to the new Emperor Louis-Napoleon
Bonaparte, he lost his job. For 13 years he held no permanent position. Finally, in 1865 he was appointed to a chair of mathematics
at the University of Liège, Belgium, a position he held until his 1884 retirement.

Catalan made many contributions to number theory and to the related subject of continued fractions. He defined what are now
known as the Catalan numbers when he solved the problem of dissecting a polygon into triangles using non-intersecting diagonals.
Catalan is also well known for formulating what was known as the Catalan conjecture. This asserted that 8 and 9 are the only
consecutive powers of integers, a conjecture not solved until 2003. Catalan wrote many textbooks, including several that became
quite popular and appeared in as many as 12 editions. Perhaps this textbook will have a 12th edition someday!
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introduced by the mathematician Richard Bellman in the 1950s. Bellman was working at the
RAND Corporation on projects for the U.S. military, and at that time, the U.S. Secretary of
Defense was hostile to mathematical research. Bellman decided that to ensure funding, he
needed a name not containing the word mathematics for his method for solving scheduling and
planning problems. He decided to use the adjective dynamic because, as he said “it’s impossible
to use the word dynamic in a pejorative sense” and he thought that dynamic programming was
“something not even a Congressman could object to.”

AN EXAMPLE OF DYNAMIC PROGRAMMING The problem we use to illustrate dynamic
programming is related to the problem studied in Example 7 in Section 3.1. In that problem
our goal was to schedule as many talks as possible in a single lecture hall. These talks have
preset start and end times; once a talk starts, it continues until it ends; no two talks can proceed
at the same time; and a talk can begin at the same time another one ends. We developed a
greedy algorithm that always produces an optimal schedule, as we proved in Example 12 in
Section 5.1. Now suppose that our goal is not to schedule the most talks possible, but rather to
have the largest possible combined attendance of the scheduled talks.

We formalize this problem by supposing that we have n talks, where talk j begins at
time tj , ends at time ej , and will be attended by wj students. We want a schedule that maximizes
the total number of student attendees. That is, we wish to schedule a subset of talks to maximize
the sum of wj over all scheduled talks. (Note that when a student attends more than one talk, this
student is counted according to the number of talks attended.) We denote by T (j) the maximum
number of total attendees for an optimal schedule from the first j talks, so T (n) is the maximal
number of total attendees for an optimal schedule for all n talks.

We first sort the talks in order of increasing end time. After doing this, we renumber the
talks so that e1 ≤ e2 ≤ · · · ≤ en. We say that two talks are compatible if they can be part of the
same schedule, that is, if the times they are scheduled do not overlap (other than the possibility
one ends and the other starts at the same time). We define p(j) to be largest integer i, i < j ,
for which ei ≤ sj , if such an integer exists, and p(j) = 0 otherwise. That is, talk p(j) is the
talk ending latest among talks compatible with talk j that end before talk j ends, if such a talk
exists, and p(j) = 0 if there are no such talks.

RICHARD BELLMAN (1920–1984) Richard Bellman, born in Brooklyn, where his father was a grocer,
spent many hours in the museums and libraries of New York as a child. After graduating high school, he
studied mathematics at Brooklyn College and graduated in 1941. He began postgraduate work at Johns Hopkins
University, but because of the war, left to teach electronics at the University ofWisconsin. He was able to continue
his mathematics studies at Wisconsin, and in 1943 he received his masters degree there. Later, Bellman entered
Princeton University, teaching in a special U.S. Army program. In late 1944, he was drafted into the army. He
was assigned to the Manhattan Project at Los Alamos where he worked in theoretical physics. After the war, he
returned to Princeton and received his Ph.D. in 1946.

After briefly teaching at Princeton, he moved to Stanford University, where he attained tenure. At
Stanford he pursued his fascination with number theory. However, Bellman decided to focus on mathematical questions arising from
real-world problems. In 1952, he joined the RAND Corporation, working on multistage decision processes, operations research
problems, and applications to the social sciences and medicine. He worked on many military projects while at RAND. In 1965 he
left RAND to become professor of mathematics, electrical and biomedical engineering and medicine at the University of Southern
California.

In the 1950s Bellman pioneered the use of dynamic programming, a technique invented earlier, in a wide range of settings. He
is also known for his work on stochastic control processes, in which he introduced what is now called the Bellman equation. He
coined the term curse of dimensionality to describe problems caused by the exponential increase in volume associated with adding
extra dimensions to a space. He wrote an amazing number of books and research papers with many coauthors, including many on
industrial production and economic systems. His work led to the application of computing techniques in a wide variety of areas
ranging from the design of guidance systems for space vehicles, to network optimization, and even to pest control.

Tragically, in 1973 Bellman was diagnosed with a brain tumor. Although it was removed successfully, complications left him
severely disabled. Fortunately, he managed to continue his research and writing during his remaining ten years of life. Bellman
received many prizes and awards, including the first Norbert Wiener Prize in Applied Mathematics and the IEEE Gold Medal of
Honor. He was elected to the National Academy of Sciences. He was held in high regard for his achievements, courage, and admirable
qualities. Bellman was the father of two children.
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Talk 7

Talk 6

Talk 5

Talk 4

Talk 3

Talk 2

Talk 1

8 a.m. 9 a.m. 10 a.m. 11 a.m. 12 noon 1 p.m. 2 p.m. 3 p.m.

p(7) = 4

p(6) = 2

p(5) = 0

p(4) = 0

p(3) = 1

p(2) = 0

p(1) = 0

FIGURE 5 A Schedule of Lectures with the Values of p(n) Shown.

EXAMPLE 6 Consider seven talks with these start times and end times, as illustrated in Figure 5.

Talk 1: start 8 a.m., end 10 a.m.
Talk 2: start 9 a.m., end 11 a.m.
Talk 3: start 10:30 a.m., end 12 noon
Talk 4: start 9:30 a.m., end 1 p.m.

Talk 5: start 8:30 a.m., end 2 p.m.
Talk 6: start 11 a.m., end 2 p.m.
Talk 7: start 1 p.m., end 2 p.m.

Find p(j) for j = 1, 2, . . . , 7.

Solution: We have p(1) = 0 and p(2) = 0, because no talks end before either of the first two
talks begin. We have p(3) = 1 because talk 3 and talk 1 are compatible, but talk 3 and talk 2
are not compatible; p(4) = 0 because talk 4 is not compatible with any of talks 1, 2, and 3;
p(5) = 0 because talk 5 is not compatible with any of talks 1, 2, 3, and 4; and p(6) = 2 because
talk 6 and talk 2 are compatible, but talk 6 is not compatible with any of talks 3, 4, and 5. Finally,
p(7) = 4, because talk 7 and talk 4 are compatible, but talk 7 is not compatible with either of
talks 5 or 6. ▲

To develop a dynamic programming algorithm for this problem, we first develop a key
recurrence relation. To do this, first note that if j ≤ n, there are two possibilities for an optimal
schedule of the first j talks (recall that we are assuming that the n talks are ordered by increasing
end time): (i) talk j belongs to the optimal schedule or (ii) it does not.

Case (i): We know that talks p(j)+ 1, . . . , j − 1 do not belong to this schedule, for none of
these other talks are compatible with talk j . Furthermore, the other talks in this optimal schedule
must comprise an optimal schedule for talks 1, 2, . . . , p(j). For if there were a better schedule
for talks 1, 2, . . . , p(j), by adding talk j , we will have a schedule better than the overall optimal
schedule. Consequently, in case (i), we have T (j) = wj + T (p(j)).

Case (ii): When talk j does not belong to an optimal schedule, it follows that an optimal
schedule from talks 1, 2, . . . , j is the same as an optimal schedule from talks 1, 2, . . . , j − 1.
Consequently, in case (ii), we have T (j) = T (j − 1). Combining cases (i) and (ii) leads us to
the recurrence relation

T (j) = max(wj + T (p(j)), T (j − 1)).

Now that we have developed this recurrence relation, we can construct an efficient algorithm,
Algorithm 1, for computing the maximum total number of attendees.We ensure that the algorithm
is efficient by storing the value of each T (j) after we compute it. This allows us to compute T (j)
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only once. If we did not do this, the algorithm would have exponential worst-case complexity.
The process of storing the values as each is computed is known as memoization and is an
important technique for making recursive algorithms efficient.

ALGORITHM 1 Dynamic Programming Algorithm for Scheduling Talks.

procedure Maximum Attendees (s1, s2, . . . , sn: start times of talks;
e1, e2, . . . , en: end times of talks; w1, w2, . . . , wn: number of attendees to talks)
sort talks by end time and relabel so that e1 ≤ e2 ≤ · · · ≤ en

for j := 1 to n

if no job i with i < j is compatible with job j

p(j) = 0
else p(j) := max{i | i < j and job i is compatible with job j}
T (0) := 0

for j := 1 to n

T (j) := max(wj + T (p(j)), T (j − 1))

return T (n){T (n) is the maximum number of attendees}

In Algorithm 1 we determine the maximum number of attendees that can be achieved
by a schedule of talks, but we do not find a schedule that achieves this maximum. To find
talks we need to schedule, we use the fact that talk j belongs to an optimal solution for the
first j talks if and only if wj + T (p(j)) ≥ T (j − 1). We leave it as Exercise 53 to construct an
algorithm based on this observation that determines which talks should be scheduled to achieve
the maximum total number of attendees.

Algorithm 1 is a good example of dynamic programming as the maximum total atten-
dance is found using the optimal solutions of the overlapping subproblems, each of which de-
termines the maximum total attendance of the first j talks for some j with 1 ≤ j ≤ n− 1.
See Exercises 56 and 57 and Supplementary Exercises 14 and 17 for other examples of
dynamic programming.

Exercises

1. Use mathematical induction to verify the formula derived
in Example 2 for the number of moves required to com-
plete the Tower of Hanoi puzzle.

2. a) Find a recurrence relation for the number of permu-
tations of a set with n elements.

b) Use this recurrence relation to find the number of per-
mutations of a set with n elements using iteration.

3. A vending machine dispensing books of stamps accepts
only one-dollar coins, $1 bills, and $5 bills.
a) Find a recurrence relation for the number of ways

to deposit n dollars in the vending machine, where
the order in which the coins and bills are deposited
matters.

b) What are the initial conditions?
c) How many ways are there to deposit $10 for a book

of stamps?
4. A country uses as currency coins with values of 1 peso,

2 pesos, 5 pesos, and 10 pesos and bills with values of

5 pesos, 10 pesos, 20 pesos, 50 pesos, and 100 pesos. Find
a recurrence relation for the number of ways to pay a bill
of n pesos if the order in which the coins and bills are
paid matters.

5. How many ways are there to pay a bill of 17 pesos using
the currency described in Exercise 4, where the order in
which coins and bills are paid matters?

∗6. a) Find a recurrence relation for the number of strictly
increasing sequences of positive integers that have 1
as their first term and n as their last term, where n is
a positive integer. That is, sequences a1, a2, . . . , ak ,
where a1 = 1, ak = n, and aj < aj+1 for j =
1, 2, . . . , k − 1.

b) What are the initial conditions?
c) How many sequences of the type described in (a) are

there when n is an integer with n ≥ 2?

7. a) Find a recurrence relation for the number of bit strings
of length n that contain a pair of consecutive 0s.
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b) What are the initial conditions?
c) How many bit strings of length seven contain two

consecutive 0s?

8. a) Find a recurrence relation for the number of bit strings
of length n that contain three consecutive 0s.

b) What are the initial conditions?
c) How many bit strings of length seven contain three

consecutive 0s?

9. a) Find a recurrence relation for the number of bit strings
of length n that do not contain three consecutive 0s.

b) What are the initial conditions?
c) How many bit strings of length seven do not contain

three consecutive 0s?
∗10. a) Find a recurrence relation for the number of bit strings

of length n that contain the string 01.
b) What are the initial conditions?
c) How many bit strings of length seven contain the

string 01?

11. a) Find a recurrence relation for the number of ways to
climb n stairs if the person climbing the stairs can take
one stair or two stairs at a time.

b) What are the initial conditions?
c) In how many ways can this person climb a flight of

eight stairs?

12. a) Find a recurrence relation for the number of ways to
climb n stairs if the person climbing the stairs can take
one, two, or three stairs at a time.

b) What are the initial conditions?
c) In many ways can this person climb a flight of eight

stairs?
A string that contains only 0s, 1s, and 2s is called a ternary
string.

13. a) Find a recurrence relation for the number of ternary
strings of length n that do not contain two consecutive
0s.

b) What are the initial conditions?
c) How many ternary strings of length six do not contain

two consecutive 0s?

14. a) Find a recurrence relation for the number of
ternary strings of length n that contain two
consecutive 0s.

b) What are the initial conditions?
c) How many ternary strings of length six contain two

consecutive 0s?
∗15. a) Find a recurrence relation for the number of ternary

strings of length n that do not contain two consecutive
0s or two consecutive 1s.

b) What are the initial conditions?
c) How many ternary strings of length six do not contain

two consecutive 0s or two consecutive 1s?
∗16. a) Find a recurrence relation for the number of ternary

strings of length n that contain either two consecutive
0s or two consecutive 1s.

b) What are the initial conditions?
c) How many ternary strings of length six contain two

consecutive 0s or two consecutive 1s?

∗17. a) Find a recurrence relation for the number of ternary
strings of length n that do not contain consecutive
symbols that are the same.

b) What are the initial conditions?
c) How many ternary strings of length six do not contain

consecutive symbols that are the same?
∗∗18. a) Find a recurrence relation for the number of ternary

strings of length n that contain two consecutive sym-
bols that are the same.

b) What are the initial conditions?
c) How many ternary strings of length six contain con-

secutive symbols that are the same?

19. Messages are transmitted over a communications channel
using two signals. The transmittal of one signal requires
1 microsecond, and the transmittal of the other signal re-
quires 2 microseconds.
a) Find a recurrence relation for the number of differ-

ent messages consisting of sequences of these two
signals, where each signal in the message is imme-
diately followed by the next signal, that can be sent
in n microseconds.

b) What are the initial conditions?
c) How many different messages can be sent in 10 mi-

croseconds using these two signals?
20. A bus driver pays all tolls, using only nickels and dimes,

by throwing one coin at a time into the mechanical toll
collector.
a) Find a recurrence relation for the number of different

ways the bus driver can pay a toll of n cents (where
the order in which the coins are used matters).

b) In how many different ways can the driver pay a toll
of 45 cents?

21. a) Find the recurrence relation satisfied by Rn, where Rn

is the number of regions that a plane is divided into
by n lines, if no two of the lines are parallel and no
three of the lines go through the same point.

b) Find Rn using iteration.
∗22. a) Find the recurrence relation satisfied by Rn, where Rn

is the number of regions into which the surface of a
sphere is divided by n great circles (which are the in-
tersections of the sphere and planes passing through
the center of the sphere), if no three of the great circles
go through the same point.

b) Find Rn using iteration.
∗23. a) Find the recurrence relation satisfied by Sn, where Sn

is the number of regions into which three-dimensional
space is divided by n planes if every three of the planes
meet in one point, but no four of the planes go through
the same point.

b) Find Sn using iteration.

24. Find a recurrence relation for the number of bit sequences
of length n with an even number of 0s.

25. How many bit sequences of length seven contain an even
number of 0s?
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26. a) Find a recurrence relation for the number of ways to
completely cover a 2× n checkerboard with 1× 2
dominoes. [Hint: Consider separately the coverings
where the position in the top right corner of the
checkerboard is covered by a domino positioned hor-
izontally and where it is covered by a domino posi-
tioned vertically.]

b) What are the initial conditions for the recurrence re-
lation in part (a)?

c) How many ways are there to completely cover a
2× 17 checkerboard with 1× 2 dominoes?

27. a) Find a recurrence relation for the number of ways to
lay out a walkway with slate tiles if the tiles are red,
green, or gray, so that no two red tiles are adjacent and
tiles of the same color are considered indistinguish-
able.

b) What are the initial conditions for the recurrence re-
lation in part (a)?

c) How many ways are there to lay out a path of seven
tiles as described in part (a)?

28. Show that the Fibonacci numbers satisfy the recurrence
relation fn = 5fn−4 + 3fn−5 for n = 5, 6, 7, . . . , to-
gether with the initial conditions f0 = 0, f1 = 1, f2 = 1,
f3 = 2, and f4 = 3. Use this recurrence relation to show
that f5n is divisible by 5, for n = 1, 2, 3, . . . .

∗29. Let S(m, n) denote the number of onto functions from
a set with m elements to a set with n elements. Show
that S(m, n) satisfies the recurrence relation

S(m, n) = nm −
n−1∑

k=1

C(n, k)S(m, k)

whenever m ≥ n and n > 1, with the initial condition
S(m, 1) = 1.

30. a) Write out all the ways the product x0 · x1 · x2 · x3 · x4
can be parenthesized to determine the order of multi-
plication.

b) Use the recurrence relation developed in Example 5
to calculate C4, the number of ways to parenthesize
the product of five numbers so as to determine the or-
der of multiplication. Verify that you listed the correct
number of ways in part (a).

c) Check your result in part (b) by finding C4, using the
closed formula for Cn mentioned in the solution of
Example 5.

31. a) Use the recurrence relation developed in Example 5 to
determine C5, the number of ways to parenthesize the
product of six numbers so as to determine the order
of multiplication.

b) Check your result with the closed formula for C5 men-
tioned in the solution of Example 5.

∗32. In the Tower of Hanoi puzzle, suppose our goal is to trans-
fer all n disks from peg 1 to peg 3, but we cannot move a
disk directly between pegs 1 and 3. Each move of a disk
must be a move involving peg 2. As usual, we cannot
place a disk on top of a smaller disk.

a) Find a recurrence relation for the number of moves re-
quired to solve the puzzle for n disks with this added
restriction.

b) Solve this recurrence relation to find a formula for the
number of moves required to solve the puzzle for n

disks.
c) How many different arrangements are there of the n

disks on three pegs so that no disk is on top of a smaller
disk?

d) Show that every allowable arrangement of the n disks
occurs in the solution of this variation of the puzzle.

Exercises 33–37 deal with a variation of the Josephus
problem described by Graham, Knuth, and Patashnik in
[GrKnPa94]. This problem is based on an account by the his-
torian Flavius Josephus, who was part of a band of 41 Jewish
rebels trapped in a cave by the Romans during the Jewish-
Roman war of the first century. The rebels preferred suicide
to capture; they decided to form a circle and to repeatedly
count off around the circle, killing every third rebel left alive.
However, Josephus and another rebel did not want to be killed
this way; they determined the positions where they should
stand to be the last two rebels remaining alive. The variation
we consider begins with n people, numbered 1 to n, stand-
ing around a circle. In each stage, every second person still
left alive is eliminated until only one survives. We denote the
number of the survivor by J (n).
33. Determine the value of J (n) for each integer n with

1 ≤ n ≤ 16.
34. Use the values you found in Exercise 33 to conjecture a

formula for J (n). [Hint: Write n = 2m + k, where m is
a nonnegative integer and k is a nonnegative integer less
than 2m.]

35. Show that J (n) satisfies the recurrence relation J (2n) =
2J (n)− 1 and J (2n+ 1) = 2J (n)+ 1, for n ≥ 1, and
J (1) = 1.

36. Use mathematical induction to prove the formula you
conjectured in Exercise 34, making use of the recurrence
relation from Exercise 35.

37. Determine J (100), J (1000), and J (10,000) from your
formula for J (n).

Exercises 38–45 involve the Reve’s puzzle, the variation of
the Tower of Hanoi puzzle with four pegs and n disks. Before
presenting these exercises, we describe the Frame–Stewart al-
gorithm for moving the disks from peg 1 to peg 4 so that no
disk is ever on top of a smaller one. This algorithm, given
the number of disks n as input, depends on a choice of an
integer k with 1 ≤ k ≤ n. When there is only one disk, move
it from peg 1 to peg 4 and stop. For n > 1, the algorithm pro-
ceeds recursively, using these three steps. Recursively move
the stack of the n− k smallest disks from peg 1 to peg 2,
using all four pegs. Next move the stack of the k largest
disks from peg 1 to peg 4, using the three-peg algorithm from
the Tower of Hanoi puzzle without using the peg holding
the n− k smallest disks. Finally, recursively move the
smallest n− k disks to peg 4, using all four pegs. Frame
and Stewart showed that to produce the fewest moves using
their algorithm, k should be chosen to be the smallest integer
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such that n does not exceed tk = k(k + 1)/2, the kth triangu-
lar number, that is, tk−1 < n ≤ tk . The unsettled conjecture,
known as Frame’s conjecture, is that this algorithm uses the
fewest number of moves required to solve the puzzle, no mat-
ter how the disks are moved.

38. Show that the Reve’s puzzle with three disks can be solved
using five, and no fewer, moves.

39. Show that the Reve’s puzzle with four disks can be solved
using nine, and no fewer, moves.

40. Describe the moves made by the Frame–Stewart al-
gorithm, with k chosen so that the fewest moves are
required, for
a) 5 disks. b) 6 disks. c) 7 disks. d) 8 disks.

∗41. Show that if R(n) is the number of moves used by
the Frame–Stewart algorithm to solve the Reve’s puzzle
with n disks, where k is chosen to be the smallest integer
with n ≤ k(k + 1)/2, then R(n) satisfies the recurrence
relation R(n) = 2R(n− k)+ 2k − 1, with R(0) = 0
and R(1) = 1.

∗42. Show that if k is as chosen in Exercise 41, then
R(n)− R(n− 1) = 2k−1.

∗43. Show that if k is as chosen in Exercise 41, then
R(n) =∑k

i= 1 i2i−1 − (tk − n)2k−1.

∗44. Use Exercise 43 to give an upper bound on the num-
ber of moves required to solve the Reve’s puzzle for all
integers n with 1 ≤ n ≤ 25.

∗45. Show that R(n) is O(
√

n2
√

2n).
Let {an} be a sequence of real numbers. The backward dif-
ferences of this sequence are defined recursively as shown
next. The first difference ∇an is

∇an = an − an−1.

The (k + 1)st difference ∇k+1an is obtained from ∇kan by

∇k+1an = ∇kan − ∇kan−1.

46. Find ∇an for the sequence {an}, where
a) an = 4. b) an = 2n.

c) an = n2. d) an = 2n.
47. Find ∇2an for the sequences in Exercise 46.

48. Show that an−1 = an − ∇an.

49. Show that an−2 = an − 2∇an + ∇2an.

∗50. Prove that an−k can be expressed in terms of an, ∇an,
∇2an, . . . ,∇kan.

51. Express the recurrence relation an = an−1 + an−2 in
terms of an,∇an, and ∇2an.

52. Show that any recurrence relation for the sequence {an}
can be written in terms of an,∇an,∇2an, . . . . The result-
ing equation involving the sequences and its differences
is called a difference equation.

∗53. Construct the algorithm described in the text after Algo-
rithm 1 for determining which talks should be scheduled
to maximize the total number of attendees and not just
the maximum total number of attendees determined by
Algorithm 1.

54. Use Algorithm 1 to determine the maximum number of
total attendees in the talks in Example 6 if wi , the number
of attendees of talk i, i = 1, 2, . . . , 7, is
a) 20, 10, 50, 30, 15, 25, 40.
b) 100, 5, 10, 20, 25, 40, 30.
c) 2, 3, 8, 5, 4, 7, 10.
d) 10, 8, 7, 25, 20, 30, 5.

55. For each part of Exercise 54, use your algorithm from
Exercise 53 to find the optimal schedule for talks so that
the total number of attendees is maximized.

56. In this exercise we will develop a dynamic program-
ming algorithm for finding the maximum sum of con-
secutive terms of a sequence of real numbers. That
is, given a sequence of real numbers a1, a2, . . . , an,
the algorithm computes the maximum sum

∑k
i=j ai

where 1 ≤ j ≤ k ≤ n.
a) Show that if all terms of the sequence are nonnegative,

this problem is solved by taking the sum of all terms.
Then, give an example where the maximum sum of
consecutive terms is not the sum of all terms.

b) Let M(k) be the maximum of the sums of consecutive
terms of the sequence ending at ak . That is, M(k) =
max1≤j≤k

∑k
i=j ai . Explain why the recurrence rela-

tion M(k) = max(M(k − 1)+ ak, ak) holds for k =
2, ..., n.

c) Use part (b) to develop a dynamic programming algo-
rithm for solving this problem.

d) Show each step your algorithm from part (c) uses to
find the maximum sum of consecutive terms of the
sequence 2,−3, 4, 1,−2, 3.

e) Show that the worst-case complexity in terms of the
number of additions and comparisons of your algo-
rithm from part (c) is linear.

∗57. Dynamic programming can be used to develop
an algorithm for solving the matrix-chain multi-
plication problem introduced in Section 3.3. This
is the problem of determining how the product
A1A2 · · ·An can be computed using the fewest
integer multiplications, where A1, A2, . . . , An are
m1 ×m2, m2 ×m3, . . . , mn ×mn+1 matrices, respec-
tively, and each matrix has integer entries. Recall that
by the associative law, the product does not depend on
the order in which the matrices are multiplied.
a) Show that the brute-force method of determining the

minimum number of integer multiplications needed to
solve a matrix-chain multiplication problem has expo-
nential worst-case complexity. [Hint: Do this by first
showing that the order of multiplication of matrices
is specified by parenthesizing the product. Then, use
Example 5 and the result of part (c) of Exercise 41 in
Section 8.4.]
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b) Denote by Aij the product AiAi+1 . . . , Aj ,
and M(i, j) the minimum number of integer mul-
tiplications required to find Aij . Show that if the
least number of integer multiplications are used to
compute Aij , where i < j , by splitting the product
into the product of Ai through Ak and the product
of Ak+1 through Aj , then the first k terms must
be parenthesized so that Aik is computed in the
optimal way using M(i, k) integer multiplications
and Ak+1,j must be parenthesized so that Ak+1,j

is computed in the optimal way using M(k + 1, j)

integer multiplications.

c) Explain why part (b) leads to the recurrence rela-
tion M(i, j) = mini≤k<j (M(i, k)+M(k + 1, j)+
mimk+1mj+1) if 1 ≤ i ≤ j < j ≤ n.

d) Use the recurrence relation in part (c) to construct
an efficient algorithm for determining the order
the n matrices should be multiplied to use the min-
imum number of integer multiplications. Store the
partial results M(i, j) as you find them so that your
algorithm will not have exponential complexity.

e) Show that your algorithm from part (d) has O(n3)

worst-case complexity in terms of multiplications of
integers.

8.2 Solving Linear Recurrence Relations

Introduction

A wide variety of recurrence relations occur in models. Some of these recurrence relations can
be solved using iteration or some other ad hoc technique. However, one important class of
recurrence relations can be explicitly solved in a systematic way. These are recurrence relations
that express the terms of a sequence as linear combinations of previous terms.

DEFINITION 1 A linear homogeneous recurrence relation of degree k with constant coefficients is a recur-
rence relation of the form

an = c1an−1 + c2an−2 + · · · + ckan−k,

where c1, c2, . . . , ck are real numbers, and ck �= 0.

The recurrence relation in the definition is linear because the right-hand side is a sum of
previous terms of the sequence each multiplied by a function of n. The recurrence relation is
homogeneous because no terms occur that are not multiples of the aj s. The coefficients of the
terms of the sequence are all constants, rather than functions that depend on n. The degree
is k because an is expressed in terms of the previous k terms of the sequence.

A consequence of the second principle of mathematical induction is that a sequence satis-
fying the recurrence relation in the definition is uniquely determined by this recurrence relation
and the k initial conditions

a0 = C0, a1 = C1, . . . , ak−1 = Ck−1.

EXAMPLE 1 The recurrence relation Pn = (1.11)Pn−1 is a linear homogeneous recurrence relation of degree
one. The recurrence relation fn = fn−1 + fn−2 is a linear homogeneous recurrence relation of
degree two. The recurrence relation an = an−5 is a linear homogeneous recurrence relation of
degree five. ▲

Example 2 presents some examples of recurrence relations that are not linear homogeneous
recurrence relations with constant coefficients.

EXAMPLE 2 The recurrence relation an = an−1 + a2
n−2 is not linear. The recurrence relation Hn =

2Hn−1+ 1 is not homogeneous. The recurrence relation Bn = nBn−1 does not have constant
coefficients. ▲
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Linear homogeneous recurrence relations are studied for two reasons. First, they often occur
in modeling of problems. Second, they can be systematically solved.

Solving Linear Homogeneous Recurrence Relations
with Constant Coefficients

The basic approach for solving linear homogeneous recurrence relations is to look for solutions
of the form an = rn, where r is a constant. Note that an = rn is a solution of the recurrence
relation an = c1an−1 + c2an−2 + · · · + ckan−k if and only if

rn = c1r
n−1 + c2r

n−2 + · · · + ckr
n−k.

When both sides of this equation are divided by rn−k and the right-hand side is subtracted from
the left, we obtain the equation

rk − c1r
k−1 − c2r

k−2 − · · · − ck−1r − ck = 0.

Consequently, the sequence {an} with an = rn is a solution if and only if r is a solution of this
last equation. We call this the characteristic equation of the recurrence relation. The solutions
of this equation are called the characteristic roots of the recurrence relation. As we will see,
these characteristic roots can be used to give an explicit formula for all the solutions of the
recurrence relation.

We will first develop results that deal with linear homogeneous recurrence relations with
constant coefficients of degree two. Then corresponding general results when the degree may be
greater than two will be stated. Because the proofs needed to establish the results in the general
case are more complicated, they will not be given here.

We now turn our attention to linear homogeneous recurrence relations of degree two. First,
consider the case when there are two distinct characteristic roots.

THEOREM 1 Let c1 and c2 be real numbers. Suppose that r2 − c1r − c2 = 0 has two distinct roots r1
and r2. Then the sequence {an} is a solution of the recurrence relation an = c1an−1 + c2an−2
if and only if an = α1r

n
1 + α2r

n
2 for n = 0, 1, 2, . . . , where α1 and α2 are constants.

Proof: We must do two things to prove the theorem. First, it must be shown that if r1 and r2
are the roots of the characteristic equation, and α1 and α2 are constants, then the sequence {an}
with an = α1r

n
1 + α2r

n
2 is a solution of the recurrence relation. Second, it must be shown that

if the sequence {an} is a solution, then an = α1r
n
1 + α2r

n
2 for some constants α1 and α2.

Now we will show that if an = α1r
n
1 + α2r

n
2 , then the sequence {an} is a solution

of the recurrence relation. Because r1 and r2 are roots of r2 − c1r − c2 = 0, it follows
that r2

1 = c1r1 + c2, r2
2 = c1r2 + c2.

From these equations, we see that

c1an−1 + c2an−2 = c1(α1r
n−1
1 + α2r

n−1
2 )+ c2(α1r

n−2
1 + α2r

n−2
2 )

= α1r
n−2
1 (c1r1 + c2)+ α2r

n−2
2 (c1r2 + c2)

= α1r
n−2
1 r2

1 + α2r
n−2
2 r2

2

= α1r
n
1 + α2r

n
2

= an.

This shows that the sequence {an}with an = α1r
n
1 + α2r

n
2 is a solution of the recurrence relation.
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To show that every solution {an} of the recurrence relation an = c1an−1 + c2an−2
has an = α1r

n
1 + α2r

n
2 for n = 0, 1, 2, . . . , for some constants α1 and α2, suppose that {an} is a

solution of the recurrence relation, and the initial conditions a0 = C0 and a1 = C1 hold. It will
be shown that there are constants α1 and α2 such that the sequence {an}with an = α1r

n
1 + α2r

n
2

satisfies these same initial conditions. This requires that

a0 = C0 = α1 + α2,

a1 = C1 = α1r1 + α2r2.

We can solve these two equations for α1 and α2. From the first equation it follows that
α2 = C0 − α1. Inserting this expression into the second equation gives

C1 = α1r1 + (C0 − α1)r2.

Hence,

C1 = α1(r1 − r2)+ C0r2.

This shows that

α1 = C1 − C0r2

r1 − r2

and

α2 = C0 − α1 = C0 − C1 − C0r2

r1 − r2
= C0r1 − C1

r1 − r2
,

where these expressions for α1 and α2 depend on the fact that r1 �= r2. (When r1 = r2, this
theorem is not true.) Hence, with these values for α1 and α2, the sequence {an}with α1r

n
1 + α2r

n
2

satisfies the two initial conditions.
We know that {an} and {α1r

n
1 + α2r

n
2 } are both solutions of the recurrence relation

an = c1an−1 + c2an−2 and both satisfy the initial conditions when n = 0 and n = 1. Because
there is a unique solution of a linear homogeneous recurrence relation of degree two with two
initial conditions, it follows that the two solutions are the same, that is, an = α1r

n
1 + α2r

n
2 for

all nonnegative integers n. We have completed the proof by showing that a solution of the lin-
ear homogeneous recurrence relation with constant coefficients of degree two must be of the
form an = α1r

n
1 + α2r

n
2 , where α1 and α2 are constants.

The characteristic roots of a linear homogeneous recurrence relation with constant coeffi-
cients may be complex numbers. Theorem 1 (and also subsequent theorems in this section) still
applies in this case. Recurrence relations with complex characteristic roots will not be discussed
in the text. Readers familiar with complex numbers may wish to solve Exercises 38 and 39.

Examples 3 and 4 show how to use Theorem 1 to solve recurrence relations.

EXAMPLE 3 What is the solution of the recurrence relation

an = an−1 + 2an−2

with a0 = 2 and a1 = 7?

Solution: Theorem 1 can be used to solve this problem. The characteristic equation of the
recurrence relation is r2 − r − 2 = 0. Its roots are r = 2 and r = −1. Hence, the sequence {an}
is a solution to the recurrence relation if and only if

an = α12n + α2(−1)n,
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for some constants α1 and α2. From the initial conditions, it follows that

a0 = 2 = α1 + α2,

a1 = 7 = α1 · 2+ α2 · (−1).

Solving these two equations shows that α1 = 3 and α2 = −1. Hence, the solution to the recur-
rence relation and initial conditions is the sequence {an} with

an = 3 · 2n − (−1)n. ▲

EXAMPLE 4 Find an explicit formula for the Fibonacci numbers.

Solution: Recall that the sequence of Fibonacci numbers satisfies the recurrence relation
fn = fn−1 + fn−2 and also satisfies the initial conditions f0 = 0 and f1 = 1. The roots of the
characteristic equation r2 − r − 1 = 0 are r1 = (1+√5)/2 and r2 = (1−√5)/2. Therefore,
from Theorem 1 it follows that the Fibonacci numbers are given by

fn = α1

(
1+√5

2

)n

+ α2

(
1−√5

2

)n

,

for some constants α1 and α2. The initial conditions f0 = 0 and f1 = 1 can be used to find these
constants. We have

f0 = α1 + α2 = 0,

f1 = α1

(
1+√5

2

)
+ α2

(
1−√5

2

)
= 1.

The solution to these simultaneous equations for α1 and α2 is

α1 = 1/
√

5, α2 = −1/
√

5.

Consequently, the Fibonacci numbers are given by

fn = 1√
5

(
1+√5

2

)n

− 1√
5

(
1−√5

2

)n

.
▲

Theorem 1 does not apply when there is one characteristic root of multiplicity two. If
this happens, then an = nrn

0 is another solution of the recurrence relation when r0 is a root of
multiplicity two of the characteristic equation. Theorem 2 shows how to handle this case.

THEOREM 2 Let c1 and c2 be real numbers with c2 �= 0. Suppose that r2 − c1r − c2 = 0 has only one
root r0. A sequence {an} is a solution of the recurrence relation an = c1an−1 + c2an−2 if and
only if an = α1r

n
0 + α2nrn

0 , for n = 0, 1, 2, . . . , where α1 and α2 are constants.

The proof of Theorem 2 is left as Exercise 10. Example 5 illustrates the use of this theorem.
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EXAMPLE 5 What is the solution of the recurrence relation

an = 6an−1 − 9an−2

with initial conditions a0 = 1 and a1 = 6?

Solution: The only root of r2 − 6r + 9 = 0 is r = 3. Hence, the solution to this recurrence
relation is

an = α13n + α2n3n

for some constants α1 and α2. Using the initial conditions, it follows that

a0 = 1 = α1,

a1 = 6 = α1 · 3+ α2 · 3.

Solving these two equations shows that α1 = 1 and α2 = 1. Consequently, the solution to this
recurrence relation and the initial conditions is

an = 3n + n3n.

▲

We will now state the general result about the solution of linear homogeneous recurrence
relations with constant coefficients, where the degree may be greater than two, under the as-
sumption that the characteristic equation has distinct roots. The proof of this result will be left
as Exercise 16.

THEOREM 3 Let c1, c2, . . . , ck be real numbers. Suppose that the characteristic equation

rk − c1r
k−1 − · · · − ck = 0

has k distinct roots r1, r2, . . . , rk . Then a sequence {an} is a solution of the recurrence relation

an = c1an−1 + c2an−2 + · · · + ckan−k

if and only if

an = α1r
n
1 + α2r

n
2 + · · · + αkr

n
k

for n = 0, 1, 2, . . . , where α1, α2, . . . , αk are constants.

We illustrate the use of the theorem with Example 6.

EXAMPLE 6 Find the solution to the recurrence relation

an = 6an−1 − 11an−2 + 6an−3

with the initial conditions a0 = 2, a1 = 5, and a2 = 15.
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Solution: The characteristic polynomial of this recurrence relation is

r3 − 6r2 + 11r − 6.

The characteristic roots are r = 1, r = 2, and r = 3, because r3 − 6r2 + 11r − 6 =
(r − 1)(r − 2)(r − 3). Hence, the solutions to this recurrence relation are of the form

an = α1 · 1n + α2 · 2n + α3 · 3n.

To find the constants α1, α2, and α3, use the initial conditions. This gives

a0 = 2 = α1 + α2 + α3,

a1 = 5 = α1 + α2 · 2+ α3 · 3,

a2 = 15 = α1 + α2 · 4+ α3 · 9.

When these three simultaneous equations are solved for α1, α2, and α3, we find that α1 = 1,
α2 = −1, and α3 = 2. Hence, the unique solution to this recurrence relation and the given initial
conditions is the sequence {an} with

an = 1− 2n + 2 · 3n. ▲

We now state the most general result about linear homogeneous recurrence relations with
constant coefficients, allowing the characteristic equation to have multiple roots. The key point
is that for each root r of the characteristic equation, the general solution has a summand of the
form P(n)rn, where P(n) is a polynomial of degree m− 1, with m the multiplicity of this root.
We leave the proof of this result as Exercise 51.

THEOREM 4 Let c1, c2, . . . , ck be real numbers. Suppose that the characteristic equation

rk − c1r
k−1 − · · · − ck = 0

has t distinct roots r1, r2, . . . , rt with multiplicities m1, m2, . . . , mt , respectively, so
that mi ≥ 1 for i = 1, 2, . . . , t and m1 +m2 + · · · +mt = k. Then a sequence {an} is a
solution of the recurrence relation

an = c1an−1 + c2an−2 + · · · + ckan−k

if and only if

an = (α1,0 + α1,1n+ · · · + α1,m1−1n
m1−1)rn

1

+ (α2,0 + α2,1n+ · · · + α2,m2−1n
m2−1)rn

2

+ · · · + (αt,0 + αt,1n+ · · · + αt,mt−1n
mt−1)rn

t

for n = 0, 1, 2, . . . , where αi,j are constants for 1 ≤ i ≤ t and 0 ≤ j ≤ mi − 1.

Example 7 illustrates how Theorem 4 is used to find the general form of a solution of a
linear homogeneous recurrence relation when the characteristic equation has several repeated
roots.
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EXAMPLE 7 Suppose that the roots of the characteristic equation of a linear homogeneous recurrence relation
are 2, 2, 2, 5, 5, and 9 (that is, there are three roots, the root 2 with multiplicity three, the root
5 with multiplicity two, and the root 9 with multiplicity one). What is the form of the general
solution?

Solution: By Theorem 4, the general form of the solution is

(α1,0 + α1,1n+ α1,2n
2)2n + (α2,0 + α2,1n)5n + α3,09n.

▲

We now illustrate the use of Theorem 4 to solve a linear homogeneous recurrence relation
with constant coefficients when the characteristic equation has a root of multiplicity three.

EXAMPLE 8 Find the solution to the recurrence relation

an = −3an−1 − 3an−2 − an−3

with initial conditions a0 = 1, a1 = −2, and a2 = −1.

Solution: The characteristic equation of this recurrence relation is

r3 + 3r2 + 3r + 1 = 0.

Because r3 + 3r2 + 3r + 1 = (r + 1)3, there is a single root r = −1 of multiplicity three of
the characteristic equation. By Theorem 4 the solutions of this recurrence relation are of the
form

an = α1,0(−1)n + α1,1n(−1)n + α1,2n
2(−1)n.

To find the constants α1,0, α1,1, and α1,2, use the initial conditions. This gives

a0 = 1 = α1,0,

a1 = −2 = −α1,0 − α1,1 − α1,2,

a2 = −1 = α1,0 + 2α1,1 + 4α1,2.

The simultaneous solution of these three equations is α1,0 = 1, α1,1 = 3, and α1,2 = −2.
Hence, the unique solution to this recurrence relation and the given initial conditions is the
sequence {an} with

an = (1+ 3n− 2n2)(−1)n.
▲

Linear Nonhomogeneous Recurrence Relations
with Constant Coefficients

We have seen how to solve linear homogeneous recurrence relations with constant coefficients.
Is there a relatively simple technique for solving a linear, but not homogeneous, recurrence
relation with constant coefficients, such as an = 3an−1 + 2n? We will see that the answer is yes
for certain families of such recurrence relations.

The recurrence relation an = 3an−1 + 2n is an example of a linear nonhomogeneous
recurrence relation with constant coefficients, that is, a recurrence relation of the form

an = c1an−1 + c2an−2 + · · · + ckan−k + F(n),
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where c1, c2, . . . , ck are real numbers and F(n) is a function not identically zero depending
only on n. The recurrence relation

an = c1an−1 + c2an−2 + · · · + ckan−k

is called the associated homogeneous recurrence relation. It plays an important role in the
solution of the nonhomogeneous recurrence relation.

EXAMPLE 9 Each of the recurrence relations an = an−1 + 2n, an = an−1 + an−2 + n2 + n+ 1, an =
3an−1 + n3n, and an = an−1 + an−2 + an−3 + n! is a linear nonhomogeneous recurrence re-
lation with constant coefficients. The associated linear homogeneous recurrence relations are
an = an−1, an = an−1 + an−2, an = 3an−1, and an = an−1 + an−2 + an−3, respectively. ▲

The key fact about linear nonhomogeneous recurrence relations with constant coefficients
is that every solution is the sum of a particular solution and a solution of the associated linear
homogeneous recurrence relation, as Theorem 5 shows.

THEOREM 5
If {a(p)

n } is a particular solution of the nonhomogeneous linear recurrence relation with
constant coefficients

an = c1an−1 + c2an−2 + · · · + ckan−k + F(n),

then every solution is of the form {a(p)
n + a

(h)
n }, where {a(h)

n } is a solution of the associated
homogeneous recurrence relation

an = c1an−1 + c2an−2 + · · · + ckan−k.

Proof: Because {a(p)
n } is a particular solution of the nonhomogeneous recurrence relation, we

know that

a
(p)
n = c1a

(p)
n−1 + c2a

(p)
n−2 + · · · + cka

(p)
n−k + F(n).

Now suppose that {bn} is a second solution of the nonhomogeneous recurrence relation, so that

bn = c1bn−1 + c2bn−2 + · · · + ckbn−k + F(n).

Subtracting the first of these two equations from the second shows that

bn − a
(p)
n = c1(bn−1 − a

(p)
n−1)+ c2(bn−2 − a

(p)
n−2)+ · · · + ck(bn−k − a

(p)
n−k).

It follows that {bn − a
p
n } is a solution of the associated homogeneous linear recurrence,

say, {a(h)
n }. Consequently, bn = a

(p)
n + a

(h)
n for all n.

By Theorem 5, we see that the key to solving nonhomogeneous recurrence relations with
constant coefficients is finding a particular solution. Then every solution is a sum of this solution
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and a solution of the associated homogeneous recurrence relation. Although there is no general
method for finding such a solution that works for every function F(n), there are techniques that
work for certain types of functions F(n), such as polynomials and powers of constants. This is
illustrated in Examples 10 and 11.

EXAMPLE 10 Find all solutions of the recurrence relation an = 3an−1 + 2n. What is the solution with a1 = 3?

Solution: To solve this linear nonhomogeneous recurrence relation with constant coefficients, we
need to solve its associated linear homogeneous equation and to find a particular solution for the
given nonhomogeneous equation. The associated linear homogeneous equation is an = 3an−1.
Its solutions are a

(h)
n = α3n, where α is a constant.

We now find a particular solution. Because F(n) = 2n is a polynomial in n of degree
one, a reasonable trial solution is a linear function in n, say, pn = cn+ d, where c and d are
constants. To determine whether there are any solutions of this form, suppose that pn = cn+ d is
such a solution. Then the equation an = 3an−1 + 2n becomes cn+ d = 3(c(n− 1)+ d)+ 2n.
Simplifying and combining like terms gives (2+ 2c)n+ (2d − 3c) = 0. It follows that cn+ d

is a solution if and only if 2+ 2c = 0 and 2d − 3c = 0. This shows that cn+ d is a solution if
and only if c = −1 and d = −3/2. Consequently, a

(p)
n = −n− 3/2 is a particular solution.

By Theorem 5 all solutions are of the form

an = a
(p)
n + a(h)

n = −n− 3

2
+ α · 3n,

where α is a constant.
To find the solution with a1 = 3, let n = 1 in the formula we obtained for the general

solution. We find that 3 = −1− 3/2+ 3α, which implies that α = 11/6. The solution we seek
is an = −n− 3/2+ (11/6)3n. ▲

EXAMPLE 11 Find all solutions of the recurrence relation

an = 5an−1 − 6an−2 + 7n.

Solution: This is a linear nonhomogeneous recurrence relation. The solutions of its associated
homogeneous recurrence relation

an = 5an−1 − 6an−2

are a
(h)
n = α1 · 3n + α2 · 2n, where α1 and α2 are constants. Because F(n) = 7n, a reason-

able trial solution is a
(p)
n = C · 7n, where C is a constant. Substituting the terms of this se-

quence into the recurrence relation implies that C · 7n = 5C · 7n−1 − 6C · 7n−2 + 7n. Factoring
out 7n−2, this equation becomes 49C = 35C − 6C + 49, which implies that 20C = 49, or that
C = 49/20. Hence, a

(p)
n = (49/20)7n is a particular solution. By Theorem 5, all solutions are

of the form

an = α1 · 3n + α2 · 2n + (49/20)7n. ▲

In Examples 10 and 11, we made an educated guess that there are solutions of a particular
form. In both cases we were able to find particular solutions. This was not an accident. Whenever
F(n) is the product of a polynomial in n and the nth power of a constant, we know exactly what
form a particular solution has, as stated in Theorem 6. We leave the proof of Theorem 6 as
Exercise 52.
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THEOREM 6 Suppose that {an} satisfies the linear nonhomogeneous recurrence relation

an = c1an−1 + c2an−2 + · · · + ckan−k + F(n),

where c1, c2, . . . , ck are real numbers, and

F(n) = (btn
t + bt−1n

t−1 + · · · + b1n+ b0)s
n,

where b0, b1, . . . , bt and s are real numbers. When s is not a root of the characteristic equation
of the associated linear homogeneous recurrence relation, there is a particular solution of the
form

(ptn
t + pt−1n

t−1 + · · · + p1n+ p0)s
n.

When s is a root of this characteristic equation and its multiplicity is m, there is a particular
solution of the form

nm(ptn
t + pt−1n

t−1 + · · · + p1n+ p0)s
n.

Note that in the case when s is a root of multiplicity m of the characteristic equation of
the associated linear homogeneous recurrence relation, the factor nm ensures that the proposed
particular solution will not already be a solution of the associated linear homogeneous recurrence
relation. We next provide Example 12 to illustrate the form of a particular solution provided by
Theorem 6.

EXAMPLE 12 What form does a particular solution of the linear nonhomogeneous recurrence relation
an = 6an−1 − 9an−2 + F(n) have when F(n) = 3n, F(n) = n3n, F(n) = n22n, and F(n) =
(n2 + 1)3n?

Solution: The associated linear homogeneous recurrence relation is an = 6an−1 − 9an−2. Its
characteristic equation, r2 − 6r + 9 = (r − 3)2 = 0, has a single root, 3, of multiplicity two.
To apply Theorem 6, with F(n) of the form P(n)sn, where P(n) is a polynomial and s is a
constant, we need to ask whether s is a root of this characteristic equation.

Because s = 3 is a root with multiplicity m = 2 but s = 2 is not a root, Theorem 6 tells us that
a particular solution has the form p0n

23n if F(n) = 3n, the form n2(p1n+ p0)3n if F(n) =
n3n, the form (p2n

2 + p1n+ p0)2n if F(n) = n22n, and the form n2(p2n
2 + p1n+ p0)3n

if F(n) = (n2 + 1)3n. ▲

Care must be taken when s = 1 when solving recurrence relations of the type covered by
Theorem 6. In particular, to apply this theorem with F(n) = btnt + bt−1nt−1 + · · · + b1n+ b0,
the parameter s takes the value s = 1 (even though the term 1n does not explicitly appear). By
the theorem, the form of the solution then depends on whether 1 is a root of the character-
istic equation of the associated linear homogeneous recurrence relation. This is illustrated in
Example 13, which shows how Theorem 6 can be used to find a formula for the sum of the first
n positive integers.

EXAMPLE 13 Let an be the sum of the first n positive integers, so that

an =
n∑

k=1

k.
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Note that an satisfies the linear nonhomogeneous recurrence relation

an = an−1 + n.

(To obtain an, the sum of the first n positive integers, from an−1, the sum of the first n− 1
positive integers, we add n.) Note that the initial condition is a1 = 1.

The associated linear homogeneous recurrence relation for an is

an = an−1.

The solutions of this homogeneous recurrence relation are given by a
(h)
n = c(1)n = c,

where c is a constant. To find all solutions of an = an−1 + n, we need find only a single partic-
ular solution. By Theorem 6, because F(n) = n = n · (1)n and s = 1 is a root of degree one of
the characteristic equation of the associated linear homogeneous recurrence relation, there is a
particular solution of the form n(p1n+ p0) = p1n

2 + p0n.
Inserting this into the recurrence relation gives p1n

2 + p0n = p1(n− 1)2+
p0(n− 1)+ n. Simplifying, we see that n(2p1 − 1)+ (p0 − p1) = 0, which means
that 2p1 − 1 = 0 and p0 − p1 = 0, so p0 = p1 = 1/2. Hence,

a
(p)
n = n2

2
+ n

2
= n(n+ 1)

2

is a particular solution. Hence, all solutions of the original recurrence relation an = an−1 + n are
given by an = a

(h)
n + a

(p)
n = c + n(n+ 1)/2. Because a1 = 1, we have 1 = a1 = c + 1 · 2/2 =

c + 1, so c = 0. It follows that an = n(n+ 1)/2. (This is the same formula given in Table 2 in
Section 2.4 and derived previously.) ▲

Exercises

1. Determine which of these are linear homogeneous recur-
rence relations with constant coefficients. Also, find the
degree of those that are.
a) an = 3an−1 + 4an−2 + 5an−3
b) an = 2nan−1 + an−2 c) an = an−1 + an−4
d) an = an−1 + 2 e) an = a2

n−1 + an−2
f ) an = an−2 g) an = an−1 + n

2. Determine which of these are linear homogeneous recur-
rence relations with constant coefficients. Also, find the
degree of those that are.
a) an = 3an−2 b) an = 3
c) an = a2

n−1 d) an = an−1 + 2an−3
e) an = an−1/n

f ) an = an−1 + an−2 + n+ 3
g) an = 4an−2 + 5an−4 + 9an−7

3. Solve these recurrence relations together with the initial
conditions given.
a) an = 2an−1 for n ≥ 1, a0 = 3
b) an = an−1 for n ≥ 1, a0 = 2
c) an = 5an−1 − 6an−2 for n ≥ 2, a0 = 1, a1 = 0
d) an = 4an−1 − 4an−2 for n ≥ 2, a0 = 6, a1 = 8
e) an = −4an−1 − 4an−2 for n ≥ 2, a0 = 0, a1 = 1
f ) an = 4an−2 for n ≥ 2, a0 = 0, a1 = 4
g) an = an−2 /4 for n ≥ 2, a0 = 1, a1 = 0

4. Solve these recurrence relations together with the initial
conditions given.
a) an = an−1 + 6an−2 for n ≥ 2, a0 = 3, a1 = 6
b) an = 7an−1 − 10an−2 for n ≥ 2, a0 = 2, a1 = 1
c) an = 6an−1 − 8an−2 for n ≥ 2, a0 = 4, a1 = 10
d) an = 2an−1 − an−2 for n ≥ 2, a0 = 4, a1 = 1
e) an = an−2 for n ≥ 2, a0 = 5, a1 = −1
f ) an = −6an−1 − 9an−2 for n ≥ 2, a0 = 3, a1 = −3
g) an+2 = −4an+1 + 5an for n ≥ 0, a0 = 2, a1 = 8

5. How many different messages can be transmitted in n mi-
croseconds using the two signals described in Exercise 19
in Section 8.1?

6. How many different messages can be transmitted in n

microseconds using three different signals if one signal
requires 1 microsecond for transmittal, the other two sig-
nals require 2 microseconds each for transmittal, and a
signal in a message is followed immediately by the next
signal?

7. In how many ways can a 2× n rectangular checkerboard
be tiled using 1× 2 and 2× 2 pieces?

8. A model for the number of lobsters caught per year is
based on the assumption that the number of lobsters
caught in a year is the average of the number caught in
the two previous years.
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a) Find a recurrence relation for {Ln}, where Ln is the
number of lobsters caught in year n, under the as-
sumption for this model.

b) Find Ln if 100,000 lobsters were caught in year 1 and
300,000 were caught in year 2.

9. A deposit of $100,000 is made to an investment fund at
the beginning of a year. On the last day of each year two
dividends are awarded. The first dividend is 20% of the
amount in the account during that year. The second divi-
dend is 45% of the amount in the account in the previous
year.
a) Find a recurrence relation for {Pn}, where Pn is the

amount in the account at the end of n years if no money
is ever withdrawn.

b) How much is in the account after n years if no money
has been withdrawn?

∗10. Prove Theorem 2.

11. The Lucas numbers satisfy the recurrence relation

Ln = Ln−1 + Ln−2,

and the initial conditions L0 = 2 and L1 = 1.
a) Show that Ln = fn−1 + fn+1 for n = 2, 3, . . . ,

where fn is the nth Fibonacci number.
b) Find an explicit formula for the Lucas numbers.

12. Find the solution to an = 2an−1 + an−2 − 2an−3
for n = 3, 4, 5, . . . , with a0 = 3, a1 = 6, and a2 = 0.

13. Find the solution to an = 7an−2 + 6an−3 with a0 = 9,
a1 = 10, and a2 = 32.

14. Find the solution to an = 5an−2 − 4an−4 with a0 = 3,
a1 = 2, a2 = 6, and a3 = 8.

15. Find the solution to an = 2an−1 + 5an−2 − 6an−3 with
a0 = 7, a1 = −4, and a2 = 8.

∗16. Prove Theorem 3.

17. Prove this identity relating the Fibonacci numbers and the
binomial coefficients:

fn+1 = C(n, 0)+ C(n− 1, 1)+ · · · + C(n− k, k),

where n is a positive integer and k = 	n/2
. [Hint: Let
an = C(n, 0)+ C(n− 1, 1)+ · · ·+ C(n− k, k). Show
that the sequence {an} satisfies the same recurrence re-
lation and initial conditions satisfied by the sequence of
Fibonacci numbers.]

18. Solve the recurrence relation an = 6an−1 − 12an−2 +
8an−3 with a0 = −5, a1 = 4, and a2 = 88.

19. Solve the recurrence relation an = −3an−1 − 3an−2 −
an−3 with a0 = 5, a1 = −9, and a2 = 15.

20. Find the general form of the solutions of the recurrence
relation an = 8an−2 − 16an−4.

21. What is the general form of the solutions of a linear homo-
geneous recurrence relation if its characteristic equation
has roots 1, 1, 1, 1,−2,−2,−2, 3, 3,−4?

22. What is the general form of the solutions of a linear homo-
geneous recurrence relation if its characteristic equation
has the roots −1,−1,−1, 2, 2, 5, 5, 7?

23. Consider the nonhomogeneous linear recurrence relation
an = 3an−1 + 2n.
a) Show that an = −2n+1 is a solution of this recurrence

relation.
b) Use Theorem 5 to find all solutions of this recurrence

relation.
c) Find the solution with a0 = 1.

24. Consider the nonhomogeneous linear recurrence relation
an = 2an−1 + 2n.
a) Show that an = n2n is a solution of this recurrence

relation.
b) Use Theorem 5 to find all solutions of this recurrence

relation.
c) Find the solution with a0 = 2.

25. a) Determine values of the constants A and B such
that an = An+ B is a solution of recurrence relation
an = 2an−1 + n+ 5.

b) Use Theorem 5 to find all solutions of this recurrence
relation.

c) Find the solution of this recurrence relation with
a0 = 4.

26. What is the general form of the particular so-
lution guaranteed to exist by Theorem 6 of
the linear nonhomogeneous recurrence relation
an = 6an−1 − 12an−2 + 8an−3 + F(n) if
a) F(n) = n2? b) F(n) = 2n?
c) F(n) = n2n? d) F(n) = (−2)n?
e) F(n) = n22n? f ) F(n) = n3(−2)n?
g) F(n) = 3?

27. What is the general form of the particular solution guaran-
teed to exist by Theorem 6 of the linear nonhomogeneous
recurrence relation an = 8an−2 − 16an−4 + F(n) if
a) F(n) = n3? b) F(n) = (−2)n?
c) F(n) = n2n? d) F(n) = n24n?
e) F(n) = (n2 − 2)(−2)n? f ) F(n) = n42n?
g) F(n) = 2?

28. a) Find all solutions of the recurrence relation
an = 2an−1 + 2n2.

b) Find the solution of the recurrence relation in part (a)
with initial condition a1 = 4.

29. a) Find all solutions of the recurrence relation
an = 2an−1 + 3n.

b) Find the solution of the recurrence relation in part (a)
with initial condition a1 = 5.

30. a) Find all solutions of the recurrence relation an =
−5an−1 − 6an−2 + 42 · 4n.

b) Find the solution of this recurrence relation with a1 =
56 and a2 = 278.

31. Find all solutions of the recurrence relation an =
5an−1 − 6an−2 + 2n + 3n. [Hint: Look for a particular
solution of the form qn2n + p1n+ p2, where q, p1, and
p2 are constants.]

32. Find the solution of the recurrence relation an =
2an−1 + 3 · 2n.

33. Find all solutions of the recurrence relation an =
4an−1 − 4an−2 + (n+ 1)2n.
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34. Find all solutions of the recurrence relation an =
7an−1 − 16an−2 + 12an−3 + n4n with a0 = −2,
a1 = 0, and a2 = 5.

35. Find the solution of the recurrence relation an =
4an−1 − 3an−2 + 2n + n+ 3 with a0 = 1 and a1 = 4.

36. Let an be the sum of the first n perfect squares, that
is, an =∑n

k= 1 k2. Show that the sequence {an} sat-
isfies the linear nonhomogeneous recurrence relation
an = an−1 + n2 and the initial condition a1 = 1. Use
Theorem 6 to determine a formula for an by solving this
recurrence relation.

37. Let an be the sum of the first n triangular numbers, that is,
an =∑n

k= 1 tk , where tk = k(k + 1)/2. Show that {an}
satisfies the linear nonhomogeneous recurrence relation
an = an−1 + n(n+ 1)/2 and the initial conditiona1 = 1.
Use Theorem 6 to determine a formula for an by solving
this recurrence relation.

38. a) Find the characteristic roots of the linear homo-
geneous recurrence relation an = 2an−1 − 2an−2.
[Note: These are complex numbers.]

b) Find the solution of the recurrence relation in part (a)
with a0 = 1 and a1 = 2.

∗39. a) Find the characteristic roots of the linear homoge-
neous recurrence relation an = an−4. [Note: These
include complex numbers.]

b) Find the solution of the recurrence relation in part (a)
with a0 = 1, a1 = 0, a2 = −1, and a3 = 1.

∗40. Solve the simultaneous recurrence relations

an = 3an−1 + 2bn−1

bn = an−1 + 2bn−1

with a0 = 1 and b0 = 2.

∗41. a) Use the formula found in Example 4 for fn, the nth
Fibonacci number, to show that fn is the integer
closest to

1√
5

(
1+√5

2

)n
.

b) Determine for which n fn is greater than

1√
5

(
1+√5

2

)n

and for which n fn is less than

1√
5

(
1+√5

2

)n
.

42. Show that if an = an−1 + an−2, a0 = s and a1 = t ,
where s and t are constants, then an = sfn−1 + tfn for
all positive integers n.

43. Express the solution of the linear nonhomogenous
recurrence relation an = an−1 + an−2 + 1 for n ≥ 2

where a0 = 0 and a1 = 1 in terms of the Fibonacci num-
bers. [Hint: Let bn = an + 1 and apply Exercise 42 to the
sequence bn.]

∗44. (Linear algebra required ) Let An be the n× n matrix
with 2s on its main diagonal, 1s in all positions next to a
diagonal element, and 0s everywhere else. Find a recur-
rence relation for dn, the determinant of An. Solve this
recurrence relation to find a formula for dn.

45. Suppose that each pair of a genetically engineered species
of rabbits left on an island produces two new pairs of rab-
bits at the age of 1 month and six new pairs of rabbits at
the age of 2 months and every month afterward. None of
the rabbits ever die or leave the island.
a) Find a recurrence relation for the number of pairs of

rabbits on the island n months after one newborn pair
is left on the island.

b) By solving the recurrence relation in (a) determine
the number of pairs of rabbits on the island n months
after one pair is left on the island.

46. Suppose that there are two goats on an island initially.
The number of goats on the island doubles every year by
natural reproduction, and some goats are either added or
removed each year.
a) Construct a recurrence relation for the number of

goats on the island at the start of the nth year, as-
suming that during each year an extra 100 goats are
put on the island.

b) Solve the recurrence relation from part (a) to find the
number of goats on the island at the start of the nth
year.

c) Construct a recurrence relation for the number of
goats on the island at the start of the nth year, as-
suming that n goats are removed during the nth year
for each n ≥ 3.

d) Solve the recurrence relation in part (c) for the number
of goats on the island at the start of the nth year.

47. A new employee at an exciting new software company
starts with a salary of $50,000 and is promised that at the
end of each year her salary will be double her salary of
the previous year, with an extra increment of $10,000 for
each year she has been with the company.
a) Construct a recurrence relation for her salary for her

nth year of employment.
b) Solve this recurrence relation to find her salary for her

nth year of employment.

Some linear recurrence relations that do not have constant co-
efficients can be systematically solved. This is the case for
recurrence relations of the form f (n)an = g(n)an−1 + h(n).
Exercises 48–50 illustrate this.

∗48. a) Show that the recurrence relation

f (n)an = g(n)an−1 + h(n),

for n ≥ 1, and with a0 = C, can be reduced to a re-
currence relation of the form

bn = bn−1 +Q(n)h(n),
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where bn = g(n+ 1)Q(n+ 1)an, with

Q(n) = (f (1)f (2) · · · f (n− 1))/(g(1)g(2) · · · g(n)).

b) Use part (a) to solve the original recurrence relation
to obtain

an = C +∑n
i= 1 Q(i)h(i)

g(n+ 1)Q(n+ 1)
.

∗49. Use Exercise 48 to solve the recurrence relation
(n+ 1)an = (n+ 3)an−1 + n, for n ≥ 1, with a0 = 1.

50. It can be shown that Cn, the average number of com-
parisons made by the quick sort algorithm (described in
preamble to Exercise 50 in Section 5.4), when sorting n

elements in random order, satisfies the recurrence relation

Cn = n+ 1+ 2

n

n−1∑

k= 0

Ck

for n = 1, 2, . . . , with initial condition C0 = 0.
a) Show that {Cn} also satisfies the recurrence relation

nCn = (n+ 1)Cn−1 + 2n for n = 1, 2, . . . .

b) Use Exercise 48 to solve the recurrence relation in
part (a) to find an explicit formula for Cn.

∗∗51. Prove Theorem 4.
∗∗52. Prove Theorem 6.

53. Solve the recurrence relation T (n) = nT 2(n/2) with ini-
tial condition T (1) = 6 when n = 2k for some inte-
ger k. [Hint: Let n = 2k and then make the substitution
ak = log T (2k) to obtain a linear nonhomogeneous re-
currence relation.]

8.3 Divide-and-Conquer Algorithms and Recurrence Relations

Introduction

Many recursive algorithms take a problem with a given input and divide it into one or more
smaller problems. This reduction is successively applied until the solutions of the smaller prob-
lems can be found quickly. For instance, we perform a binary search by reducing the search for
an element in a list to the search for this element in a list half as long. We successively apply
this reduction until one element is left. When we sort a list of integers using the merge sort, we
split the list into two halves of equal size and sort each half separately. We then merge the two
sorted halves. Another example of this type of recursive algorithm is a procedure for multiplying
integers that reduces the problem of the multiplication of two integers to three multiplications
of pairs of integers with half as many bits. This reduction is successively applied until integers
with one bit are obtained. These procedures follow an important algorithmic paradigm known

“Divide et impera”
(translation: “Divide and
conquer” - Julius Caesar

as divide-and-conquer, and are called divide-and-conquer algorithms, because they divide
a problem into one or more instances of the same problem of smaller size and they conquer
the problem by using the solutions of the smaller problems to find a solution of the original
problem, perhaps with some additional work.

In this section we will show how recurrence relations can be used to analyze the compu-
tational complexity of divide-and-conquer algorithms. We will use these recurrence relations
to estimate the number of operations used by many different divide-and-conquer algorithms,
including several that we introduce in this section.

Divide-and-Conquer Recurrence Relations

Suppose that a recursive algorithm divides a problem of size n into a subproblems, where each
subproblem is of size n/b (for simplicity, assume that n is a multiple of b; in reality, the smaller
problems are often of size equal to the nearest integers either less than or equal to, or greater
than or equal to, n/b). Also, suppose that a total of g(n) extra operations are required in the
conquer step of the algorithm to combine the solutions of the subproblems into a solution of
the original problem. Then, if f (n) represents the number of operations required to solve the
problem of size n, it follows that f satisfies the recurrence relation

f (n) = af (n/b)+ g(n).

This is called a divide-and-conquer recurrence relation.
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We will first set up the divide-and-conquer recurrence relations that can be used to study
the complexity of some important algorithms. Then we will show how to use these divide-and-
conquer recurrence relations to estimate the complexity of these algorithms.

EXAMPLE 1 Binary Search We introduced a binary search algorithm in Section 3.1. This binary search
algorithm reduces the search for an element in a search sequence of size n to the binary search
for this element in a search sequence of size n/2, when n is even. (Hence, the problem of size n

has been reduced to one problem of size n/2.) Two comparisons are needed to implement this
reduction (one to determine which half of the list to use and the other to determine whether any
terms of the list remain). Hence, if f (n) is the number of comparisons required to search for an
element in a search sequence of size n, then

f (n) = f (n/2)+ 2

when n is even. ▲

EXAMPLE 2 Finding the Maximum and Minimum of a Sequence Consider the following algorithm for
locating the maximum and minimum elements of a sequence a1, a2, . . . , an. If n = 1, then a1 is
the maximum and the minimum. If n > 1, split the sequence into two sequences, either where
both have the same number of elements or where one of the sequences has one more element
than the other. The problem is reduced to finding the maximum and minimum of each of the
two smaller sequences. The solution to the original problem results from the comparison of the
separate maxima and minima of the two smaller sequences to obtain the overall maximum and
minimum.

Let f (n) be the total number of comparisons needed to find the maximum and minimum
elements of the sequence with n elements. We have shown that a problem of size n can be
reduced into two problems of size n/2, when n is even, using two comparisons, one to compare
the maxima of the two sequences and the other to compare the minima of the two sequences.
This gives the recurrence relation

f (n) = 2f (n/2)+ 2

when n is even. ▲

EXAMPLE 3 Merge Sort The merge sort algorithm (introduced in Section 5.4) splits a list to be sorted
with n items, where n is even, into two lists with n/2 elements each, and uses fewer than n

comparisons to merge the two sorted lists of n/2 items each into one sorted list. Consequently,
the number of comparisons used by the merge sort to sort a list of n elements is less than M(n),
where the function M(n) satisfies the divide-and-conquer recurrence relation

M(n) = 2M(n/2)+ n. ▲

EXAMPLE 4 Fast Multiplication of Integers Surprisingly, there are more efficient algorithms than the con-
ventional algorithm (described in Section 4.2) for multiplying integers. One of these algorithms,
which uses a divide-and-conquer technique, will be described here. This fast multiplication al-
gorithm proceeds by splitting each of two 2n-bit integers into two blocks, each with n bits.
Then, the original multiplication is reduced from the multiplication of two 2n-bit integers to
three multiplications of n-bit integers, plus shifts and additions.

Suppose that a and b are integers with binary expansions of length 2n (add initial bits of
zero in these expansions if necessary to make them the same length). Let

a = (a2n−1a2n−2 · · · a1a0)2 and b = (b2n−1b2n−2 · · · b1b0)2.
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Let

a = 2nA1 + A0, b = 2nB1 + B0,

where

A1 = (a2n−1 · · · an+1an)2, A0 = (an−1 · · · a1a0)2,

B1 = (b2n−1 · · · bn+1bn)2, B0 = (bn−1 · · · b1b0)2.

The algorithm for fast multiplication of integers is based on the fact that ab can be
rewritten as

ab = (22n + 2n)A1B1 + 2n(A1 − A0)(B0 − B1)+ (2n + 1)A0B0.

The important fact about this identity is that it shows that the multiplication of two 2n-bit
integers can be carried out using three multiplications of n-bit integers, together with additions,
subtractions, and shifts. This shows that if f (n) is the total number of bit operations needed to
multiply two n-bit integers, then

f (2n) = 3f (n)+ Cn.

The reasoning behind this equation is as follows. The three multiplications of n-bit integers are
carried out using 3f (n)-bit operations. Each of the additions, subtractions, and shifts uses a
constant multiple of n-bit operations, and Cn represents the total number of bit operations used
by these operations. ▲

EXAMPLE 5 Fast Matrix Multiplication In Example 7 of Section 3.3 we showed that multiplying two
n× n matrices using the definition of matrix multiplication required n3 multiplications and
n2(n− 1) additions. Consequently, computing the product of two n× n matrices in this way
requires O(n3) operations (multiplications and additions). Surprisingly, there are more efficient
divide-and-conquer algorithms for multiplying two n× n matrices. Such an algorithm, invented
by Volker Strassen in 1969, reduces the multiplication of two n× n matrices, when n is even, to
seven multiplications of two (n/2)× (n/2) matrices and 15 additions of (n/2)× (n/2) matrices.
(See [CoLeRiSt09] for the details of this algorithm.) Hence, if f (n) is the number of operations
(multiplications and additions) used, it follows that

f (n) = 7f (n/2)+ 15n2/4

when n is even. ▲

As Examples 1–5 show, recurrence relations of the form f (n) = af (n/b)+ g(n) arise in
many different situations. It is possible to derive estimates of the size of functions that satisfy
such recurrence relations. Suppose that f satisfies this recurrence relation whenever n is divisible
by b. Let n = bk , where k is a positive integer. Then

f (n) = af (n/b)+ g(n)

= a2f (n/b2)+ ag(n/b)+ g(n)

= a3f (n/b3)+ a2g(n/b2)+ ag(n/b)+ g(n)

...

= akf (n/bk)+
k−1∑

j = 0

ajg(n/bj ).
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Because n/bk = 1, it follows that

f (n) = akf (1)+
k−1∑

j = 0

ajg(n/bj ).

We can use this equation for f (n) to estimate the size of functions that satisfy divide-and-conquer
relations.

THEOREM 1 Let f be an increasing function that satisfies the recurrence relation

f (n) = af (n/b)+ c

whenever n is divisible by b, where a ≥ 1, b is an integer greater than 1, and c is a positive
real number. Then

f (n) is

{
O(nlogb a) if a > 1,

O(log n) if a = 1.

Furthermore, when n = bkand a �= 1, where k is a positive integer,

f (n) = C1n
logb a + C2,

where C1 = f (1)+ c/(a − 1) and C2 = −c/(a − 1).

Proof: First let n = bk . From the expression for f (n) obtained in the discussion preceding the
theorem, with g(n) = c, we have

f (n) = akf (1)+
k−1∑

j = 0

aj c = akf (1)+ c

k−1∑

j = 0

aj .

When a = 1 we have

f (n) = f (1)+ ck .

Because n = bk , we have k = logb n. Hence,

f (n) = f (1)+ c logb n .

When n is not a power of b, we have bk < n < bk+1, for a positive integer k. Because f is
increasing, it follows that f (n) ≤ f (bk+1) = f (1)+ c(k + 1) = (f (1)+ c)+ ck ≤ (f (1)+
c)+ c logb n. Therefore, in both cases, f (n) is O(log n) when a = 1.

Now suppose that a > 1. First assume that n = bk , where k is a positive integer. From the
formula for the sum of terms of a geometric progression (Theorem 1 in Section 2.4), it follows
that

f (n) = akf (1)+ c(ak − 1)/(a − 1)

= ak[f (1)+ c/(a − 1)] − c/(a − 1)

= C1n
logb a + C2,
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because ak = alogb n = nlogb a (see Exercise 4 in Appendix 2), where C1 = f (1) + c/(a − 1)

and C2 = −c/(a − 1).
Now suppose that n is not a power of b. Then bk < n < bk+1, where k is a nonnegative

integer. Because f is increasing,

f (n) ≤ f (bk+1) = C1a
k+1 + C2

≤ (C1a)alogb n + C2

= (C1a)nlogb a + C2,

because k ≤ logb n < k + 1.
Hence, we have f (n) is O(nlogb a).

Examples 6–9 illustrate how Theorem 1 is used.

EXAMPLE 6 Let f (n) = 5f (n/2)+ 3 and f (1) = 7. Find f (2k), where k is a positive integer. Also, estimate
f (n) if f is an increasing function.

Solution: From the proof of Theorem 1, with a = 5, b = 2, and c = 3, we see that if n = 2k ,
then

f (n) = ak[f (1)+ c/(a − 1)] + [−c/(a − 1)]
= 5k[7+ (3/4)] − 3/4

= 5k(31/4)− 3/4.

Also, if f (n) is increasing, Theorem 1 shows that f (n) is O(nlogb a) = O(nlog 5). ▲

We can use Theorem 1 to estimate the computational complexity of the binary search
algorithm and the algorithm given in Example 2 for locating the minimum and maximum of a
sequence.

EXAMPLE 7 Give a big-O estimate for the number of comparisons used by a binary search.

Solution: In Example 1 it was shown that f (n) = f (n/2)+ 2 when n is even, where f is the
number of comparisons required to perform a binary search on a sequence of size n. Hence,
from Theorem 1, it follows that f (n) is O(log n). ▲

EXAMPLE 8 Give a big-O estimate for the number of comparisons used to locate the maximum and minimum
elements in a sequence using the algorithm given in Example 2.

Solution: In Example 2 we showed that f (n) = 2f (n/2)+ 2, when n is even, where f is the
number of comparisons needed by this algorithm. Hence, from Theorem 1, it follows that f (n)

is O(nlog 2) = O(n). ▲

We now state a more general, and more complicated, theorem, which has Theorem 1 as
a special case. This theorem (or more powerful versions, including big-Theta estimates) is
sometimes known as the master theorem because it is useful in analyzing the complexity of
many important divide-and-conquer algorithms.
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THEOREM 2 MASTERTHEOREM Letf be an increasing function that satisfies the recurrence relation

f (n) = af (n/b)+ cnd

whenever n = bk , where k is a positive integer, a ≥ 1, b is an integer greater than 1, and c

and d are real numbers with c positive and d nonnegative. Then

f (n) is

⎧
⎪⎨
⎪⎩

O(nd) if a < bd,

O(nd log n) if a = bd,

O(nlogb a) if a > bd.

The proof of Theorem 2 is left for the reader as Exercises 29–33.

EXAMPLE 9 Complexity of Merge Sort In Example 3 we explained that the number of comparisons used
by the merge sort to sort a list of n elements is less than M(n), where M(n) = 2M(n/2)+ n.
By the master theorem (Theorem 2) we find that M(n) is O(n log n), which agrees with the
estimate found in Section 5.4. ▲

EXAMPLE 10 Give a big-O estimate for the number of bit operations needed to multiply two n-bit integers
using the fast multiplication algorithm described in Example 4.

Solution: Example 4 shows that f (n) = 3f (n/2)+ Cn, when n is even, where f (n) is the
number of bit operations required to multiply two n-bit integers using the fast multiplication
algorithm. Hence, from the master theorem (Theorem 2), it follows that f (n) is O(nlog 3).
Note that log 3 ∼ 1.6. Because the conventional algorithm for multiplication uses O(n2) bit
operations, the fast multiplication algorithm is a substantial improvement over the conventional
algorithm in terms of time complexity for sufficiently large integers, including large integers
that occur in practical applications. ▲

EXAMPLE 11 Give a big-O estimate for the number of multiplications and additions required to multiply two
n× n matrices using the matrix multiplication algorithm referred to in Example 5.

Solution: Let f (n) denote the number of additions and multiplications used by the algorithm
mentioned in Example 5 to multiply two n× n matrices. We have f (n) = 7f (n/2)+ 15n2/4,
when n is even. Hence, from the master theorem (Theorem 2), it follows that f (n) is O(nlog 7).
Note that log 7 ∼ 2.8. Because the conventional algorithm for multiplying two n× n matrices
uses O(n3) additions and multiplications, it follows that for sufficiently large integers n, includ-
ing those that occur in many practical applications, this algorithm is substantially more efficient
in time complexity than the conventional algorithm. ▲

THE CLOSEST-PAIR PROBLEM We conclude this section by introducing a divide-and-
conquer algorithm from computational geometry, the part of discrete mathematics devoted to
algorithms that solve geometric problems.

EXAMPLE 12 The Closest-Pair Problem Consider the problem of determining the closest pair of points
in a set of n points (x1, y1), . . . , (xn, yn) in the plane, where the distance between two points

(xi, yi) and (xj , yj ) is the usual Euclidean distance
√

(xi − xj )2 + (yi − yj )2. This problem
arises in many applications such as determining the closest pair of airplanes in the air space at a
particular altitude being managed by an air traffic controller. How can this closest pair of points
be found in an efficient way?
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L R

closest
pair

dL

dR

d d

In this illustration the problem of finding the
closest pair in a set of 16 points is reduced to
two problems of finding the closest pair in
a set of eight points and the problem of
determining whether there are points closer
than d = min(dL, dR) within the strip of
width 2d centered at �.

FIGURE 1 The Recursive Step of the Algorithm for Solving the Closest-Pair Problem.

Solution: To solve this problem we can first determine the distance between every pair of
points and then find the smallest of these distances. However, this approach requires O(n2)

It took researchers more
than 10 year to find an
algorithm with O(n log n)

complexity that locates
the closest pair of points
among n points.

computations of distances and comparisons because there are C(n, 2) = n(n− 1)/2 pairs of
points. Surprisingly, there is an elegant divide-and-conquer algorithm that can solve the closest-
pair problem for n points using O(n log n) computations of distances and comparisons. The
algorithm we describe here is due to Michael Samos (see [PrSa85]).

For simplicity, we assume that n = 2k , where k is a positive integer. (We avoid some
technical considerations that are needed when n is not a power of 2.) When n = 2, we have only
one pair of points; the distance between these two points is the minimum distance. At the start
of the algorithm we use the merge sort twice, once to sort the points in order of increasing x

coordinates, and once to sort the points in order of increasing y coordinates. Each of these sorts
requires O(n log n) operations. We will use these sorted lists in each recursive step.

The recursive part of the algorithm divides the problem into two subproblems, each involving
half as many points. Using the sorted list of the points by their x coordinates, we construct a
vertical line � dividing the n points into two parts, a left part and a right part of equal size, each
containing n/2 points, as shown in Figure 1. (If any points fall on the dividing line �, we divide
them among the two parts if necessary.) At subsequent steps of the recursion we need not sort
on x coordinates again, because we can select the corresponding sorted subset of all the points.
This selection is a task that can be done with O(n) comparisons.

There are three possibilities concerning the positions of the closest points: (1) they are both
in the left region L, (2) they are both in the right region R, or (3) one point is in the left region
and the other is in the right region. Apply the algorithm recursively to compute dL and dR ,
where dL is the minimum distance between points in the left region and dR is the minimum
distance between points in the right region. Let d = min(dL, dR). To successfully divide the
problem of finding the closest two points in the original set into the two problems of finding the
shortest distances between points in the two regions separately, we have to handle the conquer
part of the algorithm, which requires that we consider the case where the closest points lie in
different regions, that is, one point is in L and the other in R. Because there is a pair of points
at distance d where both points lie in R or both points lie in L, for the closest points to lie in
different regions requires that they must be a distance less than d apart.

For a point in the left region and a point in the right region to lie at a distance less than d apart,
these points must lie in the vertical strip of width 2d that has the line � as its center. (Otherwise,
the distance between these points is greater than the difference in their x coordinates, which
exceeds d.) To examine the points within this strip, we sort the points so that they are listed in
order of increasing y coordinates, using the sorted list of the points by their y coordinates. At
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d/2

p

d/2

d/2

d/2 d/2 d/2

d/  2

At most eight points, including p, 
can lie in or on the 2d � d rectangle 
centered at � because at most one 
point can lie in or on each of the 
eight (d/2) � (d/2) squares.

FIGURE 2 Showing That There Are at Most Seven Other Points to Consider for Each
Point in the Strip.

each recursive step, we form a subset of the points in the region sorted by their y coordinates
from the already sorted set of all points sorted by their y coordinates, which can be done
with O(n) comparisons.

Beginning with a point in the strip with the smallest y coordinate, we successively examine
each point in the strip, computing the distance between this point and all other points in the strip
that have larger y coordinates that could lie at a distance less than d from this point. Note that
to examine a point p, we need only consider the distances between p and points in the set that
lie within the rectangle of height d and width 2d with p on its base and with vertical sides at
distance d from �.

We can show that there are at most eight points from the set, including p, in or on this 2d × d

rectangle. To see this, note that there can be at most one point in each of the eight d/2× d/2
squares shown in Figure 2. This follows because the farthest apart points can be on or within
one of these squares is the diagonal length d/

√
2 (which can be found using the Pythagorean

theorem), which is less than d, and each of these d/2× d/2 squares lies entirely within the left
region or the right region. This means that at this stage we need only compare at most seven
distances, the distances between p and the seven or fewer other points in or on the rectangle,
with d.

Because the total number of points in the strip of width 2d does not exceed n (the total
number of points in the set), at most 7n distances need to be compared with d to find the
minimum distance between points. That is, there are only 7n possible distances that could be
less than d. Consequently, once the merge sort has been used to sort the pairs according to their
x coordinates and according to their y coordinates, we find that the increasing function f (n)

satisfying the recurrence relation

f (n) = 2f (n/2)+ 7n,

where f (2) = 1, exceeds the number of comparisons needed to solve the closest-pair problem
for n points. By the master theorem (Theorem 2), it follows that f (n) is O(n log n). The two sorts
of points by their x coordinates and by their y coordinates each can be done using O(n log n)

comparisons, by using the merge sort, and the sorted subsets of these coordinates at each of the
O(log n) steps of the algorithm can be done using O(n) comparisons each. Thus, we find that
the closest-pair problem can be solved using O(n log n) comparisons. ▲



P1: 1

CH08-7T Rosen-2311T MHIA017-Rosen-v5.cls May 13, 2011 16:25

8.3 Divide-and-Conquer Algorithms and Recurrence Relations 535

Exercises

1. How many comparisons are needed for a binary search
in a set of 64 elements?

2. How many comparisons are needed to locate the max-
imum and minimum elements in a sequence with 128
elements using the algorithm in Example 2?

3. Multiply (1110)2 and (1010)2 using the fast multiplica-
tion algorithm.

4. Express the fast multiplication algorithm in pseudocode.

5. Determine a value for the constant C in Example 4 and
use it to estimate the number of bit operations needed to
multiply two 64-bit integers using the fast multiplication
algorithm.

6. How many operations are needed to multiply two 32× 32
matrices using the algorithm referred to in Example 5?

7. Suppose that f (n) = f (n/3)+ 1 when n is a positive
integer divisible by 3, and f (1) = 1. Find
a) f (3). b) f (27). c) f (729).

8. Suppose that f (n) = 2f (n/2)+ 3 when n is an even pos-
itive integer, and f (1) = 5. Find
a) f (2). b) f (8). c) f (64). d) f (1024).

9. Suppose that f (n) = f (n/5)+ 3n2 when n is a positive
integer divisible by 5, and f (1) = 4. Find
a) f (5). b) f (125). c) f (3125).

10. Find f (n) when n = 2k , where f satisfies the recurrence
relation f (n) = f (n/2)+ 1 with f (1) = 1.

11. Give a big-O estimate for the function f in Exercise 10
if f is an increasing function.

12. Find f (n) when n = 3k , where f satisfies the recurrence
relation f (n) = 2f (n/3)+ 4 with f (1) = 1.

13. Give a big-O estimate for the function f in Exercise 12
if f is an increasing function.

14. Suppose that there are n = 2k teams in an elimination
tournament, where there are n/2 games in the first round,
with the n/2 = 2k−1 winners playing in the second round,
and so on. Develop a recurrence relation for the number
of rounds in the tournament.

15. How many rounds are in the elimination tournament de-
scribed in Exercise 14 when there are 32 teams?

16. Solve the recurrence relation for the number of rounds in
the tournament described in Exercise 14.

17. Suppose that the votes of n people for different candi-
dates (where there can be more than two candidates) for
a particular office are the elements of a sequence. A per-
son wins the election if this person receives a majority of
the votes.
a) Devise a divide-and-conquer algorithm that deter-

mines whether a candidate received a majority and,
if so, determine who this candidate is. [Hint: Assume

that n is even and split the sequence of votes into
two sequences, each with n/2 elements. Note that a
candidate could not have received a majority of votes
without receiving a majority of votes in at least one
of the two halves.]

b) Use the master theorem to give a big-O estimate for
the number of comparisons needed by the algorithm
you devised in part (a).

18. Suppose that each person in a group of n people votes for
exactly two people from a slate of candidates to fill two
positions on a committee. The top two finishers both win
positions as long as each receives more than n/2 votes.
a) Devise a divide-and-conquer algorithm that deter-

mines whether the two candidates who received the
most votes each received at least n/2 votes and, if so,
determine who these two candidates are.

b) Use the master theorem to give a big-O estimate for
the number of comparisons needed by the algorithm
you devised in part (a).

19. a) Set up a divide-and-conquer recurrence relation
for the number of multiplications required to
compute xn, where x is a real number and n is a
positive integer, using the recursive algorithm from
Exercise 26 in Section 5.4.

b) Use the recurrence relation you found in part (a) to
construct a big-O estimate for the number of mul-
tiplications used to compute xn using the recursive
algorithm.

20. a) Set up a divide-and-conquer recurrence relation for
the number of modular multiplications required to
compute an mod m, where a, m, and n are pos-
itive integers, using the recursive algorithms from
Example 4 in Section 5.4.

b) Use the recurrence relation you found in part (a) to
construct a big-O estimate for the number of modular
multiplications used to compute an mod m using the
recursive algorithm.

21. Suppose that the function f satisfies the recurrence rela-
tion f (n) = 2f (

√
n)+ 1 whenever n is a perfect square

greater than 1 and f (2) = 1.
a) Find f (16).

b) Give a big-O estimate for f (n). [Hint: Make the sub-
stitution m = log n.]

22. Suppose that the function f satisfies the recurrence re-
lation f (n) = 2f (

√
n)+ log n whenever n is a perfect

square greater than 1 and f (2) = 1.
a) Find f (16).

b) Find a big-O estimate for f (n). [Hint: Make the sub-
stitution m = log n.]

∗∗23. This exercise deals with the problem of finding the largest
sum of consecutive terms of a sequence of n real numbers.
When all terms are positive, the sum of all terms provides
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the answer, but the situation is more complicated when
some terms are negative. For example, the maximum sum
of consecutive terms of the sequence−2, 3,−1, 6,−7, 4
is 3+ (−1)+ 6 = 8. (This exercise is based on [Be86].)
Recall that in Exercise 56 in Section 8.1 we developed a
dynamic programming algorithm for solving this prob-
lem. Here, we first look at the brute-force algorithm
for solving this problem; then we develop a divide-and-
conquer algorithm for solving it.
a) Use pseudocode to describe an algorithm that solves

this problem by finding the sums of consecutive terms
starting with the first term, the sums of consecutive
terms starting with the second term, and so on, keep-
ing track of the maximum sum found so far as the
algorithm proceeds.

b) Determine the computational complexity of the al-
gorithm in part (a) in terms of the number of sums
computed and the number of comparisons made.

c) Devise a divide-and-conquer algorithm to solve this
problem. [Hint:Assume that there are an even number
of terms in the sequence and split the sequence into
two halves. Explain how to handle the case when the
maximum sum of consecutive terms includes terms in
both halves.]

d) Use the algorithm from part (c) to find the maximum
sum of consecutive terms of each of the sequences:
−2, 4,−1, 3, 5,−6, 1, 2; 4, 1,−3, 7,−1,−5, 3,−2;
and −1, 6, 3,−4,−5, 8, −1, 7.

e) Find a recurrence relation for the number of sums
and comparisons used by the divide-and-conquer al-
gorithm from part (c).

f ) Use the master theorem to estimate the computa-
tional complexity of the divide-and-conquer algo-
rithm. How does it compare in terms of computational
complexity with the algorithm from part (a)?

24. Apply the algorithm described in Example 12 for find-
ing the closest pair of points, using the Euclidean dis-
tance between points, to find the closest pair of the
points (1, 3), (1, 7), (2, 4), (2, 9), (3, 1), (3, 5), (4, 3),
and (4, 7).

25. Apply the algorithm described in Example 12 for finding
the closest pair of points, using the Euclidean distance be-
tween points, to find the closest pair of the points (1, 2),
(1, 6), (2, 4), (2, 8), (3, 1), (3, 6), (3, 10), (4, 3), (5, 1),
(5, 5), (5, 9), (6, 7), (7, 1), (7, 4), (7, 9), and (8, 6).

∗26. Use pseudocode to describe the recursive algorithm for
solving the closest-pair problem as described in Exam-
ple 12.

27. Construct a variation of the algorithm described in Ex-
ample 12 along with justifications of the steps used by
the algorithm to find the smallest distance between two
points if the distance between two points is defined to be
d((xi, yi), (xj , yj )) = max(|xi − xj |, |yi − yj |).

∗28. Suppose someone picks a number x from a set of n

numbers. A second person tries to guess the number
by successively selecting subsets of the n numbers and

asking the first person whether x is in each set. The
first person answers either “yes” or “no.” When the first
person answers each query truthfully, we can find x

using log n queries by successively splitting the sets
used in each query in half. Ulam’s problem, proposed by
Stanislaw Ulam in 1976, asks for the number of queries
required to find x, supposing that the first person is al-
lowed to lie exactly once.
a) Show that by asking each question twice, given a num-

ber x and a set with n elements, and asking one more
question when we find the lie, Ulam’s problem can be
solved using 2 log n+ 1 queries.

b) Show that by dividing the initial set of n elements into
four parts, each with n/4 elements, 1/4 of the elements
can be eliminated using two queries. [Hint: Use two
queries, where each of the queries asks whether the
element is in the union of two of the subsets with n/4
elements and where one of the subsets of n/4 elements
is used in both queries.]

c) Show from part (b) that if f (n) equals the number
of queries used to solve Ulam’s problem using the
method from part (b) and n is divisible by 4, then
f (n) = f (3n/4)+ 2.

d) Solve the recurrence relation in part (c) for f (n).
e) Is the naive way to solve Ulam’s problem by ask-

ing each question twice or the divide-and-conquer
method based on part (b) more efficient? The most
efficient way to solve Ulam’s problem has been
determined by A. Pelc [Pe87].

In Exercises 29–33, assume that f is an increasing function
satisfying the recurrence relation f (n) = af (n/b)+ cnd ,
where a ≥ 1, b is an integer greater than 1, and c and d

are positive real numbers. These exercises supply a proof of
Theorem 2.

∗29. Show that if a = bd and n is a power of b, then f (n) =
f (1)nd + cnd logb n.

30. Use Exercise 29 to show that if a = bd , then f (n) is
O(nd log n).

∗31. Show that if a �= bd and n is a power of b, then f (n) =
C1n

d + C2n
logb a , where C1 = bdc/(bd − a) and C2 =

f (1)+ bdc/(a − bd).

32. Use Exercise 31 to show that if a < bd , then f (n) is
O(nd).

33. Use Exercise 31 to show that if a > bd , then f (n) is
O(nlogb a).

34. Find f (n) when n = 4k , where f satisfies the recurrence
relation f (n) = 5f (n/4)+ 6n, with f (1) = 1.

35. Give a big-O estimate for the function f in Exercise 34
if f is an increasing function.

36. Find f (n) when n = 2k , where f satisfies the recurrence
relation f (n) = 8f (n/2)+ n2 with f (1) = 1.

37. Give a big-O estimate for the function f in Exercise 36
if f is an increasing function.
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8.4 Generating Functions

Introduction

Generating functions are used to represent sequences efficiently by coding the terms of a se-
quence as coefficients of powers of a variable x in a formal power series. Generating functions
can be used to solve many types of counting problems, such as the number of ways to select
or distribute objects of different kinds, subject to a variety of constraints, and the number of
ways to make change for a dollar using coins of different denominations. Generating functions
can be used to solve recurrence relations by translating a recurrence relation for the terms of
a sequence into an equation involving a generating function. This equation can then be solved
to find a closed form for the generating function. From this closed form, the coefficients of the
power series for the generating function can be found, solving the original recurrence relation.
Generating functions can also be used to prove combinatorial identities by taking advantage of
relatively simple relationships between functions that can be translated into identities involving
the terms of sequences. Generating functions are a helpful tool for studying many properties of
sequences besides those described in this section, such as their use for establishing asymptotic
formulae for the terms of a sequence.

We begin with the definition of the generating function for a sequence.

DEFINITION 1 The generating function for the sequence a0, a1, . . . , ak, . . . of real numbers is the infinite
series

G(x) = a0 + a1x + · · · + akx
k + · · · =

∞∑

k= 0

akx
k.

Remark: The generating function for {ak} given in Definition 1 is sometimes called the ordinary
generating function of {ak} to distinguish it from other types of generating functions for this
sequence.

EXAMPLE 1 The generating functions for the sequences {ak} with ak = 3, ak = k + 1, and ak = 2k

are
∑∞

k= 0 3xk,
∑∞

k= 0(k + 1)xk , and
∑∞

k= 0 2kxk , respectively. ▲

We can define generating functions for finite sequences of real numbers by extending a
finite sequence a0, a1, . . . , an into an infinite sequence by setting an+1 = 0, an+2 = 0, and so
on. The generating function G(x) of this infinite sequence {an} is a polynomial of degree n

because no terms of the form ajx
j with j > n occur, that is,

G(x) = a0 + a1x + · · · + anx
n.

EXAMPLE 2 What is the generating function for the sequence 1, 1, 1, 1, 1, 1?

Solution: The generating function of 1, 1, 1, 1, 1, 1 is

1+ x + x2 + x3 + x4 + x5.

By Theorem 1 of Section 2.4 we have

(x6 − 1)/(x − 1) = 1+ x + x2 + x3 + x4 + x5
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when x �= 1. Consequently, G(x) = (x6 − 1)/(x − 1) is the generating function of the
sequence 1, 1, 1, 1, 1, 1. [Because the powers of x are only place holders for the terms of
the sequence in a generating function, we do not need to worry that G(1) is undefined.] ▲

EXAMPLE 3 Let m be a positive integer. Let ak = C(m, k), for k = 0, 1, 2, . . . , m. What is the generating
function for the sequence a0, a1, . . . , am?

Solution: The generating function for this sequence is

G(x) = C(m, 0)+ C(m, 1)x + C(m, 2)x2 + · · · + C(m, m)xm.

The binomial theorem shows that G(x) = (1+ x)m. ▲

Useful Facts About Power Series

When generating functions are used to solve counting problems, they are usually considered to
be formal power series. Questions about the convergence of these series are ignored. However,
to apply some results from calculus, it is sometimes important to consider for which x the
power series converges. The fact that a function has a unique power series around x = 0 will
also be important. Generally, however, we will not be concerned with questions of convergence
or the uniqueness of power series in our discussions. Readers familiar with calculus can consult
textbooks on this subject for details about power series, including the convergence of the series
we consider here.

We will now state some important facts about infinite series used when working with
generating functions. A discussion of these and related results can be found in calculus texts.

EXAMPLE 4 The function f (x) = 1/(1− x) is the generating function of the sequence 1, 1, 1, 1, . . . , be-
cause

1/(1− x) = 1+ x + x2 + · · ·

for |x| < 1. ▲

EXAMPLE 5 The function f (x) = 1/(1− ax) is the generating function of the sequence 1, a, a2, a3, . . . ,

because

1/(1− ax) = 1+ ax + a2x2 + · · ·

when |ax| < 1, or equivalently, for |x| < 1/|a| for a �= 0. ▲

We also will need some results on how to add and how to multiply two generating functions.
Proofs of these results can be found in calculus texts.

THEOREM 1 Let f (x) =∑∞k= 0 akx
k and g(x) =∑∞k= 0 bkx

k . Then

f (x)+ g(x) =
∞∑

k= 0

(ak + bk)x
k and f (x)g(x) =

∞∑

k= 0

⎛
⎝

k∑

j = 0

ajbk−j

⎞
⎠ xk.
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Remark: Theorem 1 is valid only for power series that converge in an interval, as all series
considered in this section do. However, the theory of generating functions is not limited to such
series. In the case of series that do not converge, the statements in Theorem 1 can be taken as
definitions of addition and multiplication of generating functions.

We will illustrate how Theorem 1 can be used with Example 6.

EXAMPLE 6 Let f (x) = 1/(1− x)2. Use Example 4 to find the coefficients a0, a1, a2, . . . in the expansion
f (x) =∑∞k= 0 akx

k .

Solution: From Example 4 we see that

1/(1− x) = 1+ x + x2 + x3 + · · · .

Hence, from Theorem 1, we have

1/(1− x)2 =
∞∑

k= 0

⎛
⎝

k∑

j = 0

1

⎞
⎠ xk =

∞∑

k= 0

(k + 1)xk.

▲

Remark: This result also can be derived from Example 4 by differentiation. Taking derivatives is
a useful technique for producing new identities from existing identities for generating functions.

To use generating functions to solve many important counting problems, we will need to
apply the binomial theorem for exponents that are not positive integers. Before we state an
extended version of the binomial theorem, we need to define extended binomial coefficients.

DEFINITION 2 Let u be a real number and k a nonnegative integer. Then the extended binomial coefficient(
u
k

)
is defined by

(
u

k

)
=
{
u(u− 1) · · · (u− k + 1)/k! if k > 0,

1 if k = 0.

EXAMPLE 7 Find the values of the extended binomial coefficients
(−2

3

)
and

(1/2
3

)
.

Solution: Taking u = −2 and k = 3 in Definition 2 gives us

(−2

3

)
= (−2)(−3)(−4)

3! = −4.

Similarly, taking u = 1/2 and k = 3 gives us

(
1/2

3

)
= (1/2)(1/2− 1)(1/2− 2)

3!
= (1/2)(−1/2)(−3/2)/6

= 1/16. ▲



P1: 1

CH08-7T Rosen-2311T MHIA017-Rosen-v5.cls May 13, 2011 16:25

540 8 / Advanced Counting Techniques

Example 8 provides a useful formula for extended binomial coefficients when the top
parameter is a negative integer. It will be useful in our subsequent discussions.

EXAMPLE 8 When the top parameter is a negative integer, the extended binomial coefficient can be expressed
in terms of an ordinary binomial coefficient. To see that this is the case, note that

(−n

r

)
= (−n)(−n− 1) · · · (−n− r + 1)

r! by definition of extended binomial coefficient

= (−1)rn(n+ 1) · · · (n+ r − 1)

r! factoring out –1 from each term in the numerator

= (−1)r (n+ r − 1)(n+ r − 2) · · · n
r! by the commutative law for multiplication

= (−1)r (n+ r − 1)!
r!(n− 1)! multiplying both the numerator and denominator

by (n− 1)!

= (−1)r
(

n+ r − 1

r

)
by the definition of binomial coefficients

= (−1)rC(n+ r − 1, r). using alternative notation for binomial
coefficients

▲

We now state the extended binomial theorem.

THEOREM 2 THE EXTENDED BINOMIAL THEOREM Let x be a real number with |x| < 1 and
let u be a real number. Then

(1+ x)u =
∞∑

k= 0

(
u

k

)
xk.

Theorem 2 can be proved using the theory of Maclaurin series. We leave its proof to the reader
with a familiarity with this part of calculus.

Remark: When u is a positive integer, the extended binomial theorem reduces to the binomial
theorem presented in Section 6.4, because in that case

(
u
k

) = 0 if k > u.

Example 9 illustrates the use of Theorem 2 when the exponent is a negative integer.

EXAMPLE 9 Find the generating functions for (1+ x)−n and (1− x)−n, where n is a positive integer, using
the extended binomial theorem.

Solution: By the extended binomial theorem, it follows that

(1+ x)−n =
∞∑

k= 0

(−n

k

)
xk.
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Using Example 8, which provides a simple formula for
(−n

k

)
, we obtain

(1+ x)−n =
∞∑

k= 0

(−1)kC(n+ k − 1, k)xk.

Replacing x by −x, we find that

(1− x)−n =
∞∑

k= 0

C(n+ k − 1, k)xk.

▲

Table 1 presents a useful summary of some generating functions that arise frequently.

Remark: Note that the second and third formulae in this table can be deduced from the first
formula by substituting ax and xr for x, respectively. Similarly, the sixth and seventh formulae
can be deduced from the fifth formula using the same substitutions. The tenth and eleventh can
be deduced from the ninth formula by substituting −x and ax for x, respectively. Also, some
of the formulae in this table can be derived from other formulae using methods from calculus
(such as differentiation and integration). Students are encouraged to know the core formulae in
this table (that is, formulae from which the others can be derived, perhaps the first, fourth, fifth,
eighth, ninth, twelfth, and thirteenth formulae) and understand how to derive the other formulae
from these core formulae.

Counting Problems and Generating Functions

Generating functions can be used to solve a wide variety of counting problems. In particular, they
can be used to count the number of combinations of various types. In Chapter 6 we developed
techniques to count the r-combinations from a set with n elements when repetition is allowed
and additional constraints may exist. Such problems are equivalent to counting the solutions to
equations of the form

e1 + e2 + · · · + en = C,

where C is a constant and each ei is a nonnegative integer that may be subject to a specified
constraint. Generating functions can also be used to solve counting problems of this type, as
Examples 10–12 show.

EXAMPLE 10 Find the number of solutions of

e1 + e2 + e3 = 17,

where e1, e2, and e3 are nonnegative integers with 2 ≤ e1 ≤ 5, 3 ≤ e2 ≤ 6, and 4 ≤ e3 ≤ 7.

Solution: The number of solutions with the indicated constraints is the coefficient of x17 in the
expansion of

(x2 + x3 + x4 + x5)(x3 + x4 + x5 + x6)(x4 + x5 + x6 + x7).
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TABLE 1 Useful Generating Functions.

G(x) ak

(1+ x)n =
n∑

k= 0

C(n, k)xk C(n, k)

= 1+ C(n, 1)x + C(n, 2)x2 + · · · + xn

(1+ ax)n =
n∑

k= 0

C(n, k)akxk C(n, k)ak

= 1+ C(n, 1)ax + C(n, 2)a2x2 + · · · + anxn

(1+ xr)n =
n∑

k= 0

C(n, k)xrk C(n, k/r) if r | k; 0 otherwise

= 1+ C(n, 1)xr + C(n, 2)x2r + · · · + xrn

1− xn+1

1− x
=

n∑

k= 0

xk = 1+ x + x2 + · · · + xn 1 if k ≤ n; 0 otherwise

1

1− x
=
∞∑

k= 0

xk = 1+ x + x2 + · · · 1

1

1− ax
=
∞∑

k= 0

akxk = 1+ ax + a2x2 + · · · ak

1

1− xr
=
∞∑

k= 0

xrk = 1+ xr + x2r + · · · 1 if r | k; 0 otherwise

1

(1− x)2 =
∞∑

k= 0

(k + 1)xk = 1+ 2x + 3x2 + · · · k + 1

1

(1− x)n
=
∞∑

k= 0

C(n+ k − 1, k)xk C(n+ k − 1, k) = C(n+ k − 1, n− 1)

= 1+ C(n, 1)x + C(n+ 1, 2)x2 + · · ·
1

(1+ x)n
=
∞∑

k= 0

C(n+ k − 1, k)(−1)kxk (−1)kC(n+ k − 1, k) = (−1)kC(n+ k − 1, n− 1)

= 1− C(n, 1)x + C(n+ 1, 2)x2 − · · ·
1

(1− ax)n
=
∞∑

k= 0

C(n+ k − 1, k)akxk C(n+ k − 1, k)ak = C(n+ k − 1, n− 1)ak

= 1+ C(n, 1)ax + C(n+ 1, 2)a2x2 + · · ·

ex =
∞∑

k= 0

xk

k! = 1+ x + x2

2! +
x3

3! + · · · 1/k!

ln(1+ x) =
∞∑

k= 1

(−1)k+1

k
xk = x − x2

2
+ x3

3
− x4

4
+ · · · (−1)k+1/k

Note: The series for the last two generating functions can be found in most calculus books when power series are discussed.
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This follows because we obtain a term equal to x17 in the product by picking a term in the
first sum xe1 , a term in the second sum xe2 , and a term in the third sum xe3 , where the
exponents e1, e2, and e3 satisfy the equation e1 + e2 + e3 = 17 and the given constraints.

It is not hard to see that the coefficient of x17 in this product is 3. Hence, there are
three solutions. (Note that the calculating of this coefficient involves about as much work
as enumerating all the solutions of the equation with the given constraints. However, the
method that this illustrates often can be used to solve wide classes of counting problems with
special formulae, as we will see. Furthermore, a computer algebra system can be used to
do such computations.) ▲

EXAMPLE 11 In how many different ways can eight identical cookies be distributed among three distinct
children if each child receives at least two cookies and no more than four cookies?

Solution: Because each child receives at least two but no more than four cookies, for each child
there is a factor equal to

(x2 + x3 + x4)

in the generating function for the sequence {cn}, where cn is the number of ways to distribute n

cookies. Because there are three children, this generating function is

(x2 + x3 + x4)3.

We need the coefficient of x8 in this product. The reason is that the x8 terms in the expansion
correspond to the ways that three terms can be selected, with one from each factor, that have
exponents adding up to 8. Furthermore, the exponents of the term from the first, second, and
third factors are the numbers of cookies the first, second, and third children receive, respectively.
Computation shows that this coefficient equals 6. Hence, there are six ways to distribute the
cookies so that each child receives at least two, but no more than four, cookies. ▲

EXAMPLE 12 Use generating functions to determine the number of ways to insert tokens worth $1, $2,
and $5 into a vending machine to pay for an item that costs r dollars in both the cases when
the order in which the tokens are inserted does not matter and when the order does matter. (For
example, there are two ways to pay for an item that costs $3 when the order in which the tokens
are inserted does not matter: inserting three $1 tokens or one $1 token and a $2 token. When
the order matters, there are three ways: inserting three $1 tokens, inserting a $1 token and then
a $2 token, or inserting a $2 token and then a $1 token.)

Solution: Consider the case when the order in which the tokens are inserted does not matter.
Here, all we care about is the number of each token used to produce a total of r dollars. Because
we can use any number of $1 tokens, any number of $2 tokens, and any number of $5 tokens,
the answer is the coefficient of xr in the generating function

(1+ x + x2 + x3 + · · · )(1+ x2 + x4 + x6 + · · · )(1+ x5 + x10 + x15 + · · · ).

(The first factor in this product represents the $1 tokens used, the second the $2 tokens used, and
the third the $5 tokens used.) For example, the number of ways to pay for an item costing $7
using $1, $2, and $5 tokens is given by the coefficient of x7 in this expansion, which equals 6.

When the order in which the tokens are inserted matters, the number of ways to insert
exactly n tokens to produce a total of r dollars is the coefficient of xr in

(x + x2 + x5)n,
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because each of the r tokens may be a $1 token, a $2 token, or a $5 token. Because any number
of tokens may be inserted, the number of ways to produce r dollars using $1, $2, or $5 tokens,
when the order in which the tokens are inserted matters, is the coefficient of xr in

1+ (x + x2 + x5)+ (x + x2 + x5)2 + · · · = 1

1− (x + x2 + x5)

= 1

1− x − x2 − x5
,

where we have added the number of ways to insert 0 tokens, 1 token, 2 tokens, 3 tokens, and
so on, and where we have used the identity 1/(1− x) = 1+ x + x2 + · · · with x replaced
with x + x2 + x5. For example, the number of ways to pay for an item costing $7 using $1, $2,
and $5 tokens, when the order in which the tokens are used matters, is the coefficient of x7 in this
expansion, which equals 26. [Hint: To see that this coefficient equals 26 requires the addition
of the coefficients of x7 in the expansions (x + x2 + x5)k for 2 ≤ k ≤ 7. This can be done by
hand with considerable computation, or a computer algebra system can be used.] ▲

Example 13 shows the versatility of generating functions when used to solve problems with
differing assumptions.

EXAMPLE 13 Use generating functions to find the number of k-combinations of a set with n elements. Assume
that the binomial theorem has already been established.

Solution: Each of the n elements in the set contributes the term (1+ x) to the generating function
f (x) =∑n

k= 0 akx
k . Here f (x) is the generating function for {ak}, where ak represents the

number of k-combinations of a set with n elements. Hence,

f (x) = (1+ x)n.

But by the binomial theorem, we have

f (x) =
n∑

k= 0

(
n

k

)
xk,

where

(
n

k

)
= n!

k!(n− k)! .

Hence, C(n, k), the number of k-combinations of a set with n elements, is

n!
k!(n− k)! . ▲

Remark: We proved the binomial theorem in Section 6.4 using the formula for the number of
r-combinations of a set with n elements. This example shows that the binomial theorem, which
can be proved by mathematical induction, can be used to derive the formula for the number of
r-combinations of a set with n elements.
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EXAMPLE 14 Use generating functions to find the number of r-combinations from a set with n elements when
repetition of elements is allowed.

Solution: Let G(x) be the generating function for the sequence {ar}, where ar equals the number
of r-combinations of a set withn elements with repetitions allowed. That is,G(x) =∑∞r = 0 arx

r .
Because we can select any number of a particular member of the set with n elements
when we form an r-combination with repetition allowed, each of the n elements contributes
(1+ x + x2 + x3 + · · · ) to a product expansion for G(x). Each element contributes this factor
because it may be selected zero times, one time, two times, three times, and so on, when an
r-combination is formed (with a total of r elements selected). Because there are n elements in
the set and each contributes this same factor to G(x), we have

G(x) = (1+ x + x2 + · · · )n.

As long as |x| < 1, we have 1+ x + x2 + · · · = 1/(1− x), so

G(x) = 1/(1− x)n = (1− x)−n.

Applying the extended binomial theorem (Theorem 2), it follows that

(1− x)−n = (1+ (−x))−n =
∞∑

r = 0

(−n

r

)
(−x)r .

The number of r-combinations of a set with n elements with repetitions allowed, when r is a
positive integer, is the coefficient ar of xr in this sum. Consequently, using Example 8 we find
that ar equals

(−n

r

)
(−1)r = (−1)rC(n+ r − 1, r) · (−1)r

= C(n+ r − 1, r). ▲
Note that the result in Example 14 is the same result we stated as Theorem 2 in Section 6.5.

EXAMPLE 15 Use generating functions to find the number of ways to select r objects of n different kinds if
we must select at least one object of each kind.

Solution: Because we need to select at least one object of each kind, each of the n kinds of objects
contributes the factor (x + x2 + x3 + · · · ) to the generating function G(x) for the sequence {ar},
where ar is the number of ways to select r objects of n different kinds if we need at least one
object of each kind. Hence,

G(x) = (x + x2 + x3 + · · · )n = xn(1+ x + x2 + · · · )n = xn/(1− x)n.
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Using the extended binomial theorem and Example 8, we have

G(x) = xn/(1− x)n

= xn · (1− x)−n

= xn
∞∑

r = 0

(−n

r

)
(−x)r

= xn
∞∑

r = 0

(−1)rC(n+ r − 1, r)(−1)rxr

=
∞∑

r = 0

C(n+ r − 1, r)xn+r

=
∞∑

t = n

C(t − 1, t − n)xt

=
∞∑

r = n

C(r − 1, r − n)xr .

We have shifted the summation in the next-to-last equality by setting t = n+ r so that t = n

when r = 0 and n+ r − 1 = t − 1, and then we replaced t by r as the index of summation in
the last equality to return to our original notation. Hence, there are C(r − 1, r − n) ways to
select r objects of n different kinds if we must select at least one object of each kind. ▲

Using Generating Functions to Solve Recurrence Relations

We can find the solution to a recurrence relation and its initial conditions by finding an explicit
formula for the associated generating function. This is illustrated in Examples 16 and 17.

EXAMPLE 16 Solve the recurrence relation ak = 3ak−1 for k = 1, 2, 3, . . . and initial condition a0 = 2.

Solution: Let G(x) be the generating function for the sequence {ak}, that is, G(x) =∑∞k= 0 akx
k .

First note that

xG(x) =
∞∑

k= 0

akx
k+1 =

∞∑

k= 1

ak−1x
k.

Using the recurrence relation, we see that

G(x)− 3xG(x) =
∞∑

k= 0

akx
k − 3

∞∑

k= 1

ak−1x
k

= a0 +
∞∑

k= 1

(ak − 3ak−1)x
k

= 2,

because a0 = 2 and ak = 3ak−1. Thus,

G(x)− 3xG(x) = (1− 3x)G(x) = 2.
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Solving for G(x) shows that G(x) = 2/(1− 3x). Using the identity 1/(1− ax) =∑∞k= 0 akxk ,
from Table 1, we have

G(x) = 2
∞∑

k= 0

3kxk =
∞∑

k= 0

2 · 3kxk.

Consequently, ak = 2 · 3k . ▲

EXAMPLE 17 Suppose that a valid codeword is an n-digit number in decimal notation containing an even
number of 0s. Let an denote the number of valid codewords of length n. In Example 4 of
Section 8.1 we showed that the sequence {an} satisfies the recurrence relation

an = 8an−1 + 10n−1

and the initial condition a1 = 9. Use generating functions to find an explicit formula for an.

Solution: To make our work with generating functions simpler, we extend this sequence
by setting a0 = 1; when we assign this value to a0 and use the recurrence relation, we
have a1 = 8a0 + 100 = 8+ 1 = 9, which is consistent with our original initial condition. (It
also makes sense because there is one code word of length 0—the empty string.)

We multiply both sides of the recurrence relation by xn to obtain

anx
n = 8an−1x

n + 10n−1xn.

Let G(x) =∑∞n= 0 anx
n be the generating function of the sequence a0, a1, a2, . . . . We sum

both sides of the last equation starting with n = 1, to find that

G(x)− 1 =
∞∑

n=1

anx
n =

∞∑

n=1

(8an−1x
n + 10n−1xn)

= 8
∞∑

n=1

an−1x
n +

∞∑

n=1

10n−1xn

= 8x

∞∑

n=1

an−1x
n−1 + x

∞∑

n=1

10n−1xn−1

= 8x

∞∑

n= 0

anx
n + x

∞∑

n= 0

10nxn

= 8xG(x)+ x/(1− 10x),

where we have used Example 5 to evaluate the second summation. Therefore, we have

G(x)− 1 = 8xG(x)+ x/(1− 10x).

Solving for G(x) shows that

G(x) = 1− 9x

(1− 8x)(1− 10x)
.
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Expanding the right-hand side of this equation into partial fractions (as is done in the integration
of rational functions studied in calculus) gives

G(x) = 1

2

(
1

1− 8x
+ 1

1− 10x

)
.

Using Example 5 twice (once with a = 8 and once with a = 10) gives

G(x) = 1

2

( ∞∑

n= 0

8nxn +
∞∑

n= 0

10nxn

)

=
∞∑

n= 0

1

2
(8n + 10n)xn.

Consequently, we have shown that

an = 1

2
(8n + 10n).

▲

Proving Identities via Generating Functions

In Chapter 6 we saw how combinatorial identities could be established using combinatorial
proofs. Here we will show that such identities, as well as identities for extended binomial coef-
ficients, can be proved using generating functions. Sometimes the generating function approach
is simpler than other approaches, especially when it is simpler to work with the closed form
of a generating function than with the terms of the sequence themselves. We illustrate how
generating functions can be used to prove identities with Example 18.

EXAMPLE 18 Use generating functions to show that

n∑

k= 0

C(n, k)2 = C(2n, n)

whenever n is a positive integer.

Solution: First note that by the binomial theorem C(2n, n) is the coefficient of xn in (1+ x)2n.
However, we also have

(1+ x)2n = [(1+ x)n]2
= [C(n, 0)+ C(n, 1)x + C(n, 2)x2 + · · · + C(n, n)xn]2.

The coefficient of xn in this expression is

C(n, 0)C(n, n)+ C(n, 1)C(n, n− 1)+ C(n, 2)C(n, n− 2)+ · · · + C(n, n)C(n, 0).

This equals
∑n

k= 0 C(n, k)2, because C(n, n− k) = C(n, k). Because both C(2n, n) and∑n
k= 0 C(n, k)2 represent the coefficient of xn in (1+ x)2n, they must be equal. ▲

Exercises 42 and 43 ask that Pascal’s identity and Vandermonde’s identity be proved using
generating functions.
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Exercises

1. Find the generating function for the finite sequence 2, 2,
2, 2, 2, 2.

2. Find the generating function for the finite sequence 1, 4,
16, 64, 256.

In Exercises 3–8, by a closed form we mean an algebraic ex-
pression not involving a summation over a range of values or
the use of ellipses.

3. Find a closed form for the generating function for each
of these sequences. (For each sequence, use the most ob-
vious choice of a sequence that follows the pattern of the
initial terms listed.)
a) 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, . . .

b) 0, 0, 0, 1, 1, 1, 1, 1, 1, . . .

c) 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, . . .

d) 2, 4, 8, 16, 32, 64, 128, 256, . . .

e)
(

7

0

)
,

(
7

1

)
,

(
7

2

)
, . . . ,

(
7

7

)
, 0, 0, 0, 0, 0, . . .

f ) 2, −2, 2, −2, 2, −2, 2, −2, . . .

g) 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, . . .

h) 0, 0, 0, 1, 2, 3, 4, . . .

4. Find a closed form for the generating function for each
of these sequences. (Assume a general form for the terms
of the sequence, using the most obvious choice of such a
sequence.)
a) −1, −1, −1, −1, −1, −1, −1, 0, 0, 0, 0, 0, 0, . . .

b) 1, 3, 9, 27, 81, 243, 729, . . .

c) 0, 0, 3, −3, 3, −3, 3, −3, . . .

d) 1, 2, 1, 1, 1, 1, 1, 1, 1, . . .

e)
(

7

0

)
, 2

(
7

1

)
, 22

(
7

2

)
, . . . , 27

(
7

7

)
, 0, 0, 0, 0, . . .

f ) −3, 3, −3, 3, −3, 3, . . .

g) 0, 1, −2, 4, −8, 16, −32, 64, . . .

h) 1, 0, 1, 0, 1, 0, 1, 0, . . .

5. Find a closed form for the generating function for the
sequence {an}, where
a) an = 5 for all n = 0, 1, 2, . . . .

b) an = 3n for all n = 0, 1, 2, . . . .

c) an = 2 for n = 3, 4, 5, . . . and a0 = a1 = a2 = 0.
d) an = 2n+ 3 for all n = 0, 1, 2, . . . .

e) an =
(

8

n

)
for all n = 0, 1, 2, . . . .

f ) an =
(

n+ 4

n

)
for all n = 0, 1, 2, . . . .

6. Find a closed form for the generating function for the
sequence {an}, where
a) an = −1 for all n = 0, 1, 2, . . . .

b) an = 2n for n = 1, 2, 3, 4, . . . and a0 = 0.
c) an = n− 1 for n = 0, 1, 2, . . . .

d) an = 1/(n+ 1)! for n = 0, 1, 2, . . . .

e) an =
(

n

2

)
for n = 0, 1, 2, . . . .

f ) an =
(

10

n+ 1

)
for n = 0, 1, 2, . . . .

7. For each of these generating functions, provide a closed
formula for the sequence it determines.
a) (3x − 4)3 b) (x3 + 1)3

c) 1/(1− 5x) d) x3/(1+ 3x)

e) x2 + 3x + 7+ (1/(1− x2))

f ) (x4/(1− x4))− x3 − x2 − x − 1
g) x2/(1− x)2 h) 2e2x

8. For each of these generating functions, provide a closed
formula for the sequence it determines.
a) (x2 + 1)3 b) (3x − 1)3

c) 1/(1− 2x2) d) x2/(1− x)3

e) x − 1+ (1/(1− 3x)) f ) (1+ x3)/(1+ x)3

∗g) x/(1+ x + x2) h) e3x2 − 1
9. Find the coefficient of x10 in the power series of each of

these functions.
a) (1+ x5 + x10 + x15 + · · · )3

b) (x3 + x4 + x5 + x6 + x7 + · · · )3

c) (x4 + x5 + x6)(x3 + x4 + x5 + x6 + x7)(1+ x +
x2 + x3 + x4 + · · · )

d) (x2 + x4 + x6 + x8 + · · · )(x3 + x6 + x9 +
· · · )(x4 + x8 + x12 + · · · )

e) (1+ x2+ x4+ x6+ x8+ · · · )(1+ x4+ x8+ x12 +
· · · )(1+ x6 + x12 + x18 + · · · )

10. Find the coefficient of x9 in the power series of each of
these functions.
a) (1+ x3 + x6 + x9 + · · · )3

b) (x2 + x3 + x4 + x5 + x6 + · · · )3

c) (x3 + x5 + x6)(x3 + x4)(x + x2 + x3 + x4 + · · · )
d) (x + x4 + x7 + x10 + · · · )(x2 + x4 + x6 + x8 +
· · · )

e) (1+ x + x2)3

11. Find the coefficient of x10 in the power series of each of
these functions.
a) 1/(1− 2x) b) 1/(1+ x)2

c) 1/(1− x)3 d) 1/(1+ 2x)4

e) x4/(1− 3x)3

12. Find the coefficient of x12 in the power series of each of
these functions.
a) 1/(1+ 3x) b) 1/(1− 2x)2

c) 1/(1+ x)8 d) 1/(1− 4x)3

e) x3/(1+ 4x)2

13. Use generating functions to determine the number of dif-
ferent ways 10 identical balloons can be given to four
children if each child receives at least two balloons.

14. Use generating functions to determine the number of dif-
ferent ways 12 identical action figures can be given to five
children so that each child receives at most three action
figures.

15. Use generating functions to determine the number of dif-
ferent ways 15 identical stuffed animals can be given to
six children so that each child receives at least one but no
more than three stuffed animals.
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16. Use generating functions to find the number of ways to
choose a dozen bagels from three varieties—egg, salty,
and plain—if at least two bagels of each kind but no more
than three salty bagels are chosen.

17. In how many ways can 25 identical donuts be distributed
to four police officers so that each officer gets at least
three but no more than seven donuts?

18. Use generating functions to find the number of ways to
select 14 balls from a jar containing 100 red balls, 100
blue balls, and 100 green balls so that no fewer than 3 and
no more than 10 blue balls are selected. Assume that the
order in which the balls are drawn does not matter.

19. What is the generating function for the sequence {ck},
where ck is the number of ways to make change for k

dollars using $1 bills, $2 bills, $5 bills, and $10 bills?
20. What is the generating function for the sequence {ck},

where ck represents the number of ways to make change
for k pesos using bills worth 10 pesos, 20 pesos, 50 pesos,
and 100 pesos?

21. Give a combinatorial interpretation of the coefficient
of x4 in the expansion (1+ x + x2 + x3 + · · · )3. Use
this interpretation to find this number.

22. Give a combinatorial interpretation of the coefficient
of x6 in the expansion (1+ x + x2 + x3 + · · · )n. Use
this interpretation to find this number.

23. a) What is the generating function for {ak}, where ak

is the number of solutions of x1 + x2 + x3 = k when
x1, x2, and x3 are integers with x1 ≥ 2, 0 ≤ x2 ≤ 3,
and 2 ≤ x3 ≤ 5?

b) Use your answer to part (a) to find a6.
24. a) What is the generating function for {ak}, where ak

is the number of solutions of x1 + x2 + x3 + x4 = k

when x1, x2, x3, and x4 are integers with x1 ≥ 3,
1 ≤ x2 ≤ 5, 0 ≤ x3 ≤ 4, and x4 ≥ 1?

b) Use your answer to part (a) to find a7.
25. Explain how generating functions can be used to find the

number of ways in which postage of r cents can be pasted
on an envelope using 3-cent, 4-cent, and 20-cent stamps.
a) Assume that the order the stamps are pasted on does

not matter.
b) Assume that the stamps are pasted in a row and the

order in which they are pasted on matters.
c) Use your answer to part (a) to determine the number

of ways 46 cents of postage can be pasted on an en-
velope using 3-cent, 4-cent, and 20-cent stamps when
the order the stamps are pasted on does not matter.
(Use of a computer algebra program is advised.)

d) Use your answer to part (b) to determine the num-
ber of ways 46 cents of postage can be pasted in a
row on an envelope using 3-cent, 4-cent, and 20-cent
stamps when the order in which the stamps are pasted
on matters. (Use of a computer algebra program is
advised.)

26. a) Show that 1/(1− x − x2 − x3 − x4 − x5 − x6) is
the generating function for the number of ways that
the sum n can be obtained when a die is rolled repeat-
edly and the order of the rolls matters.

b) Use part (a) to find the number of ways to roll a total
of 8 when a die is rolled repeatedly, and the order of
the rolls matters. (Use of a computer algebra package
is advised.)

27. Use generating functions (and a computer algebra pack-
age, if available) to find the number of ways to make
change for $1 using
a) dimes and quarters.
b) nickels, dimes, and quarters.
c) pennies, dimes, and quarters.
d) pennies, nickels, dimes, and quarters.

28. Use generating functions (and a computer algebra pack-
age, if available) to find the number of ways to make
change for $1 using pennies, nickels, dimes, and quarters
with
a) no more than 10 pennies.
b) no more than 10 pennies and no more than 10 nickels.

∗c) no more than 10 coins.
29. Use generating functions to find the number of ways to

make change for $100 using
a) $10, $20, and $50 bills.
b) $5, $10, $20, and $50 bills.
c) $5, $10, $20, and $50 bills if at least one bill of each

denomination is used.
d) $5, $10, and $20 bills if at least one and no more than

four of each denomination is used.
30. If G(x) is the generating function for the sequence {ak},

what is the generating function for each of these se-
quences?
a) 2a0, 2a1, 2a2, 2a3, . . .

b) 0, a0, a1, a2, a3, . . . (assuming that terms follow the
pattern of all but the first term)

c) 0, 0, 0, 0, a2, a3, . . . (assuming that terms follow the
pattern of all but the first four terms)

d) a2, a3, a4, . . .

e) a1, 2a2, 3a3, 4a4, . . . [Hint: Calculus required here.]
f ) a2

0 , 2a0a1, a2
1 + 2a0a2, 2a0a3 + 2a1a2, 2a0a4 +

2a1a3 + a2
2 , . . .

31. If G(x) is the generating function for the sequence {ak},
what is the generating function for each of these se-
quences?
a) 0, 0, 0, a3, a4, a5, . . . (assuming that terms follow the

pattern of all but the first three terms)
b) a0, 0, a1, 0, a2, 0, . . .

c) 0, 0, 0, 0, a0, a1, a2, . . . (assuming that terms follow
the pattern of all but the first four terms)

d) a0, 2a1, 4a2, 8a3, 16a4, . . .

e) 0, a0, a1/2, a2/3, a3/4, . . . [Hint: Calculus required
here.]

f ) a0, a0 + a1, a0 + a1 + a2, a0 + a1 + a2 + a3, . . .

32. Use generating functions to solve the recurrence relation
ak = 7ak−1 with the initial condition a0 = 5.

33. Use generating functions to solve the recurrence relation
ak = 3ak−1 + 2 with the initial condition a0 = 1.

34. Use generating functions to solve the recurrence relation
ak = 3ak−1 + 4k−1 with the initial condition a0 = 1.
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35. Use generating functions to solve the recurrence rela-
tion ak = 5ak−1 − 6ak−2 with initial conditions a0 = 6
and a1 = 30.

36. Use generating functions to solve the recurrence relation
ak = ak−1 + 2ak−2 + 2k with initial conditions a0 = 4
and a1 = 12.

37. Use generating functions to solve the recurrence relation
ak = 4ak−1 − 4ak−2 + k2 with initial conditions a0 = 2
and a1 = 5.

38. Use generating functions to solve the recurrence re-
lation ak = 2ak−1 + 3ak−2 + 4k + 6 with initial condi-
tions a0 = 20, a1 = 60.

39. Use generating functions to find an explicit formula for
the Fibonacci numbers.

∗40. a) Show that if n is a positive integer, then

(−1/2

n

)
=
(

2n
n

)

(−4)n
.

b) Use the extended binomial theorem and part (a) to
show that the coefficient of xn in the expansion of
(1− 4x)−1/2 is

(2n
n

)
for all nonnegative integers n.

∗41. (Calculus required ) Let {Cn} be the sequence of Catalan
numbers, that is, the solution to the recurrence relation
Cn =∑n−1

k= 0 CkCn−k−1 with C0 = C1 = 1 (see Exam-
ple 5 in Section 8.1).
a) Show that if G(x) is the generating function for the se-

quence of Catalan numbers, then xG(x)2 −G(x)+
1 = 0. Conclude (using the initial conditions) that
G(x) = (1−√1− 4x)/(2x).

b) Use Exercise 40 to conclude that

G(x) =
∞∑

n= 0

1

n+ 1

(
2n

n

)
xn,

so that

Cn = 1

n+ 1

(
2n

n

)
.

c) Show that Cn ≥ 2n−1 for all positive integers n.
42. Use generating functions to prove Pascal’s identity:

C(n, r) = C(n− 1, r)+ C(n− 1, r − 1) when n and r

are positive integers with r < n. [Hint: Use the identity
(1+ x)n = (1+ x)n−1 + x(1+ x)n−1.]

43. Use generating functions to prove Vandermonde’s iden-
tity: C(m+ n, r) =∑r

k= 0 C(m, r − k)C(n, k), when-
ever m, n, and r are nonnegative integers with r not ex-
ceeding either m or n. [Hint: Look at the coefficient of xr

in both sides of (1+ x)m+n = (1+ x)m(1+ x)n.]

44. This exercise shows how to use generating functions to
derive a formula for the sum of the first n squares.
a) Show that (x2 + x)/(1− x)4 is the gener-

ating function for the sequence {an}, where
an = 12 + 22 + · · · + n2.

b) Use part (a) to find an explicit formula for the sum
12 + 22 + · · · + n2.

The exponential generating function for the sequence {an}
is the series

∞∑

n= 0

an

n! x
n.

For example, the exponential generating function for the
sequence 1, 1, 1, . . . is the function

∑∞
n= 0 xn/n! = ex .

(You will find this particular series useful in these exercises.)
Note that ex is the (ordinary) generating function for the se-
quence 1, 1, 1/2!, 1/3!, 1/4!, . . . .
45. Find a closed form for the exponential generating func-

tion for the sequence {an}, where
a) an = 2. b) an = (−1)n.
c) an = 3n. d) an = n+ 1.
e) an = 1/(n+ 1).

46. Find a closed form for the exponential generating func-
tion for the sequence {an}, where
a) an = (−2)n. b) an = −1.
c) an = n. d) an = n(n− 1).
e) an = 1/((n+ 1)(n+ 2)).

47. Find the sequence with each of these functions as its ex-
ponential generating function.
a) f (x) = e−x b) f (x) = 3x2x

c) f (x) = e3x − 3e2x d) f (x) = (1− x)+ e−2x

e) f (x) = e−2x − (1/(1− x))
f ) f (x) = e−3x − (1+ x)+ (1/(1− 2x))

g) f (x) = ex2

48. Find the sequence with each of these functions as its ex-
ponential generating function.
a) f (x) = e3x b) f (x) = 2e−3x+1

c) f (x) = e4x + e−4x d) f (x) = (1+ 2x)+ e3x

e) f (x) = ex − (1/(1+ x))

f ) f (x) = xex g) f (x) = ex3

49. A coding system encodes messages using strings of octal
(base 8) digits.A codeword is considered valid if and only
if it contains an even number of 7s.
a) Find a linear nonhomogeneous recurrence relation for

the number of valid codewords of length n. What are
the initial conditions?

b) Solve this recurrence relation using Theorem 6 in Sec-
tion 8.2.

c) Solve this recurrence relation using generating func-
tions.

∗50. A coding system encodes messages using strings of
base 4 digits (that is, digits from the set {0, 1, 2, 3}).
A codeword is valid if and only if it contains an even
number of 0s and an even number of 1s. Let an equal
the number of valid codewords of length n. Furthermore,
letbn, cn, anddn equal the number of strings of base 4 dig-
its of length n with an even number of 0s and an odd num-
ber of 1s, with an odd number of 0s and an even number
of 1s, and with an odd number of 0s and an odd number
of 1s, respectively.
a) Show that dn = 4n − an − bn − cn. Use this to show

that an+1 = 2an + bn + cn, bn+1 = bn − cn + 4n,
and cn+1 = cn − bn + 4n.
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b) What are a1, b1, c1, and d1?

c) Use parts (a) and (b) to find a3, b3, c3, and d3.

d) Use the recurrence relations in part (a), together with
the initial conditions in part (b), to set up three equa-
tions relating the generating functions A(x), B(x),

and C(x) for the sequences {an}, {bn}, and {cn}, re-
spectively.

e) Solve the system of equations from part (d) to get
explicit formulae for A(x), B(x), and C(x) and use
these to get explicit formulae for an, bn, cn, and dn.

Generating functions are useful in studying the number of
different types of partitions of an integer n. A partition of
a positive integer is a way to write this integer as the sum
of positive integers where repetition is allowed and the order
of the integers in the sum does not matter. For example, the
partitions of 5 (with no restrictions) are 1+ 1+ 1+ 1+ 1,
1+ 1+ 1+ 2, 1+ 1+ 3, 1+ 2+ 2, 1+ 4, 2+ 3, and 5.
Exercises 51–56 illustrate some of these uses.

51. Show that the coefficient p(n) of xn in the formal
power series expansion of 1/((1−x)(1−x2)(1−x3) · · · )
equals the number of partitions of n.

52. Show that the coefficient po(n) of xn in the formal
power series expansion of 1/((1−x)(1−x3)(1−x5) · · · )
equals the number of partitions of n into odd integers, that
is, the number of ways to writen as the sum of odd positive
integers, where the order does not matter and repetitions
are allowed.

53. Show that the coefficient pd(n) of xn in the formal power
series expansion of (1+ x)(1+ x2)(1+ x3) · · · equals
the number of partitions of n into distinct parts, that is,
the number of ways to write n as the sum of positive in-
tegers, where the order does not matter but no repetitions
are allowed.

54. Find po(n), the number of partitions of n into odd parts
with repetitions allowed, and pd(n), the number of par-
titions of n into distinct parts, for 1 ≤ n ≤ 8, by writing
each partition of each type for each integer.

55. Show that if n is a positive integer, then the number of
partitions of n into distinct parts equals the number
of partitions of n into odd parts with repetitions allowed;

that is, po(n) = pd(n). [Hint: Show that the generating
functions for po(n) and pd(n) are equal.]

∗∗56. (Requires calculus) Use the generating function of p(n)

to show that p(n) ≤ eC
√

n for some constant C. [Hardy
and Ramanujan showed that p(n) ∼ eπ

√
2/3
√

n/(4
√

3n),
which means that the ratio of p(n) and the right-hand side
approaches 1 as n approaches infinity.]

Suppose that X is a random variable on a sample space S such
that X(s) is a nonnegative integer for all s ∈ S. The proba-
bility generating function for X is

GX(x) =
∞∑

k= 0

p(X(s) = k)xk.

57. (Requires calculus) Show that if GX is the probability
generating function for a random variable X such that
X(s) is a nonnegative integer for all s ∈ S, then
a) GX(1) = 1. b) E(X) = G′X(1).
c) V (X) = G′′X(1)+G′X(1)−G′X(1)2.

58. Let X be the random variable whose value is n if the
first success occurs on the nth trial when independent
Bernoulli trials are performed, each with probability of
success p.
a) Find a closed formula for the probability generating

function GX .
b) Find the expected value and the variance of X using

Exercise 57 and the closed form for the probability
generating function found in part (a).

59. Let m be a positive integer. Let Xm be the random vari-
able whose value is n if the mth success occurs on the
(n+m)th trial when independent Bernoulli trials are per-
formed, each with probability of success p.
a) Using Exercise 32 in the Supplementary Exercises

of Chapter 7, show that the probability generating
function GXm is given by GXm(x) = pm/(1− qx)m,
where q = 1− p.

b) Find the expected value and the variance of Xm using
Exercise 57 and the closed form for the probability
generating function in part (a).

60. Show that if X and Y are independent random variables on
a sample space S such that X(s) and Y (s) are nonnegative
integers for all s ∈ S, then GX+Y (x) = GX(x)GY (x).

8.5 Inclusion–Exclusion

Introduction

A discrete mathematics class contains 30 women and 50 sophomores. How many students
in the class are either women or sophomores? This question cannot be answered unless more
information is provided.Adding the number of women in the class and the number of sophomores
probably does not give the correct answer, because women sophomores are counted twice. This
observation shows that the number of students in the class that are either sophomores or women is
the sum of the number of women and the number of sophomores in the class minus the number
of women sophomores. A technique for solving such counting problems was introduced in
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Section 6.1. In this section we will generalize the ideas introduced in that section to solve
problems that require us to count the number of elements in the union of more than two sets.

The Principle of Inclusion–Exclusion

How many elements are in the union of two finite sets? In Section 2.2 we showed that the number
of elements in the union of the two sets A and B is the sum of the numbers of elements in the
sets minus the number of elements in their intersection. That is,

|A ∪ B| = |A| + |B| − |A ∩ B|.

As we showed in Section 6.1, the formula for the number of elements in the union of two sets
is useful in counting problems. Examples 1–3 provide additional illustrations of the usefulness
of this formula.

EXAMPLE 1 In a discrete mathematics class every student is a major in computer science or mathematics,
or both. The number of students having computer science as a major (possibly along with
mathematics) is 25; the number of students having mathematics as a major (possibly along with
computer science) is 13; and the number of students majoring in both computer science and
mathematics is 8. How many students are in this class?

Solution: Let A be the set of students in the class majoring in computer science and B be the set
of students in the class majoring in mathematics. Then A ∩ B is the set of students in the class
who are joint mathematics and computer science majors. Because every student in the class
is majoring in either computer science or mathematics (or both), it follows that the number of
students in the class is |A ∪ B|. Therefore,

|A ∪ B| = |A| + |B| − |A ∩ B|
= 25+ 13− 8 = 30.

Therefore, there are 30 students in the class. This computation is illustrated in Figure 1. ▲

EXAMPLE 2 How many positive integers not exceeding 1000 are divisible by 7 or 11?

Solution: Let A be the set of positive integers not exceeding 1000 that are divisible by 7, and
let B be the set of positive integers not exceeding 1000 that are divisible by 11. Then A ∪ B

is the set of integers not exceeding 1000 that are divisible by either 7 or 11, and A ∩ B is the
set of integers not exceeding 1000 that are divisible by both 7 and 11. From Example 2 of
Section 4.1, we know that among the positive integers not exceeding 1000 there are 	1000/7

integers divisible by 7 and 	1000/11
 divisible by 11. Because 7 and 11 are relatively prime,
the integers divisible by both 7 and 11 are those divisible by 7 · 11. Consequently, there are
	1000/(11 · 7)
 positive integers not exceeding 1000 that are divisible by both 7 and 11. It
follows that there are

|A ∪ B| = |A| + |B| − |A ∩ B|

=
⌊

1000

7

⌋
+
⌊

1000

11

⌋
−
⌊

1000

7 · 11

⌋

= 142+ 90− 12 = 220

positive integers not exceeding 1000 that are divisible by either 7 or 11. This computation is
illustrated in Figure 2. ▲
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A BA B

�A � B�=�A�+�B�–�A � B�= 25 + 13 – 8 = 30

�B�= 13�A�= 25 �A � B�= 8

AA�BBA�B

FIGURE 1 The Set of Students in a
Discrete Mathematics Class.

�B� = 90�A � B� = 12�A� = 142

A BA B

�A � B� = �A�+�B�–�A � B� = 142 + 90 – 12 = 220

AA�BBA�B

FIGURE 2 The Set of Positive Integers Not
Exceeding 1000 Divisible by Either 7 or 11.

Example 3 shows how to find the number of elements in a finite universal set that are outside
the union of two sets.

EXAMPLE 3 Suppose that there are 1807 freshmen at your school. Of these, 453 are taking a course in
computer science, 567 are taking a course in mathematics, and 299 are taking courses in both
computer science and mathematics. How many are not taking a course either in computer science
or in mathematics?

Solution: To find the number of freshmen who are not taking a course in either mathematics
or computer science, subtract the number that are taking a course in either of these subjects
from the total number of freshmen. Let A be the set of all freshmen taking a course in com-
puter science, and let B be the set of all freshmen taking a course in mathematics. It follows
that |A| = 453, |B| = 567, and |A ∩ B| = 299. The number of freshmen taking a course in
either computer science or mathematics is

|A ∪ B| = |A| + |B| − |A ∩ B| = 453+ 567− 299 = 721.

Consequently, there are 1807− 721 = 1086 freshmen who are not taking a course in computer
science or mathematics. ▲

We will now begin our development of a formula for the number of elements in the union
of a finite number of sets. The formula we will develop is called the principle of inclusion–
exclusion. For concreteness, before we consider unions of n sets, where n is any positive integer,
we will derive a formula for the number of elements in the union of three sets A, B, and C. To
construct this formula, we note that |A| + |B| + |C| counts each element that is in exactly one
of the three sets once, elements that are in exactly two of the sets twice, and elements in all three
sets three times. This is illustrated in the first panel in Figure 3.

To remove the overcount of elements in more than one of the sets, we subtract the number
of elements in the intersections of all pairs of the three sets. We obtain

|A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|.

This expression still counts elements that occur in exactly one of the sets once. An element that
occurs in exactly two of the sets is also counted exactly once, because this element will occur
in one of the three intersections of sets taken two at a time. However, those elements that occur
in all three sets will be counted zero times by this expression, because they occur in all three
intersections of sets taken two at a time. This is illustrated in the second panel in Figure 3.
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1 1 1 1 1
2 1 1

10000

A B A B A B

CCCC C

1

1111 1

1111 1 12 22

3

C

1

1

(a)   Count of elements by   (b)   Count of elements by   (c)   Count of elements by   

FIGURE 3 Finding a Formula for the Number of Elements in the Union of Three Sets.

To remedy this undercount, we add the number of elements in the intersection of all three
sets. This final expression counts each element once, whether it is in one, two, or three of the
sets. Thus,

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C| + |A ∩ B ∩ C|.

This formula is illustrated in the third panel of Figure 3.
Example 4 illustrates how this formula can be used.

EXAMPLE 4 A total of 1232 students have taken a course in Spanish, 879 have taken a course in French,
and 114 have taken a course in Russian. Further, 103 have taken courses in both Spanish and
French, 23 have taken courses in both Spanish and Russian, and 14 have taken courses in both
French and Russian. If 2092 students have taken at least one of Spanish, French, and Russian,
how many students have taken a course in all three languages?

Solution: Let S be the set of students who have taken a course in Spanish, F the set of students
who have taken a course in French, and R the set of students who have taken a course in Russian.
Then

|S| = 1232, |F | = 879, |R| = 114,

|S ∩ F | = 103, |S ∩ R| = 23, |F ∩ R| = 14,

and

|S ∪ F ∪ R| = 2092.

When we insert these quantities into the equation

|S ∪ F ∪ R| = |S| + |F | + |R| − |S ∩ F | − |S ∩ R| − |F ∩ R| + |S ∩ F ∩ R|

we obtain

2092 = 1232+ 879+ 114− 103− 23− 14+ |S ∩ F ∩ R|.

We now solve for |S ∩ F ∩ R|. We find that |S ∩ F ∩ R| = 7. Therefore, there are seven students
who have taken courses in Spanish, French, and Russian. This is illustrated in Figure 4. ▲
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S    F S    F 

S   S    R R F   F    R

S    S     F    F     R

S F

R

S    F 

S    R F    R

S     F     R

S F

R

FIGURE 4 The Set of Students Who Have Taken Courses
in Spanish, French, and Russian.

We will now state and prove the inclusion–exclusion principle, which tells us how many
elements are in the union of a finite number of finite sets.

THEOREM 1 THE PRINCIPLE OF INCLUSION–EXCLUSION Let A1, A2, . . . , An be finite sets.
Then

|A1 ∪ A2 ∪ · · · ∪ An| =
∑

1≤i≤n

|Ai | −
∑

1≤i<j≤n

|Ai ∩ Aj |

+
∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak| − · · · + (−1)n+1|A1 ∩ A2 ∩ · · · ∩ An|.

Proof: We will prove the formula by showing that an element in the union is counted exactly
once by the right-hand side of the equation. Suppose that a is a member of exactly r of the
sets A1, A2, . . . , An where 1 ≤ r ≤ n. This element is counted C(r, 1) times by �|Ai |. It is
counted C(r, 2) times by �|Ai ∩ Aj |. In general, it is counted C(r, m) times by the summation
involving m of the sets Ai . Thus, this element is counted exactly

C(r, 1)− C(r, 2)+ C(r, 3)− · · · + (−1)r+1C(r, r)

times by the expression on the right-hand side of this equation. Our goal is to evaluate this
quantity. By Corollary 2 of Section 6.4, we have

C(r, 0)− C(r, 1)+ C(r, 2)− · · · + (−1)rC(r, r) = 0.

Hence,

1 = C(r, 0) = C(r, 1)− C(r, 2)+ · · · + (−1)r+1C(r, r).
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Therefore, each element in the union is counted exactly once by the expression on the right-hand
side of the equation. This proves the principle of inclusion–exclusion.

The inclusion–exclusion principle gives a formula for the number of elements in the union
of n sets for every positive integer n. There are terms in this formula for the number of ele-
ments in the intersection of every nonempty subset of the collection of the n sets. Hence, there
are 2n − 1 terms in this formula.

EXAMPLE 5 Give a formula for the number of elements in the union of four sets.

Solution: The inclusion–exclusion principle shows that

|A1 ∪ A2 ∪ A3 ∪ A4| = |A1| + |A2| + |A3| + |A4|
− |A1 ∩ A2| − |A1 ∩ A3| − |A1 ∩ A4| − |A2 ∩ A3| − |A2 ∩ A4|
− |A3 ∩ A4| + |A1 ∩ A2 ∩ A3| + |A1 ∩ A2 ∩ A4| + |A1 ∩ A3 ∩ A4|
+ |A2 ∩ A3 ∩ A4| − |A1 ∩ A2 ∩ A3 ∩ A4|.

Note that this formula contains 15 different terms, one for each nonempty subset of
{A1, A2, A3, A4}. ▲

Exercises

1. How many elements are in A1 ∪ A2 if there are 12 ele-
ments in A1, 18 elements in A2, and
a) A1 ∩ A2 = ∅? b) |A1 ∩ A2| = 1?
c) |A1 ∩ A2| = 6? d) A1 ⊆ A2?

2. There are 345 students at a college who have taken a
course in calculus, 212 who have taken a course in dis-
crete mathematics, and 188 who have taken courses in
both calculus and discrete mathematics. How many stu-
dents have taken a course in either calculus or discrete
mathematics?

3. A survey of households in the United States reveals that
96% have at least one television set, 98% have telephone
service, and 95% have telephone service and at least
one television set. What percentage of households in the
United States have neither telephone service nor a televi-
sion set?

4. A marketing report concerning personal computers states
that 650,000 owners will buy a printer for their machines
next year and 1,250,000 will buy at least one software
package. If the report states that 1,450,000 owners will
buy either a printer or at least one software package, how
many will buy both a printer and at least one software
package?

5. Find the number of elements in A1 ∪ A2 ∪ A3 if there
are 100 elements in each set and if
a) the sets are pairwise disjoint.
b) there are 50 common elements in each pair of sets and

no elements in all three sets.

c) there are 50 common elements in each pair of sets and
25 elements in all three sets.

d) the sets are equal.
6. Find the number of elements in A1 ∪ A2 ∪ A3 if there are

100 elements in A1, 1000 in A2, and 10,000 in A3 if
a) A1 ⊆ A2 and A2 ⊆ A3.
b) the sets are pairwise disjoint.
c) there are two elements common to each pair of sets

and one element in all three sets.
7. There are 2504 computer science students at a school. Of

these, 1876 have taken a course in Java, 999 have taken a
course in Linux, and 345 have taken a course in C. Fur-
ther, 876 have taken courses in both Java and Linux, 231
have taken courses in both Linux and C, and 290 have
taken courses in both Java and C. If 189 of these students
have taken courses in Linux, Java, and C, how many of
these 2504 students have not taken a course in any of
these three programming languages?

8. In a survey of 270 college students, it is found that 64 like
brussels sprouts, 94 like broccoli, 58 like cauliflower, 26
like both brussels sprouts and broccoli, 28 like both brus-
sels sprouts and cauliflower, 22 like both broccoli and
cauliflower, and 14 like all three vegetables. How many
of the 270 students do not like any of these vegetables?

9. How many students are enrolled in a course either in cal-
culus, discrete mathematics, data structures, or program-
ming languages at a school if there are 507, 292, 312,
and 344 students in these courses, respectively; 14 in both
calculus and data structures; 213 in both calculus and pro-
gramming languages; 211 in both discrete mathematics
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and data structures; 43 in both discrete mathematics and
programming languages; and no student may take cal-
culus and discrete mathematics, or data structures and
programming languages, concurrently?

10. Find the number of positive integers not exceeding 100
that are not divisible by 5 or by 7.

11. Find the number of positive integers not exceeding 100
that are either odd or the square of an integer.

12. Find the number of positive integers not exceeding 1000
that are either the square or the cube of an integer.

13. How many bit strings of length eight do not contain six
consecutive 0s?

∗14. How many permutations of the 26 letters of the English
alphabet do not contain any of the strings fish, rat or bird?

15. How many permutations of the 10 digits either begin with
the 3 digits 987, contain the digits 45 in the fifth and sixth
positions, or end with the 3 digits 123?

16. How many elements are in the union of four sets if
each of the sets has 100 elements, each pair of the sets
shares 50 elements, each three of the sets share 25 ele-
ments, and there are 5 elements in all four sets?

17. How many elements are in the union of four sets if the
sets have 50, 60, 70, and 80 elements, respectively, each
pair of the sets has 5 elements in common, each triple of
the sets has 1 common element, and no element is in all
four sets?

18. How many terms are there in the formula for the number
of elements in the union of 10 sets given by the principle
of inclusion–exclusion?

19. Write out the explicit formula given by the principle of
inclusion–exclusion for the number of elements in the
union of five sets.

20. How many elements are in the union of five sets if the
sets contain 10,000 elements each, each pair of sets has
1000 common elements, each triple of sets has 100 com-
mon elements, every four of the sets have 10 common
elements, and there is 1 element in all five sets?

21. Write out the explicit formula given by the principle of
inclusion–exclusion for the number of elements in the
union of six sets when it is known that no three of these
sets have a common intersection.

∗22. Prove the principle of inclusion–exclusion using mathe-
matical induction.

23. Let E1, E2, and E3 be three events from a sample space S.
Find a formula for the probability of E1 ∪ E2 ∪ E3.

24. Find the probability that when a fair coin is flipped five
times tails comes up exactly three times, the first and last
flips come up tails, or the second and fourth flips come
up heads.

25. Find the probability that when four numbers from 1 to
100, inclusive, are picked at random with no repetitions
allowed, either all are odd, all are divisible by 3, or all are
divisible by 5.

26. Find a formula for the probability of the union of four
events in a sample space if no three of them can occur at
the same time.

27. Find a formula for the probability of the union of five
events in a sample space if no four of them can occur at
the same time.

28. Find a formula for the probability of the union of n events
in a sample space when no two of these events can occur
at the same time.

29. Find a formula for the probability of the union of n events
in a sample space.

8.6 Applications of Inclusion–Exclusion

Introduction

Many counting problems can be solved using the principle of inclusion–exclusion. For instance,
we can use this principle to find the number of primes less than a positive integer. Many problems
can be solved by counting the number of onto functions from one finite set to another. The
inclusion–exclusion principle can be used to find the number of such functions. The famous
hatcheck problem can be solved using the principle of inclusion–exclusion. This problem asks
for the probability that no person is given the correct hat back by a hatcheck person who gives
the hats back randomly.

An Alternative Form of Inclusion–Exclusion

There is an alternative form of the principle of inclusion–exclusion that is useful in counting
problems. In particular, this form can be used to solve problems that ask for the number of
elements in a set that have none of n properties P1, P2, . . . , Pn.

Let Ai be the subset containing the elements that have property Pi . The number
of elements with all the properties Pi1, Pi2, . . . , Pik will be denoted by N(Pi1Pi2 . . . Pik ).
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Writing these quantities in terms of sets, we have

|Ai1 ∩ Ai2 ∩ · · · ∩ Aik | = N(Pi1Pi2 . . . Pik ).

If the number of elements with none of the properties P1, P2, . . . , Pn is denoted by
N(P ′1P ′2 . . . P ′n) and the number of elements in the set is denoted by N , it follows that

N(P ′1P ′2 . . . P ′n) = N − |A1 ∪ A2 ∪ · · · ∪ An|.

From the inclusion–exclusion principle, we see that

N(P ′1P ′2 . . . P ′n) = N −
∑

1≤i≤n

N(Pi)+
∑

1≤i<j≤n

N(PiPj )

−
∑

1≤i<j<k≤n

N(PiPjPk)+ · · · + (−1)nN(P1P2 . . . Pn).

Example 1 shows how the principle of inclusion–exclusion can be used to determine the
number of solutions in integers of an equation with constraints.

EXAMPLE 1 How many solutions does

x1 + x2 + x3 = 11

have, where x1, x2, and x3 are nonnegative integers with x1 ≤ 3, x2 ≤ 4, and x3 ≤ 6?

Solution: To apply the principle of inclusion–exclusion, let a solution have property P1
if x1 > 3, property P2 if x2 > 4, and property P3 if x3 > 6. The number of solutions satis-
fying the inequalities x1 ≤ 3, x2 ≤ 4, and x3 ≤ 6 is

N(P ′1P ′2P ′3) = N − N(P1)−N(P2)−N(P3)+N(P1P2)

+ N(P1P3)+N(P2P3)−N(P1P2P3).

Using the same techniques as in Example 5 of Section 6.5, it follows that

� N = total number of solutions = C(3+ 11− 1, 11) = 78,
� N(P1) = (number of solutions with x1 ≥ 4) = C(3+ 7− 1, 7) = C(9, 7) = 36,
� N(P2) = (number of solutions with x2 ≥ 5) = C(3+ 6− 1, 6) = C(8, 6) = 28,
� N(P3) = (number of solutions with x3 ≥ 7) = C(3+ 4− 1, 4) = C(6, 4) = 15,
� N(P1P2) = (number of solutions with x1 ≥ 4 and x2 ≥ 5) = C(3+ 2− 1, 2) =

C(4, 2) = 6,
� N(P1P3) = (number of solutions with x1 ≥ 4 and x3 ≥ 7) = C(3+ 0− 1, 0) = 1,
� N(P2P3) = (number of solutions with x2 ≥ 5 and x3 ≥ 7) = 0,
� N(P1P2P3) = (number of solutions with x1 ≥ 4, x2 ≥ 5, and x3 ≥ 7) = 0.

Inserting these quantities into the formula for N(P ′1P ′2P ′3) shows that the number of solutions
with x1 ≤ 3, x2 ≤ 4, and x3 ≤ 6 equals

N(P ′1P ′2P ′3) = 78− 36− 28− 15+ 6+ 1+ 0− 0 = 6. ▲
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The Sieve of Eratosthenes

In Section 4.3 we showed how to use the sieve of Eratosthenes to find all primes less than a
specified positive integer n. Using the principle of inclusion–exclusion, we can find the number
of primes not exceeding a specified positive integer with the same reasoning as is used in the
sieve of Eratosthenes. Recall that a composite integer is divisible by a prime not exceeding
its square root. So, to find the number of primes not exceeding 100, first note that compos-
ite integers not exceeding 100 must have a prime factor not exceeding 10. Because the only
primes not exceeding 10 are 2, 3, 5, and 7, the primes not exceeding 100 are these four primes
and those positive integers greater than 1 and not exceeding 100 that are divisible by none
of 2, 3, 5, or 7. To apply the principle of inclusion–exclusion, let P1 be the property that an
integer is divisible by 2, let P2 be the property that an integer is divisible by 3, let P3 be the
property that an integer is divisible by 5, and let P4 be the property that an integer is divisible
by 7. Thus, the number of primes not exceeding 100 is

4+N(P ′1P ′2P ′3P ′4).

Because there are 99 positive integers greater than 1 and not exceeding 100, the principle of
inclusion–exclusion shows that

N(P ′1P ′2P ′3P ′4) = 99−N(P1)−N(P2)−N(P3)−N(P4)

+N(P1P2)+N(P1P3)+N(P1P4)+N(P2P3)+N(P2P4)+N(P3P4)

−N(P1P2P3)−N(P1P2P4)−N(P1P3P4)−N(P2P3P4)

+N(P1P2P3P4).

The number of integers not exceeding 100 (and greater than 1) that are divisible by all the primes
in a subset of {2, 3, 5, 7} is 	100/N
, where N is the product of the primes in this subset. (This
follows because any two of these primes have no common factor.) Consequently,

N(P ′1P ′2P ′3P ′4) = 99−
⌊

100

2

⌋
−
⌊

100

3

⌋
−
⌊

100

5

⌋
−
⌊

100

7

⌋

+
⌊

100

2 · 3
⌋
+
⌊

100

2 · 5
⌋
+
⌊

100

2 · 7
⌋
+
⌊

100

3 · 5
⌋
+
⌊

100

3 · 7
⌋
+
⌊

100

5 · 7
⌋

−
⌊

100

2 · 3 · 5
⌋
−
⌊

100

2 · 3 · 7
⌋
−
⌊

100

2 · 5 · 7
⌋
−
⌊

100

3 · 5 · 7
⌋
+
⌊

100

2 · 3 · 5 · 7
⌋

= 99− 50− 33− 20− 14+ 16+ 10+ 7+ 6+ 4+ 2− 3− 2− 1− 0+ 0
= 21.

Hence, there are 4+ 21 = 25 primes not exceeding 100.

The Number of Onto Functions

The principle of inclusion–exclusion can also be used to determine the number of onto functions
from a set with m elements to a set with n elements. First consider Example 2.

EXAMPLE 2 How many onto functions are there from a set with six elements to a set with three elements?

Solution: Suppose that the elements in the codomain are b1, b2, and b3. Let P1, P2, and P3 be
the properties that b1, b2, and b3 are not in the range of the function, respectively. Note that
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a function is onto if and only if it has none of the properties P1, P2, or P3. By the inclusion–
exclusion principle it follows that the number of onto functions from a set with six elements to
a set with three elements is

N(P ′1P ′2P ′3) = N − [N(P1)+N(P2)+N(P3)]
+ [N(P1P2)+N(P1P3)+N(P2P3)] −N(P1P2P3),

where N is the total number of functions from a set with six elements to one with three elements.
We will evaluate each of the terms on the right-hand side of this equation.

From Example 6 of Section 6.1, it follows that N = 36. Note that N(Pi) is the number of
functions that do not have bi in their range. Hence, there are two choices for the value of the
function at each element of the domain. Therefore, N(Pi) = 26. Furthermore, there are C(3, 1)

terms of this kind. Note that N(PiPj ) is the number of functions that do not have bi and bj

in their range. Hence, there is only one choice for the value of the function at each element of
the domain. Therefore, N(PiPj ) = 16 = 1. Furthermore, there are C(3, 2) terms of this kind.
Also, note that N(P1P2P3) = 0, because this term is the number of functions that have none
of b1, b2, and b3 in their range. Clearly, there are no such functions. Therefore, the number of
onto functions from a set with six elements to one with three elements is

36 − C(3, 1)26 + C(3, 2)16 = 729− 192+ 3 = 540.

▲

The general result that tells us how many onto functions there are from a set with m elements
to one with n elements will now be stated. The proof of this result is left as an exercise for the
reader.

THEOREM 1 Let m and n be positive integers with m ≥ n. Then, there are

nm − C(n, 1)(n− 1)m + C(n, 2)(n− 2)m − · · · + (−1)n−1C(n, n− 1) · 1m

onto functions from a set with m elements to a set with n elements.

An onto function from a set with m elements to a set with n elements corresponds to a
way to distribute the m elements in the domain to n indistinguishable boxes so that no box is
empty, and then to associate each of the n elements of the codomain to a box. This means that
the number of onto functions from a set with m elements to a set with n elements is the number

Counting onto functions
is much harder than
counting one-to-one
functions!

of ways to distribute m distinguishable objects to n indistinguishable boxes so that no box is
empty multiplied by the number of permutations of a set with n elements. Consequently, the
number of onto functions from a set with m elements to a set with n elements equals n!S(m, n),
where S(m, n) is a Stirling number of the second kind defined in Section 6.5. This means that
we can use Theorem 1 to deduce the formula given in Section 6.5 for S(m, n). (See Chapter 6
of [MiRo91] for more details about Stirling numbers of the second kind.)

One of the many different applications of Theorem 1 will now be described.

EXAMPLE 3 How many ways are there to assign five different jobs to four different employees if every
employee is assigned at least one job?

Solution: Consider the assignment of jobs as a function from the set of five jobs to the set of
four employees. An assignment where every employee gets at least one job is the same as an
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onto function from the set of jobs to the set of employees. Hence, by Theorem 1 it follows that
there are

45 − C(4, 1)35 + C(4, 2)25 − C(4, 3)15 = 1024− 972+ 192− 4 = 240

ways to assign the jobs so that each employee is assigned at least one job. ▲

Derangements

The principle of inclusion–exclusion will be used to count the permutations of n objects that
leave no objects in their original positions. Consider Example 4.

EXAMPLE 4 The Hatcheck Problem A new employee checks the hats of n people at a restaurant, forgetting
to put claim check numbers on the hats. When customers return for their hats, the checker gives
them back hats chosen at random from the remaining hats. What is the probability that no one
receives the correct hat? ▲

Remark: The answer is the number of ways the hats can be arranged so that there is no hat in
its original position divided by n!, the number of permutations of n hats. We will return to this
example after we find the number of permutations of n objects that leave no objects in their
original position.

A derangement is a permutation of objects that leaves no object in its original position. To
solve the problem posed in Example 4 we will need to determine the number of derangements
of a set of n objects.

EXAMPLE 5 The permutation 21453 is a derangement of 12345 because no number is left in its original
position. However, 21543 is not a derangement of 12345, because this permutation leaves 4
fixed. ▲

Let Dn denote the number of derangements of n objects. For instance, D3 = 2, because the
derangements of 123 are 231 and 312. We will evaluate Dn, for all positive integers n, using the
principle of inclusion–exclusion.

THEOREM 2 The number of derangements of a set with n elements is

Dn = n!
[

1− 1

1! +
1

2! −
1

3! + · · · + (−1)n
1

n!
]

.

Proof: Let a permutation have property Pi if it fixes element i. The number of derangements
is the number of permutations having none of the properties Pi for i = 1, 2, . . . , n. This means
that

Dn = N(P ′1P ′2 . . . P ′n).

Using the principle of inclusion–exclusion, it follows that

Dn = N −
∑

i

N(Pi)+
∑

i<j

N(PiPj )−
∑

i<j<k

N(PiPjPk)+ · · · + (−1)nN(P1P2 . . . Pn),
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where N is the number of permutations of n elements. This equation states that the number of
permutations that fix no elements equals the total number of permutations, less the number that
fix at least one element, plus the number that fix at least two elements, less the number that fix
at least three elements, and so on. All the quantities that occur on the right-hand side of this
equation will now be found.

First, note that N = n!, because N is simply the total number of permutations of n elements.
Also, N(Pi) = (n− 1)!. This follows from the product rule, because N(Pi) is the number of
permutations that fix element i, so the ith position of the permutation is determined, but each
of the remaining positions can be filled arbitrarily. Similarly,

N(PiPj ) = (n− 2)!,

because this is the number of permutations that fix elements i and j , but where the
other n− 2 elements can be arranged arbitrarily. In general, note that

N(Pi1Pi2 . . . Pim) = (n−m)!,

because this is the number of permutations that fix elements i1, i2, . . . , im, but where the
other n−m elements can be arranged arbitrarily. Because there are C(n, m) ways to choose m

elements from n, it follows that

∑

1≤i≤n

N(Pi) = C(n, 1)(n− 1)!,
∑

1≤i<j≤n

N(PiPj ) = C(n, 2)(n− 2)!,

and in general,

∑

1≤i1<i2<···<im≤n

N(Pi1Pi2 . . . Pim) = C(n, m)(n−m)!.

Consequently, inserting these quantities into our formula for Dn gives

Dn = n! − C(n, 1)(n− 1)! + C(n, 2)(n− 2)! − · · · + (−1)nC(n, n)(n− n)!

= n! − n!
1!(n− 1)! (n− 1)! + n!

2!(n− 2)! (n− 2)! − · · · + (−1)n
n!

n! 0!0!.

Simplifying this expression gives

Dn = n!
[

1− 1

1! +
1

2! − · · · + (−1)n
1

n!
]

.

HISTORICAL NOTE In rencontres (matches), an old French card game, the 52 cards in a deck are laid out
in a row. The cards of a second deck are laid out with one card of the second deck on top of each card of
the first deck. The score is determined by counting the number of matching cards in the two decks. In 1708
Pierre Raymond de Montmort (1678–1719) posed le problème de rencontres: What is the probability that no
matches take place in the game of rencontres? The solution to Montmort’s problem is the probability that a
randomly selected permutation of 52 objects is a derangement, namely, D52/52!, which, as we will see, is
approximately 1/e.
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TABLE 1 The Probability of a Derangement.

n 2 3 4 5 6 7

Dn/n! 0.50000 0.33333 0.37500 0.36667 0.36806 0.36786

It is now simple to find Dn for a given positive integer n. For instance, using Theorem 2, it
follows that

D3 = 3!
[

1− 1

1! +
1

2! −
1

3!
]
= 6

(
1− 1+ 1

2
− 1

6

)
= 2,

as we have previously remarked.
The solution of the problem in Example 4 can now be given.

Solution: The probability that no one receives the correct hat is Dn/n!. By Theorem 2, this
probability is

Dn

n! = 1− 1

1! +
1

2! − · · · + (−1)n
1

n! .

The values of this probability for 2 ≤ n ≤ 7 are displayed in Table 1.
Using methods from calculus it can be shown that

e−1 = 1− 1

1! +
1

2! − · · · + (−1)n
1

n! + · · · ≈ 0.368.

Because this is an alternating series with terms tending to zero, it follows that as n grows without
bound, the probability that no one receives the correct hat converges to e−1 ≈ 0.368. In fact,
this probability can be shown to be within 1/(n+ 1)! of e−1. �

Exercises

1. Suppose that in a bushel of 100 apples there are 20 that
have worms in them and 15 that have bruises. Only those
apples with neither worms nor bruises can be sold. If there
are 10 bruised apples that have worms in them, how many
of the 100 apples can be sold?

2. Of 1000 applicants for a mountain-climbing trip in the
Himalayas, 450 get altitude sickness, 622 are not in good
enough shape, and 30 have allergies. An applicant qual-
ifies if and only if this applicant does not get altitude
sickness, is in good shape, and does not have allergies. If
there are 111 applicants who get altitude sickness and are
not in good enough shape, 14 who get altitude sickness
and have allergies, 18 who are not in good enough shape
and have allergies, and 9 who get altitude sickness, are
not in good enough shape, and have allergies, how many
applicants qualify?

3. How many solutions does the equation x1 + x2 + x3 =
13 have where x1, x2, and x3 are nonnegative integers less
than 6?

4. Find the number of solutions of the equation x1 + x2 +
x3 + x4 = 17, where xi , i = 1, 2, 3, 4, are nonnegative
integers such that x1 ≤ 3, x2 ≤ 4, x3 ≤ 5, and x4 ≤ 8.

5. Find the number of primes less than 200 using the prin-
ciple of inclusion–exclusion.

6. An integer is called squarefree if it is not divisible by
the square of a positive integer greater than 1. Find the
number of squarefree positive integers less than 100.

7. How many positive integers less than 10,000 are not the
second or higher power of an integer?

8. How many onto functions are there from a set with seven
elements to one with five elements?

9. How many ways are there to distribute six different toys
to three different children such that each child gets at least
one toy?

10. In how many ways can eight distinct balls be distributed
into three distinct urns if each urn must contain at least
one ball?
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11. In how many ways can seven different jobs be assigned
to four different employees so that each employee is as-
signed at least one job and the most difficult job is as-
signed to the best employee?

12. List all the derangements of {1, 2, 3, 4}.
13. How many derangements are there of a set with seven

elements?

14. What is the probability that none of 10 people receives
the correct hat if a hatcheck person hands their hats back
randomly?

15. A machine that inserts letters into envelopes goes haywire
and inserts letters randomly into envelopes. What is the
probability that in a group of 100 letters
a) no letter is put into the correct envelope?
b) exactly one letter is put into the correct envelope?
c) exactly 98 letters are put into the correct envelopes?
d) exactly 99 letters are put into the correct envelopes?
e) all letters are put into the correct envelopes?

16. A group of n students is assigned seats for each of two
classes in the same classroom. How many ways can these
seats be assigned if no student is assigned the same seat
for both classes?

∗17. How many ways can the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 be
arranged so that no even digit is in its original position?

∗18. Use a combinatorial argument to show that the sequence
{Dn}, where Dn denotes the number of derangements
of n objects, satisfies the recurrence relation

Dn = (n− 1)(Dn−1 +Dn−2)

for n ≥ 2. [Hint: Note that there are n− 1 choices for the
first element k of a derangement. Consider separately the
derangements that start with k that do and do not have 1
in the kth position.]

∗19. Use Exercise 18 to show that

Dn = nDn−1 + (−1)n

for n ≥ 1.
20. Use Exercise 19 to find an explicit formula for Dn.
21. For which positive integers n is Dn, the number of de-

rangements of n objects, even?
22. Suppose that p and q are distinct primes. Use the prin-

ciple of inclusion–exclusion to find φ(pq), the number
of positive integers not exceeding pq that are relatively
prime to pq.

∗23. Use the principle of inclusion–exclusion to derive a for-
mula for φ(n) when the prime factorization of n is

n = p
a1
1 p

a2
2 · · ·pam

m .

∗24. Show that if n is a positive integer, then

n! = C(n, 0)Dn + C(n, 1)Dn−1

+ · · · + C(n, n− 1)D1 + C(n, n)D0,

where Dk is the number of derangements of k objects.
25. How many derangements of {1, 2, 3, 4, 5, 6} begin with

the integers 1, 2, and 3, in some order?
26. How many derangements of {1, 2, 3, 4, 5, 6} end with the

integers 1, 2, and 3, in some order?
27. Prove Theorem 1.

Key Terms and Results

TERMS

recurrence relation: a formula expressing terms of a se-
quence, except for some initial terms, as a function of one
or more previous terms of the sequence

initial conditions for a recurrence relation: the values of the
terms of a sequence satisfying the recurrence relation before
this relation takes effect

dynamic programming: an algorithmic paradigm that finds
the solution to an optimization problem by recursively
breaking down the problem into overlapping subproblems
and combining their solutions with the help of a recurrence
relation

linear homogeneous recurrence relation with constant co-
efficients: a recurrence relation that expresses the terms of
a sequence, except initial terms, as a linear combination of
previous terms

characteristic roots of a linear homogeneous recurrence
relation with constant coefficients: the roots of the poly-
nomial associated with a linear homogeneous recurrence
relation with constant coefficients

linear nonhomogeneous recurrence relation with constant
coefficients: a recurrence relation that expresses the terms
of a sequence, except for initial terms, as a linear combina-
tion of previous terms plus a function that is not identically
zero that depends only on the index

divide-and-conquer algorithm: an algorithm that solves a
problem recursively by splitting it into a fixed number of
smaller non-overlapping subproblems of the same type

generating function of a sequence: the formal series that has
the nth term of the sequence as the coefficient of xn

sieve of Eratosthenes: a procedure for finding the primes less
than a specified positive integer

derangement: a permutation of objects such that no object is
in its original place

RESULTS

the formula for the number of elements in the union of two
finite sets:

|A ∪ B| = |A| + |B| − |A ∩ B|
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the formula for the number of elements in the union of three
finite sets:

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C|
− |B ∩ C| + |A ∩ B ∩ C|

the principle of inclusion–exclusion:

|A1 ∪ A2 ∪ · · · ∪ An| =
∑

1≤i≤n

|Ai | −
∑

1≤i<j≤n

|Ai ∩ Aj |

+
∑

1≤i<j<k≤n

|Ai ∩ Aj ∩ Ak|

− · · · + (−1)n+1|A1 ∩ A2 ∩ · · · ∩ An|

the number of onto functions from a set with m elements
to a set with n elements:

nm − C(n, 1)(n− 1)m + C(n, 2)(n− 2)m

− · · · + (−1)n−1C(n, n− 1) · 1m

the number of derangements of n objects:

Dn = n!
[

1− 1

1! +
1

2! − · · · + (−1)n
1

n!
]

Review Questions

1. a) What is a recurrence relation?

b) Find a recurrence relation for the amount of money
that will be in an account after n years if $1,000,000
is deposited in an account yielding 9% annually.

2. Explain how the Fibonacci numbers are used to solve Fi-
bonacci’s problem about rabbits.

3. a) Find a recurrence relation for the number of steps
needed to solve the Tower of Hanoi puzzle.

b) Show how this recurrence relation can be solved using
iteration.

4. a) Explain how to find a recurrence relation for the num-
ber of bit strings of length n not containing two con-
secutive 1s.

b) Describe another counting problem that has a solution
satisfying the same recurrence relation.

5. a) What is dynamic programming and how are recurrence
relations used in algorithms that follow this paradigm?

b) Explain how dynamic programming can be used to
schedule talks in a lecture hall from a set of possible
talks to maximize overall attendance.

6. Define a linear homogeneous recurrence relation of de-
gree k.

7. a) Explain how to solve linear homogeneous recurrence
relations of degree 2.

b) Solve the recurrence relation an = 13an−1 − 22an−2
for n ≥ 2 if a0 = 3 and a1 = 15.

c) Solve the recurrence relation an = 14an−1 − 49an−2
for n ≥ 2 if a0 = 3 and a1 = 35.

8. a) Explain how to find f (bk) where k is a positive inte-
ger if f (n) satisfies the divide-and-conquer recurrence
relation f (n) = af (n/b)+ g(n) whenever b divides
the positive integer n.

b) Find f (256) if f (n) = 3f (n/4)+ 5n/4 and
f (1) = 7.

9. a) Derive a divide-and-conquer recurrence relation for
the number of comparisons used to find a number in
a list using a binary search.

b) Give a big-O estimate for the number of comparisons
used by a binary search from the divide-and-conquer
recurrence relation you gave in (a) using Theorem 1
in Section 8.3.

10. a) Give a formula for the number of elements in the union
of three sets.

b) Explain why this formula is valid.

c) Explain how to use the formula from (a) to find the
number of integers not exceeding 1000 that are divis-
ible by 6, 10, or 15.

d) Explain how to use the formula from (a) to find the
number of solutions in nonnegative integers to the
equation x1 + x2 + x3 + x4 = 22 with x1 < 8, x2 <

6, and x3 < 5.

11. a) Give a formula for the number of elements in the union
of four sets and explain why it is valid.

b) Suppose the sets A1, A2, A3, and A4 each contain 25
elements, the intersection of any two of these sets con-
tains 5 elements, the intersection of any three of these
sets contains 2 elements, and 1 element is in all four
of the sets. How many elements are in the union of the
four sets?

12. a) State the principle of inclusion–exclusion.

b) Outline a proof of this principle.

13. Explain how the principle of inclusion–exclusion can be
used to count the number of onto functions from a set
with m elements to a set with n elements.

14. a) How can you count the number of ways to assign m

jobs to n employees so that each employee is assigned
at least one job?
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b) How many ways are there to assign seven jobs to three
employees so that each employee is assigned at least
one job?

15. Explain how the inclusion–exclusion principle can be
used to count the number of primes not exceeding the
positive integer n.

16. a) Define a derangement.
b) Why is counting the number of ways a hatcheck per-

son can return hats to n people, so that no one receives
the correct hat, the same as counting the number of
derangements of n objects?

c) Explain how to count the number of derangements of
n objects.

Supplementary Exercises

1. A group of 10 people begin a chain letter, with each per-
son sending the letter to four other people. Each of these
people sends the letter to four additional people.
a) Find a recurrence relation for the number of letters

sent at the nth stage of this chain letter, if no person
ever receives more than one letter.

b) What are the initial conditions for the recurrence rela-
tion in part (a)?

c) How many letters are sent at the nth stage of the chain
letter?

2. A nuclear reactor has created 18 grams of a particular
radioactive isotope. Every hour 1% of this radioactive
isotope decays.
a) Set up a recurrence relation for the amount of this

isotope left n hours after its creation.
b) What are the initial conditions for the recurrence rela-

tion in part (a)?
c) Solve this recurrence relation.

3. Every hour the U.S. government prints 10,000 more $1
bills, 4000 more $5 bills, 3000 more $10 bills, 2500 more
$20 bills, 1000 more $50 bills, and the same number of
$100 bills as it did the previous hour. In the initial hour
1000 of each bill were produced.
a) Set up a recurrence relation for the amount of money

produced in the nth hour.
b) What are the initial conditions for the recurrence rela-

tion in part (a)?
c) Solve the recurrence relation for the amount of money

produced in the nth hour.
d) Set up a recurrence relation for the total amount of

money produced in the first n hours.
e) Solve the recurrence relation for the total amount of

money produced in the first n hours.
4. Suppose that every hour there are two new bacteria in a

colony for each bacterium that was present the previous
hour, and that all bacteria 2 hours old die. The colony
starts with 100 new bacteria.
a) Set up a recurrence relation for the number of bacteria

present after n hours.
b) What is the solution of this recurrence relation?
c) When will the colony contain more than 1 million bac-

teria?
5. Messages are sent over a communications channel using

two different signals. One signal requires 2 microseconds

for transmittal, and the other signal requires 3 microsec-
onds for transmittal. Each signal of a message is followed
immediately by the next signal.
a) Find a recurrence relation for the number of different

signals that can be sent in n microseconds.
b) What are the initial conditions of the recurrence rela-

tion in part (a)?
c) How many different messages can be sent in 12 mi-

croseconds?
6. A small post office has only 4-cent stamps, 6-cent

stamps, and 10-cent stamps. Find a recurrence relation
for the number of ways to form postage of n cents with
these stamps if the order that the stamps are used mat-
ters. What are the initial conditions for this recurrence
relation?

7. How many ways are there to form these postages using
the rules described in Exercise 6?
a) 12 cents b) 14 cents
c) 18 cents d) 22 cents

8. Find the solutions of the simultaneous system of recur-
rence relations

an = an−1 + bn−1

bn = an−1 − bn−1

with a0 = 1 and b0 = 2.

9. Solve the recurrence relation an = a2
n−1/an−2 if a0 = 1

and a1 = 2. [Hint: Take logarithms of both sides to
obtain a recurrence relation for the sequence log an,
n = 0, 1, 2, . . . . ]

∗10. Solve the recurrence relation an = a3
n−1a

2
n−2 if a0 = 2

and a1 = 2. (See the hint for Exercise 9.)

11. Find the solution of the recurrence relation an =
3an−1 − 3an−2 + an−3 + 1 if a0 = 2, a1 = 4, and a2 =
8.

12. Find the solution of the recurrence relation an

= 3an−1 − 3an−2 + an−3 if a0 = 2, a1 = 2, and a2 = 4.
∗13. Suppose that in Example 1 of Section 8.1 a pair of rabbits

leaves the island after reproducing twice. Find a recur-
rence relation for the number of rabbits on the island in
the middle of the nth month.

∗14. In this exercise we construct a dynamic programming al-
gorithm for solving the problem of finding a subset S

of items chosen from a set of n items where item i has
a weight wi , which is a positive integer, so that the to-
tal weight of the items in S is a maximum but does not
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exceed a fixed weight limit W . Let M(j, w) denote the
maximum total weight of the items in a subset of the
first j items such that this total weight does not exceed w.
This problem is known as the knapsack problem.
a) Show that if wj > w, then M(j, w) = M(j − 1, w).
b) Show that if wj ≤ w, then M(j, w) =

max(M(j − 1, w), wj +M(j − 1, w− wj )).
c) Use (a) and (b) to construct a dynamic programming

algorithm for determining the maximum total weight
of items so that this total weight does not exceed W .
In your algorithm store the values M(j, w) as they are
found.

d) Explain how you can use the values M(j, w) com-
puted by the algorithm in part (c) to find a subset of
items with maximum total weight not exceeding W .

In Exercises 15–18 we develop a dynamic programming al-
gorithm for finding a longest common subsequence of two
sequences a1, a2, . . . , am and b1, b2, . . . , bn, an important
problem in the comparison of DNA of different organisms.
15. Suppose that c1, c2, . . . , cp is a longest common

subsequence of the sequences a1, a2, . . . , am and
b1, b2, . . . , bn.
a) Show that if am = bn, then cp = am = bn and

c1, c2, . . . , cp−1 is a longest common subsequence of
a1, a2, . . . , am−1 and b1, b2, . . . , bn−1 when p > 1.

b) Suppose that am �= bn. Show that if cp �= am,
then c1, c2, . . . , cp is a longest common subse-
quence of a1, a2, . . . , am−1 and b1, b2, . . . , bn and
also show that if cp �= bn, then c1, c2, . . . , cp is a
longest common subsequence of a1, a2, . . . , am and
b1, b2, . . . , bn−1.

16. Let L(i, j) denote the length of a longest com-
mon subsequence of a1, a2, . . . , ai and b1, b2, . . . , bj ,
where 0 ≤ i ≤ m and 0 ≤ j ≤ n. Use parts (a) and (b)
of Exercise 15 to show that L(i, j) satisfies the recur-
rence relation L(i, j) = L(i − 1, j − 1)+ 1 if both i

and j are nonzero and ai = bi , and L(i, j) =
max(L(i, j − 1), L(i − 1, j)) if both i and j are nonzero
and ai �= bi , and the initial condition L(i, j) = 0 if i = 0
or j = 0.

17. Use Exercise 16 to construct a dynamic programming
algorithm for computing the length of a longest com-
mon subsequence of two sequences a1, a2, . . . , am and
b1, b2, . . . , bn, storing the values of L(i, j) as they are
found.

18. Develop an algorithm for finding a longest com-
mon subsequence of two sequences a1, a2, . . . , am and
b1, b2, . . . , bn using the values L(i, j) found by the algo-
rithm in Exercise 17.

19. Find the solution to the recurrence relation f (n) =
f (n/2)+ n2 for n = 2k where k is a positive integer and
f (1) = 1.

20. Find the solution to the recurrence relation f (n) =
3f (n/5)+ 2n4, when n is divisible by 5, for n = 5k ,
where k is a positive integer and f (1) = 1.

21. Give a big-O estimate for the size of f in Exercise 20
if f is an increasing function.

22. Find a recurrence relation that describes the number of
comparisons used by the following algorithm: Find the
largest and second largest elements of a sequence of n

numbers recursively by splitting the sequence into two
subsequences with an equal number of terms, or where
there is one more term in one subsequence than in the
other, at each stage. Stop when subsequences with two
terms are reached.

23. Give a big-O estimate for the number of comparisons
used by the algorithm described in Exercise 22.

24. A sequence a1, a2, . . . , an is unimodal if and only if
there is an index m, 1 ≤ m ≤ n, such that ai < ai+1
when 1 ≤ i < m and ai > ai+1 when m ≤ i < n. That
is, the terms of the sequence strictly increase until the
mth term and they strictly decrease after it, which implies
that am is the largest term. In this exercise, am will al-
ways denote the largest term of the unimodal sequence
a1, a2, . . . , an.
a) Show that am is the unique term of the sequence that

is greater than both the term immediately preceding it
and the term immediately following it.

b) Show that if ai < ai+1 where 1 ≤ i < n,
then i + 1 ≤ m ≤ n.

c) Show that if ai > ai+1 where 1 ≤ i < n,
then 1 ≤ m ≤ i.

d) Develop a divide-and-conquer algorithm for locat-
ing the index m. [Hint: Suppose that i < m < j .
Use parts (a), (b), and (c) to determine whether
	(i+j)/2
 + 1 ≤ m ≤ n, 1 ≤ m ≤ 	(i+j)/2
 − 1,
or m = 	(i + j)/2
.]

25. Show that the algorithm from Exercise 24 has worst-case
time complexity O(log n) in terms of the number of com-
parisons.

Let {an} be a sequence of real numbers. The forward dif-
ferences of this sequence are defined recursively as fol-
lows: The first forward difference is �an = an+1 − an; the
(k + 1)st forward difference �k+1an is obtained from �kan

by �k+1an = �kan+1 −�kan.

26. Find �an, where
a) an=3. b) an=4n+7. c) an=n2+n+1.

27. Let an = 3n3 + n+ 2. Find �kan, where k equals
a) 2. b) 3. c) 4.

∗28. Suppose that an = P(n), where P is a polynomial of de-
gree d. Prove that �d+1an = 0 for all nonnegative inte-
gers n.

29. Let {an} and {bn} be sequences of real numbers. Show
that

�(anbn) = an+1(�bn)+ bn(�an).

30. Show that if F(x) and G(x) are the generating func-
tions for the sequences {ak} and {bk}, respectively,
and c and d are real numbers, then (cF+ dG )(x) is the
generating function for {cak + dbk}.
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31. (Requires calculus) This exercise shows how generating
functions can be used to solve the recurrence relation
(n+ 1)an+1 = an + (1/n!) for n ≥ 0 with initial condi-
tion a0 = 1.
a) Let G(x) be the generating function for {an}. Show

that G′(x) = G(x)+ ex and G(0) = 1.
b) Show from part (a) that (e−xG(x))′ = 1, and conclude

that G(x) = xex + ex .
c) Use part (b) to find a closed form for an.

32. Suppose that 14 students receive an A on the first exam
in a discrete mathematics class, and 18 receive an A on
the second exam. If 22 students received an A on either
the first exam or the second exam, how many students
received an A on both exams?

33. There are 323 farms in Monmouth County that have at
least one of horses, cows, and sheep. If 224 have horses,
85 have cows, 57 have sheep, and 18 farms have all three
types of animals, how many farms have exactly two of
these three types of animals?

34. Queries to a database of student records at a college pro-
duced the following data: There are 2175 students at the
college, 1675 of these are not freshmen, 1074 students
have taken a course in calculus, 444 students have taken a
course in discrete mathematics, 607 students are not fresh-
men and have taken calculus, 350 students have taken
calculus and discrete mathematics, 201 students are not
freshmen and have taken discrete mathematics, and 143
students are not freshmen and have taken both calculus
and discrete mathematics. Can all the responses to the
queries be correct?

35. Students in the school of mathematics at a university ma-
jor in one or more of the following four areas: applied
mathematics (AM), pure mathematics (PM), operations
research (OR), and computer science (CS). How many
students are in this school if (including joint majors) there

are 23 students majoring in AM; 17 in PM; 44 in OR; 63
in CS; 5 in AM and PM; 8 in AM and CS; 4 in AM and
OR; 6 in PM and CS; 5 in PM and OR; 14 in OR and CS;
2 in PM, OR, and CS; 2 in AM, OR, and CS; 1 in PM,
AM, and OR; 1 in PM, AM, and CS; and 1 in all four
fields.

36. How many terms are needed when the inclusion–
exclusion principle is used to express the number of ele-
ments in the union of seven sets if no more than five of
these sets have a common element?

37. How many solutions in positive integers are there
to the equation x1 + x2 + x3 = 20 with 2 < x1 < 6,
6 < x2 < 10, and 0 < x3 < 5?

38. How many positive integers less than 1,000,000 are
a) divisible by 2, 3, or 5?
b) not divisible by 7, 11, or 13?
c) divisible by 3 but not by 7?

39. How many positive integers less than 200 are
a) second or higher powers of integers?
b) either primes or second or higher powers of integers?
c) not divisible by the square of an integer greater

than 1?
d) not divisible by the cube of an integer greater than 1?
e) not divisible by three or more primes?

∗40. How many ways are there to assign six different jobs to
three different employees if the hardest job is assigned
to the most experienced employee and the easiest job is
assigned to the least experienced employee?

41. What is the probability that exactly one person is given
back the correct hat by a hatcheck person who gives n

people their hats back at random?
42. How many bit strings of length six do not contain four

consecutive 1s?
43. What is the probability that a bit string of length six cho-

sen at random contains at least four 1s?

Computer Projects

Write programs with these input and output.

1. Given a positive integer n, list all the moves required in
the Tower of Hanoi puzzle to move n disks from one peg
to another according to the rules of the puzzle.

2. Given a positive integer n and an integer k with 1 ≤ k ≤ n,
list all the moves used by the Frame–Stewart algorithm
(described in the preamble to Exercise 38 of Section 8.1)
to move n disks from one peg to another using four pegs
according to the rules of the puzzle.

3. Given a positive integer n, list all the bit sequences of
length n that do not have a pair of consecutive 0s.

4. Given an integer n greater than 1, write out all ways to
parenthesize the product of n+ 1 variables.

5. Given a set of n talks, their start and end times, and the
number of attendees at each talk, use dynamic program-

ming to schedule a subset of these talks in a single lecture
hall to maximize total attendance.

6. Given matrices A1, A2, . . . , An, with dimensions m1 ×
m2, m2 ×m3, . . . , mn ×mn+1, respectively, each with
integer entries, use dynamic programming, as out-
lined in Exercise 57 in Section 8.1, to find the mini-
mum number of multiplications of integers needed to
compute A1A2 · · ·An.

7. Given a recurrence relation an = c1an−1 + c2an−2, where
c1 and c2 are real numbers, initial conditions a0 = C0 and
a1 = C1, and a positive integer k, find ak using iteration.

8. Given a recurrence relation an = c1an−1 + c2an−2 and
initial conditions a0 = C0 and a1 = C1, determine the
unique solution.
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9. Given a recurrence relation of the form f (n) =
af (n/b)+ c, where a is a real number, b is a positive
integer, and c is a real number, and a positive integer k,
find f (bk) using iteration.

10. Given the number of elements in the intersection of three
sets, the number of elements in each pairwise intersection
of these sets, and the number of elements in each set, find
the number of elements in their union.

11. Given a positive integer n, produce the formula for the
number of elements in the union of n sets.

12. Given positive integers m and n, find the number of onto
functions from a set with m elements to a set with n ele-
ments.

13. Given a positive integer n, list all the derangements of the
set {1, 2, 3, . . . , n}.

Computations and Explorations

Use a computational program or programs you have written to do these exercises.

1. Find the exact value of f100, f500, and f1000, where fn is
the nth Fibonacci number.

2. Find the smallest Fibonacci number greater than
1,000,000, greater than 1,000,000,000, and greater than
1,000,000,000,000.

3. Find as many prime Fibonacci numbers as you can. It is
unknown whether there are infinitely many of these.

4. Write out all the moves required to solve the Tower of
Hanoi puzzle with 10 disks.

5. Write out all the moves required to use the Frame–Stewart
algorithm to move 20 disks from one peg to another peg
using four pegs according to the rules of the Reve’s puz-
zle.

6. Verify the Frame conjecture for solving the Reve’s puzzle
for n disks for as many integers n as possible by show-
ing that the puzzle cannot be solved using fewer moves
than are made by the Frame–Stewart algorithm with the
optimal choice of k.

7. Compute the number of operations required to multi-
ply two integers with n bits for various integers n in-
cluding 16, 64, 256, and 1024 using the fast multiplica-
tion described in Example 4 of Section 8.3 and the stan-
dard algorithm for multiplying integers (Algorithm 3 in
Section 4.2).

8. Compute the number of operations required to multiply
two n× n matrices for various integers n including 4, 16,
64, and 128 using the fast matrix multiplication described
in Example 5 of Section 8.3 and the standard algorithm
for multiplying matrices (Algorithm 1 in Section 3.3).

9. Find the number of primes not exceeding 10,000 using
the method described in Section 8.6 to find the number of
primes not exceeding 100.

10. List all the derangements of {1, 2, 3, 4, 5, 6, 7, 8}.
11. Compute the probability that a permutation of n objects

is a derangement for all positive integers not exceeding
20 and determine how quickly these probabilities ap-
proach the number 1/e.

Writing Projects

Respond to these with essays using outside sources.

1. Find the original source where Fibonacci presented his
puzzle about modeling rabbit populations. Discuss this
problem and other problems posed by Fibonacci and give
some information about Fibonacci himself.

2. Explain how the Fibonacci numbers arise in a variety of
applications, such as in phyllotaxis, the study of arrange-
ment of leaves in plants, in the study of reflections by
mirrors, and so on.

3. Describe different variations of the Tower of Hanoi puz-
zle, including those with more than three pegs (includ-
ing the Reve’s puzzle discussed in the text and exer-
cises), those where disk moves are restricted, and those
where disks may have the same size. Include what is
known about the number of moves required to solve
each variation.

4. Discuss as many different problems as possible where the
Catalan numbers arise.

5. Discuss some of the problems in which Richard Bellman
first used dynamic programming.

6. Describe the role dynamic programming algorithms play
in bioinformatics including for DNA sequence compari-
son, gene comparison, and RNA structure prediction.

7. Describe the use of dynamic programming in economics
including its use to study optimal consumption and sav-
ing.

8. Explain how dynamic programming can be used to solve
the egg-dropping puzzle which determines from which
floors of a multistory building it is safe to drop eggs from
without breaking.
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9. Describe the solution of Ulam’s problem (see Exercise 28
in Section 8.3) involving searching with one lie found by
Andrzej Pelc.

10. Discuss variations of Ulam’s problem (see Exercise 28 in
Section 8.3) involving searching with more than one lie
and what is known about this problem.

11. Define the convex hull of a set of points in the plane and
describe three different algorithms, including a divide-
and-conquer algorithm, for finding the convex hull of a
set of points in the plane.

12. Describe how sieve methods are used in number theory.
What kind of results have been established using such
methods?

13. Look up the rules of the old French card game of rencon-
tres. Describe these rules and describe the work of Pierre
Raymond de Montmort on le problème de rencontres.

14. Describe how exponential generating functions can be
used to solve a variety of counting problems.

15. Describe the Polyá theory of counting and the kind of
counting problems that can be solved using this theory.

16. The problème des ménages (the problem of the house-
holds) asks for the number of ways to arrange n couples
around a table so that the sexes alternate and no husband
and wife are seated together. Explain the method used by
E. Lucas to solve this problem.

17. Explain how rook polynomials can be used to solve count-
ing problems.
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