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Dimensionality reduction and information visualization are fundamental steps in
data processing, information extraction and reasoning. In real-world applications,
the number of measurements or variables per a single observation is so large that
handling the raw data in a specific problem such as regression or classification
becomes infeasible or even impractical. Moreover, in many applications, a faithful
representation of the data for a first step analysis and hypothesis development
becomes crucial. Recently, the SNE method has become tremendously popular
for data visualization and feature extraction. The more recent algorithms such
as t-SNE and HSSNE extend the basic SNE algorithm by considering general
heavy-tailed distributions in the low-dimensional space, while the others, such
as NeRV, consider different parameterized cost functions to achieve the desired
embedding by tuning the parameter. In this thesis, we provide another extension
to the SNE method by investigating the properties of α-divergence for neighbor
embedding, focusing our attention on a particular range of α values. We show
that α-divergence, with a proper selection of the α parameter effectively elimi-
nates the crowding problem associated with the early methods. However, we also
provide the extensions of our method to distributions having heavier tail than
Gaussian. Contrary to some earlier methods like HSSNE and NeRV, no hand-
tuning is needed, but we can rigorously estimate the optimal value of α for given
input data. For this, we provide a statistical framework using a novel distribu-
tion called Exponential Divergence with Augmentation. This is an approximate
generalization of Tweedie distribution and enables α-optimization after a non-
linear transformation. We evaluate the performance of our proposed method by
considering two sets of experiments: first, we provide a number of visualizations
using our method and its extensions and compare the results with the earlier
methods. Second, we conduct a set of experiments to confirm the effectiveness
of our α-optimization method for finding the optimal α for the data distribution,
and its consistency with standard quality measures of dimensionality reduction.
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Chapter 1

Introduction

1.1 Motivation

Dimensionality reduction (DR) and particularly, data visualization has been
a prominent research track for the past few decades as an important step
in data analysis. Real world data, e.g., digital images, biomedical measure-
ments, audio signals, etc., generally contain a large number of measurements
for every single observation datapoint. In the DR literature, each observa-
tion is commonly referred as a datapoint and the number of measurements
recorded in each datapoint is called the dimension of the dataset. In order to
process the data further while preventing undesired effects such as curse of
dimensionality, or perform a visualization that reveals the intrinsic structure
of the data, dimensionality reduction techniques need to be applied. Prin-
cipal Component Analysis (PCA) [46] and classical scaling [56] are among
the first linear methods which have been applied tremendously in different
applications. However, classical linear methods may not always be sufficient
to handle complex non-linear data [57].

Recently, many non-linear dimensionality reduction methods such as Sam-
mon mapping [49], Isomap [54], Locally Linear Embedding [47], Stochastic
Neighbor Embedding (SNE) [23], Maximum Variance Unfolding [62] and
Laplacian Eigenmaps [9] have been proposed to overcome the shortcomings
of the simple linear methods in handling data lying on several non-linear
manifolds. Although all these methods have been successfully applied to
several artificial as well as real-world datasets, they all suffer from one ma-
jor drawback called the crowding problem: many points get crowded in the
center of the projection and the margins between different clusters become
indistinct.

The crowding problem in each of the above-mentioned methods can be
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CHAPTER 1. INTRODUCTION 11

explained by considering the specific assumptions and criteria underlying the
objective function. However, generally, the crowding problem in the distance
preserving methods is due to the excessive emphasis on the preservation of the
short distances in the low-dimensional image. In this thesis, we only consider
the crowding problem associated with the SNE method and its variants and
refer the reader to [34] for a more general discussion on the topic.

In SNE, the crowding problem can be explained as a result of strong at-
traction forces in the gradient which mainly dominates the repulsion forces
between the map points. The method of UNI-SNE [15] tackles the crowd-
ing problem by considering small repulsion forces between all the datapoints
in the embedding. However, it is less applicable to real-world datasets due
to difficult optimization of the cost function. More recently, t-Distributed
Stochastic Neighbor Embedding (t-SNE) [58] and its generalization, Heavy-
tailed Symmetric SNE (HSSNE) [64], have successfully overcome the crowd-
ing problem by considering distributions with heavier tail than Gaussian in
the low-dimensional space.

One main drawback associated with t-SNE is the excessive separation of
the clusters, which, in some cases, produces over-separated clusters. This
may become unpleasant graphically or even misleading for analyzing the
data. HSSNE is able to control the level of separation by introducing a pa-
rameter ω, called the tail-heaviness parameter, for the degree of the distribu-
tion. ω → 0 and ω = 1 correspond to Gaussian and Student t-distributions,
respectively. Distributions with heavier tails can be obtained using larger
values of ω. However, there is no systematic way to estimate the optimal
degree of the heavy-tailed distribution for a particular dataset.

1.2 Scope and Purpose of the Thesis

In this thesis, we consider the crowding problem by a different approach; in-
stead of manipulating the distributions in the low-dimensional space, we in-
stead consider an α-divergence as the cost function. This choice of divergence
for the cost function covers the cost function of SNE and other well-known
methods such as Neighborhood Embedding Visualizer (NeRV) [61] as special
cases. We show that with a proper selection of the parameter α, our method
produces results as good as t-SNE or, in some cases, considerably superior.
For estimating the optimal value of α, we present a statistical framework
based on a recently proposed distribution called Exponential Divergence with
Augmentation (EDA) [19]. EDA is an approximate generalization of Tweedie
distribution, which has a well-established relation to β-divergence. With a
nonlinear transformation, an equivalence between β and α-divergences can
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be shown and EDA can also be used for estimation of α. The application
of different divergence measures for SNE has been studied before (for exam-
ple, see [12] and [33]). However, none of the previous work investigate the
properties of α-divergence as the cost function and accordingly, its gradient
for updating the mapped points, nor provide any systematic approach to
estimate the optimal value of the divergence parameter for a given dataset.

1.3 Structure of the Thesis

The organization of the dissertation is as follows. We first start with briefly
reviewing the different dimensionality reduction methods in Chapter 2. In
Chapter 3, we introduce the families of the Csiszár f -divergence and the
Bregman divergence and then, consider two important classes of divergences,
namely β- and α-divergences and represent their relation. These divergences
are essential for the development of our new visualization algorithm. We con-
sider the SNE, NeRV and t-SNE methods in Chapter 4. Then, in Chapter 5,
we propose our new method of α-divergence for SNE. We provide the moti-
vation for using α-divergence and explore the characteristics of its gradient.
Next, we discuss the possible extensions of our method to distributions having
heavier tail than Gaussian. Finally, we present our framework for estimating
the optimal value of α for a given data distribution. We provide our exper-
imental results in Chapter 6 and finally, draw the conclusions and present
tracks for future work in Chapter 7.



Chapter 2

Dimensionality Reduction and
Information Visualization

In this chapter, we briefly review a number of linear and non-linear dimen-
sionality reduction methods. A comprehensive study of the nonlinear dimen-
sionality reduction methods can be found in [34]. A comparative review of
the different dimensionality reduction methods can be found in [57]. We first
start with classical methods such as PCA and MDS and then, consider the
more recent nonlinear methods later.

Principal Component Analysis

Principal Component Analysis (PCA) [46] is an orthogonal linear transforma-
tion which converts a set of observations (datapoints) consisting of a number
of possibly correlated variables into a set of values which are linearly uncor-
related. This amounts to converting the covariance matrix of the data into
a diagonal matrix. PCA is closely related to Singular Value Decomposition
(SVD) [37], a method used to convert an arbitrary matrix into a product
of an orthogonal matrix, a diagonal matrix and another orthogonal matrix,
respectively.

PCA finds a set of orthogonal coordinates or axes called principal com-
ponents such that the first principal component captures the largest variance
or direction of variation in the data. The second component points to the
direction of second largest variance, with additional constraint that it is or-
thogonal to the first component. The rest of the principal components are
found in a similar manner such that each component is orthogonal to all the
previous components.

PCA is often the first dimensionality reduction method to apply on an un-
known dataset due to its fast but satisfactory performance. A low-dimensional
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CHAPTER 2. DIMENSIONALITY REDUCTION 14

representation of the data can be obtained by considering the k first principal
components and projecting the data onto these components. For a visualiza-
tion application, generally k = 2 or 3. PCA can also be used to remove the
undesired effects in the data e.g., noise, by considering only the directions
that capture the main variation in the data. It can be shown that the PCA is
the optimal method to approximate given data in the sense of least-squares
error.

Multidimensional Scaling

Multidimensional Scaling (MDS) [11] refers to a set of distance preserving
visualization techniques. An MDS algorithm aims to find a map in which
the pairwise distances between datapoints are preserved as much as possible.
The objective function to be minimized is called the stress function, in this
context, and the optimization is mainly performed using a procedure called
stress majorization [29]. Only the matrix of pairwise distances is sufficient
to find the map and therefore, the coordinates of the datapoints in the high-
dimensional space need not be known. This property makes MDS suitable for
situations such as visualization of the results of a psychological test, where
only the (dis)similarity values between different objects in the dataset are
available. The dimension of the map points is not restricted to k = 2 or 3,
but it should be provided to the algorithm beforehand, by the user.

There exist several variants of MDS, e.g., Classical MDS, Metric MDS,
Non-Metric MDS, etc. Classical MDS is equivalent to the PCA method.
However, other variants consider different stress functions and input matrices
of distances with weights or other means for calculating the pairwise distances
in the high-dimensional space.

Sammon’s Mapping

Sammon’s Mapping [49] is a nonlinear metric MDS method which empha-
sized more on preserving the short distances rather than the long ones. The
projection can be found by iterative methods such as gradient descent [45].
The number of iterations should be set experimentally and there is no guar-
antee for the convergence. However, it has been shown that the PCA works
as a proper initial configuration [36].

Isomaps

Isomap [54] is a metric MDS method which considers the geodesic distances
as the pairwise distances between the high-dimensional datapoints. The dis-
tances are calculated by finding the shortest-path distances (computed for
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example using Dijkstra’s algorithm [18]) on a weighted neighborhood graph.
The distance matrix is then applied as the input to the MDS algorithm.
The motivation for using the geodesic distance is to consider the manifold
structure of the data. Instead of using the straight Euclidean distances as in
MDS, the distances are calculated by summing up the edge weights in the
shortest path between a pair of datapoints.

Self-organizing Map

Self-organizing Map (SOM) or Kohonen map [28] is a type of artificial neural
network which maps the input space onto a low-dimensional (typically two)
discretized representation. The map consists of a fixed lattice, called the
grid, in which the neurons are arranged with respect to a predefined neigh-
borhood structure. For example, in a square grid, we can consider a 4 or 8
neighborhood while, in a hexagonal grid, each neuron will have 6 neighbors.
Each neuron in the network represents a prototype, which is a vector that
has the same dimension as the input space. Additionally, each neuron has a
number of neighbors on the map (or so called, the grid). The map is trained
via competitive learning; each input is fed to the network and compared to
all the prototype vectors in the map. The neuron with the prototype having
the lowest Euclidean distance with the input vector (the winning neuron) is
updated according to the input vector. This update also affects a neighbor-
hood of the winning neuron on the grid. However, the neighborhood region
shrinks while the training proceeds.

After the training phase, the map can also be used for mapping where
each new input is classified into one of the existing prototype vectors. This
property can be used to find a low-dimensional representation of the input
data on the grid. Therefore, SOM is one of the most commonly used methods
for data visualization. SOM can also be used as a vector quantizer where
each input vector is mapped into a codeword from a finite dictionary. This
property is similar to that of the k-means algorithm [20] for small networks.
However, it is shown that the larger networks rearrange the data in a more
fundamentally topological way [28].

Curvilinear Component Analysis

Curvilinear Component Analysis (CCA) [17] has been proposed as a visual-
ization method in which the fundamental idea is inherited from SOM. How-
ever, unlike SOM, the output is not restricted to a fixed lattice. Therefore,
the map is a continuous space which can take the shape of the submanifold.
The learning consists of two steps: vector quantization of the submanifold
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of the data and nonlinear projection of the quantized vectors onto the out-
put space. Authors also provide training strategies as an alternative to the
stochastic gradient descent used in similar methods. Additionally, CCA can
be used both for continuous forward and backward mapping; that is, a new
input can be mapped to a new output representation, with respect to its
neighboring datapoints and vice versa.

Curvilinear Distance Analysis

The idea in Curvilinear Distance Analysis (CDA) [31, 32] is similar to that
in CCA, with the only difference that the Euclidean distances in the high-
dimensional space are substituted with geodesic distances, similar to Isomaps.
The rest of the algorithm remains the same. CDA improves the performance
of CCA in handling non-linear manifold structures such as the Swiss roll
dataset [55]. The Swiss roll dataset is obtained by sampling a set of data-
points from a 3D surface which is formed by rolling a 2D rectangular surface
around a fixed axis. The dataset serves as a standard benchmark for evalu-
ating the performance of the manifold learning techniques [34].

Locally Linear Embedding

Locally Linear Embedding (LLE) [47] makes the assumption that the under-
lying manifold in the data is smooth enough (and also there exist enough
samples) such that it can be presented locally by a linear approximation.
Thus, each datapoint in the high-dimensional space is represented by a con-
vex sum of its k-nearest (or alternatively, ε-ball) neighbors. Then, the same
set of weights are used to find the representation of the points in the low-
dimensional space. It is shown in [9] that LLE is approximately equivalent
to calculating the eigenfunctions of the iterated graph Laplacian L2.

Laplacian Eigenmaps

Laplacian Eigenmaps [9] is closely related to spectral method for data clus-
tering. Spectral methods refer to a set of techniques which are based on
the evaluation of the eigenvalues and eigenvectors of a properly formed ma-
trix [44, 51, 52]. The idea in the Laplacian eigenmaps is to first find the
adjacency graph (also known as the neighborhood graph1) for the whole
dataset by using a heat kernel or any other kernel and then, calculate the
map using the first k eigenvectors of the graph Laplacian having the smallest

1The simplest example of a neighborhood graph is a graph having a node for each
datapoint and edges (with unit weights) between every neighboring pair of datapoints.
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eigenvalues (while ignoring the eigenvector corresponding to eigenvalue 0).
The authors show the relation of the graph Laplacian to the Laplace Bel-
trami operator [48] on manifolds and also draw the connection between the
method and spectral clustering and the LLE method. The method performs
well for datasets having natural intrinsic clusters, however, it provides mod-
erate results for the other cases where methods such as PCA or Isomaps may
be more preferable.

Maximum Variance Unfolding

Maximum Variance Unfolding (MVU) [62] is a manifold learning method
based on semidefinite programming [59]. The idea is to preserve the local
isometry by imposing a number of constraints on the neighborhood graph,
which is formed in a similar manner as the previous methods. These con-
straints are translated into a number of constraints on the Gram matrix of
the high- and low-dimensional datapoints. The objective to maximize with
respect to the previous constraints is the variance or the sum of pairwise Eu-
clidean distances between the map points. Thus, the final objective reduces
to a semidefinite trace maximization problem with respect to the isometry
constraints. The final embedding is obtained from the dominant eigenvec-
tors of the Gram matrix, learned by semidefinite programming. MVU is
particularly suitable for unfolding the low-dimensional manifolds embedded
in a space with a higher dimension. It is also able to correctly estimate the
underlying dimensionality of the data sets.

Kernel Principal Component Analysis

Kernel Principal Component Analysis or Kernel PCA [50] is an extension of
the PCA algorithm to a reproducing kernel Hilbert space [7] by first mapping
the datapoint to the new space by using a kernel and then, performing the
eigendecomposition of the resulting covariance matrix. This can be used in
cases where the data is not linearly separable but, it can be separated by
hyperplanes in a space having a higher (possibly infinite) dimension. The
datapoints are not actually evaluated in the new space and all the compu-
tations are performed implicitly using the so called kernel trick. Therefore,
the method can be used only to project the datapoints to a new space but
the corresponding principal components are not obtained explicitly.

Kernel Information Embedding

Kernel Information Embedding [38] is an information theoretic approach for
dimensionality reduction and regression. In this method, a latent random
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variable lying on a low-dimensional space is obtained by maximizing the
mutual information between the random variable in the input space and
latent random variable. Using the unsupervised kernel density estimation
methods for the both random variables, the mutual information is expanded
to find the gradient with respect to the latent variable. This method can also
be used to perform regression between a given input and an output space.
Again, an intermediate latent variable is defined such that the conditional
mutual information between the input and the output random variables,
given the value of the latent variable, is minimized.

Stochastic Neighbor Embedding

Stochastic Neighbor Embedding (SNE) [23] is a dimensionality reduction
method which aims to preserve the local neighborhood structure of each data-
point when mapping from a high-dimensional space into a low-dimensional
space. The neighborhood probabilities for each datapoint are defined as the
probability of a random walker jumping to any of the neighboring datapoints
when starting from the given datapoint. The probability mass around each
datapoint is assumed to be normally distributed, with a proper value of
the variance. Therefore, the probabilities are calculated by normalizing the
exponents in the Gaussian distribution. The consistency between the distri-
butions in the high-dimensional and the low-dimensional spaces is computed
by considering sum of Kullback-Leibler divergences between the distributions
in the data space and the map over all the datapoints. The map is found by
initializing the map points randomly close to the origin and then, using gra-
dient descent for optimization. SNE performs well in many cases, however,
it suffers from the crowding problem, discussed earlier.

Aspect Maps

The basic SNE algorithm can be extended in such a way that each datapoint
can occur in several different maps with a different mixing proportion such
that the sum of the proportions equals to one. These maps are called aspect
maps [15]. In the aspect maps, the conditional neighborhood probabilities are
substituted with symmetric joint probabilities over the whole datapoints. In
addition to the aspect maps, a single map can be obtained by allocating part
of the density to a background distribution. This causes a small repulsion
force between the map points which avoids the crowding of the points in the
center of the map. The method which is assumed to be a degenerate version
of the aspect maps is called UNI-SNE. The UNI-SNE is not used much in
practice due to the difficult optimization of its cost function.
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t-Distributed Stochastic Neighbor Embedding

t-Distributed Neighbor Embedding (t-SNE) [58] is an extension of the SNE
algorithm with two major differences: first, a joint distribution is assumed
over the whole datapoints in both the high-dimensional and the low-dim-
ensional space, similar to the aspect maps. Second, a Student t-distribution
with single degree of freedom is used in the low-dimensional space to cal-
culate the similarities. Student t-distribution is obtained by adding up an
infinite number of Gaussian distributions with the same mean but different
variances. The result is a distribution which has a heavier tail than the
Gaussian. This property enables the t-distribution to be more robust to
the outliers. The outliers occur if data is created by a process which has
an underlying heavy-tailed distribution or, a few datapoints are incorrectly
labeled [10].

t-SNE cost function has better convergence properties than the SNE and
UNI-SNE, and usually converges to a proper solution without the need for
considering jitter noise2 to escape the local minima. t-SNE also effectively
avoids the crowding problem by considering larger distances between the
datapoints in the map. However, in some cases, the results may seem over
separated and may not faithfully reflect the true distribution.

Heavy-tailed Symmetric Stochastic Neighbor Embedding

The tail-heaviness of the distribution can be controlled by parameterizing
the heavy-tailed distribution in the t-SNE. The method, called Heavy-tailed
Symmetric Stochastic Neighbor Embedding (HSSNE) [64], covers both Gauss-
ian and t-distribution as well as distributions residing between the two cases
and those having heavier tails. The authors provide a method based on La-
grange multipliers to calculate the gradient for a general form of distribution.
Additionally, a fixed point multiplicative algorithm with local mixture inter-
pretation is provided to calculate the map as an alternative to the gradient
descent method adopted in SNE and t-SNE.

Multi-view Stochastic Neighbor Embedding

Multi-view Stochastic Neighbor Embedding (m-SNE) [63] combines the in-
formation from multiple views of the same dataset to obtain a single map.

2Jitter noise refers to the perturbation which is added in the optimization process to
escape from poor local minima and converge to a better solution. This can be a random
Gaussian noise with a small magnitude. The process mimics the simulated annealing tech-
nique [27] which is commonly used in the optimization in order to find a better optimum.
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The different views may be obtained from different feature extractors, ap-
plied to the same set of datapoints. For instance, for an image dataset, these
can be the shape, texture and color features. Neighborhood probabilities
from different views are combined to calculate the similarities using a set of
combination coefficients. The map points are obtained in a similar manner as
in SNE. The combination coefficients are then obtained by solving a convex
optimization problem. Nesterov’s accelerated first-order method [25, 42, 43]
is used as a fast solver for the convex problem. The process is repeated m
times where m denotes the number of views.

Neighbor Retrieval Visualizer

Neighbor Retrieval Visualizer (NeRV) [61] considers the dimensionality re-
duction as an information retrieval task where the objective becomes to es-
tablish a balance between precision and recall. The authors also provide
new interpretation for Kullback-Leibler and inverse Kullback-Leibler diver-
gences between the probabilities (similarities) in the high-dimensional and
low-dimensional spaces as generalization of the recall and precision, respec-
tively. Therefore, the cost function becomes a convex combination of the sum
of Kullback-Leibler divergences (called mean smoothed recall) and sum of in-
verse Kullback-Leibler divergences (called mean smoothed precision) over all
datapoints. NeRV achieves different maps by adjusting the parameter in the
summation based on the desired aspects of the visualization.



Chapter 3

Information Divergence

Information divergence originates from the estimation theory where a diver-
gence maps two probability distributions to a non-negative dissimilarity or
distance. In other words, it measures the difference between a known distri-
bution p and its approximation q. The objective is then defined to minimize
the divergence between the observed data and the approximation. Informa-
tion divergences are widely used in different applications such as non-negative
matrix/tensor factorization [14], Bayesian network optimization [39], coding
theory [16], and Stochastic Neighbor Embedding [23].

Among different families of divergence measures, those of separable types
are of huge interest. The family of distance-type separable measures satisfy
the condition

D(p‖q) =
n∑
i=1

d(pi, qi) ≥ 0 , (3.1)

where p and q are two n-dimensional probability distributions and the equal-
ity is achieved if and only if p = q. However, distance-type measures do not
necessarily satisfy the properties of a metric on the space P of all probability
distributions. In other words, they are not necessarily symmetric,

D(p‖q) = D(q‖p) , (3.2)

and do not necessarily satisfy the triangular inequality,

D(p‖q) ≤ D(p‖z) +D(z‖q) . (3.3)

In this chapter, we briefly introduce two important families of distance-type
measures, namely the Csiszár f -divergence and the Bregman divergence.
These two families include several well-known divergences as special cases.
We then proceed by introducing the β-divergence and its properties and then,
consider the α-divergence and also its relation to the β-divergence.

21
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3.1 Csiszár Divergences

The Csiszár f -divergence between to distributions p = (p1, p2, . . . , pn) and
q = (q1, q2, . . . , qn) is defined as

Df (p‖q) =
∑
i

qif

(
pi
qi

)
, (3.4)

where f is a real-valued convex function over the open interval (0,+∞) and
satisfies f(1) = 0. By convention, 0f(0/0) and 0f(p/0) = limq→0+ qf(p

q
) =

pf ′(∞). It can be easily verified that Df (p‖q) ≥ 0 with the equality if and
only if p = q. The ratio pi/qi is called the ”likelihood ratio”.

The Csiszár f -divergence is related to a generalized entropy of the form

Hf (p) = −
∑
i

f(pi) . (3.5)

The Shannon entropy can be obtained as a special case where f(p) = p log p.
Csiszár f -divergence has the property that for a positive constant c, we

have
Dcf (p‖q) = cDf (p‖q) . (3.6)

So, we can normalize f to have f ′′(1) = 1. This is referred as the problem of
scale. Additionally, the function

f̃(u) = f(u)− c(u− 1) (3.7)

produces the same divergence as f , that is,

Df (p|q) = Df̃ (p‖q) . (3.8)

We set c = f ′(1) to have f̃ ′(1) = 0 and

f̃(u) ≥ 0 , (3.9)

with equality if and only if u = 1. The class of convex functions with prop-
erties f(1) = 0, f ′(1) = 0 and f ′′(1) = 1 is denoted by F . For class of
differentiable functions, there is no loss of generality to use f ∈ F . Further-
more, if the function f is bounded, we have f̃(0) = limu→0+ f̃(u).

The Csiszár f -divergence is defined originally for probability distribu-
tions. However, it can be extended to positive measures p̃ and q̃, for which
the constraints

∑
i p̃i = 1 and

∑
i q̃i = 1 are discarded. For a convex function

f ∈ F , the divergence takes the same form

Df (p̃‖q̃) =
∑
i

p̃if

(
q̃i
p̃i

)
. (3.10)
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Name Function f(u), u = p
q

Divergence Df (p‖q)

Kullback-Leibler divergence u log u
∑

i pi log(pi/qi)

Total variation distance |u− 1|
∑

i |pi − qi|

Pearson Chi-square distance (u− 1)2
∑

i
(pi−qi)2

qi

Neyman Chi square (u−1)2

u

∑
i

(pi−qi)2
pi

Rukhin distance (u−1)2

a+(1−a)u

∑
i

(pi−qi)2
(1−a)pi+aqi

, a ∈ [0, 1]

Triangular Discrimination (TD) (u−1)2

u+1

∑
i

(pi−qi)2
pi+qi

Squared Hellinger distance (
√
u− 1)2

∑
i(
√
pi −
√
qi)

2

Matsusita distance |uα − 1| 1α , 0 ≤ α ≤ 1
∑

i |pαi − qαi |
1
α

Piuri and Vinche divergence |1−u|γ
(u+1)γ−1 , γ ≥ 1

∑
i
|pi−qi|γ

(pi+qi)γ−1

Arimoto distance
√

1 + u2 − 1+u√
2

∑
i

(√
p2
i + q2

i −
pi+qi√

2

)
Table 3.1: Basic divergences expressed as the Csiszár f -divergence.

However, for a general f with f ′(1) = cf 6= 0, we need to use

Df (p̃‖q̃) = cf
∑
i

(q̃i − p̃i) +
∑
i

p̃if

(
q̃i
p̃i

)
. (3.11)

When p̃ and q̃ are probability distributions, (3.11) reduces to (3.4).
The class of Csiszár f -divergences contains many well-known divergences

between two probability distributions. The list of divergence measures which
can be derived from Csiszár f -divergence along with the corresponding func-
tion f is presented in Table 3.1. As an important case, the α-divergence,
which we will consider in more detail in Section 3.4, can be expressed formally
as the Csiszár f -divergence with f(u) = u(uα−1 − 1)/(α2 − α) + (1− u)/α.

In general, Csiszár f -divergence does not need to be symmetric; that is,
Df (p‖q) does not necessarily equal Df (q‖p). However, we can define the
conjugate generated function f ∗(u) = uf(1/u) such that

Df (p‖q) = Df∗(q‖p) . (3.12)
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Name Function f(u), u = p
q

Divergence Df (p‖q)

Squared Hellinger distance 1
2
(
√
u− 1) 1

2

∑
i(
√
pi −
√
qi)

2

Triangular Discrimination (u−1)2

u+1

∑
i

(pi−qi)2
pi+qi

Symmetric Chi-squared (u−1)2(u+1)
u

∑
i

(pi−qi)2(pi+qi)
piqi

J-divergence (u− 1) log u
∑

i(pi − qi) log pi
qi

Jensen-Shannon divergence u
2

log u+ u+1
2

log 2
u+1

∑
i pi log

(
2pi
pi+qi

)
+qi log

(
2qi
pi+qi

)
A-G Mean divergence u+1

2
log
(
u+1
2
√
u

) ∑
i

(
pi+qi

2

)
log
(
pi+qi

2
√
piqi

)
Table 3.2: Basic symmetric divergences expressed as the Csiszár f -diver-
gence.

Thus, for an arbitrary Csiszár f -divergence, we can form the convex function
fs(u) = f(u) + f ∗(u) to obtain the symmetric divergence Dfs(p‖q). The list
of symmetric divergences which can be expressed as the Csiszár f -divergence
is shown in Table 3.2.

3.2 Bregman Divergence

In this section, we consider another important family of divergence measures
called the Bregman divergence. It is widely used in non-negative matrix
factorization [14], clustering [8], and data visualization [53]. It includes a
number of well-known divergences such as the β-divergence, which will be
considered in more details in the next section.

The generalized φ-entropy of discrete measure pi ≥ 0 with respect to a
strictly convex real-valued function φ(p) is defined as

Hφ(p) = −
∑
i

φ(pi) , (3.13)

and the Bregman divergence is given by

Dφ(p‖q) =
∑
i

(φ(pi)− φ(qi)− φ′(qi)(pi − qi)) , (3.14)

where φ′(qi) denotes the derivative with respect to qi.
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In many applications, we are interested in separable divergencesDφ(p‖q) =∑
iDφ(pi‖qi). However, a more general vectorized form of the Bregman diver-

gence can be defined as follows.
Let φ(p) : Rn → R be strictly convex and first order differentiable. The

corresponding Bregman divergence is defined as

Dφ(p‖q) = φ(p)− φ(q)− (p− q)T∇φ(q) , (3.15)

where∇φ(q) represents the gradient of φ evaluated at q. In a similar manner,
Dφ(q‖p) is defined as

Dφ(q‖p) = φ(q)− φ(p) + (p− q)T∇φ(p) . (3.16)

The Bregman divergence is not generally symmetric. However, we can for-
mulate the dual representation using the Legendre transformation as follows.
Let φ(p) be a convex function. The one to one correspondence

p∗ = ∇φ(p) (3.17)

is regarded as the dual representation of p. Thus, we can define the convex
function

φ∗(p∗) = max
p
{pTp∗ − φ(p)} . (3.18)

The following relation holds between the two convex functions

φ(p) + φ(p∗)− pTp∗ = 0 , (3.19)

when p and p∗ correspond to each other. The reverse transformation has a
similar form

p = 5φ∗(p∗) . (3.20)

Thus, the correspondence is dually coupled.
Using the dual representation, the Bregman divergence can be written in

a symmetric form

Dφ(p‖q) = φ(p) + φ∗(q∗)− pTq∗ , (3.21)

which is the same as (3.14) and non-negative with value zero if and only if
p = q.

The Bregman divergence has a nice geometrical interpretation as a mea-
sure of convexity of φ. When a tangent line is drawn to the convex function φ
at point q, the Bregman divergence can be considered as the vertical distance
between φ and the line, evaluated at point p.
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The Bregman divergence also includes a number of well-known divergence
measures as special cases. The list of divergence measures which can be
derived from the Bregman divergence along with the corresponding convex
function φ is represented in Table 3.3.

At the end, we list a number of properties of the Bregman divergence.
For a more detailed discussion, please refer to [14].

1. Dφ(p‖q) is convex in the first argument p, but is not convex (in gen-
eral) in the second argument q. However, it is convex in the dual
representation q∗.

2. If φ(p) is strictly convex, we have Dφ(p‖q) ≥ 0 with equality if and
only if p = q.

3. The Bregman divergence is not usually symmetric. Moreover, the tri-
angular inequality does not hold in general, i.e., it is not a metric,

Dφ(p‖q) 6= Dφ(q‖p) . (3.22)

4. The gradient has the form

∇pDφ(p‖q) = ∇φ(p)−∇φ(q) . (3.23)

5. Linearity: for a > 0, we have

Dφ1+aφ2(p‖q) = Dφ1(p‖q) + aDφ2(p‖q) . (3.24)

6. Invariance up to a linear term:

Dφ+ap+c(p‖q) = Dφ(p‖q) . (3.25)

7. The three-points property which generalizes the law of cosines

Dφ(p‖q) = Dφ(p‖z) +Dφ(z‖q)− (p− z)T (∇φ(p)−∇φ(z)) . (3.26)

8. Generalized Pythagoras Theorem:

Dφ(p‖q) ≥ Dφ(p‖PΩ(q)) +Dφ(PΩ(q)‖q) , (3.27)

where PΩ(q) = arg minω∈Ω Dφ(ω‖q) is the Bregman projection onto
the convex set Ω. The equality holds when Ω is an affine set.
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Name Function φ(p) Divergence D(p‖q)

Squared Euclidean distance 1
2
‖p‖2

2 =
∑

i p
2
i

1
2
‖p− q‖2

2 = 1
2
(pi − qi)2

Mahalanobis distance 1
2
pTWp,W-symmetric p.d. 1

2
(p− q)TW(p− q)

Generalized KL divergence
∑

i(pi log pi)
∑

i

(
pi log pi

qi
− pi + qi

)
Itakura-Saito distance −

∑
i log pi

∑
i

(
pi
qi
− log pi

qi
− 1
)

Inverse
∑

i
1
pi

∑
i

(
pi
q2i

+ 1
pi
− 2

qi

)
Exponential

∑
i exp(pi)

∑
i(e

pi − (pi − qi + 1)eqi)

Table 3.3: Basic divergences expressed as the Bregman divergence.

3.3 β-Divergence

The discrete β-divergence is defined as

Dβ(p‖q) =

∑
i p

β+1
i + βqβ+1

i − (β + 1)piq
β
i

β(β + 1)
, (3.28)

where β ∈ R (β 6= 0 and β 6= −1). It is easy to check that Dβ(p‖q) is a
valid divergence having non-negative values and is equal to zero if and only
if p = q. That can also be deduced from the fact that the β-divergence can
be derived from the Bregman divergence [22] with

φ(p) =



pβ+1

β(β+1)
− p

β
+ 1

β+1
, β 6= 0,−1

− log p+ p− 1, β = −1

p log p− p+ 1, β = 0

. (3.29)

The singular cases β = 0 and β = −1 are defined in the limit β → 0 and
β → −1, respectively. For β → 0, we obtain the generalized Kullback-Leibler
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Formula Name

Dβ=1(p‖q) = DEU(p‖q) = 1
2

∑
i(pi − qi)2 Euclidean

Dβ→0(p‖q) = DKL(p‖q) =
∑

i

(
pi log pi

qi
− pi + qi

)
Generalized KL

Dβ→−1(p‖q) = DIS(p‖q) =
∑

i

(
log qi

pi
+ pi

qi
− 1
)

Itakura-Saito

Dβ=−2(p‖q) =
∑

i

(
pi

2q2i
− 1

qi
+ 1

2pi

)
Table 3.4: Special cases of β-divergence.

divergence1

DKL(p‖q) = lim
β→0

Dβ(p‖q) =
∑
i

(
pi log

pi
qi
− pi + qi

)
, (3.30)

whereas for β → −1, the Itakura-Saito distance is obtained as

DIS(p‖q) = lim
β→−1

Dβ(p‖q) =
∑
i

(
log

qi
pi

+
pi
qi
− 1

)
. (3.31)

The special cases of β-divergence are listed in the Table 3.4.

3.4 α-Divergence

The α-divergence is a specific form of Csiszár f -divergence. It can also be
derived from the Bregman divergence [6]. The (asymmetric) α-divergence
over discrete distributions is defined by

Dα(p‖q) =

∑
i p

α
i q

1−α
i − αpi + (α− 1)qi
α(α− 1)

. (3.32)

The α-divergence satisfies the basic property of an error measure by at-
taining value of zero for p = q, and having a positive value otherwise. This
property is a corollary of the fact that the α-divergence is a convex function
with respect to pi and qi [14]. It contains many well-known divergences as

1Note that we use the notation DKL(p‖q) for the generalized KL divergence; if p and q
are probability distributions such that

∑
i pi =

∑
i qi = 1, this coincides with the standard

KL divergence.
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Formula Name

Dα=2(p‖q) = DP(p‖q) = 1
2

∑
i

(pi−qi)2
qi

Pearson Chi-square

Dα→1(p‖q) = DKL(p‖q) =
∑

i

(
pi log pi

qi
− pi + qi

)
Generalized KL

Dα=1/2(p‖q) = 2DH(p‖q) = 2
∑

i(
√
pi −
√
qi)

2 Hellinger

Dα→0(p‖q) = DI-KL(p‖q) =
∑

i

(
qi log qi

pi
− qi + pi

)
Inverse KL

Dα=−1(p‖q) = DIP(p‖q) = 1
2

∑
i

(pi−qi)2
pi

Inverse Pearson

Table 3.5: Special cases of α-divergence.

special cases including inverse Pearson (Neyman Chi-square), Hellinger and
Pearson Chi-square distances for α = −1, 0.5 and 2, respectively. Addition-
ally, the singular points α = 0 and α = 1 are calculated in the limit α → 0
and α→ 1, respectively, where we have

DKL(q‖p) = lim
α→0

Dα(p‖q) =
∑
i

(
qi log

qi
pi
− qi + pi

)
, (3.33)

and

DKL(p‖q) = lim
α→1

Dα(p‖q) =
∑
i

(
pi log

pi
qi
− pi + qi

)
. (3.34)

The special cases of the α-divergence are listed in Table 3.5
α-divergence and β-divergence are related to each other using a non-linear

transformation between α and β. By letting ri = pαi /α
2α and si = qαi /α

2α

and β = 1/α− 1 for α 6= 0, we have

Dβ(ri‖si) =
1

β(β + 1)

(
rβ+1
i + βsβ+1

i − (β + 1)ris
β
i

)
=
−α2

α− 1

(
pi
α2

+
1− α
α

qi
α2
− 1

α

pαi
α2α

q1−α
i

α2(1− α)

)
= Dα(pi‖qi) . (3.35)

This will be useful for applying the optimization framework for β to find
the optimal value of α in Chapter 5.



Chapter 4

Stochastic Neighbor Embedding

The goal of neighbor embedding is to find a projection of the data in which
the neighborhood structure or, in other words, the similarities between pairs
of points in the high-dimensional space and its low-dimensional counterpart
are similar by means of a divergence measure. We first start by defining the
probabilistic models of the neighborhood which are non-negative similarity
measures between pairs of points. Then, we review the cost functions of the
previous approaches for neighbor embedding. In Chapter 5, we provide the
intuition behind selecting α-divergence as the cost function and the range of
α we are mainly interested in. We also represent the optimization framework
for estimating the best value of α.

4.1 Probabilistic Model of Neighborhood

4.1.1 Conditional Similarities

Let X = {xi}Ni=1 ∈ RD be the set of high-dimensional datapoints, and let
Y = {yi}Ni=1 ∈ Rd be the corresponding set of low-dimensional images1. In
most applications, such as visualization, we have d� D. For each datapoint
i, the probabilistic neighborhood in the data space, pij, is defined as the
conditional probability of choosing xj as a neighbor when xi is the starting
point, under the assumption of a Gaussian distribution centered at xi [23]:

pij =
exp(−d2

ij)∑
k 6=i exp(−d2

ik)
. (4.1)

1We use the words map, image and embedding interchangeably, to refer to the low-
dimensional representation of the datapoints, denoted by Y.

30
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dij(·) can be any proper distance measure on the input space. A common
choice is the Euclidean distance scaled with a parameter σi,

d2
ij =

‖xi − xj‖2

σ2
i

. (4.2)

The value of σi is chosen based on the density of the data at xi; that is, σi
takes a comparatively smaller value when the distribution of the datapoints in
the neighborhood of xi is dense or, takes a larger value otherwise. Every value
of σi induces a probability distribution pi over the rest of the datapoints. The
Shannon entropy of this distribution, defined as

H(pi) = −
∑
j

log2(pij) , (4.3)

is proportional to the value of σi, i.e., it increases as the value of σi increases.
So, by fixing the entropy of the distribution or, equivalently, the perplexity,
defined as

Perp(pi) = 2H(pi) , (4.4)

we can calculate the value of σi using a binary search. The σi is chosen such
that the entropy of the distribution is equal to log2 k where k is the number
of effective neighbors or the perplexity. The perplexity is set by the user
(typically, k = 30). This choice of σi adjusts the scale with respect to the
density of the data.

The neighborhood probability in the low-dimensional space, qij, is formed
in a similar manner:

qij =
exp(−‖yi − yj‖2)∑
k 6=i exp(−‖yi − yk‖2)

, (4.5)

where in this case, a constant variance of σ2 = 1
2

is considered for all image
points.

4.1.2 Symmetric Similarities

Symmetric SNE (SSNE), as the name implies, considers symmetric similar-
ities pij = pji and qij = qji, ∀i, j, by replacing the conditional probabilities
by a single joint probability distribution. In the low-dimensional image, the
joint probability Q over all image points is defined by

qij =
exp(−‖yi − yj‖2)∑
k 6=l exp(−‖yk − yl‖2)

. (4.6)
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Furthermore, for the data space, the joint distribution P is obtained by first
finding the the conditional probabilities pij as in 4.1, then, setting pij =
pij+pji

2n
. This prevents the outliers from becoming erratically placed without

conforming with the rest of the points [58]. As we will see, SSNE yields to
a simpler gradient term compared to SNE and produces results at least as
good as or, in some cases, better than SNE.

4.1.3 Student t-Distribution and Distributions with
Heavier Tails

In order to have larger distances in the low-dimensional map, the Gaussian
distribution can be substituted with a distribution having a heavier tail. A
typical choice is to use a Student t-distribution, as in [58]. t-distribution
amounts to an infinite mixture of Gaussians with different sigmas. Using
this distribution, the similarities qij in the low-dimentional space are defined
as

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

. (4.7)

The choice of a t-distribution for finding the similarities allows the map
points, which are moderately distant in the original space, to be mapped far
away from each other and hence, prevents crushing of the points in the center
of the map. It also approaches an inverse square law for map points having a
large pairwise distance ‖yi−yj‖. This means that the distant clusters act as
individual points in the map and therefore, result in a projection conducted
on different scales; that is, clusters of datapoints located in a far distance
from each other are treated as single datapoints.

The choice of a t-distribution for mapped points can be extended to dis-
tributions having heavier tail. This can be done by considering a parameter
α for the degree of the distribution [64]. Using this convention, the joint
probabilities qij become

qij =
(1 + ω‖yi − yj‖2)−1/ω∑
k 6=l(1 + ω‖yk − yl‖2)−1/ω

. (4.8)

ω → 0 and ω = 1 amount to Gaussian and t-distribution, respectively.
Distribution having heavier tails can be obtained by considering larger values
of ω.

4.1.4 Random Walk Based Similarities

In some cases where the number of datapoints is too large, calculation of
the map using all the datapoints becomes infeasible. In those cases, the
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Figure 4.1: Equidistant datapoints A, B and C among the undisplayed dat-
apoints. There are many undisplayed datapoints between A and B but there
is no undisplayed datapoints between A and C.

map can be calculated using a smaller sub-sample of the dataset. However,
simply considering only the selected datapoints neglects a significant amount
of information about the underlying manifolds, provided by the rest of the
datapoints. As an example, consider the arrangement of the equidistant
datapoints A, B and C among the other undisplayed datapoints in Figure 4.1.
Since there are more undisplayed datapoints lying between A and B compared
to the pair A and C, the datapoints A and B are much more likely to be in the
same cluster than A and C. Therefore, considering the effect of undisplayed
datapoints in calculation of the similarities pij becomes crucial.

One way to consider this problem is the one similar to diffusion maps, that
is, forming the neighborhood graph for all of the datapoints and calculating
the topological distance such as shortest path on the graph between pair
of landmark points to be displayed. A more convenient way to calculate
the similarities is to consider the probability of a random walker starting
from a landmark point to hit another landmark point. This can be done
by first calculating the neighborhood graph for all the datapoints, using the
similarities proportional to exp(−‖xi − xj‖2). This part is performed only
once for the whole dataset. Then, the pij probabilities for the landmark point
xi can be found computationally by repeatedly starting the random walker
from xi and counting the number of times that it hits the landmark point
xj. The result is normalized by calculating the ratio over the all landmark
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points.
An alternative analytical solution can also be obtained by solving the

combinatorial Dirichlet problem to find a harmonic function subject to its
boundary values on the neighborhood graph [21]. However, it is shown in [58]
that there is no significant difference between the performance of computa-
tional approach and the analytical solution.

4.2 Neighbor Embedding

Let pij, where
∑

j pij = 1, be the pairwise similarities for the set of points X =

{xi}Ni=1 ∈ RD, formed by assuming a Gaussian distribution as in (4.1). In the
basic SNE algorithm, the consistency between the distributions in the high-
dimensional space and the low-dimensional image is achieved by minimizing
the sum of Kullback-Leibler (KL) divergences over pairs of distributions for
all datapoints,

CSNE =
∑
i

DKL(pi‖qi) =
∑
i

∑
j

pij log
pij
qij

, (4.9)

where the probabilities qij are calculated using (4.5). KL divergence is the
natural choice for a divergence between two probability distributions from
the same probability space. It amounts to the cross-entropy between two
distributions pi and qi (up to a constant entropy term) and measures the
average information loss when qi is used to represent the true distribution,
pi [16].

Minimization of the cost function (4.9) can be performed by finding the
gradient and using a standard gradient descent method. The gradient with
respect to yi takes a rather simple form

∂CSNE

∂yi
= 2

∑
j

(yi − yj) (pij − qij + pji − qji) . (4.10)

The gradient (4.10) has the physical interpretation of sum of forces exerted
from springs between yi and each of the other points. The force between
each pair of points is proportional to their distance as well as the stiffness of
the spring, which is simply the mismatch (pij − qij + pji − qji) between the
conditional probabilities in the data space and the image.

For SSNE, the summation in (4.9) is replaced by a single sum over the
joint probability distributions in both high-dimensional and low-dimensional
spaces. The gradient of SSNE takes an even simpler form

∂CSSNE

∂yi
= 4

∑
j

(yi − yj) (pij − qij) . (4.11)
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NeRV method [61] provides a generalization of the SNE cost function by
introducing a new interpretation for KL and inverse-KL divergences. It is
shown in [61] that DKL(qi‖pi) and DKL(pi‖qi) can be viewed as generaliza-
tions of precision and recall, respectively, for point i in the mapping X → Y .
Bearing this in mind, the cost function can be chosen to make a trade off
between maximizing precision or recall, by considering a convex sum of KL
and inverse-KL divergences over all points:

CNeRV = λ
∑
i

DKL(pi‖qi) + (1− λ)
∑
i

DKL(qi‖pi) , (4.12)

parameterized by λ ∈ [0, 1]. In case of λ = 1, the cost function reduces
to the cost function of SNE. This corresponds to maximizing recall in the
embedding. On the other hand, setting λ = 0 corresponds to maximizing
precision. A choice of λ ∈ (0, 1) encourages a balance between these two
extreme cases. However, the selection of λ is done manually by the user.

In a parametric method, the selection of a proper parameter is an im-
portant step since it can highly affect the result of the visualization. The
parameter may be set by an expert having some intuition about the task or
possible prior knowledge about the type of the data. However, in many tasks,
visualization is mainly the first step to gain knowledge about the structure
of the data. An alternative approach to overcome this problem is to perform
several visualizations using different values of the parameter and then, select
the one which produces the best result by means of subjective assessment or
other objective quality measures. Again, objective measures may sound more
reliable in this case. Nevertheless, quality measures may not always refer to
the faithfulness of the visualization in describing the data. Therefore, a more
desirable approach is to select the parameter which faithfully represents the
data, as much as possible.

Maximum likelihood setting provides an standard framework for the se-
lection of the parameters in a learning problem [10]. However, this approach
is impractical for almost all of the well-known stochastic neighbor embedding
methods since either there exists no known compact form for the distribu-
tion of the error or the error function itself is not even a natural divergence
measure. On the other hand, unintuitively changing the divergence may not
always be desirable since not all the well-known divergence measures, corre-
sponding to assumption of known underlying distributions for the error, are
appropriate for a visualization task [12].

The above considerations impose a need for adopting an alternative error
function while maintaining two important goals: first, the error function
should cover our range of interest, namely the convex sum of inverse KL
and KL divergences, by providing a parameterization to attain the desired
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properties in the resulting embedding. Second, the distribution of the error
should consent to a maximum likelihood framework to perform automatic
selection of the parameter. In the next chapter, we introduce our approach
for considering these two objectives.



Chapter 5

Stochastic Neighbor Embedding
with α-Divergence

5.1 α-SNE Method

We considered the properties of the α-divergence in Chapter 3. We now focus
our attention to the interval α ∈ [0, 1]: when α = 1, α-divergence corresponds
exactly to the SNE cost function for a single datapoint. Furthermore, the
points α = 0 and α = 1 amount to the cost function of NeRV when λ = 0
and λ = 1, respectively. More generally, when α varies from 0 to 1, α-
divergence passes smoothly through all values of NeRV cost function for
λ ∈ (0, 1) since the divergence itself is a continuous function of α. However,
the mapping from λ to α is not onto; this can be easily seen by considering
two arbitrary distributions and varying λ and α and, finding the value of
each. Thus, α-divergence covers even a wider range compared to NeRV cost
function. However, there exists no closed form solution to write α divergence
as a convex some of KL and inverse-KL divergences. Figure 5.1 illustrates
the effect of varying λ and α in CNeRV and Dα, respectively. The results
are obtained by fixing p = 0.5 and calculating the values as a function of
q ∈ [0, 1] and the corresponding parameter. Two functions coincide exactly
when λ = 0 (α = 0) and λ = 1 (α = 1).

The aforementioned properties promote investigating the sum of α-diver-

37
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Figure 5.1: The effect of varying λ in CNeRV (left) and α in Dα (right). In both
figures, p = 0.5 is fixed and the values are calculated for different values of
q ∈ [0, 1] and the corresponding parameter. As can be seen, the α-divergence
has smoother variation compared to CNeRV. Two functions coincide exactly
at the end-points where λ = 0(α = 0) and λ = 1(α = 1).

gences over all pairs of distributions as the cost function:

Cα-SNE =
∑

Dα(pi‖qi) =



∑
ij

pαijq
1−α
ij − αpij + (α− 1)qij

α(α− 1)
, α 6= 0, 1

∑
ij qij log(qij/pij) =

∑
DKL(qi‖pi), α = 0 .∑

ij pij log(pij/qij) =
∑
DKL(pi‖qi), α = 1

(5.1)
We call the new method stochastic neighbor embedding with α-divergence
(α-SNE).

Figure 5.2 illustrates the effect of varying α from 0 to 1 on the sphere
dataset. The dataset includes 1000 uniform samples from a unit sphere in
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Figure 5.2: Visualization of the sphere dataset with α increasing from 0 to
1.

R3. The map starts with unfolding the sphere for α = 0, then continues
by smoothly expanding the map from the corners until it reaches the round
shape when α = 1. It is worth mentioning that the value of α is not restricted
to the interval [0, 1] and can take any value in R.

More interesting properties are revealed by considering the gradient. The
calculation of the gradient is presented in Appendix A. Direct calculation
of the gradient is tedious, however, it can also be found easily using the
generalized framework in [12] based on Fréchet derivatives. The gradient has
the form

∂Cα-SNE

∂yi
=

2

α

∑
j 6=i

(yi − yj)
(
pαijq

1−α
ij − θiqij + pαjiq

1−α
ji − θjqji

)
, α 6= 0 ,

(5.2)
in which, 0 ≤ θi =

∑
j 6=i p

α
ijq

1−α
ij is called compatibility factor for point i, in

this paper, with the following properties: θi = 1 if pi = qi and θi ≤ 1 for
α ∈ (0, 1] and θi ≥ 1 elsewhere (except α = 01). The gradient has similar
interpretation of springs between points with stiffness proportional to the
mismatch in the probability distributions. However, comparing the gradient
with the gradient of SNE (4.10), it can be seen that the attraction terms pij
and pji are replaced by pαijq

1−α
ij and pαjiq

1−α
ji , respectively. On the other hand,

the repulsion terms qij and qji are weighted by the compatibility factors for
points i and j, respectively. Therefore, compatibility factor for point i can
also be seen as sum of the attraction terms between i and rest of the points.
Finally, the whole gradient is scaled by a factor of 1/α.

The properties above result in two major effects on the gradient for
α ∈ (0, 1): first, the attraction and repulsion forces become more balanced by
means of absolute strength. Consequently, α-SNE produces much smoother
and stabler gradient compared to SNE. Second, the repulsion forces for mod-

1The case α = 0 is treated separately (see Appendix A).
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erately distant points which are mapped close together become relatively
larger. This property resembles the behavior of the gradient of t-SNE method
for a similar setting. However, in t-SNE, this property is governed by the
extra terms (1 + ‖yi − yj‖2)−1 amending the gradient, as an effect of using
t-distribution in the image space. Alternatively, α-SNE, with a proper se-
lection of α, also efficiently eliminates the crowding problem associated with
SNE by introducing regularizing terms in the gradient. The generalization
of α-SNE to symmetric version is quite straightforward. Symmetric α-SNE
(α-SSNE) has properties similar to α-SNE. In this case, the gradient is

∂Cα-SSNE

∂yi
=

4

α

∑
j 6=i

(yi − yj)
(
pαijq

1−α
ij − θqij

)
, α 6= 0 , (5.3)

with θ =
∑∑

j p
α
ijq

1−α
ij .

Figure 2(a) to 2(c) show the gradients of SSNE, t-SNE and α-SSNE (with
α = 0.8), respectively, for a pair of points in a two-dimensional image, as a
function of their Euclidean distances in the high-dimensional space and the
low-dimensional space (i.e., as a function of ‖xi−xj‖ and ‖yi−yj‖). Positive
values represent attraction while negative values correspond to repulsion.
As it can be seen in Figure 2(a), SSNE exerts large attraction force for
moderately close points which are mapped far from each other. However,
the repulsion force is comparatively small for the opposite case (around 19
to 1). t-SNE (Figure 2(b)) results in a more balanced gradient, compared to
SSNE, by damping the large attraction forces and further, strongly repelling
the dissimilar datapoint which are mapped close together. Nevertheless, α-
SSNE also achieves a balanced gradient, as in t-SNE. More interestingly, the
attraction and repulsion forces cover a wider range, compared to t-SNE.

The optimization of the cost function can be achieved using standard
methods e.g. steepest descent. In our early implementation, we used gradient
descent method for optimization. A jitter noise with a constant variance can
be used to model simulated annealing in early stages. A more effective trick
to escape local minima is the one similar to ”early compression” in [58],
that is, for moderately small values of α, we start from a larger value, e.g.,
α = 1, and gradually reduce α until we reach the true value. We proceed
by performing a few number of iterations using the true value of α, until the
final embedding is achieved. Thus, in the early stages of optimization, points
tend to stay fairly close together and start to form initial clusters. While
gradually decreasing α, these clusters get more separated and converge to
the final embedding. This trick prevents clusters to get separated in the
early iterations, because, if a cluster is torn into smaller pieces, located far
away from each other, there will not be enough attraction forces to bind them
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Figure 5.3: Gradients of (a) SNE, (b) t-SNE and (c) α-SSNE as a function of
the pairwise Euclidean distances between two points in the high-dimensional
space and the low-dimensional image. α-SSNE (and, α-SNE, correspond-
ingly) also produces more balanced gradients compared to SSNE (SNE).
Note the different color scales.

together in the later stages.

5.2 Extension to Heavy-tailed Distributions

Extensions of α-SNE to t-distribution and distributions with heavier tail
can be achieved using the Lagrange method [64]. We start by defining un-
normalized similarities q̄ij = H(‖yi − yj‖), such that

qij =
q̄ij∑
k 6=l q̄kl

. (5.4)

H(τ) can be any monotonically decreasing function of τ > 0 and does not
need to be a valid probability distribution since the normalization is per-
formed in (5.4). For SSNE, H(‖yi − yj‖) = exp(−‖yi − yj‖2) and (5.4)
reduces to (4.6). For t-SNE, H(‖yi − yj‖) = (1 + ‖yi − yj‖)−1 and we
have (4.7).

We can now exchange the minimization of (5.1) with the following opti-
mization problem

maximize
q̄,Y

L(q̄,Y) =
1

α(1− α)

∑
ij

pαij

(
q̄ij∑
k 6=l q̄kl

)1−α

, (5.5)

subject to q̄ij = H(‖yi − yj‖2) . (5.6)
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The extended objective function using Lagrange multipliers becomes

L̄(q̄,Y) =
1

α(1− α)

∑
ij

pαij

(
q̄ij∑
k 6=l q̄kl

)1−α

+
∑
ij

λij(q̄ij −H(‖yi − yj‖)) .

(5.7)

Setting the derivative ∂L̄
q̄ij

to zero yields λij = 1
α

(
pαijq

1−α
ij

q̄ij
− θ∑

k 6=l q̄kl
) where

θ =
∑

ij p
α
ijq

1−α
ij . Taking the derivative with respect to yi and substituting

for λij, we have

∂Cα-HSSNE

∂yi
= − ∂̄L

∂yi
=

4

α

(
pαijq

1−α
ij − θqij

)
S(‖yi − yj‖2)(yi − yj) , (5.8)

where

S(τ) = −d logH(τ)

dτ
(5.9)

is the negative score function or tail-heaviness function. It maps any simi-
larity function to a tail-heaviness function. For Gaussian similarity, H(τ) =
exp(−τ) and we have S(τ) = 1. For Student t-distribution, H(τ) = (1+τ)−1

and therefore, S(τ) = H(τ).
The tail-heaviness function can further be parameterized by a power of

H, that is, S(τ) = H(τ)ω where ω ≥ 0. This choice of parameterization
allows achieving distributions with heavier tail than t-distribution for ω > 1.
H(τ) itself can be obtained by solving a first order differential equation

− d logH(τ)

dτ
= [H(τ)]ω , (5.10)

which yields H(τ) = (ωτ + c)−1/ω. The constant c is set to 1 in order to have
consistency with SNE and t-SNE. We call the new method Heavy tailed
Symmetric α-SNE (α-HSSNE).

Using (5.8), the gradient of t-distributed α-SNE (called αt-SNE, hence-
forth) takes the form

∂Cαt-SNE

∂yi
=

4

α

∑
j 6=i

(yi − yj)(1 + ‖yi − yj‖2)−1
(
pαijq

1−α
ij − θqij

)
. (5.11)

Compared to the gradient of original t-SNE algorithm

∂Ct-SNE

∂yi
= 4

∑
j 6=i

(yi − yj)(1 + ‖yi − yj‖2)−1 (pij − qij) , (5.12)

again, the attraction and repulsion terms are smoothed by (qij/pij)
1−α and

θ, respectively. Additionally, the whole gradient is scaled by a factor of 1/α.
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The case α = 0 can be obtained in the limit α→ 0, where we have

∂Cαt-SNE

∂yi
= 4

∑
j 6=i

(yi − yj) (qijDKL(Q‖P )− qij log(qij/pij)) , α = 0 . (5.13)

in which, DKL(Q‖P ) =
∑

j 6=i qij log(qij/pij) is calculated over the joint dis-
tributions P and Q.

5.3 α-Optimization

After defining the cost function of α-SNE and obtaining a method to appro-
priately optimize the cost function, there remains the problem of selecting the
optimal value of α for a particular dataset. The optimality condition should
be consistent with other quality measures of dimensionality reduction, as we
will see in the next chapter.

5.3.1 Tweedie Distribution

The probability density function (pdf) of an exponential dispersion model
(EDM) is defined as

pEDM(x; θ, φ, p) = f(x, φ, p) exp

(
1

φ
θx− κ(θ)

)
, (5.14)

where θ is the canonical parameter, φ > 0 is the dispersion parameter and
κ is the cumulant function. For EDM, the mean µ and the variance V ar(x)
are related to the first and second derivatives of κ, as follows:

µ = κ′(θ) , (5.15)

V ar(x) = φκ′′(θ) . (5.16)

A Tweedie distribution is a special case of EDMs where the variance is equal
to the p’th power of the mean, that is,

1

φ
V ar(x) = µp , (5.17)

where p ∈ R\(0, 1). Setting the variance as in (5.17), the canonical parameter
becomes

θ =

{
µ1−p

1−p , if p 6= 1

log µ, if p = 1
, (5.18)
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and for the cumulant function, we have

κ(θ) =


µ2−p

2−p , if p 6= 1, 2

−1− log(−θ), if p = 2
exp(θ), if p = 1

. (5.19)

Thus, substituting (5.18) and (5.19) into (5.14) and setting β = 1 − p, we
have the pdf of the Tweedie distribution as follows

pTw(x;µ, φ, β) = f(x, φ, β) exp

[
−1

φ

(
xµβ

β
− µβ+1

β + 1

)]
, β 6= −1, 0 . (5.20)

The pdf for the cases β = −1 and β = 0 are obtained in a similar manner.
It is shown that Tweedie distribution is closely related to the β divergence

in such a way that µ∗ that maximizes the likelihood of pTw also minimizes
Dβ. While β-divergence does not provide a means to optimize β directly, our
basic idea is that the likelihood of β stemming from pTw can be maximized
for that purpose.

5.3.2 Exponential Divergence with Augmentation

The optimization of the α parameter is performed using Exponential Diver-
gence with Augmentation (EDA) [19], a distribution proposed initially for
maximum likelihood estimation of β in β-divergence Dβ(x||µ), where x and
µ are any positive vectors such as probability distributions. Typically x is
known and µ is a parametric approximation. Once the optimal β is found,
the optimal α is obtained by a simple transformation. EDA is an approx-
imation to the Tweedie distribution, pTw(x;µ, β, φ), which is related to β-
divergence. Note that both α and β divergences are separable; so, we can
operate component-wise and perform our analysis on a single component.
Therefore, we will drop the vector notation, henceforth.

There are some shortcomings associated with Tweedie likelihood, espe-
cially, the pdf does not exist for β ∈ (0, 1) and approximation of f(x, φ, β) is
not well studied for β > 1. The EDA density is proposed to overcome these
issues, while being a close approximation to Tweedie distribution. Using the
relation with β-divergence and Laplace’s method, its pdf is found to be of
the form [19]

pEDA(x;µ, φ, β) =
1

Zβ,φ
exp

[
β − 1

2
log x +

1

φ

(
− xβ+1

β(β + 1)
+

xµβ

β
− µβ+1

β + 1

)]
, (5.21)
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where Zβ,φ is a normalizing constant and Dβ(x||µ) appears in the exponent.
Evaluation of Zβ,φ requires an integration in one dimension. Although it is
not available analytically in general2, it can be evaluated numerically using
standard statistical software. The parameters β and φ can be optimized ei-
ther by maximizing the likelihood or using methods for parameter estimation
in non-normalized densities, such as Score Matching (SM) [24]. Both of these
methods have been successfully used to find optimal β values [19].

It is now possible to use EDA to optimize α, too, using the relation
between α and β-divergences. Note that both divergences are separable and
we can formulate the relation using just scalars. We have

Dβ(x||µ) = Dα(u||m) , (5.22)

with a nonlinear transformation x = uα/α2α, µ = mα/α2α and β = 1/α − 1
for α 6= 0. This relationship allows us to evaluate the likelihood of m and α
using u and β:

p(u;m,α, φ) = pEDA(x;µ, φ, β)u−β|β + 1| . (5.23)

α can be optimized (alongside φ) by maximizing its likelihood given by
p(vi;m,α, φ) or minimizing the SM objective function evaluated from above.
It is more convenient to treat m as constant, fixed to the value which mini-
mizes the α-divergence. It is also possible to optimize it using EDA.

To solve our original problem, we fix vector u = [u1, u2, . . . , un2 ]T to the
vectorized form of matrix P ∈ Rn×n

+ , which contains probabilities pi in α-SNE
in each column, or is the joint distribution over all datapoints in α-SSNE. We
also set vector m = [m1,m2, . . . ,mn2 ]T equal to the vectorized form of matrix
Q ∈ Rn×n

+ which is formed in a similar manner for the map points. We then
compute the values xi and µi, i = 1, 2, . . . , n2, from the above transformation
and optimize jointly over (α, φ) by minimizing the score matching objective
function of the unnormalized EDA density (5.23) and select the best α value.

2In fact, Zβ,φ is analytically available for β = 1, 0,−1,−2, which correspond to Gauss-
ian, Poisson, Gamma and Inverse Gaussian distributions, respectively, which are also
special cases of Tweedie distribution.



Chapter 6

Experimental Results

In this chapter, we illustrate the performance of our proposed Stochastic
Neighbor Embedding with α-divergence method on several different datasets.
We conduct two sets of experiments: firstly, we provide some visualization
results obtained from α-SNE, αt-SNE and α-HSSNE using different tail-
heaviness parameters. We also demonstrate the results obtained from SNE,
t-SNE and HSSNE, and compare them visually with those of our methods.
Secondly, we evaluate the performance of our α-optimization framework and
compare the optimal value of α obtained from EDA with the one maximiz-
ing the quality measures of visualization. We also demonstrate the results
visually and compare the results with those obtained from SNE and t-SNE.

6.1 Visualization Results

In this section, we illustrate some visualization results obtained from α-SNE,
αt-SNE and α-HSSNE using different tail-heaviness parameters and compare
them visually with those obtained from SNE, t-SNE and HSSNE methods.

6.1.1 Datasets

As the first dataset, we use Fisher’s Iris dataset [4] which contains 50 sam-
ples from three different species of Iris (150 samples in total). Each sample
consists of four different measurements.

We use COIL-20 image dataset [1, 41] as our second dataset. The dataset
contains gray-scale images of 20 different objects. 72 images per object (1420
in total) are taken on a turntable at 5◦ pose intervals against a dark back-
ground. Each image is sized 128× 128 = 16, 384. An example of the objects
in the COIL-20 dataset is shown in Figure 6.1.

46
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Figure 6.1: An example of the objects in the COIL-20 dataset in which the
images are taken in different poses (only 36 images are shown).

Finally, we consider Sculpt Faces dataset [2] of synthetic face images. The
dataset contains 698 synthetic images (each sized 64×64 = 4, 096) of a faces
with different poses and under different lighting conditions. The pose and
lighting are such that the data form a manifold in the image space. Examples
of the faces drawn from the Sculpt Faces dataset are shown in Figure 6.2.

6.1.2 Results

Figure 6.3 illustrate the visualization results of the Iris dataset. Comparing
the result of SNE with α-SNE, it can be seen that α-SNE with a smaller
α value (α = 0.25) yields clusters with larger margins. On the other hand,
using t-SNE results in clusters which are comparatively more distant than the
SNE case. The same argument holds for α-tSNE, with additional property



CHAPTER 6. EXPERIMENTAL RESULTS 48

Figure 6.2: Examples of the images drawn from the Sculpt Faces dataset.

that the clusters become more concentrated. Therefore, omitting the scale
(which is not shown in the figure), with αt-SNE the clusters again form larger
margins than t-SNE. The results of adopting heavy tailed distributions (with
ω = 1.2) are similar to the former case where the previous effects become
more elaborate for both methods.

The visualization results of the COIL-20 dataset is shown in Figure 6.4.
Using SNE, curves corresponding to different object viewpoints are formed
in the map. These curves appear to be closed since the imaging is performed
from all sides of the objects, covering 360◦ in total. The overlap in some
curves is due to the similarity between two opposing viewpoints of an ob-
ject. However, many curves are crushed in the center of the map due to the
crowding problem. On the other hand, by using α-SNE with a moderately
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Figure 6.3: Visualization of the Iris dataset: first row: SNE (left), t-SNE
(middle), and HSSNE with ω = 1.2 (right). Second row: α-SNE (left), αt-
SNE (middle), and α-HSSNE with ω = 1.2 (right). α = 0.25 for all the
results in the second row.

smaller value of α (α = 0.9), the curves become more distinct and result in
a better visualization. t-SNE results in more distinguished clusters having
larger margins, compared to SNE. The result of αt-SNE (using the same
value of α) is similar to the one obtained from t-SNE, but the curvature of
the lines is more preserved in some classes, especially for the four aligned
cars (four aligned ’c’ shaped curves).

The curves in t-SNE and αt-SNE might seem rather over-separated. In or-
der to obtain a visualization which lies between the two former cases, HSSNE
(and α-HSSNE, accordingly) with a moderate tail-heaviness parameter can
be adopted. The last column in Figure 6.4 illustrates the effect of using
HSSNE and α-HSSNE, respectively, with ω = 0.5. As can be seen, the re-
sults lie between those obtained by using Gaussian and t-distribution in the
map. However, again, α-HSSNE preserves the curvature better than HSSNE.

Figure 6.5 illustrates the visualization results of the Sculpt Faces dataset.
The color of the scatter plots depicts the lighting direction. As can be seen,
SNE performs well by projecting the pose and lighting on two different or-
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Figure 6.4: Visualization of the COIL-20 dataset: first row: SNE (left), t-
SNE (middle), and HSSNE with ω = 0.5 (right). Second row: α-SNE (left),
αt-SNE (middle), and α-HSSNE with ω = 0.5 (right). α = 0.9 for all the
results in the second row.

thogonal directions. t-SNE fails to preserve the lighting structure, however,
it projects the pose properly. On the other hand, using a properly selected
tail-heaviness parameter (ω = 0.5), HSSNE results in a better visualization
than the both former cases. α-SNE (α = 0.5) also produces a satisfactory re-
sult which separates the pose and lighting information. However, the corners
of the map are slightly shrunk compared to HSSNE.

6.1.3 Fine-grained Analysis of the Embedding

To obtain a more fine-grained representation of the embeddings by means of
a pointwise quality measure, we adopt the approach in [40]. The pointwise
quality measure provides a way to evaluate the faithfulness of the embedding
in the sense of preserving the neighborhood structure of each datapoint.
This is especially useful to analyze the performance of the DR technique on
a dataset having an underlying manifold.

As before, let X = {xi}Ni=1 ∈ RD be the set of high-dimensional datapoints
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Figure 6.5: Visualization of the SculptFaces dataset: first row: SNE (left),
t-SNE (right). Second row: HSSNE with ω = 0.5 (left) and α-SNE with
α = 0.5 (right).

and let Y = {yi}Ni=1 ∈ Rd be the set of low-dimensional map points, obtained
by applying a DR method. Let ∆ij be the distance from xi to xj in RD and
δij be the distance between yi and yj in Rd. The rank of xj with respect to
xi in RD is defined as

Ξij = |{k|∆ik < ∆ij or (∆ik = ∆ij and 1 ≤ k < j ≤ N)}| , (6.1)

where in (6.1) an initial ordering for the points is assumed for the equality
part. The rank of yj with respect to yi in Rd is defined in a similar manner

ξij = |{k|δik < δij or (δik = δij and 1 ≤ k < j ≤ N)}| . (6.2)
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Figure 6.6: Pointwise quality measure for the embeddings shown in Fig-
ure 6.5: The values are shown using a hot colormap where white indicates
the best performance while dark specifies the worst performance.

The difference Rij = ξij − Ξij is called the rank error. For a perfect embed-
ding, all the ranks are preserved in the embedding and the rank error is zero
for all pairs of points. However, this is impossible practically because of the
limitations on embedding a high-dimensional data in a space with a consid-
erably lower dimension (see [34] for more details). These cause the points to
make intrusions (∆ij > δij) or extrusions (∆ij < δij). The histogram of the
rank errors for an embedding is called the co-ranking matrix C [35], with
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entries
Ckl = |{(i, j)|Ξij = k, ξij = l}| . (6.3)

Many quality measures such as local continuity meta-criterion (LCMC) [13],
trustworthiness & continuity (T&C) [26, 60], and mean relative rank errors
(MRRE) [34] can be expressed as a weighted sum of the entries of the co-
ranking matrix for entries k ≤ K and/or l ≤ K for a fixed number of
neighbors K. Remarkably, we consider an unweighted sum of the entries of
the co-ranking matrix C as a quality measure (called Quality) as follows

QNX (K) =
1

NK

K∑
k=1

K∑
l=1

Ckl =
1

NK

N∑
i=1

|Axi ∩ Byi| , (6.4)

in which, Axi = {j|∆ij ≤ K} and Byi = {j|δij ≤ K} are the sets of of indices
of the K nearest neighbors of the datapoint xi in the high-dimensional space
and correspondingly, yi in the embedding, respectively. Thus, QNX (K) can
be seen as the average ratio of the K nearest neighbors which coincide in the
mapping from the original data to the embedding.

Usually, a curve of QNX (K) is plotted for different values of K to compare
the performances of different methods or, to compare the different embed-
dings obtained from a single method using different parameters or initializa-
tion. However, the user often needs a means to reason about the embedding;
that is, to detect the regions where the original data structure is faithfully
represented and also, distinguish those where the embedding may not be so
reliable. Therefore, a more fine-grained measure of performance needs to be
considered.

The co-ranking matrix can be seen as the joint histogram of the ranks in
the high-dimensional space and the low-dimensional embedding [35]. Thus,
the co-ranking matrix can be decomposed into the sum of pointwise co-
ranking matrices evaluated for each point xi ∈ X , that is,

Cxi
kl = |{j|Ξij = k, ξij = l}| . (6.5)

Therefore, the pointwise contribution of each point to QNX (K) is calculated
as

Qxi
NX (K) =

1

K

K∑
k=1

K∑
l=1

Ckl =
1

K
|Axi ∩ Byi | , (6.6)

and the quality measure defined in (6.4) can be obtained by averagingQxi
NX (K)

over all map points,

QNX (K) =
1

N

∑
i

Qxi
NX (K) . (6.7)
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Each map point in the embedding can be colored based on the pointwise
quality measure Qxi

NX (K). This can be used to illustrate a sequential color
scheme for a given embedding and evaluate the reliable regions for reasoning.
The parameter K can be either set to a local extermum of the QNX (K) curve
or, selected interactively based on the user’s preferences.

Figure 6.6 illustrates the pointwise quality measures of the embeddings
shown in Figure 6.5. In all the figures, the neighborhood size K is fixed
to 10 and the Quality is shown as a hot colormap. As can be seen, the
embedding obtained from SNE contains several unreliable regions, especially
in the center of the map where the crowding problem takes place. t-SNE,
on the other hand, yields a better result. However, the manifold is torn
into several smaller patches. While the quality map indicates small error
for the points in the inner parts of the patches, several strong topological
mismatches can be seen from the dark points in the borders of the embedding.
These regions are where the manifold is torn apart to be projected on a two-
dimensional space. Finally, both HSSNE and α-SNE produce satisfactory
results with respect to the pointwise quality measure. The overall QNX (K)
value for these embeddings, averaged over all the map points, is equal to
0.7191 and 0.7378, respectively.

6.2 α-Optimization Results

In this section, we illustrate the performance of our proposed method on three
different datasets and compare the results with those obtained with SNE and
t-SNE. As previously stated, α-SNE and SNE methods coincide exactly when
α = 1. However, we show that this value is far from optimal, and a proper
selection of the α parameter results in a substantial improvement. We also
show that the optimal values of α obtained from EDA coincide with those
obtained from quality measures.

6.2.1 Quality Measures

As the quality measures, we consider the classification accuracy using a k-
nearest neighbors classifier with k = 3. We also use area under receiver
operating characteristic (ROC) curve (AUC) which is the primary measure
of performance in any retrieval task. We fix the neighborhood size in the
input space to 20-nearest neighbors and vary the number of neighbors in the
output space from 1 to 100 to calculate precision and recall. For each dataset,
we repeat the experiments 20 times with different random initializations and
report the averages over all the trials.
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Figure 6.7: Examples of the images drawn from the UMist Faces dataset.

6.2.2 Datasets

As the first dataset, we consider UMist Faces dataset [3] which contains
112×92 sized images of 20 people from different views (575 images in total).
Examples of the images from this dataset are shown in Figure 6.7.

For the second dataset, we consider the Texture database from UCL
repository [5] which contains measurements of 10 fourth order modified mo-
ments in 4 different orientations (40 in total) for texture images from 11
classes (500 instances per each class). We take a subset of 6 classes (3000
instances). As the final dataset, we present our results on a subset of 6000
digits, randomly selected from the MNIST handwritten digits dataset [30].
The examples of the handwritten digits drawn from the MNIST are shown
in Figure 6.8
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Figure 6.8: Examples of the handwritten digits drawn from the MNIST
dataset.

6.2.3 Results

Figure 6.9 illustrates the classification accuracy and AUC curves as well as
the result of α-optimization for different values of α. As can be seen, there
is a considerable improvement over the original SNE method (α = 1) in the
sense of both classification accuracy and AUC by using a smaller value of
α. Additionally, there exists consistency among the performance curves and
the one obtained from α optimization using the EDA method. The optimal
value of α obtained from EDA coincides with the optimal value of the two
performance curves in most cases, or, at least, peaks near the optimal value
which has a satisfactory performance itself. Please note that the criterion
in EDA is to find the α which corresponds to the intrinsic characteristics
of the data distribution, rather than the one maximizing accuracy or AUC.
The criteria for finding the optimal value are completely different from those
used for calculation of classification accuracy or AUC. Therefore, the optimal
α by EDA may not always correspond to the point having the best perfor-
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Figure 6.9: Performance curves: classification accuracy (first row), AUC
(second row) and negative SM objective function of EDA (third row), for
datasets: UMist Faces (first column), Texture (second column) and MNIST
(third column).

mance, but the one which faithfully represents the data distribution. This
can be easily seen in the following, by plotting the maps corresponding to
the optimal value of α.

Figure 6.10 shows results of visualization of the datasets obtained from
SNE and t-SNE along with those achieved from α-SNE using the optimal
value of α found by EDA method. As it can be seen, in all cases, α-SNE has
much better performance compared to SNE. In the UMist Faces dataset, SNE
forms overlapping curves for images from different persons. However, both
t-SNE and α-SNE result in well separated curves. Moreover, using SNE, the
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Figure 6.10: Visualization results on datasets: UMist Faces (first row), Tex-
ture (second row) and MNIST (third row), using SNE (first column), t-SNE
(second column) and α-SNE (third column).

clusters become very close in the Texture dataset. t-SNE produces clusters
which are well separated, but rather over-compressed. α-SNE establishes a
balance between the two cases by producing separated but finely scattered
clusters. On the subset of the MNIST dataset, SNE again produces clusters
which are crowded in the center of the map and therefore, fails to separate
the digits from different classes. On the other hand, t-SNE and α-SNE both
produce well separated clusters. Again, α-SNE results in more spread clusters



CHAPTER 6. EXPERIMENTAL RESULTS 59

compared to t-SNE.
The α-optimization procedure is purely unsupervised and eliminates the

need for any other information except the input data. This property makes
the method suitable for unlabeled datasets where quality measures such
as classification accuracy can not be applied. It is worth to mention that
the joint optimization of (α, φ) is possible using only a small sub-sample of
the data (in our case, using around 100 randomly selected datapoints pro-
duced satisfactory results). Thus, the method yields a significant speed-up
compared to other quality measures such as AUC, when dealing with large
datasets.



Chapter 7

Conclusions and Future Work

We presented a natural generalization to the basic SNE method by con-
sidering α-divergence as the cost function. The proposed method, α-SNE,
avoids the crowding problem associated with the SNE by providing a much
smoother gradient for optimization, having a better balance between the
attraction and repulsion forces. This eliminates the need for considering dis-
tributions with heavier tail than Gaussian in the mapping. Furthermore, we
provided a framework to select the optimal α value for a given dataset. The
optimal value for α is the one which explains the data best (approximately).
The results show that our proposed method, with a proper selection of the
α parameter, outperforms the original SNE method by providing more dis-
tinguished clusters. The results are comparable with those obtained from
t-SNE or in some cases, visually even better. Additionally, the results of our
α-optimization framework are consistent with standard quality measures for
dimensionality reduction. The α-optimization can be performed efficiently
using only a small sub-sample of the data, providing a large speed-up over
other quality measures.

Possible extensions of the proposed method would be online optimization
of the α parameter using EDA, that is, performing α-optimization iteratively
along with the optimization of the cost function. Our α-decay procedure for
finding the map would be useful here such that we can gradually reduce α
in each iteration until the optimal value is reached. The rest of the itera-
tions would be fixing α and iteratively reducing the cost function until the
minimum is obtained.
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Appendix A

Calculation of the Gradient

The derivative of (4.9) with respect to yi can be found using the chain rule

∂Cα-SNE

∂yi
=
∑
j 6=i

∂Cα-SNE

∂qij

∂qij
∂yi

+
∑
k 6=i

∑
j 6=k

∂Cα-SNE

∂qkj

∂qkj
∂yi

. (A.1)

Each term in (A.1) is shown in more details as follows

∂Cα-SNE

∂qij
=

− 1
α

(
pij
qij

)α
, α 6= 0

log(
qij
pij

) + 1, α = 0
, (A.2)

∂qij
∂yi

= −2(yi − yj)qij + qij
∑
k 6=i

2(yi − yk)qik

= 2yjqij − qij
∑
k 6=i

2ykqik, j 6= i , (A.3)

∂qji
∂yi

= 2(yj − yi)qji(1− qji), j 6= i , (A.4)

∂qkj
∂yi

= −2(yk − yi)qkjqki, j 6= k, i . (A.5)

So ( A.1) can be written as follows

∂Cα-SNE

∂yi
=− 2

∑
j 6=i

[
1

α
pαijq

1−α
ij

(
yj −

∑
k 6=i

ykqik

)]

− 2
∑
j 6=i

[
1

α
pαjiq

1−α
ji (1− qji)(yi − yj)

]
+ 2

∑
k 6=i

∑
j 6=i,k

[
1

α
pαkjq

1−α
kj qki(yk − yi)

]
, α 6= 0 .
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Defining θi =
∑

j 6=i p
α
ijq

1−α
ij , we have

∂Cα-SNE

∂yi
=

2

α

∑
j 6=i

[(
(pαjiq

1−α
ji (1− qji)− (θj − pαjiq1−α

ji )qji
)
yi

−
(
qijθi − pαijq1−α

ij − pαjiq1−α
ji (1− qji) + qji(θj − pαjiq1−α

ji )
)
yj
]
, α 6= 0 .

Finally, we have the compact form (5.2). The gradient for the case α = 0
can be obtained in the limit α→ 0 where we have

∂Cα-SNE

∂yi
= 2

∑
j 6=i

(yi−yj)

(
qijDKL(qi‖pi)− qij log

qij
pij

+ qjiDKL(qj‖pj)− qji log
qji
pji

)
.

(A.6)
For the symmetric case, after similar calculations or, alternatively, using the
Lagrangian technique proposed in [64], we have

∂Cα-SSNE

∂yi
=


4
α

∑
j 6=i(yi − yj)

(
pαijq

1−α
ij − θqij

)
α 6= 0

4
∑

j 6=i(yi − yj) (qijDKL(Q‖P )− qij log(qij/pij)) α = 0
.

(A.7)
with θ =

∑
j 6=i p

α
ijq

1−α
ij and DKL(Q‖P ) =

∑
j 6=i qij log(qij/pij) is calculated

over the joint distributions P and Q.
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