Coordination of Groups of Mobile Autonomous Agents Using Nearest Neighbor Rules

A. Jadbabaie, J. Lin and A. S. Morse
Center for Computational Vision and Control
Department of Electrical Engineering
Yale University, New Haven, CT 06520 USA

March 4, 2002
Revised June 28, 2002

Abstract

In a recent Physical Review Letters article, Vicsek et. al. propose a simple but compelling discrete-time model of n autonomous agents {i.e., points or particles} all moving in the plane with the same speed but with different headings. Each agent’s heading is updated using a local rule based on the average of its own heading plus the headings of its “neighbors.” In their paper, Vicsek et. al. provide simulation results which demonstrate that the nearest neighbor rule they are studying can cause all agents to eventually move in the same direction despite the absence of centralized coordination and despite the fact that each agent’s set of nearest neighbors change with time as the system evolves. This paper provides a theoretical explanation for this observed behavior. In addition, convergence results are derived for several other similarly inspired models. The Vicsek model proves to be a graphic example of a switched linear system which is stable, but for which there does not exist a common quadratic Lyapunov function.

1 Introduction

In a recent paper [1], Vicsek et. al. propose a simple but compelling discrete-time model of n autonomous agents {i.e., points or particles} all moving in the plane with the same speed but with different headings. Each agent’s heading is updated using a local rule based on the average of its own heading plus the headings of its “neighbors.” Agent i’s neighbors at time t, are those agents which are either in or on a circle of pre-specified radius r centered at agent i’s current position. The Vicsek model turns out to be a special version of a model introduced previously by Reynolds [2] for simulating visually satisfying flocking and schooling behaviors for the animation industry. In their paper, Vicsek et. al. provide a variety of interesting simulation results which demonstrate that the nearest neighbor rule they are studying can cause all agents to eventually move in the same direction despite the absence of centralized coordination and despite the fact that each agent’s set

*This research was supported by DARPA under its SEC program and by the NSF under its KDI/LIS initiative.
of nearest neighbors change with time as the system evolves. In this paper we provide a theoretical explanation for this observed behavior.

There is a large and growing literature concerned with the coordination of groups of mobile autonomous agents. Included here is the work of Czirok et al. [3] who propose one-dimensional models which exhibit the same type of behavior as Vicsek’s. In [4, 5], Toner and Tu construct a continuous ”hydrodynamic” model of the group of agents, while other authors such as Mikhailov and Zanette [6] consider the behavior of populations of self propelled particles with long range interactions. Schenk et al. determined interactions between individual self-propelled spots from underlying reaction-diffusion equation [7].

In addition to these modelling and simulation studies, research papers focusing on the detailed mathematical analysis of emergent behaviors are beginning to appear. For example, Leonard et. al. [8] use potential function theory to understand flocking behavior while Fax and Murray [9] and Desai et. al. [10] employ graph theoretic techniques for the same purpose. The one feature which sharply distinguishes previously analyses from that undertaken here is that the latter explicitly takes into account possible changes in nearest neighbors over time, whereas the former do not. Changing nearest neighbor sets is an inherent property of the Vicsek model and in the other models we consider. To analyze such models, it proves useful to appeal to well-known results [11, 12] characterizing the convergence of infinite products of certain types of non-negative matrices. The study of infinite matrix products is ongoing [13, 14, 15, 16, 17, 18] and is undoubtedly producing results which will find application in the theoretical study of emergent behaviors.

Vicsek’s model is set up in Section 2 as a system of \(n \) simultaneous, one-dimensional recursion equations, one for each agent. A family of simple graphs on \(n \) vertices is then introduced to characterize all possible neighbor relationships. Doing this makes it possible to represent the Vicsek model as an \(n \)-dimensional switched linear system whose switching signal takes values in the set of indices which parameterize the family of graphs. The matrices which are switched within the system turn out to be non-negative with special structural properties. By exploiting these properties and making use of a classical convergence result due to Wolfowitz [11], we prove that all \(n \) agents’ headings converge to a common steady state heading provided the \(n \) agents are all “linked together” via their neighbors with sufficient frequency as the system evolves. The model under consideration proves to be a graphic example of a switched linear system which is stable, but for which there does not exist a common quadratic Lyapunov function.

In Section 2.2 we define the notion of an average heading vector in terms of graph Laplacians [19] and we show how this idea leads naturally to the Vicsek model as well as to other decentralized control models which might be used for the same purposes. We propose one such model which assumes each agent knows an upper bound on the number of agents in the group, and we explain why this model has the convergence properties similar to Vicsek’s.

In Section 3 we consider a modified version of Vicsek’s discrete-time system consisting of the same group of \(n \) agents, plus one additional agent, labelled 0, which acts as the group’s leader. Agent 0 moves at the same constant speed as its \(n \) followers but with a fixed heading \(\theta_0 \). The ith follower updates its heading just as in the Vicsek model, using the average of its own heading plus the headings of its neighbors. For this system, each follower’s set of neighbors can also include the leader and does so whenever the leader is within the follower’s neighborhood defining circle of radius \(r \). We prove that the headings of all \(n \) agents must converge to the leader’s provided all \(n \)
agents are “linked to their leader” together via their neighbors frequently enough as the system evolves. Finally we develop a continuous-time analog of this system and prove under condition more mild than imposed in the discrete-time case, that the headings of all \(n \) agents again converge to the heading of the group’s leader.

2 Leaderless Coordination

The system studied by Vicsek et. al. in [1] consists of \(n \) autonomous agents {e.g., points or particles}, labelled 1 through \(n \), all moving in the plane with the same speed but with different headings \(1 \). Each agent’s heading is updated using a simple local rule based on the average of its own heading plus the headings of its “neighbors.” Agent \(i \)'s neighbors at time \(t \), are those agents which are either in or on a circle of pre-specified radius \(r \) centered at agent \(i \)'s current position. In the sequel \(\mathcal{N}_i(t) \) denotes the set of labels of those agents which are neighbors of agent \(i \) at time \(t \).

Agent \(i \)'s heading, written \(\theta_i \), evolves in discrete-time in accordance with a model of the form

\[
\theta_i(t + 1) = \langle \theta_i(t) \rangle_r
\]

where \(t \) is a discrete-time index taking values in the non-negative integers \(\{0, 1, 2, \ldots \} \), and \(\langle \theta_i(t) \rangle_r \) is the average of the headings of agent \(i \) and agent \(i \)'s neighbors at time \(t \); that is

\[
\langle \theta_i(t) \rangle_r = \frac{1}{1 + n_i(t)} \left(\theta_i(t) + \sum_{j \in \mathcal{N}_i(t)} \theta_j(t) \right)
\]

where \(n_i(t) \) is the number of neighbors of agent \(i \) at time \(t \).

The explicit form of the update equations determined by (1) and (2) depends on the relationships between neighbors which exist at time \(t \). These relationships can be conveniently described by a simple, undirected graph with vertex set \(\{1, 2, \ldots, n\} \) which is defined so that \((i, j)\) is one of the graph’s edges just in case agents \(i \) and \(j \) are neighbors. Since the relationships between neighbors can change over time, so can the graph which describes them. To account for this we will need to consider all possible such graphs. In the sequel we use the symbol \(\mathcal{P} \) to denote a suitably defined set, indexing the class of all simple graphs \(\mathcal{G}_p \) defined on \(n \) vertices.

The set of agent heading update rules defined by (1) and (2), can be written in state form. Toward this end, for each \(p \in \mathcal{P} \), define

\[
F_p = (I + D_p)^{-1}(A_p + I)
\]

where \(A_p \) is the adjacency matrix\(^2\) of graph \(\mathcal{G}_p \) and \(D_p \) the diagonal matrix whose \(ij \)th diagonal element is the valence of vertex \(i \) within the graph. Then

\[
\theta(t + 1) = F_{\sigma(t)}\theta(t), \quad t \in \{0, 1, 2, \ldots \}
\]

where \(\theta \) is the heading vector \(\theta = [\theta_1 \ \theta_2 \ \ldots \ \theta_n]' \) and \(\sigma : \{0, 1, \ldots \} \rightarrow \mathcal{P} \) is a switching signal whose value at time \(t \), is the index of the graph representing the agents’ neighbor relationships at

\(^{1} \)The Vicsek system also includes noise input signals which we ignore in this paper.

\(^{2} \)The adjacency matrix of a simple graph on \(n \) vertices is an \(n \times n \) matrix of whose \(ij \)th entry is 1 if \((i, j)\) is one of the graph’s edges and 0 if it is not.
time t. A complete description of this system would have to include a model which explains how σ changes over time as a function of the positions of the n agents in the plane. While such a model is easy to derive and is essential for simulation purposes, it would be difficult to take into account in a convergence analysis. To avoid this difficulty, we shall adopt a more conservative approach which ignores how σ depends on the agent positions in the plane and assumes instead that σ might be any switching signal in some suitably defined set of interest.

Our goal is to show for a large class of switching signals and for any initial set of agent headings that the headings of all n agents will converge to the same steady state value θ_{ss}. Convergence of the θ_i to θ_{ss} is equivalent to the state vector θ converging to a vector of the form $\theta_{ss}1$ where

$$1 \triangleq [1 \ 1 \ldots \ 1]^T_{n \times 1}.$$ Naturally there are situations where convergence to a common heading cannot occur. The most obvious of these is when one agent - say the ith - starts so far away from the rest that it never acquires any neighbors. Mathematically this would mean not only that $G_{\sigma(t)}$ is never connected at any time t, but also that vertex i remains an isolated vertex of $G_{\sigma(t)}$ for all t. This situation is likely to be encountered if r is very small. At the other extreme, which is likely if r is very large, all agents might remain neighbors of all others for all time. In this case, σ would remain fixed along such a trajectory at that value in $p \in \mathcal{P}$ for which G_p is a complete graph. Convergence of θ to $\theta_{ss}1$ can easily be established in this special case because with σ so fixed, (4) is a linear, time-invariant, discrete-time system. The situation of perhaps the greatest interest is between these two extremes when $G_{\sigma(t)}$ is not necessarily complete or even connected for any $t \geq 0$, but when no strictly proper subset of $G_{\sigma(t)}$’s vertices is isolated from the rest for all time. Establishing convergence in this case is challenging because σ changes with time and (4) is not time-invariant. It is this case which we intend to study. Towards this end, we denote by Q the subset of \mathcal{P} consisting of the indices of the connected graphs in $\{G_p : p \in \mathcal{P}\}$. Our first result establishes the convergence of θ for the case when σ takes values only in Q.

Theorem 1 Let $\theta(0)$ be fixed and let $\sigma : \{0, 1, 2, \ldots \} \rightarrow \mathcal{P}$ be a switching signal satisfying $\sigma(t) \in Q, t \in \{0, 1, \ldots \}$. Then

$$\lim_{t \rightarrow \infty} \theta(t) = \theta_{ss}1$$

where θ_{ss} is a number depending only on $\theta(0)$ and σ.

It is possible to establish convergence to a common heading under conditions which are significantly less stringent that those assumed in Theorem 1. To do this we need to introduce several concepts. By the union of a collection of simple graphs, $\{G_{p_1}, G_{p_2}, \ldots, G_{p_m}\}$, each with vertex set \mathcal{V}, is meant the simple graph G with vertex set \mathcal{V} and edge set equaling the union of the edge sets of all of the graphs in the collection. We say that such a collection is jointly connected if the union of its members is a connected graph. Note that if such a collection contains at least one graph which is connected, then the collection must be jointly connected. On the other hand, a collection can be jointly connected even if none of its members are connected.

It is natural to say that the n agents under consideration are linked together across a time interval $[t, \tau]$ if the collection of graph $\{G_{\sigma(t)}, G_{\sigma(t+1)}, \ldots, G_{\sigma(\tau)}\}$ encountered along the interval, is jointly connected. Theorem 1 says, in essence, that convergence of all agent’s headings to a common heading is for certain provided all n agents are linked together across each successive interval of length one (i.e., all of the time). Of course there is no guarantee that along a specific trajectory
the n agents will be so linked. Perhaps a more likely situation, at least when r is not too small, is when the agents are linked together across contiguous intervals of arbitrary but finite length. If the lengths of such intervals are uniformly bounded, then in this case too convergence to a common head proves to be for certain.

Theorem 2 Let $\theta(0)$ be fixed and let $\sigma : \{0, 1, 2, \ldots\} \rightarrow \mathcal{P}$ be a switching signal for which there exists an infinite sequence of contiguous, non-empty, bounded, time-intervals $[t_i, t_{i+1})$, $i \geq 0$, starting at $t_0 = 0$, with the property that across each such interval, the n agents are linked together. Then

$$\lim_{t \to \infty} \theta(t) = \theta_{ss}1 \tag{6}$$

where θ_{ss} is a number depending only on $\theta(0)$ and σ.

The hypotheses of Theorem 2 require each of the collections $\{G_{\sigma(t_i)} G_{\sigma(t_{i+1})}, \ldots, G_{\sigma(t_{i+1}-1)}\}$, $i \geq 0$, to be jointly connected. Although no constraints are placed on the intervals $[t_i, t_{i+1})$, $i \geq 0$, other than that they be of finite length, the constraint on σ is more restrictive than one might hope for. What one would prefer instead is to show that (6) holds for every switching signal σ for which there is an infinite sequence of bounded, non-overlapping {but not necessarily contiguous} intervals across which the n agents are linked together. Whether or not this is true remains to be seen.

A sufficient but not necessary condition for σ to satisfy the hypotheses of Theorem 2 is that on each successive interval $[t_i, t_{i+1})$, σ take on at least one value in \mathcal{Q}. Theorem 1 is thus an obviously a consequence of Theorem 2 for the case when all intervals are of length 1. For this reason we need only develop a proof for Theorem 2. To do this we will make use of certain structural properties of the F_p. As defined, each F_p is square and non-negative, where by a non-negative matrix is meant a matrix whose entries are all non-negative. Each F_p also has the property that its row sums all equal 1 \{i.e., $F_p1 = 1\}$. Matrices with these two properties are called stochastic [20]. The F_p have the additional property that their diagonal elements are all non-zero. For the case when $p \in \mathcal{Q} \{i.e., \text{when } G_p \text{ is connected}\}$, it is known that $(I + A_p)^m$ becomes a matrix with all positive entries for m sufficiently large [20]. It is easy to see that if $(I + A_p)^m$ has all positive entries, then so does F_p^m. Such $(I + A_p)$ and F_p are examples of “primitive matrices” where by a primitive matrix is meant any square, non-negative matrix M for which M^m is a matrix with all positive entries for m sufficiently large [20]. It is known [20] that among the n eigenvalues of a primitive matrix, there is exactly one with largest magnitude, that this eigenvalue is the only one possessing an eigenvector with all positive entries, and that the remaining $n-1$ eigenvalues are all strictly smaller in magnitude than the largest one. This means that for $p \in \mathcal{Q}$, 1 must be F_p’s largest eigenvalue and all remaining eigenvalues must lie within the open unit circle. As a consequence, each such F_p must have the property that $\lim_{i \to \infty} F_p^i = 1e_p$ for some row vector e_p. Any stochastic matrices M for which $\lim_{i \to \infty} M^i$ is a matrix of rank 1 is called ergodic [20]. Primitive stochastic matrices are thus ergodic matrices. To summarize, each F_p is a stochastic matrix with positive diagonal elements and if $p \in \mathcal{Q}$ then F_p is also primitive and hence ergodic. The crucial convergence result upon which the proof of Theorem 2 depends is classical [11] and is as follows.

Theorem 3 (Wolfowitz) Let M_1, M_2, \ldots, M_m be a finite set of ergodic matrices with the property that for each sequence $M_{i_1}, M_{i_2}, \ldots, M_{i_s}$ of positive length, the matrix product $M_{i_1}M_{i_2-1} \cdots M_{i_s}$ is
ergodic. Then for each infinite sequence \(M_1, M_2, \ldots \) there exists a row vector \(c \) such that
\[
\lim_{j \to \infty} M_{ij} M_{ij-1} \cdots M_{i1} = 1c
\]

The finiteness of the set \(M_1, M_2, \ldots, M_m \) is crucial to Wolfowitz’s proof. This finiteness requirement is also the reason why we’ve needed to assume contiguous, bounded intervals in the statement of Theorem 2.

In order to make use of Theorem 3, we need a few facts concerning products of the types of matrices we are considering. First we point out that the class of \(n \times n \) stochastic matrices with positive diagonal elements is closed under matrix multiplication. This is because the product of two non-negative matrices with positive diagonals is a matrix with the same properties and because the product of two stochastic matrices is stochastic. Second we will use the following key result\(^3\).

Lemma 1 Let \(\{p_1, p_2, \ldots, p_m\} \) be a set of indices in \(\mathcal{P} \) for which \(\{G_{p_1}, G_{p_2}, \ldots, G_{p_m}\} \) is a jointly connected collection of graphs. Then the matrix product \(F_{p_1} F_{p_2} \cdots F_{p_m} \) is ergodic.

Proof of Theorem 2\(^4\): Let \(T \) denote the least upper bound on the lengths of the intervals \([t_i, t_{i+1})\), \(i \geq 0 \). By assumption \(T < \infty \). Let \(\Phi(t, t) = I, t \geq 0, \) and \(\Phi(t, \tau) \triangleq F_{\sigma(t-1)} \cdots F_{\sigma(1)} F_{\sigma(\tau)}, t \geq \tau \geq 0 \). Clearly \(\theta(t) = \Phi(t, 0) \theta(0) \). To complete the theorem’s proof, it is therefore enough to show that
\[
\lim_{t \to \infty} \Phi(t, 0) = 1c
\]

for some row vector \(c \) since this would imply (6) with \(\theta_{ss} \triangleq c \theta(0) \). In view of Lemma 1, the constraints on \(\sigma \) imply that each such matrix product \(\Phi(t_{j+1}, t_j), j \geq 0 \), is ergodic. Moreover, the set of possible \(\Phi(t_{j+1}, t_j) \), \(j \geq 0 \), must be finite because each \(\Phi(t_{j+1}, t_j) \) is a product of at most \(T \) matrices from \(\{F_p : p \in \mathcal{P}\} \) which is a finite set. But \(\Phi(t_j, 0) = \Phi(t_j, t_{j-1}) \Phi(t_{j-1}, t_{j-2}) \cdots \Phi(t_1, t_0) \).

Therefore by Theorem 3,
\[
\lim_{j \to \infty} \Phi(t_j, 0) = 1c
\]

For each \(t \geq 0 \), let \(j_t \) be the largest non-negative integer such that \(t_{j_t} \leq t \). Then \(\Phi(t, 0) = \Phi(t, t_{j_t}) \Phi(t_{j_t}, 0) \) and \(\Phi(t, t_{j_t}) 1 = 1 \) so
\[
\Phi(t, 0) - 1c = \Phi(t, t_{j_t}) (\Phi(t_{j_t}, 0) - 1c)
\]

Note that \(t \mapsto \Phi(t, t_{j_t}) \) is a bounded function because \(\Phi(t, t_{j_t}) \) is the product of at most \(T - 1 \) matrices \(F_p \) which come from a bounded set. Moreover \((\Phi(t_{j_t}, 0) - 1c) \to 0 \) as \(t \to \infty \) because of (8). From this and (9) it follows that \((\Phi(t, 0) - 1c) \to 0 \) as \(t \to \infty \). Therefore (7) holds. \(\blacksquare \)

To prove Lemma 1 we shall make use of the standard partial ordering \(\geq \) on \(n \times n \) non-negative matrices by writing \(B \geq A \) whenever \(B - A \) is a non-negative. Let us note that if \(A \) is a primitive matrix and if \(B \geq A \), then \(B \) is primitive as well. Lemma 1 is a simple consequence of the following result.

\(^3\)We are indebted to Marc Artzrouni, University of Pau, France for his help with the proof of an earlier version of this lemma.

\(^4\)The authors thank Daniel Liberzon for pointing out a flaw in the original version of this proof, and Sean Meyn for suggesting how to fix it.
Lemma 2 Let $m \geq 2$ be a positive integer and let A_1, A_2, \ldots, A_m be non-negative $n \times n$ matrices. Suppose that the diagonal elements of all of the A_i are positive and let μ and ρ denote the smallest and largest of these respectively. Then

$$A_1A_2 \cdots A_m \geq \left(\frac{\mu^2}{2\rho}\right)^{(m-1)} (A_1 + A_2 + \cdots + A_m) \quad (10)$$

Proof: Set $\delta = \frac{\mu^2}{2\rho}$. It will be shown by induction that

$$A_1A_2 \cdots A_i \geq \delta^{(i-1)}(A_1 + A_2 + \cdots + A_i) \quad (11)$$

holds for $i \in \{2, 3, \ldots, m\}$. Towards this end note that it is possible to write each A_i as $A_i = \mu I + B_i$ where B_i is non-negative. Then for any $j, k \in \{1, 2, \ldots, m\},$

$$A_jA_k = (\mu I + B_j)(\mu I + B_k) = \mu^2 I + \mu(B_j + B_k) + B_jB_k$$

Hence

$$A_jA_k \geq \mu^2 I + \mu(B_j + B_k) \geq \mu^2 I + \frac{\mu^2}{2\rho} (B_j + B_k) = \delta((\rho I + B_j) + (\rho I + B_k))$$

Since $(\rho I + B_j) \geq A_j$ and $(\rho I + B_k) \geq A_k$ it follows that

$$A_jA_k \geq \delta(A_j + A_k), \quad \forall j, k \in \{1, 2, \ldots, m\} \quad (12)$$

Setting $j = 1$ and $k = 2$ proves that (11) holds for $i = 2$. If $m = 2$, the proof is complete.

Now suppose that $m > 2$ and that (11) holds for $i \in \{2, 3, \ldots, l\}$ where l is some integer in $\{2, 3, \ldots, m - 1\}$. Then $A_1A_2 \cdots A_{l+1} = (A_1 \cdots A_l)A_{l+1}$ so by the inductive hypothesis,

$$A_1A_2 \cdots A_{l+1} \geq \delta^{(l-1)}(A_1 + A_2 + \cdots + A_l)A_{l+1} \quad (13)$$

But using (12) l times we can write

$$(A_1 + A_2 + \cdots + A_l)A_{l+1} \geq \delta\{(A_1 + A_{l+1}) + (A_2 + A_{l+1}) + \cdots + (A_l + A_{l+1})\}$$

Thus

$$(A_1 + A_2 + \cdots + A_l)A_{l+1} \geq \delta(A_1 + A_2 + \cdots + A_{l+1})$$

This and (13) imply that (11) holds for $i = l + 1$. Therefore, by induction (11) is true for all $i \in \{2, 3, \ldots, m\}$. ■

Proof of Lemma 1: Set $F = (I + D)^{-1}(I + A)$ where A and D are respectively is the adjacency matrix and diagonal valence matrix of the union of the collection of graphs $\{G_{p_1}, G_{p_2}, \ldots, G_{p_m}\}$. Since the collection is jointly connected, its union is connected which means that F is primitive. By Lemma 2

$$F_{p_1}F_{p_2} \cdots F_{p_m} \geq \gamma(F_{p_1} + F_{p_2} + \cdots + F_{p_m}) \quad (14)$$

where γ is a positive constant depending on the matrices in the product. Since for $i \in \{1, 2, \ldots, m\}$, $F_{p_i} = (I + D_{p_i})^{-1}(I + A_{p_i})$ and $D \geq D_{p_i}$, it must be true that $F_{p_i} \geq (I + D)^{-1}(I + A_{p_i})$, $i \in \{1, 2, \ldots, m\}$. From this and (14) it follows that

$$F_{p_1}F_{p_2} \cdots F_{p_m} \geq \gamma(I + D)^{-1}(mI + A_{p_1} + A_{p_2} + \cdots + A_{p_m}) \quad (15)$$
But \(A_{p_1} + A_{p_2} + \cdots + A_{p_m} \geq A \) and \(mI \geq I \) so

\[
F_{p_1}F_{p_2} \cdots F_{p_m} \geq \gamma F
\]

Since the product \(F_{p_1}F_{p_2} \cdots F_{p_m} \) is bounded below by a primitive matrix, namely \(\gamma F \), the product must be primitive as well. Since \(F_{p_1}F_{p_2} \cdots F_{p_m} \) is also a stochastic matrix, it must therefore be ergodic.

2.1 Quadratic Lyapunov Functions

As we’ve already noted, \(F_p \mathbf{1} = \mathbf{1} \), \(p \in \mathcal{P} \). From this it follows that for any \((n-1) \times n \) matrix \(P \) with kernel spanned by \(\mathbf{1} \), the equations

\[
PF_p = \bar{F}_pP, \ p \in \mathcal{P}
\]

have unique solutions \(\bar{F}_p, \ p \in \mathcal{P} \), and moreover that

\[
\text{spectrum } F_p = \{1\} \cup \text{spectrum } \bar{F}_p, \ p \in \mathcal{P}
\]

As a consequence of (16) it can easily be seen that for any sequence of indices \(p_0, p_1, \ldots, p_i \) in \(\mathcal{P} \),

\[
\bar{F}_{p_i}\bar{F}_{p_{i-1}}\cdots\bar{F}_{p_0}P = PF_{p_i}F_{p_{i-1}}\cdots F_{p_0}
\]

Since \(P \) has full row rank and \(P\mathbf{1} = 0 \), the convergence of a product of the form \(F_{p_i}F_{p_{i-1}}\cdots F_{p_0} \) to \(\mathbf{1}c \) for some row vector \(c \), is equivalent to convergence of the corresponding product \(\bar{F}_{p_i}\bar{F}_{p_{i-1}}\cdots\bar{F}_{p_0} \) to the zero matrix. Thus, for example, if \(p_0, p_1, \ldots \) is an infinite sequence of indices in \(\mathcal{Q} \), then, in view of Theorem 3,

\[
\lim_{i \to \infty} \bar{F}_{p_i}\bar{F}_{p_{i-1}}\cdots\bar{F}_{p_0} = 0
\]

Some readers might be tempted to think, as we first did, that the validity of (19) could be established directly by showing that the \(\bar{F}_p \) in the product share a common quadratic Lyapunov function. More precisely, (19) would be true if there were a single positive definite matrix \(M \) such that all of the matrices \(\bar{F}_p M \bar{F}_p - M, \ p \in \mathcal{Q} \) were negative definite. Although each \(\bar{F}_p, \ p \in \mathcal{Q} \) can easily be shown to be discrete-time stable, there are classes of \(F_p \) for which that no such common Lyapunov matrix \(M \) exists. While we’ve not been able to construct a simple analytical example which demonstrates this, we have been able to determine, for example, that no common quadratic Lyapunov function exists for the class of all \(F_p \) whose associated graphs have 10 vertices and are connected. One can verify that this is so by using semidefinite programming and restricting the check to just those connected graphs on 10 vertices with either 9 or 10 edges.

It is worth noting that existence of a common quadratic Lyapunov function for all discrete time stable \(m \times m \) matrices \(M_1, M_2, \ldots \) in some given finite set \(\mathcal{M} \) is a much stronger condition than is typically needed to guarantee that all infinite products of the \(M_i \) converge to zero. It is known [21] that convergence to zero of all such infinite products is in fact equivalent to the “joint spectral radius” of \(\mathcal{M} \) being strictly less than 1 where by joint spectral radius of \(\mathcal{M} \) is meant

\[
\rho_{\mathcal{M}} := \limsup_{k \to \infty} \left\{ \max_{M_1 \in \mathcal{M}} \max_{M_2 \in \mathcal{M}} \cdots \max_{M_k \in \mathcal{M}} \|M_1M_2\cdots M_k\|^{\frac{1}{k}} \right\}
\]
Here \(||\cdot||\) is any norm on the space of real \(m \times m\) matrices. It turns out that \(\rho_M\) does not depend on the choice of norm because all norms on a finite-dimensional space are equivalent. On the other hand, a “tight” sufficient condition for the existence of a common quadratic Lyapunov function for the matrices in \(\mathcal{M}\), is \(\rho_M \in [0, \frac{1}{\sqrt{m}}]\) [22]. This condition is tight in the sense that one can find a finite set of \(m \times m\) matrices with joint spectral radius \(\rho = \frac{1}{\sqrt{m}}\), whose infinite products converge to zero despite the fact that there does not exist common quadratic Lyapunov function for the set. From this one can draw the conclusion that sets of matrices with “large” \(m\) are not likely to possess a common quadratic, even though all infinite products of such matrices converge to zero. This can in turn help explain why it has proved to be necessary to go as high as \(n = 10\) to find a case where a common quadratic Lyapunov function for a family of \(F_p\) does not exist.

2.2 Generalization

It is possible to interpret the Vicsek model analyzed in the last section as the closed-loop system which results when a suitably defined decentralized feedback law is applied to the \(n\)-agent heading model

\[
\theta(t + 1) = \theta(t) + u(t)
\]

with open-loop control \(u\). To end up with the Vicsek model, \(u\) would have to be defined as

\[
u(t) = -(I + D_{\sigma(t)})^{-1}e(t)\]

where \(e\) is the average heading error vector

\[
e(t) \triangleq L_{\sigma(t)}\theta(t)\]

and, for each \(p \in \mathcal{P}\), \(L_p\) is the symmetric matrix

\[
L_p = D_p - A_p
\]

known in graph theory as the Laplacian of \(G_p\) [19, 23]. It is easily verified that equations (20) to (23) do indeed define the Vicsek model. We’ve elected to call \(e\) the average heading error because if \(e(t) = 0\) at some time \(t\), then the heading of each agent with neighbors at that time will equal the average of the headings of its neighbors.

In the present context, Vicsek’s control (21) can be viewed as a special case of a more general decentralized feedback control of the form

\[
u(t) = -G_{\sigma(t)}^{-1}L_{\sigma(t)}\theta(t)\]

where for each \(p \in \mathcal{P}\), \(G_p\) is a suitably defined, nonsingular diagonal matrix with \(i\)th diagonal element \(g_i^p\). This, in turn, is an abbreviated description of a system of \(n\) individual agent control laws of the form

\[
u_i(t) = -\frac{1}{g_i(t)}\left(n_i(t)\theta_i(t) + \sum_{j \in N_i(t)} \theta_j(t)\right), \quad i \in \{1, 2, \ldots, n\}
\]
where for \(i \in \{1, 2, \ldots, n\} \), \(u_i(t) \) is the \(i \)th entry of \(u(t) \) and \(g_i(t) \triangleq g_{i(t)}^t \). Application of this control to (20) would result in the closed-loop system

\[
\theta(t + 1) = \theta(t) - G_{\sigma(t)}^{-1} L_{\sigma(t)} \theta(t)
\]

Note that the form of (26) implies that if \(\theta \) and \(\sigma \) were to converge to a constant values \(\bar{\theta} \) and \(\bar{\sigma} \) respectively, then \(\dot{\theta} \) would automatically satisfy \(L\bar{\theta} = 0 \). This means that control (24) automatically forces each agent’s heading to converge to the average of its neighbors, if agent headings were to converge at all. In other words, the choice of the \(G_p \) does not effect the requirement that each agent’s heading equal the average of the headings of its neighbors, if there is convergence at all. This phenomenon is of course well known in control theory and is a manifestation of the idea of integral control.

The preceding suggests that there might be useful choices for the \(G_p \) alternative to those considered by Vicsek, which also lead to convergence. One such choice turns out to be

\[
G_p = gI, \ p \in \mathcal{P}
\]

where \(g \) is any number greater than \(n \). Our aim is to show that with the \(G_p \) so defined, Theorem 2 continues to be valid. In sharp contrast with the proof technique used in the last section, convergence will be established here using a common quadratic Lyapunov function.

As before, we will use the model

\[
\dot{\theta}(t + 1) = F_{\sigma(t)} \theta(t)
\]

where, in view of the definition of the \(G_p \) in (27), the \(F_p \) are now symmetric matrices of the form

\[
F_p = I - \frac{1}{g} L_p, \quad p \in \mathcal{P}
\]

To proceed we need to review a number of well known and easily verified properties of graph Laplacians relevant to the problem at hand. For this, let \(G \) be any given simple graph with \(n \) vertices. Let \(D \) be a diagonal matrix whose diagonal elements are the valences of \(G \)’s vertices and write \(A \) for \(G \)’s adjacency matrix. Then, as noted before, the Laplacian of \(G \) is the symmetric matrix \(L = D - A \). The definition of \(L \) clearly implies that \(L1 = 0 \). Thus \(L \) must have an eigenvalue at zero and \(1 \) must be an eigenvector for this eigenvalue. Surprisingly \(L \) is always a positive semidefinite matrix [23]. Thus \(L \) must have a real spectrum consisting of non-negative numbers and at least one of these numbers must be 0. It turns out that the number of connected components of \(G \) is exactly the same as the multiplicity of \(L \)’s eigenvalue at 0 [23]. Thus \(G \) is a connected graph just in case \(L \) has exactly one eigenvalue at 0. Note that the trace of \(L \) is the sum of the valences of all vertices of \(G \). This number can never exceed \((n - 1)n \) and can attain this high value only for a complete graph. In any event, this property implies that the maximum eigenvalue of \(L \) is never larger that \(n(n - 1) \). Actually the largest eigenvalue of \(L \) can never be larger than \(n \) [23]. This means that the eigenvalues of \(\frac{1}{g} L \) must be smaller than 1 since \(g > n \). From these properties it clearly follows that the eigenvalues of \((I - \frac{1}{g} L) \) must all be between 0 and 1, and that if \(G \) is connected, then all will be strictly less than 1 except for one eigenvalue at 1 with eigenvector \(1 \). Since each \(F_p \) is of the form \((I - \frac{1}{g} L) \), each \(F_p \) possesses all of these properties.
Let \(\sigma \) be a fixed switching signal with value \(p_i \in Q \) at time \(t \geq 0 \). What we’d like to do is to prove that as \(i \to \infty \), the matrix product \(F_{p_i} F_{p_{i-1}} \cdots F_{p_0} \) converges to \(1e \) for some row vector \(e \). As noted in the section 2.1, this matrix product will so converge just in case

\[
\lim_{i \to \infty} F_{p_i} F_{p_{i-1}} \cdots F_{p_0} = 0
\]

(30)

where as in section 2.1, \(F_p \) is the unique solution to \(P F_p = \bar{F}_p P \), \(p \in \mathcal{P} \) and \(P \) is any full rank \((n - 1) \times n\) matrix satisfying \(P1 = 0 \). For simplicity and without loss of generality we shall henceforth assume that the rows of \(P \) form a basis for the orthogonal complement of the span of \(e \). This means that \(PP' \) equals the \((n - 1) \times (n - 1)\) identity \(\bar{I} \), that \(F_p = P F_p P' \), \(p \in \mathcal{P} \), and thus that each \(F_p \) is symmetric. Moreover, in view of (17) and the spectral properties of the \(F_p \), \(p \in Q \), it is clear that each \(F_p \), \(p \in Q \) must have a real spectrum lying strictly inside of the unit circle. This plus symmetry means that for each \(p \in Q \), \(F_p - \bar{I} \) is negative definite, that \(F_p' F_p - \bar{I} \) is negative definite and thus that \(\bar{I} \) is a common discrete-time Lyapunov matrix for all such \(F_p \). Using this fact it is straightforward to prove that Theorem 1 holds for system (26) provided the \(G_p \) are defined as in (27) with \(g > n \).

In general, each \(\bar{F}_p \) is a discrete-time stability matrix for which \(F_p' F_p - \bar{I} \) is negative definite only if \(p \in Q \). To craft a proof of Theorem 2 for the system described by (26) and (27), one needs to show that for each interval \([t_i, t_{i+1}]\) on which \(\{G_{\sigma(t_{i+1})}, \ldots, G_{\sigma(t_i)}\} \) is a jointly connected collection of graphs, the product \(\bar{F}_{\sigma(t_{i+1})} \cdots \bar{F}_{\sigma(t_i)} \) is a discrete-time stability matrix and \((\bar{F}_{\sigma(t_{i+1})} \cdots \bar{F}_{\sigma(t_i)})' (\bar{F}_{\sigma(t_{i+1})} \cdots \bar{F}_{\sigma(t_i)}) - \bar{I} \) is negative definite. This is a direct consequence of the following proposition.

Proposition 1 If \(\{G_{p_1}, G_{p_2}, \ldots, G_{p_m}\} \) is a jointly connected collection of graphs, then

\[
(F_{p_1} F_{p_2} \cdots F_{p_m})' (F_{p_1} F_{p_2} \cdots F_{p_m}) - \bar{I}
\]

is a negative definite matrix.

In the light of Proposition 1, it is clear that the conclusion Theorem 2 is also valid for the system described by (26) and (27). A proof of this version of Theorem 2 will not be given.

To summarize, both the Vicsek control defined by \(u = -(I + D_{\sigma(t)})^{-1} e(t) \) and the simplified control given by \(u = -\frac{1}{g} e(t) \) achieve the same emergent behavior. While latter is much easier to analyze than the former, it has the disadvantage of not being a true decentralized control because each agent must know an upper bound \(\{1, g\} \) on the total number of agents within the group. Whether or not this is really a disadvantage, of course depends on what the models are to be used for.

The proof of Proposition 1 depends on two lemmas. In the sequel, we state the lemmas, use them to prove Proposition 1, and then conclude this section with proofs of the lemmas themselves.

Lemma 3 If \(\{G_{p_1}, G_{p_2}, \ldots, G_{p_m}\} \) is a jointly connected collection of graphs with Laplacians \(L_{p_1}, L_{p_2}, \ldots, L_{p_m} \), then

\[
\bigcap_{i=1}^{m} \text{kernel } L_{p_i} = \text{span} \{1\}
\]

(31)
Lemma 4 Let M_1, M_2, \ldots, M_m be a set of $n \times n$ real symmetric, matrices whose induced 2-norms are all less than or equal to 1. If

$$\bigcap_{i=1}^{m} \text{kernel} (I - M_i) = 0$$

then the induced 2-norm of $M_1M_2 \cdots M_m$ is less than 1.

Proof of Proposition 1: The definition of the F_p in (29) implies that $I - F_p = \frac{1}{g} L_p$. Hence by Lemma 3 and the hypothesis that $\{G_{p_1}, G_{p_2}, \ldots, G_{p_m}\}$ is a jointly connected collection,

$$\bigcap_{i=1}^{m} \text{kernel} (I - F_{p_i}) = \text{span} \{1\}$$

We claim that

$$\bigcap_{i=1}^{m} \text{kernel} (I - \bar{F}_{p_i}) = 0$$

To establish this fact, let \bar{x} be any vector such that $(I - \bar{F}_{p_i})\bar{x} = 0$, $i \in \{1, 2, \ldots, m\}$. Since P has independent rows, there is a vector x such that $\bar{x} = Px$. But $P(I - F_{p_i}) = (I - \bar{F}_{p_i})P$, so $P(I - F_{p_i})x = 0$. Hence $(I - F_{p_i})x = a_i1$ for some number a_i. But $1'(I - F_{p_i}) = \frac{1}{g} 1'L_{p_i} = 0$, so $a_i1'1 = 0$. This implies that $a_i = 0$ and thus that $(I - F_{p_i})x = 0$. But this must be true for all $i \in \{1, 2, \ldots, m\}$. It follows from (33) that $x \in \text{span} \{1\}$ and, since $\bar{x} = Px$, that $\bar{x} = 0$. Therefore (34) is true.

As defined, the \bar{F}_p are all symmetric, positive semi-definite matrices with induced 2-norms not exceeding 1. This and (34) imply that the family of matrices $\bar{F}_{p_1}, \bar{F}_{p_2}, \ldots, \bar{F}_{p_m}$ satisfy the hypotheses of Lemma 4. It follows then that Proposition 1 is true.

Proof of Lemma 3: In the sequel we write $L(G)$ for the Laplacian of a simple graph G. By the intersection of a collection of simple graphs, $\{G_{p_1}, G_{p_2}, \ldots, G_{p_m}\}$, each with vertex set V, is meant the simple graph G with vertex set V and edge set equaling the intersection of the edge sets of all of the graphs in the collection. It follows at once from the definition of a Laplacian that

$$L(G_p) + L(G_q) = L(G_p \cap G_q) + L(G_p \cup G_q)$$

for all $p, q \in \mathcal{P}$. Repeated application of this identity to the set $\{G_{p_1}, G_{p_2}, \ldots, G_{p_m}\}$ yields the relation

$$\sum_{i=1}^{m} L(G_{p_i}) = L \left(\bigcup_{i=1}^{m} G_{p_i} \right) + \sum_{i=1}^{m-1} L \left(\bigcap_{j=1}^{i} G_{p_j} \right)$$

which is valid for $m > 1$. Since all matrices in (35) are positive semi-definite, any vector x which makes the quadratic form $x'(L(G_{p_1}) + L(G_{p_2}) + \cdots + L(G_{p_m}))x$ vanish, must also make the quadratic form $x'(L(G_{p_1} \cup G_{p_2} \cup \cdots \cup G_{p_m}))x$ vanish. Since any vector in the kernel of each matrix $L(G_{p_i})$ has this property, we can draw the following conclusion.

$$\bigcap_{i=1}^{m} \text{kernel} L(G_{p_i}) \subset \text{kernel} L \left(\bigcup_{i=1}^{m} G_{p_i} \right)$$
Suppose now that \(\{G_{p1}, G_{p2}, \ldots, G_{pn}\} \) is a jointly connected collection. Then the union \(G_{p1} \cup G_{p2} \cup \cdots \cup G_{pn} \) is connected so its Laplacian must have exactly span \(\{1\} \) for its kernel. Hence the intersection of the kernels of the \(L(G_{pn}) \) must be contained in span \(\{1\} \). But span \(\{1\} \) is contained in the kernel of each matrix \(L(G_{pn}) \) in the intersection and therefore in the intersection of the kernels of these matrices as well. It follows that (31) is true. ■

Proof of Lemma 4: In the sequel we write \(|x|\) for the 2-norm of a real \(n \)-vector \(x \) and \(|M|\) for the induced 2-norm of a real \(n \times n \) matrix. Let \(x \in \mathbb{R}^n \) be any real, non-zero \(n \)-vector. It is enough to show that

\[
|M_1M_2 \cdots M_n x| < |x| \tag{36}
\]

In view of (32) and the assumption that \(x \neq 0 \), there must be a largest integer \(k \in \{1,2,\ldots,m\} \) such that \(x \notin \text{kernel} \((M_k - I) \). We claim that

\[
|M_k x| < |x| \tag{37}
\]

To show that this is so we exploit the symmetry of \(M_k \) to write \(x = a_1y_1 + a_2y_2 + \cdots + a_ny_n \) where \(a_1, a_2, \ldots, a_n \) are real numbers and \(\{y_1, y_2, \ldots, y_n\} \) is an orthonormal set of eigenvectors of \(M_k \) with real eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_n \). Note that \(|\lambda_i| \leq 1\), \(i \in \{1,2,\ldots,n\} \), because \(|M_k| \leq 1\). Next observe that since \(M_k x = a_1\lambda_1 y_1 + a_2\lambda_2 y_2 + \cdots + a_n\lambda_n y_n \) and \(M_k x \neq x \), there must be at least one integer \(j \) such that \(\alpha_j \lambda_j \neq \alpha_j \). Hence \(|\alpha_j \lambda_j y_j| < |\alpha_j y_j|\). But \(|M_k x| = |a_1\lambda_1 y_1| + \cdots + |a_j \lambda_j y_j| + \cdots + |a_n \lambda_n y_n|\) so

\[
|M_k x| < |a_1\lambda_1 y_1| + \cdots + |a_j \lambda_j y_j| + \cdots + |a_n \lambda_n y_n|
\]

Moreover

\[
|a_1\lambda_1 y_1| + \cdots + |a_j \lambda_j y_j| + \cdots + |a_n \lambda_n y_n| \leq |a_1 y_1| + \cdots + |a_j y_j| + \cdots + |a_n y_n| = |x|
\]

so (37) is true.

In view of the definition of \(k \), \(M_j x = x, j \in \{k+1,\ldots,m\} \). From this and (37) it follows that \(|M_1 \cdots M_n x| = |M_1 \cdots M_k x| \leq |M_1 \cdots M_{k-1}| |M_k x| < |M_1 \cdots M_{k-1}||x|\). But \(|M_1 \cdots M_{k-1}| \leq 1\) because each \(M_i \) has an induced 2 norm not exceeding 1. Therefore (36) is true. ■

3 Leader Following

In this section we consider a modified version of Vicsek’s discrete-time system consisting of the same group of \(n \) agents as before, plus one additional agent, labeled 0, which acts as the group’s leader. Agent 0 moves at the same constant speed as its \(n \) followers but with a fixed heading \(\theta_0 \). The \(i \)th follower updates its heading just as before, using the average of its own heading plus the headings of its neighbors. The difference now is that each follower’s set of neighbors can include the leader and does so whenever the leader is within the follower’s neighborhood defining circle of radius \(r \). Agent \(i \)’s update rule thus is of the form

\[
\dot{\theta}_i(t + 1) = \frac{1}{1 + n_i(t) + b_i(t)} \left(\theta_i(t) + \sum_{j \in N_i(t)} \theta_j(t) + b_i(t)\theta_0 \right) \tag{38}
\]
where as before, \(\mathcal{N}_i(t) \) is the set of labels of agent \(i \)'s neighbors from the original group of \(n \) followers, and \(n_i(t) \) is the number of labels within \(\mathcal{N}_i(t) \). Agent 0’s heading is accounted for in the \(i \)th average by defining \(b_i(t) \) to be 1 whenever agent 0 is a neighbor of agent \(i \) and 0 otherwise.

The explicit form of the \(n \) update equations exemplified by (38), depends on the relationships between neighbors which exist at time \(t \). Like before, each of these relationships can be conveniently described by a simple undirected graph. In this case, each such graph has vertex set \(\{0, 1, 2, \ldots, n\} \) and is defined so that \((i, j)\) is one of the graph’s edges just in case agents \(i \) and \(j \) are neighbors. For this purpose we consider an agent - say \(i \) - to be a neighbor of agent 0 whenever agent 0 is a neighbor of agent \(i \). We will need to consider all possible such graphs. In the sequel we use the symbol \(\mathcal{P} \) to denote a set indexing the class of all simple graphs \(\mathcal{G}_p \) defined on vertices \(0, 1, 2, \ldots, n \). We will also continue to make reference to the set of all simple graphs on vertices \(1, 2, \ldots, n \). Such graphs are now viewed as subgraphs of the \(\mathcal{G}_p \). Thus, for \(p \in \mathcal{P} \), \(\mathcal{G}_p \) now denotes the subgraph obtained from \(\mathcal{G}_p \) by deleting vertex 0 and all edges incident on vertex 0.

The set of agent heading update rules defined by (38) can be written in state form. Toward this end, for each \(p \in \mathcal{P} \), let \(A_p \) denote the \(n \times n \) adjacency matrix of the \(n \)-agent graph \(\mathcal{G}_p \) and let \(D_p \) be the corresponding diagonal matrix of valences of \(\mathcal{G}_p \). Then in matrix terms, (38) becomes

\[
\theta(t + 1) = (I + D_{\sigma(t)} + B_{\sigma(t)})^{-1}(I + A_{\sigma(t)})\theta(t) + B_{\sigma(t)}1\theta_0 , \quad t \in \{0, 1, 2, \ldots\} \tag{39}
\]

where \(\sigma : \{0, 1, \ldots\} \rightarrow \mathcal{P} \) is now a switching signal whose value at time \(t \), is the index of the graph \(\mathcal{G}_p \) representing the agent system’s neighbor relationships at time \(t \) and for \(p \in \mathcal{P} \), \(B_p \) is the \(n \times n \) diagonal matrix whose \(i \)th diagonal element is 1 if \((i, 0)\) is one of \(\mathcal{G}_p \)'s edges and 0 otherwise.

Much like before, our goal here is to show for a large class of switching signals and for any initial set of follower agent headings, that the headings of all \(n \) followers converge to the heading of the leader. For convergence in the leaderless case we required all \(n \)-agents to be linked together across each interval within an infinite sequence of contiguous, bounded intervals. We will need a similar requirement in the leader following case under consideration. Let us agree to say that the \(n \) agents are linked to the leader across an interval \([t, \tau]\) if the collection of graphs \(\{\mathcal{G}_{\sigma(t)}, \mathcal{G}_{\sigma(t+1)}, \ldots, \mathcal{G}_{\sigma(\tau)}\} \) encountered along the interval is jointly connected. In other words, the \(n \) agents are linked to their leader across an interval \(\mathcal{I} \) just when the \(n+1 \)-member group consisting of the \(n \) agents and their leader is linked together across \(\mathcal{I} \). Note that for the \(n \)-agent group to be linked to its leader across \(\mathcal{I} \) does not mean that the \(n \)-agent group must be linked together across \(\mathcal{I} \). Nor is the \(n \)-agent group necessarily linked its leader across \(\mathcal{I} \) when it is linked together across \(\mathcal{I} \). Our main result on discrete-time leader following is next.

Theorem 4 Let \(\theta(0) \) and \(\theta_0 \) be fixed and let \(\sigma : \{0, 1, 2, \ldots\} \rightarrow \mathcal{P} \) be a switching signal for which there exists an infinite sequence of contiguous, non-empty, bounded, time-intervals \([t_i, t_{i+1})\), \(i \geq 0 \), starting at \(t_0 = 0 \), with the property that across each such interval, the \(n \)-agent group of followers is linked to its leader. Then

\[
\lim_{t \to \infty} \theta(t) = \theta_0 1 \tag{40}
\]

The theorem says that the members of the \(n \)-agent group all eventually follow their leader provided there is a positive integer \(T \) which is large enough so that the \(n \)-agent group is linked to its leader
across each contiguous, non-empty time-interval of length at most T. In the sequel we outline
several preliminary ideas upon which the proof of Theorem 4 depends.

To begin, let us note that to prove that (40) holds is equivalent to proving that $\lim_{t \to \infty} \epsilon(t) \to 0$
where ϵ is the heading error vector $\epsilon(t) \triangleq \theta(t) - \theta_0 \mathbf{1}$. From (39) it is easy to deduce that ϵ satisfies
the equation

$$
\epsilon(t + 1) = F_{\sigma(t)} \epsilon(t)
$$

(41)

where for $p \in \mathcal{P}$, F_p is

$$
F_p = (I + D_p + B_p)^{-1}(I + A_p)
$$

(42)

Note that the partitioned matrices

$$
F_p \triangleq \begin{bmatrix} F_p & H_p \mathbf{1} \\ 0 & 1 \end{bmatrix}, \quad p \in \mathcal{P}
$$

(43)

are stochastic where, for $p \in \mathcal{P}$,

$$
H_p \triangleq (I + D_p + B_p)^{-1}B_p
$$

(44)

To proceed, we need a few more ideas concerned with non-negative matrices. In the sequel
we write $M > N$ whenever $M - N$ is a positive matrix, where by a positive matrix
is meant a matrix with all positive entries. For any non-negative matrix R of any size, we write $||R||$
for the largest of the row sums of R. Note that $||R||$ is the induced infinity norm of R and consequently is
sub-multiplicative. We denote by $[R]$, the matrix obtained by replacing all of R’s non-zero entries
with 1s. Note that $R > 0$ just in case $[R] > 0$. It is also true for any pair of $n \times n$ non-negative
matrices A and B with positive diagonal elements, that $[AB] = [|A||B|]$. Moreover, in view of
Lemma 2, any such pair of matrices must also satisfy $[AB] \geq [B]$ and $[BA] \geq [B]$.

Let p_1, p_2, \ldots, p_m be a given set of indices in \mathcal{P}. It is possible to relate the connectedness of
the collection $\{G_{p_1}, G_{p_2}, \ldots, G_{p_m}\}$ to properties of the matrix pairs $(F_{p_i}, H_{p_i} \mathbf{1}), i \in \{1, 2, \ldots, m\}$. Let us note first that for any $p \in \mathcal{P}$, the indices of the non-zero rows of $B_p \mathbf{1}$ are precisely the
labels of vertices in G_p which are connected to vertex 0 by paths of length 1. More generally, for
any integer $j > 0$, the indices of the non-zero rows of $(I + A_p)^{(j-1)}B_p \mathbf{1}$ are the labels of vertices
in G_p connected to vertex 0 by paths of length less than or equal to j. Hence for such j, the
non-zero rows of the sum $\sum_{k=1}^{m} (I + A_{p_k})^{(j-1)}B_{p_k} \mathbf{1}$ must be the labels of vertices in the union
of the collection $\{G_{p_1}, G_{p_2}, \ldots, G_{p_m}\}$ which are connected to vertex 0 by paths of length less than
or equal to j. It follows that if $\{G_{p_1}, G_{p_2}, \ldots, G_{p_m}\}$ is jointly connected, there must be a value of
j sufficiently large so that $\sum_{k=1}^{m} (I + A_{p_k})^{(j-1)}B_{p_k} \mathbf{1} > 0$. Since any vertex in a connected graph
with $n + 1$ vertices is reachable from any other vertex along a path of length of at most $n + 1$, it follows that if $\{G_{p_1}, G_{p_2}, \ldots, G_{p_m}\}$ is jointly connected, then $\sum_{k=1}^{m} (I + A_{p_k})^{(i-1)}B_{p_k} \mathbf{1} > 0, \; \forall i > n$.

Now it is easy to see from the definitions of the F_p and H_p in (42) and (44) respectively, that
$[F_p^jH_p \mathbf{1}] = [(I + A_p)^jB_p \mathbf{1}], \; j \geq 0$. We have proved the following lemma.

Lemma 5 Let $\{p_1, p_2, \ldots, p_n\}$ be any set of indices in \mathcal{P} for which $\{G_{p_1}, G_{p_2}, \ldots, G_{p_n}\}$ is a jointly
connected collection of graphs. Then

$$
\sum_{k=1}^{m} F_{p_k}^{(i-1)}H_{p_k} \mathbf{1} > 0, \; i > n
$$

(45)
Now consider the partitioned matrices \tilde{F}_p defined by (43). Since each of these matrices is stochastic and products of stochastic matrices are also stochastic, for each $p \in \mathcal{P}$ and each $i \geq 1$, \tilde{F}_p^i is stochastic. But
\[
\tilde{F}_p^i = \begin{bmatrix}
F_p^i & \sum_{j=1}^i F_p^{(j-1)}H_p1 \\
0 & 1
\end{bmatrix}, \quad p \in \mathcal{P}
\]
Moreover, if \tilde{G}_p is connected, then
\[
\sum_{j=1}^i F_p^{(j-1)}H_p1 > 0, \quad i > n
\] (46)
because of Lemma 5. It follows that if \tilde{G}_p is connected and $i > n$, the row sums of F_p^i must all be less than 1. In other words,
\[
\|F_p^i\| < 1, \quad i > n, \quad p \in \mathcal{Q}
\] (47)
The following proposition generalizes (47) and is central to the proof of Theorem 4.

Proposition 2 Let T be a finite positive integer. There exists a positive number $\lambda < 1$, depending only on T, for which
\[
\|F_p p F_p^T F_p^2 \cdot \cdot \cdot F_p^1\| < \lambda
\] (48)
for every sequence $p_1, p_2, \ldots, p_T \in \mathcal{P}$ of at length at most T possessing values q_1, q_2, \ldots, q_m which each occur in the sequence at least $n + 1$ times and for which $\{\tilde{G}_{q_1}, \tilde{G}_{q_2}, \ldots, \tilde{G}_{q_m}\}$ is a jointly connected collection of graphs.

The proof of this proposition depends on the following basic property of non-negative matrices.

Lemma 6 Let M_1, M_2, \ldots, M_k be a finite sequence of $n \times n$ non-negative matrices whose diagonal entries are all positive. Suppose that M is a matrix which occurs in the sequence at least $m > 0$ times. Then
\[
[M_1 M_2 \cdots M_k] \geq [M^m]
\] (49)

Proof: We claim that for $j \geq 1$
\[
[M_1 M_2 \cdots M_{k_j}] \geq [M^j]
\] (50)
provided $M_1 M_2 \cdots M_{k_j}$ is a product within which M occurs at least j times. Suppose $M_1 M_2 \cdots M_{k_1}$ is a product within which M occurs at least once. Then $M_1 M_2 \cdots M_{k_1} = AMB$ where A and B are non-negative matrices with positive diagonal elements. By Lemma 2, $[AMB] \geq [MB]$ and $[MB] \geq [M]$. Thus $[AMB] \geq [M]$ which proves that (50) is true for $j = 1$.

Now suppose that (50) holds for $j \in \{1, 2, \ldots, i\}$ and let $M_1 M_2 \cdots M_{k_{i+1}}$ be a product within which M occurs at least $i + 1$ times. We can write $M_1 M_2 \cdots M_{k_{i+1}} = AMB$ where A and B are non-negative matrices with positive diagonal elements and A is a product within which M occurs at least i times. By the inductive hypothesis, $[A] \geq [M^i]$. By Lemma 2, $[AMB] \geq [AM]$. It
follows that \([AM] = [[A][M]] \geq [[M][M]] = [M^{i+1}]\) and thus that (50) holds for \(j = i + 1\). By induction, (50) therefore holds for all \(i \in \{1, 2, \ldots, m\}\). Hence the lemma is true. \(\blacksquare\)

Proof of Proposition 2: It will be enough to prove that

\[
||F_{p_{i}}F_{p_{i-1}} \cdots F_{p_1}|| < 1 \tag{51}
\]

for every sequence \(p_1, p_2, \ldots, p_t\) of length at most \(T\) possessing values \(q_1, q_2, \ldots, q_m\) which each occur in the sequence at least \(n + 1\) times and for which \(\{G_{q_1}, G_{q_2}, \ldots, G_{q_m}\}\) is a jointly connected collection of graphs. From this and (45) it follows that

\[
\sum_{k=1}^{m} \Phi_{ik} H_{q_k} \mathbf{1} > 0
\]

for all \(k \in \{1, 2, \ldots, m\}\),

By assumption, each member of \(\{q_1, q_2, \ldots, q_m\}\) occurs in the sequence \(p_1, p_2, \ldots, p_t\) at least \(n + 1\) times. For \(k \in \{1, 2, \ldots, m\}\), let \(i_k\) be the smallest integer such that \(p_{i_k} = q_k\). Since each \(q_k\) occurs at least \(n + 1\) times, each \(q_k\) must occur at least \(n + 1\) times in the subsequence \(p_{i_k+1}, p_{i_k+2}, \ldots, p_t\). It follows from Lemma 6 and the definition of \(\Phi_{ij}\) that \([\Phi_{ik}] \geq [F_{q_k}^n]\). Thus \([\Phi_{ik} H_{q_k} \mathbf{1}] \geq [F_{q_k}^n H_{p_{i_k}} \mathbf{1}]\). Since this hold for all \(k \in \{1, 2, \ldots, m\}\),

\[
\sum_{k=1}^{m} [\Phi_{ik} H_{q_k} \mathbf{1}] \geq \sum_{k=1}^{m} [F_{q_k}^n H_{p_{i_k}} \mathbf{1}]
\]

From this and (45) it follows that \(\sum_{k=0}^{m} \Phi_{ik} H_{q_k} \mathbf{1} > 0\). But \(\sum_{j=1}^{\ell} \Phi_{ij} H_{p_j} \mathbf{1} \geq \sum_{k=1}^{m} \Phi_{ik} H_{q_k} \mathbf{1}\), so (52) is true. \(\blacksquare\)

The proof of Proposition 2 actually shows that any finite product \(F_{p_1}F_{p_2} \cdots F_{p_j}\) will be a discrete-time stability matrix provided there is a set of indices \(\{q_1, q_2, \ldots, q_m\}\) for which (i) each \(q_k\) occurs in the set \(\{p_1, p_2, \ldots, p_j\}\) at least \(n + 1\) times and (ii) \(\{G_{q_1}, G_{q_2}, \ldots, G_{q_m}\}\) is a jointly connected collection of graphs. From this it is not difficult to see that any finite product \(\tilde{F}_{q_1} \tilde{F}_{q_2} \cdots \tilde{F}_{q_m}\) will be ergodic provided \(\{G_{q_1}, G_{q_2}, \ldots, G_{q_m}\}\) is a jointly connected collection of graphs. It is possible to use this fact together with Wolfowitz’s theorem (Theorem 3) to devise a proof of Theorem 4.
What this means in the present context is that each agent is constrained to change its control law positions. One way to avoid this problem is to introduce dwell time, much as was done in [24].

The continuous-time analog of (55) is the integrator equation

$$\theta_i(t+1) = \theta_i(t) + u_i(t)$$

is applied to the open-loop discrete-time heading model

$$\theta_i(t+1) = \theta_i(t) + u_i(t)$$

where now t takes values in the real half interval $[0, \infty)$. On the other hand, the continuous time analog of (54) has exactly the same form as (54), except in the continuous time case, $n_i(t), b_i(t)$, and $\theta_i(t)$ are continuous-time variables. Unfortunately, in continuous time control laws of this form can lead to chattering because neighbor relations can change abruptly with changes in agents’ positions. One way to avoid this problem is to introduce dwell time, much as was done in [24]. What this means in the present context is that each agent is constrained to change its control law

4 Leader Following in Continuous Time

Our aim here is to study the convergence properties of the continuous-time version of the leader-follower model discussed in the last section. We begin by noting that the update rule for agent i’s heading, defined by (38), is what results when the local feedback law

$$u_i(t) = \frac{1}{1 + n_i(t) + b_i(t)} \left((n_i(t) + b_i(t))\theta_i(t) - \sum_{j \in N_i(t)} \theta_j(t) - b_i(t)\theta_0 \right)$$

is applied to the open-loop discrete-time heading model

$$\theta_i(t+1) = \theta_i(t) + u_i(t)$$

The continuous-time analog of (55) is the integrator equation

$$\dot{\theta}_i = u_i$$

Proof of Theorem 4: Let \mathcal{J} denote the set of all subsets $\{p_1, p_2, \ldots, p_m\}$ of \mathcal{P} with the property that $\{G_{p_1}, G_{p_2}, \ldots, G_{p_m}\}$ is a jointly connected collection. The constraints on σ imply that $\sigma(t)$ takes on every value in one such subset on every interval $[t_i, t_{i+1})$, $i \geq 0$. Let \bar{n} be the number of elements in \mathcal{J}. Then for any integer $i > 0$ there must be at least one subset in \mathcal{J} whose elements are each values of σ at least i times on any sequence of \bar{n} contiguous time-intervals. Set $\bar{t}_i = t_{i(n+1)\bar{n}}$, $i \geq 0$ and let T the least upper bound on the lengths of the intervals, $[t_i, t_{i+1})$, $i \geq 0$. By assumption, $T < \infty$. Let $\Phi(t, s)$ denote the state transition matrix defined by $\Phi(t, t) = I$, $t \geq 0$ and $\Phi(t, s) \triangleq F_{\sigma(t-1)}F_{\sigma(t-2)} \cdots F_{\sigma(s)}$, $t > s \geq 0$. Then $\epsilon(t) = \Phi(t, 0)\epsilon(0)$. To complete the theorem’s proof, it is therefore enough to show that

$$\lim_{j \to \infty} \Phi(\bar{t}_j, \bar{t}_0) = 0$$

Clearly $\Phi(\bar{t}_j, 0) = \Phi(\bar{t}_j, \bar{t}_j-1) \cdots \Phi(\bar{t}_2, \bar{t}_1)\Phi(\bar{t}_1, \bar{t}_0)$. Moreover, for $i \geq 0$, $[\bar{t}_i, \bar{t}_{i+1})$ is an interval of length at most $(n+1)\bar{n}T$ on which $\sigma(t)$ takes on at least $n + 1$ times, every value p_i in some subset $\{p_1, p_2, \ldots, p_m\}$ in \mathcal{J}. It follows from Proposition 2 and the definition of Φ that $||\Phi(\bar{t}_j, \bar{t}_j-1)|| \leq \lambda$, $j \geq 1$ where λ is a positive number depending only on $(n+1)\bar{n}T$ which satisfies $\lambda < 1$. Hence $||\Phi(\bar{t}_j, 0)|| \leq \lambda^j$, $j \geq 1$ from which (53) follows at once. $lacksquare$
only at discrete times. In particular, instead of using (54), to avoid chatter agent i would use a hybrid control law of the form

$$u_i(t) = -\frac{1}{1 + n_i(t_{ik}) + b_i(t_{ik})} \left((n_i(t_{ik}) + b_i(t_{ik}))\theta_i(t) - \sum_{j \in \mathcal{N}_i(t_{ik})} \theta_j(t) - b_i(t_{ik})\theta_0 \right), \quad t \in [t_{ik}, t_{ik} + \tau_i) \tag{57}$$

where τ_i is a pre-specified positive number called a dwell time and t_0, t_1, \ldots is an infinite time sequence such that $t_{i(k+1)} - t_{ik} = \tau_i$, $k \geq 0$. In the sequel we will analyze controls of this form subject to two simplifying assumptions. First we will assume that all n agents use the same dwell time which we henceforth denote by τ_P. Second we assume the agents are synchronized in the sense that $t_{ik} = t_{jk}$ for all $i, j \in \{1, 2, \ldots, n\}$ and all $k \geq 0$. These assumptions enable us to write u as

$$u = -(I + D_\sigma + B_\sigma)^{-1}((L_\sigma + B_\sigma)\theta - B_\sigma 1\theta_0) \tag{58}$$

where \mathcal{P}, D_p, B_p and A_p are as before, $L_p = D_p - A_p$ is the Laplacian of \mathcal{G}_p, and $\sigma : [0, \infty) \to \mathcal{P}$ is a piecewise constant switching signal with successive switching times separated by τ_p time units. Application of this control to the vector version of (56) results in the closed-loop continuous-time leader-follower model

$$\dot{\theta} = -(I + D_\sigma + B_\sigma)^{-1}((L_\sigma + B_\sigma)\theta - B_\sigma 1\theta_0) \tag{59}$$

In analogy to the discrete-time case, let us agree to say that the n agents are linked to the leader across an interval $[t, \tau]$ between switching times t and τ, if the collection of graphs $\mathcal{G}_\sigma(t)$, $\mathcal{G}_\sigma(t+1)$, $\ldots, \mathcal{G}_\sigma(\tau-1)$ encountered along the interval, is jointly connected. Much like before, our goal here is to show for a large class of switching signals and for any initial set of follower agent headings, that the headings of all n followers converge to the heading of the leader. For convergence, we shall continue to require there to exist infinite sequence of bounded, non-overlapping time-intervals across which the n-agent group is linked to its leader. However, unlike the discrete-time case we shall not require this sequence of intervals to be contiguous.

Theorem 5 Let $\tau_P > 0$, $\theta(0)$ and θ_0 be fixed and let $\sigma : [0, \infty) \to \mathcal{P}$ be a piecewise-constant switching signal whose switching times t_1, t_2, \ldots satisfy $t_{i+1} - t_i \geq \tau_P$, $i \geq 1$. If there is an infinite sequence of bounded, non-overlapping time-intervals $[t_{ij}, t_{ij+k_j})$, $j \geq 1$, with the property that across each such interval the n-agent group of followers is linked to its leader, then

$$\lim_{t \to \infty} \theta(t) = \theta_0 1 \tag{60}$$

Theorem 5 states that θ will converge to $\theta_0 1$, no matter what the value of τ_D, so long as τ_D is greater than zero. This is in sharp contrast to other convergence results involving dwell time switching such as those given in [25], which hold only for sufficiently large values of τ_D. Theorem 5 is a more or less obvious consequence of the following lemma.

Lemma 7 Let

$$M_p \triangleq -(I + D_p + B_p)^{-1}(L_p + B_p), \quad p \in \mathcal{P} \tag{61}$$
Then
\[||e^{M_p t}|| \leq 1, \quad \forall t \geq 0, \quad p \in \mathcal{P} \] (62)

Moreover, for each each finite set of indices \(p_1, p_2, \ldots, p_m \) in \(\mathcal{P} \) for which \(\{ \mathcal{G}_{p_1}, \mathcal{G}_{p_2}, \ldots, \mathcal{G}_{p_m} \} \) is jointly connected, and each set of finite, positive times \(t_1, t_2, \ldots, t_m \),
\[||e^{M_{p_1} t_1} \cdots e^{M_{p_m} t_m}|| < 1 \] (63)

Proof of Theorem 5: Let \(M_p = -(I + D_p + B_p)^{-1}(L_p + B_p) \), \(p \in \mathcal{P} \) and for \(i \geq 1 \), set
\[N_i = e^{M_{\sigma(t_i)}(t_{i+1} - t_i)} \] (64)

From inequality (62) in Lemma 7 it follows that
\[||e^{N_i}|| \leq 1, \quad i \geq 1 \] (65)

By assumption there is a finite upper bound \(T \) on the lengths of the intervals \([t_{ij}, t_{ij+k_j}] \) across which the \(n \) agents are linked to their leader. This and the assumption that \(t_{i+1} - t_i \geq \tau_D, \quad i \geq 0 \), imply that \(k_j \leq m, j \geq 1 \), where \(m \) is the smallest positive integer such that \(T \leq m \tau_D \). Let \(J \) be the set of all sequences \(p_1, p_2, \ldots, p_l \) in \(\mathcal{P} \) of at length at most \(m \) for which \(\{ \mathcal{G}_{p_1}, \mathcal{G}_{p_2}, \ldots, \mathcal{G}_{p_l} \} \) is jointly connected. Define
\[\lambda = \max_{\tau_1 \in [\tau_D, T]} \max_{\tau_2 \in [\tau_D, T]} \cdots \max_{\tau_l \in [\tau_D, T]} \max_{J} ||e^{M_{\tau_1} \cdots M_{\tau_l} e^{M_{\tau_1}}}|| \] (66)

Note that \(\lambda < 1 \) because the inequality in (63) is strict, because \(J \) is a finite set, because \([\tau_D, T] \) is compact and because the matrix exponentials in (66) depend continuously on the \(\tau_i \). In view of the definition of \(\lambda \) and the definitions of the \(N_i \) in (64),
\[||e^{N_{j+1} - N_j} || \leq \lambda, \quad j \geq 1 \] (67)

But
\[e^{N_{j+1} - N_j} = \left(e^{N_{j+1} - N_{j+k}} \right) \left(e^{N_{j+k} - N_j} \right), \quad j \geq 1 \]

This, (65), (67) and the sub-multiplicative property of the induced infinity norm imply that
\[||e^{N_{j+1} - N_j} || \leq \lambda, \quad j \geq 1 \] (68)

Set \(\bar{\theta}(t) = \theta(t) - 10 \bar{\theta}_0 \) and note that
\[\dot{\bar{\theta}} = -(I + D_{\sigma} + B_{\sigma})^{-1}(L_{\sigma} + B_{\sigma})\bar{\theta} \]

because of (59). Let \(\Phi(t, \mu) \) be the state transition matrix of \(-(I + D_{\sigma(t)} + B_{\sigma(t)})^{-1}(L_{\sigma(t)} + B_{\sigma(t)}) \). Then \(\theta(t) = \Phi(t, 0)\bar{\theta}(0) \). To complete the proof it is therefore enough to show that
\[||\Phi(t_{ij}, t_{i1})|| \leq \lambda^{j-1}, \quad j \geq 1 \] (69)

In view of the definitions of the \(N_i \),
\[\Phi(t_{ij+1}, t_{ij}) = e^{N_{ij+1} - N_{ij}} e^{N_{ij}}, \quad j \geq 1 \]

20
From this and (68) it follows that

$$||\Phi(t_{i,j+1}, t_{i,j})|| \leq \lambda, \quad j \geq 1$$ \hspace{1cm} (70)

But

$$\Phi(t_{i,j}, t_1) = \Phi(t_{i,j}, t_{i,j-1}) \cdots \Phi(t_{i}, t_{i})$$

so

$$||\Phi(t_{i,j}, t_1)|| \leq ||\Phi(t_{i,j}, t_{i,j-1})|| \cdots ||\Phi(t_{i}, t_{i})||$$

From this and (70), it now follows that (69) is true. \hfill \blacksquare

Proof of Lemma 7: Fix $t > 0$ and $p \in \bar{P}$. Observe first that

$$M_p = F_p - I$$ \hspace{1cm} (71)

where F_p is the matrix $F_p = (I + D_p + B_p)^{-1}(I + A_p)$. As noted previously, the partitioned matrix

$$\bar{F}_p \triangleq \begin{bmatrix} F_p & H_p \mathbf{1} \\ 0 & 1 \end{bmatrix}$$ \hspace{1cm} (72)

originally defined in (43), is stochastic with positive diagonal elements as are the matrices

$$\bar{F}_p^i = \begin{bmatrix} F_p^i & \sum_{j=1}^{i} F_p^{j-1} H_p \mathbf{1} \\ 0 & 1 \end{bmatrix}, \quad i \geq 1$$ \hspace{1cm} (73)

Since

$$e^{\bar{F}_p t} = \sum_{i=0}^{\infty} \frac{(t \bar{F}_p)^i}{i!}$$ \hspace{1cm} (74)

e$^{\bar{F}_p t}$ must also be nonnegative with positive diagonal elements. But $e^{(\bar{F}_p - I)t} = e^{-t} e^{\bar{F}_p t}$, so the same must be true of $e^{(\bar{F}_p - I)t}$. Moreover $(\bar{F}_p - I) \mathbf{1} = 0$ which means that $e^{(\bar{F}_p - I)t} \mathbf{1} = e^0 \mathbf{1} = \mathbf{1}$ and thus that $e^{(\bar{F}_p - I)t}$ is stochastic. In summary, $e^{(\bar{F}_p - I)t}$ is a stochastic matrix with positive diagonal entries.

Equations (72) - (74) imply that

$$e^{\bar{F}_p t} = \begin{bmatrix} e^{F_p t} & k_p \\ 0 & e^t \end{bmatrix}$$

where

$$k_p = \sum_{i=0}^{\infty} \frac{t^i}{i!} \sum_{j=1}^{i} F_p^{j-1} H_p \mathbf{1}$$ \hspace{1cm} (75)

Therefore

$$e^{(\bar{F}_p - I)t} = \begin{bmatrix} e^{(F_p - I)t} & k_p \\ 0 & 1 \end{bmatrix}$$ \hspace{1cm} (76)

But $e^{(\bar{F}_p - I)t}$ is row-stochastic, so $e^{(F_p - I)t}$ must have its row sums all bounded above by 1. From this and (71) it follows that (62) is true.
Now suppose that \(\{ \bar{G}_{p_1}, \bar{G}_{p_2}, \ldots, \bar{G}_{p_m} \} \) is a jointly connected collection of graphs. Then by Lemma 5

\[
\sum_{j=1}^{m} F^{(i-1)}_{p_j} H_{p_j} 1 > 0, \quad i > n
\]

(77)

This and (75) imply that

\[
\sum_{j=1}^{m} k_{p_j} > 0
\]

(78)

because all of the matrices in the sums defining the \(k_p \) in (75) are non-negative.

Using (76) and the definition of \(M_p \) in (71) we can write

\[
e^{(F_{p_m} - I)t_m} e^{(F_{p_{m-1}} - I)t_{m-1}} \cdots e^{(F_{p_1} - I)t_1} = \left[e^{M_{p_m}t_m} e^{M_{p_{m-1}}t_{m-1}} \cdots e^{M_{p_1}t_1} \sum_{j=1}^{m} \Phi_{mj} k_{p_j} \right]
\]

(79)

where \(\Phi_{mm} = I \) and \(\Phi_{mj} = e^{M_{p_m}t_m} \cdots e^{M_{p_j+1}t_{j+1}}, j < m \). Since the matrix on the right in (79) is stochastic, its row sums all equal one. To complete the proof it is therefore enough to show that

\[
\sum_{j=1}^{m} \Phi_{mj} k_{p_j} > 0
\]

(80)

Note that for any non-negative \(n \times n \) matrix \(N, e^N \geq I \) because the matrix \(\sum_{i=0}^{\infty} \frac{1}{i!} N^i \) in the definition \(e^N = \sum_{i=0}^{\infty} \frac{1}{i!} N^i \) is non-negative. Thus for \(j \in \{1, 2, \ldots, m\} \), \(e^{M_{p_j}t_j} \geq I \) and consequently \(\Phi_{mj} \geq I \). Therefore, \(\Phi_{mj}k_j \geq k_j, j \in \{1, 2, \ldots, m\} \). From this and (78) it follows that (80) is true and thus that the inequality in (63) is correct.

\[\blacksquare\]

5 Concluding Remarks

The convergence proof for Vicsek’s model presented in Section 2 relies heavily on Wolfowitz’s theorem. By generalizing some of the constructions Wolfowitz used in his proof, it is possible to develop a convergence result for a continuous-time analog of the Vicsek model which is quite similar to Theorem 5.

In studying continuous-time leader-following, we imposed the requirement that all followers use the same dwell time. This is not really necessary. In particular, without much additional effort it can be shown that Theorem 5 remains true under the relatively mild assumption that all agents use dwell times which are rationally related. In contrast, the synchronization assumption may be more difficult to relax. Although convergence is still likely without synchronization, the aperiodic nature of \(\sigma \)’s switching times which could result, make the analysis problem more challenging.

The models we have analyzed are of course very simple and as a consequence, they are probably not really descriptive of actual bird-flocking, fish schooling, or even the coordinated movements of envisioned groups of mobile robots. Nonetheless, these models do seem to exhibit some of the rudimentary behaviors of large groups of mobile autonomous agents and for this reason they serve...
as a natural starting point for the analytical study of more realistic models. It is clear from the
developments in this paper, that ideas from graph theory and dynamical system theory will play a
central role in both the analysis of such biologically inspired models and in the synthesis of provably
correct distributed control laws which produce such emergent behaviors in man-made systems.

References

