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Abstract

This paper considers the problem of distributed control of dynamically coupled

nonlinear systems that are subject to decoupled constraints. Examples of such systems

include certain large scale process control systems, chains of coupled oscillators and

supply chain management systems. Receding horizon control is a method of choice in

these venues as constraints can be explicitly accommodated. In addition, a distributed

control approach is sought to enable the autonomy of the individual subsystems and

reduce the computational burden of centralized implementations. In this paper, a

distributed receding horizon control algorithm is presented for dynamically coupled

nonlinear systems that are subject to decoupled input constraints. By this algorithm,

each subsystem computes its own control locally. Provided an initially feasible solution

can be found, subsequent feasibility of the algorithm is guaranteed at every update,

and asymptotic stabilization is established. The theory is demonstrated in simulation

on a set of coupled oscillators that model a walking robot experiment.
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1 Introduction

The problem of interest is to design a distributed controller for a set of dynamically cou-

pled nonlinear subsystems that are required to perform stabilization in a cooperative way.

Examples of such situations where distributed control is desirable include certain large scale

process control systems [22] and supply chain management systems [2]. The control approach

advocated here is receding horizon control (RHC). In RHC, the current control action is de-

termined by solving a finite horizon optimal control problem online at every update. In

continuous time formulations, each optimization yields an open-loop control trajectory and

the initial portion of the trajectory is applied to the system until the next update. A survey

of RHC, also known as model predictive control, is given by Mayne et al. [13]. Advantages

of RHC are that a large class of performance objectives, dynamic models and constraints

can in principle be accommodated.

The work presented here is a continuation of a recent work [7], wherein a distributed

implementation of RHC is presented in which neighbors are coupled solely through cost

functions. The coupled cost problem formulation is relevant particularly for certain multiple

autonomous vehicle missions. While communication network issues (such as limited band-

width and delay) are paramount in multi-vehicle scenarios, such issues are not addressed

here. The reason is that these issues are not dominant factors in the applications of interest,

such as supply chain systems and the example of coupled oscillators considered at the end of

the paper. In this paper, subsystems that are dynamically coupled are referred to as neigh-

bors. As in [7], each subsystem is assigned its own optimal control problem, optimizes only

for its own control at each update, and exchanges information with neighboring subsystems.

The primary motivations for pursuing such a distributed implementation are to enable the

autonomy of the individual subsystems and reduce the computational burden of centralized

implementations. The requirement of distributed control in the presence of constraints is

particularly true in the case of supply chain problems [4], since stages within a chain would

never agree to centralized decision making.

Previous work on distributed RHC of dynamically coupled systems include Jia and Krogh

[10], Motee and Sayyar-Rodsaru [17] and Acar [1]. All of these papers address coupled

liner time-invariant subsystem dynamics with quadratic separable cost functions. State and

input constraints are not included, aside from a stability constraint in [10] that permits

state information exchanged between the subsystems to be delayed by one update period. In

another work, Jia and Krogh [11] solve a min-max problem for each subsystem, where again

coupling comes in the dynamics and the neighboring subsystem states are treated as bounded
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disturbances. Stability is obtained by contracting each subsystems state at every sample

period, until the objective set is reached. As such, stability does not depend on information

updates between neighbors, although such updates may improve performance. More recently,

Venkat et al. [20,21] have designed a distributed model predictive control (MPC) algorithm

for coupled LTI subsystems and compared it to centralized and decentralized alternatives. In

their formulation, subsystems are coupled solely through the control inputs. Consequently,

feasibility and stability analysis is leveraged by the diagonally decoupled and linear form of

the state dynamics, for which the state solution can be carried out analytically given the set

of all control trajectories.

Section 2 begins by defining the nonlinear coupled subsystem dynamics and control ob-

jective. In Section 3, distributed optimal control problems are defined for each subsystem,

and the distributed RHC algorithm is stated. Feasibility and stability results are then given

in Section 4. Key requirements are that the receding horizon updates happen at a suffi-

cient rate, the amount of dynamic coupling remain below a quantitative threshold, and each

distributed optimal state trajectory satisfy a consistency constraint. The consistency con-

straint ensures that the computed state trajectory of each subsystem is not too far from the

trajectory that each neighbor assumes for that subsystem, at each receding horizon update.

In Section 5, the theory is applied to the problem of regulating a set of coupled Van der

Pol oscillators that capture the thigh and knee dynamics of a walking robot experiment [8].

Fnally, Section 6 provides conclusions.

2 System Description and Objective

In this section, the system dynamics and control objective are defined. We make use of the

following notation. The symbol ‖ ·‖ denotes any vector norm in Rn, and dimension n follows

from the context. For any vector x ∈ Rn, ‖x‖P denotes the P -weighted 2-norm, defined

by ‖x‖2
P = xT Px, and P is any positive-definite real symmetric matrix. Also, λmax(P ) and

λmin(P ) denote the largest and smallest eigenvalues of P , respectively. Often, the notation

‖x‖ is understood to mean ‖x(t)‖ at some instant of time t ∈ R.

Our objective is to stabilize a group of Na ≥ 2 dynamically coupled agents toward the

origin in a cooperative and distributed way using RHC. For each agent i ∈ {1, ..., Na}, the

state and control vectors are denoted zi(t) ∈ Rn and ui(t) ∈ Rm, respectively, at any time

t ≥ t0 ∈ R. The dimension of every agents state (control) are assumed to be the same, for

notational simplicity and without loss of generality. The concatenated vectors are denoted
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ż1 = f1(z1, z3)

ż2 = f2(z2, z3, z4) =⇒
ż3 = f3(z3, z4)

ż4 = f4(z4, z2)

(a)

1 

3 

2 

4 

(b)

Figure 1: Example of (a) a set of coupled dynamic equations and (b) the corresponding
directed graph G = (V , E) associated with the directed information flow. In this example,
V = {1, 2, 3, 4} and E = {(1, 1), (1, 3), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4), (4, 2)}. The up-
stream neighbor sets are N u

1 = {1, 3}, N u
2 = {2, 3, 4}, N u

3 = {3, 4} and N u
4 = {2, 4}, and the

downstream neighbor sets are N d
1 = {1}, N d

2 = {2, 4}, N d
3 = {1, 2, 3} and N d

4 = {2, 3, 4}.
By this convention, arrows in the graph point upstream.

z = (z1, ..., zNa) and u = (u1, ..., uNa).

The dynamic coupling between the agents is topologically identified by a directed graph

G = (V , E), where V = {1, ..., Na} is the set of nodes (agents) and E ⊂ V × V is the set

of all directed edges between nodes in the graph. The set E is defined in the following

way. If any components of zj appear in the dynamic equation for agent i, for some j ∈ V ,

then j is referred to as an upstream neighbor of agent i, and N u
i ⊆ V denotes the set

of upstream neighbors of any agent i ∈ V . The set of all directed edges is defined as

E = {(i, j) ∈ V × V | j ∈ N u
i ,∀i ∈ V}. For every i ∈ V , it is assumed that zi appears in

the dynamic equation for i, and so i ∈ N u
i for every i ∈ V . In the language of graph theory,

then, every node has a self-loop edge in E . Note that j ∈ N u
i does not necessarily imply

i ∈ N u
j . It will also be useful to reference the set of agents for which any of the components

of zi arises in their dynamical equation. This set is referred to as the downstream neighbors

of agent i, and is denoted N d
i . The set of all directed edges can be equivalently defined as

E = {(j, i) ∈ V × V | j ∈ N d
i ,∀i ∈ V}. Note that j ∈ N u

i if and only if i ∈ N d
j , for any

i, j ∈ V . Consider the example system and corresponding directed graph given in Figure 1.

It is assumed that the graph G is connected. Consequently,
(
N d

i ∪N u
i

)
\{i} 6= ∅ for every

i ∈ V , i.e., every agent is dynamically coupled to at least one other agent. It is also assumed

that agents can receive information directly from each and every upstream neighbor, and

agents can transmit information directly to each and every downstream neighbor, as needed.
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The coupled time-invariant nonlinear dynamics for each agent i ∈ V is given by

żi(t) = fi(zi(t), z−i(t), ui(t)), t ≥ t0, (1)

where z−i = (..., zjl
, ...), with jl ∈ N u

i and l = 1, ..., |N u
i |, denotes the concatenated vector of

the states of the upstream neighbors of i, and the ordering of the sub vectors is fixed. Each

agent i is also subject to the decoupled input constraints ui(t) ∈ U , t ≥ t0. The set UN is the

N -times Cartesian product U × · · · × U . In concatenated vector form, the system dynamics

are

ż(t) = f(z(t), u(t)), t ≥ t0, (2)

given initial condition z(t0), where f(z, u) = (f1(z1, z−1, u1), ..., fNa(zNa , z−Na , uNa)).

Assumption 1. The following holds: (a) the function f : RnNa × RmNa → RnNa is twice

continuously differentiable, and satisfies 0 = f(0, 0); (b) the system (2) has a unique, abso-

lutely continuous solution for any initial condition z(t0) and any piecewise right-continuous

control u : [t0,∞) → UNa ; (c) the set U is a compact subset of Rm containing the origin in

its interior.

Consider now the linearization of (1) around the origin, denoted as

żi(t) = Aiizi(t) +
∑
j∈Nu

i

Aijzj(t) + Biui(t),

where Aij = ∂fi/∂zj(0, 0) and Bi = ∂fi/∂ui(0, 0). As in many RHC formulations [3,13,15], a

feedback controller that stabilizes the closed-loop system inside a neighborhood of the origin

will be utilized. To design a linear controller based on the linearization while respecting the

decentralized information constraints, one can define the output variables for each agent i

as yi(t) = Ciz(t) = (zi(t), z−i(t)). There exist methods for constructing dynamic and static

feedback controllers, as done by Corfmat and Morse in [5], to achieve stabilization while

respecting the decentralized information constraints. The analysis here is greatly facilitated

if, for every i ∈ V , stabilization is possible with the decoupled static feedback ui = Kizi,

instead of a feedback ui = Kiyi that relies on components of z−i. To that end, the following

assumption is made.

Assumption 2. For every agent i ∈ V , there exists a decoupled static feedback ui = Kizi

such that Adi , Aii + BiKi is Hurwitz, and the closed-loop linear system ż = Acz is
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asymptotically stable, where Ac , [fz(0, 0) + fu(0, 0)K] and K = diag(K1, ..., KNa).

The decoupled linear feedbacks above are referred to as terminal controllers. Associ-

ated with the closed-loop linearization, denote the block-diagonal Hurwitz matrix Ad =

diag(Ad1, ..., AdNa) and the off-diagonal matrix Ao = Ac − Ad. Assumption 2 inherently

presumes decoupled stabilizability, and that the coupling between subsystems in the lin-

earization is sufficiently weak as quantified in the survey paper [19].

3 Distributed Receding Horizon Control

In this section, Na separate optimal control problems and the distributed RHC algorithm

are defined. In every distributed optimal control problem, the same constant prediction

horizon T ∈ (0,∞) and constant update period δ ∈ (0, T ] are used. In practice, the update

period δ is typically the sample interval. By the distributed implementation presented here,

an additional condition on the size of δ is also required, as quantified in the next section.

Denote the receding horizon update times as tk = t0 + δk, where k ∈ N = {0, 1, 2, ...}. In

the following implementation, every distributed RHC law is updated globally synchronously,

i.e., at the same instant of time tk for the kth-update.

At each update, every agent optimizes only for its own predicted open-loop control, given

its current state. As stated, it is assumed that
(
N d

i ∪N u
i

)
\ {i} 6= ∅ for every i ∈ V . In

addition, if N u
i \ {i} 6= ∅ for any i, then z−i has nontrivial dimension. In this case, i

must estimate/presume a trajectory for z−i over each prediction horizon, so that a predicted

trajectory for i based on the model (1) can be calculated. On the other hand, if N u
i \{i} = ∅,

i needs no information from neighbors to calculate a solution to (1). In the remainder of the

paper, it is assumed that N u
i \ {i} 6= ∅ for every i ∈ V , which is the more complicated case.

A discussion on the applicability of the algorithm and theory when N u
i \ {i} = ∅ for some i

will be provided at the end of Section 4.2.

By assumption, the dynamics of each agent i depend upon upstream neighboring states

z−i, and so i must presume some trajectories for z−i over each prediction horizon. To that

end, prior to each update, each agent i receives an assumed state trajectory ẑj from each

upstream neighbor j ∈ N u
i . Likewise, agent i transmits an assumed state trajectory ẑi to

every downstream neighbor j ∈ N d
i , prior to each update. By design, then, the assumed

state trajectory for any agent is the same in the distributed optimal control problem of every

downstream neighbor.

Since the models are used with assumed trajectories for upstream neighbors, there will
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be a discrepancy, over each optimization time window, between the predicted open-loop

trajectory and the actual trajectory that results from every agent applying their locally

predicted control. This discrepancy is quantified by using the following notation. Recall

that zi(t) is the actual state for each agent i ∈ V at any time t ≥ t0. Associated with update

time tk, for any k ∈ N, the trajectories for each agent i ∈ V are denoted

zp
i (t; tk) − the predicted state trajectory,

ẑi(t; tk) − the assumed state trajectory,

up
i (t; tk) − the predicted control trajectory,

where t ∈ [tk, tk + T ]. Consistent with the ordering of z−i, let ẑ−i(t; tk) be the assumed

open-loop state trajectories of the upstream neighbors of i, corresponding to update time tk.

The predicted state trajectory satisfies

żp
i (t; tk) = fi(z

p
i (t; tk), ẑ−i(t; tk), u

p
i (t; tk)), t ∈ [tk, tk + T ], (3)

given zp
i (tk; tk) = zi(tk). The assumed state trajectory for each agent i ∈ V is given by

ẑi(t; tk) =

{
zp

i (t; tk−1), t ∈ [tk, tk−1 + T )

zK
i (t), t ∈ [tk−1 + T, tk + T ]

(4)

where zK
i is the solution to żK

i (t) = Adiz
K
i (t) with initial condition zK

i (tk−1 +T ) = zp
i (tk−1 +

T ; tk−1). By construction, each assumed state trajectory ẑi is the remainder of the previously

predicted trajectory, concatenated with the closed-loop linearization response that ignores

coupling. The collective actual state trajectories for the agents over any update window

[tk, tk+1) is given by

ż(t) = f(z(t), up(t; tk)), t ∈ [tk, tk+1), (5)

given z(tk). While the actual and predicted state trajectories do have the same initial con-

dition zi(tk) for each i ∈ V , they typically diverge over each update window [tk, tk+1], and

zp(tk+1; tk) 6= z(tk+1) in general. The reason is that, while the predicted state trajectories

in (3) are based on the assumption that neighbors continue along their previous trajec-

tory, neighbors in fact compute and employ their own updated predicted control trajectory.

Therefore, the actual state evolves according to (5). The challenge then is to generate a

distributed RHC algorithm that has feasibility and stability properties in the presence of the
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discrepancy between predicted and actual state trajectories.

A desirable property of any RHC algorithm is to have feasible state and control trajec-

tories at any update, as the trajectories can be used to preempt the optimization algorithm

used to solve the optimal control problem. In many formulations, the feasible state tra-

jectory is the remainder of the previous trajectory concatenated with the response under

a terminal controller [3, 13, 15]. While ẑi(·; tk) is such a trajectory, it cannot be used since

ẑi(tk; tk) 6= zi(tk). Still, a feasible control trajectory exists. Indeed, a primary contribution of

this paper is to show that a feasible control is the remainder of the previous control trajectory

concatenated with the terminal controller, with the corresponding feasible state trajectory

starting from the true state at each update time. The feasible state and control trajectories

at any update tk are denoted z̄i(·; tk) and ūi(·; tk), respectively. The feasible state trajectory

satisfies

˙̄zi(t; tk) = fi (z̄i(t; tk), ẑ−i(t; tk), ūi(t; tk)) , t ∈ [tk, tk + T ], (6)

given initial condition z̄i(tk; tk) = zi(tk), and the feasible control is given by

ūi(t; tk) =

{
up

i (t; tk−1), t ∈ [tk, tk−1 + T )

Kiz̄i(t; tk), t ∈ [tk−1 + T, tk + T ]
. (7)

The feasible control trajectory ūi is the remainder of the previously predicted control trajec-

tory, concatenated with the linear control applied to the nonlinear model and based on the

decoupled linear responses for each upstream neighbor. In the next section, feasibility and

stability will be proven. Note that stability is to be guaranteed for the closed-loop system,

represented by equation (5), which is defined for all time t ≥ t0. In the remainder of this

section, each local optimal control problem and the distributed RHC algorithm are defined.

In each local optimal control problem, a cost function will be utilized. For any agent

i ∈ V at update time tk, the cost function Ji(zi(tk), u
p
i (·; tk)) is given by

Ji(zi(tk), u
p
i (·; tk)) =

∫ tk+T

tk

‖zp
i (s; tk)‖2

Qi
+ ‖up

i (s; tk)‖2
Ri

ds + ‖zp
i (tk + T ; tk)‖2

Pi
,

where Qi = QT
i > 0, Ri = RT

i > 0 and Pi = P T
i > 0. The matrix Pi = P T

i > 0 is chosen to

satisfy the Lyapunov equation

PiAdi + AT
diPi = Q̂i, ∀i ∈ V , (8)
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where Q̂i = Qi + KT
i RiKi. Denoting P = diag(P1, ..., PNa) and Q̂ = diag(Q̂1, ..., Q̂Na), it

follows that PAd + AT
d P = −Q̂ and Q̂ > 0.

Decoupled terminal state constraints will be included in each local optimal control prob-

lem. A lemma used to define the terminal state constraint sets and to guarantee that the

terminal controllers are stabilizing inside the sets is now presented. The proof of the lemma

utilizes an assumption that limits the amount of coupling between neighboring subsystems

in the linearization.

Assumption 3. PAo + AT
o P ≤ Q̂/2.

Lemma 1. Suppose that Assumptions 1–3 hold. There exists a positive constant ε ∈ (0,∞)

such that the set

Ωε ,
{
z ∈ RnNa | ‖z‖P ≤ ε

}
,

is a positively invariant region of attraction for both the closed-loop linearization ż(t) =

Acz(t) and the closed-loop nonlinear system ż(t) = f(z(t), Kz(t)). Additionally, Kz ∈ UNa

for all z ∈ Ωε.

Proof. This proof follows closely along the lines of the logic given in Section II of [15], but

is provided here as some of the steps will be reused in later proofs. Consider the function

V (z) = ‖z‖2
P . Computing the time derivative of V (z) along a solution of ż(t) = Acz(t) yields

V̇ (z) = zT
(
AT

c P + PAc

)
z = zT

(
AT

d P + PAd

)
z + zT

(
AT

o P + PAo

)
z

≤ −zT Q̂z + zT Q̂z(1/2) = −(1/2)zT Q̂z ≤ −(1/2)λmin(P
−1/2Q̂P−1/2)V (z),

which holds for all z(t) ∈ RnNa . Now, let φ(z) , f(z, Kz)−Acz, which satisfies φ(0) = 0 and

‖φ(z)‖P /‖z‖P → 0 as ‖z‖P → 0. Computing the time derivative of V (z) along a solution of

ż(t) = f(z(t), Kz(t)) yields

V̇ (z) = zT
(
AT

c P + PAc

)
z + 2zT Pφ(z)

≤ −1

2
zT Q̂z + 2‖z‖2

P

‖φ(z)‖P

‖z‖P

≤ −zT Q̂z

[
1

2
− 2λmax(Q̂

−1/2PQ̂−1/2)
‖φ(z)‖P

‖z‖P

]
.

Since ‖φ(z)‖P /‖z‖P → 0 as ‖z‖P → 0, there exists a constant ε0 ∈ (0,∞) such that

‖φ(z)‖P /‖z‖P ≤ 1/(10λmax(Q̂
−1/2PQ̂−1/2)) whenever V (z) ≤ ε2

0. Therefore,

V (z) ≤ ε2
0 =⇒ V̇ (z) ≤ −(3/10)zT Q̂z ≤ −(3/10)λmin(P

−1/2Q̂P−1/2)V (z).
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Let ε ∈ (0, ε0) be such that Kz ∈ UNa for all z ∈ Ωε. Then, any state trajectory of the

closed-loop linearization or nonlinear system starting in Ωε remains in Ωε and converges to the

origin, and the control constraints are satisfied everywhere on such trajectories, concluding

the proof. �

The parameter ε ∈ (0,∞) that satisfies the conditions of the lemma can be found numerically

by solving a semi-infinite feasibility problem [15]. In the numerical experiments in Section

5, the parameter ε is calculated by iteratively solving the following problem in MATLAB

min
z

[
zT Pz −

(
10λmax(Q̂

−1/2PQ̂−1/2)
)2

φ(z)T Pφ(z)

]
, (9)

subject to Kz ∈ UNa , zT Pz ≤ ε2.

The largest value of ε such that the minimum cost (9) is positive is chosen. From the details

of the proof above, this value of ε satisfies the conditions of Lemma 1.

In each local optimal control problem, the terminal state constraint set for each i ∈ V is

Ωi(ε) ,
{

zi ∈ Rn | ‖zi‖Pi
≤ ε/

√
Na

}
. (10)

By construction, if z ∈ Ω1(ε)× · · ·×ΩNa(ε), then the decoupled controllers can stabilize the

system to the origin, since

‖zi‖2
Pi
≤ ε2

Na

, ∀i ∈ V =⇒
∑
i∈V

‖zi‖2
Pi
≤ ε2 ⇐⇒ z ∈ Ωε.

Suppose then that at some time t′ ≥ t0, zi(t
′) ∈ Ωi(ε) for every i ∈ V . Then, from Lemma

1, stabilization is achieved if every agent employs their decoupled static feedback controller

Kizi(t) for all time t ≥ t′. Thus, the objective of the RHC law is to drive each agent i

to the set Ωi(ε). Once all agents have reached these sets, they switch to their decoupled

controllers for stabilization. Switching from RHC to a terminal controller once the state

reaches a suitable neighborhood of the origin is referred to as dual-mode RHC [15]. For this

reason, the implementation here is considered a dual-mode distributed RHC algorithm. The

collection of local optimal control problems is now defined.

Problem 1. Let ε ∈ (0,∞) satisfy the conditions in Lemma 1, and let q ∈ {1, 2, 3, ...} be

any positive integer. For each agent i ∈ V and at any update time tk, k ≥ 1:

Given: zi(tk), z̄i(t; tk), ẑi(t; tk) and ẑ−i(t; tk) for all t ∈ [tk, tk + T ];

Find: the control trajectory up
i (·; tk) : [tk, tk + T ] → U that minimizes Ji(zi(tk), u

p
i (·; tk)),
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subject to the constraints

‖zp
i (t; tk)‖2

Pi
≤ ‖z̄i(t; tk)‖2

Pi
+

[
δε

8T
√

Na

]2

, ∀t ∈ [tk, tk + T ], (11)

‖zp
i (t; tk)− ẑi(t; tk)‖2

Pi
≤ ‖z̄i(t; tk)− ẑi(t; tk)‖2

Pi
+

[
ε

2(q + 1)Na

]2

, ∀t ∈ [tk, tk + T ], (12)

where zp
i (·; tk) satisfies the dynamic equation (3) and the terminal constraint zp

i (tk +T ; tk) ∈
Ωi(ε/2), with Ωi defined in (10). �

Equation (11) is utilized to prove that the distributed RHC algorithm is stabilizing. While

many centralized RHC algorithms rely on the (typically local) optimality of the solution

up
i (·; tk) at each update tk [13], the stability results in the next section do not. Instead, the

constraint (11) is utilized to guarantee stability. The minimization of the cost function is

strictly for performance purposes in the distributed RHC algorithm.

Equation (12) is referred to as the consistency constraint, which requires that each pre-

dicted trajectory remain close to the assumed trajectory (that neighbors assume for that

agent). In particular, the predicted trajectory zp
i must remain nearly as close to the assumed

trajectory ẑi as the feasible trajectory z̄i, with an added margin of freedom parameterized by

(ε/2(q+1)Na)
2. In the analysis that follows, the consistency constraint (12) is a key equation

in proving that z̄i is a feasible state trajectory at each update. The constant q ∈ {1, 2, 3, ...}
is a design parameter, and the choice for q will be motivated in Section 4.1.

Note that the terminal constraint in each optimal control problem is Ωi(ε/2), although

Lemma 1 ensures that the larger terminal set Ωi(ε) suffices as a collective region of attrac-

tion for the terminal controllers. In the analysis presented in the next section, it is shown

that tightening the terminal set in this way is required to guarantee the feasibility proper-

ties. Before stating the distributed RHC algorithm, an assumption is made to facilitate the

initialization phase.

Assumption 4. Given z(t0) at initial time t0, there exists a feasible control up
i (τ ; t0) ∈ U ,

τ ∈ [t0, t0 + T ], for each agent i ∈ V, such that the solution to the full system ż(τ) =

f(z(τ), up(τ ; t0)), denoted zp(·; t0), satisfies zp
i (t0 +T ; t0) ∈ Ωi(ε/2) and results in a bounded

cost Ji(zi(t0), u
p
i (·; t0)) for every i ∈ V . Moreover, each agent i ∈ V has access to up

i (·; t0).

Remark 1. Assumption 4 bypasses the difficult task of actually constructing an initially

feasible solution in a distributed way. In fact, finding an initially feasible solution for many

optimization problems is often a primary obstacle, whether or not such problems are used
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in a control setting. As such, many centralized implementations of RHC likewise assume

that an initially feasible solution is available [3, 13, 15]. Recent methods for quantifying

sets of initial feasibility are presented in [14], and references cited therein. Adapting these

methods to incorporate a distributed structure might be one way to quantify sets over which

feasible and distributed controllers could be used to initialize the distributed implementation

presented here.

Let Z ⊂ RnNa denote the set of initial states for which there exists a control satisfying

the conditions in Assumption 4. The control algorithm is now stated.

Algorithm 1. The dual-mode distributed receding horizon control law for any agent i ∈ V
is as follows:

Data: z(t0), up
i (·; t0) satisfying Assumption 4, T ∈ (0,∞), δ ∈ (0, T ], q ∈ {1, 2, 3, ...}.

Initialization: At time t0, if z(t0) ∈ Ωε, then apply the terminal controller ui(t) = Kizi(t),

for all t ≥ t0. Else:

Controller:

1. Over any interval [tk, tk+1), k ∈ N:

(a) At any time t ∈ [tk, tk+1), if z(t) ∈ Ωε, then apply the terminal controller ui(t
′) =

Kizi(t
′), for all t′ ≥ t. Else:

(b) Apply up
i (τ ; tk), τ ∈ [tk, tk+1).

(c) Compute ẑi(τ ; tk+1) according to (4) and transmit it to every downstream neighbor

l ∈ N d
i .

(d) Receive ẑj(·; tk+1) from every upstream neighbor j ∈ N u
i and assemble ẑ−i(·; tk+1).

2. At any time tk+1, k ∈ N:

(a) Measure zi(tk+1).

(b) Compute z̄i(·; tk+1) according to (6).

(c) Solve Problem 1 for agent i, yielding up
i (·; tk+1). �

Part 1(a) of Algorithm 1 presumes that the every agent can obtain the full state z(t).

This requirement results solely from the use of dual-mode control, such that switching occurs

synchronously only when the conditions of Lemma 1 are satisfied. In the next section, it

is shown that the distributed RHC policy drives the state z(tl) to Ωε after a finite number

of updates l, and the state remains in Ωε for all future time. If Ωε is sufficiently small for

12



stability purposes, then agents do not need access to the full state at any update, since RHC

can be employed for all time without switching to a terminal controller. The next section

provides the analysis showing that the distributed RHC algorithm is feasible at every update

and stabilizing.

4 Analysis

In this section, feasibility is analyzed first in Section 4.1, followed by stability in Section 4.2.

Qualitative and quantitative discussion of the results presented is then given in Section 4.3.

4.1 Feasibility

A desirable property of the implementation is that the existence of a feasible solution to

Problem 1 at update k = 0 implies the existence of a feasible solution for any subsequent

update k ≥ 1. The main result of this section is that, provided an initially feasible solution is

available and Assumption 4 holds true, a feasible control solution to Problem 1 for any i ∈ V
and at any time tk, k ≥ 1, is up

i (·; tk) = ūi(·; tk), with ūi defined by (7). The corresponding

feasible state trajectory defined by (6) is zp
i (·; tk) = z̄i(·; tk). Before presenting the technical

details, it is useful to sketch some of the requirements and challenges in guaranteeing this

feasibility result.

For any i ∈ V and at any update k ≥ 1, the control and state pair (ūi(·; tk), z̄i(·; tk)) is a

feasible solution to Problem 1 if ūi(·; tk) : [tk, tk + T ] → U , equations (3), (11) and (12) are

satisfied, and the terminal state constraint z̄i(tk + T ; tk) ∈ Ωi(ε/2) is satisfied. Consider the

schematic of the different trajectories involved in the problem in Figure 2. The figure shows

how the assumed trajectory ẑi and the feasible trajectory z̄i must relate to one another, and

to the terminal sets Ωi(ε), Ωi(ε/2) and Ωi(ε
′/2) where ε′ , εq/(q + 1) and q ∈ {1, 2, 3, ...}.

As specified in the following lemmas, the positive integer q is a design parameter. Note that

ε′ ∈ (0, ε) for any choice of q.

In this section, Lemma 2 identifies sufficient conditions to ensure that ẑi(t; tk) ∈ Ωi(ε/2)

over the interval t ∈ [tk−1 + T, tk + T ], and ẑi(tk + T ; tk) ∈ Ωi(ε
′/2), as shown in the

figure. Then, Lemma 3 identifies sufficient conditions to ensure that for every i ∈ V ,

‖z̄i(t; tk) − ẑi(t; tk)‖Pi
≤ ε/(2(q + 1)

√
Na) for all t ∈ [tk, tk + T ], also shown in Figure 2.

Using these lemmas, control constraint feasibility is proven in Lemma 4. Finally, Lemmas

2–4 are combined in Theorem 1 to give the main result, which proves that the control and

13
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Ji(zi(tk), ûi(·; tk)) ≤ Ji(zi(tk), ûi(·; tk))
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Figure 2: Schematic of the different trajectories involved in the application of the distributed
RHC algorithm, for any agent i ∈ V and for update times tk−1 and tk. The ellipsoids represent
level sets of the function ‖zi‖2

Pi
, with εi = ε/

√
Na and ε′i = εiq/(q + 1) for a given positive

integer q. The dashed line represents zp
i (·; tk−1), with zp

i (tk−1; tk−1) equal to the true initial
condition zi(tk−1) and zp

i (tk−1 + T ; tk−1) reaching the level set Ωi(ε/2) as required in the
optimal control problem. All subsystems apply their control up

i (t; tk−1), for t ∈ [tk−1, tk),
and subsystem i follows the solid (red) line, arriving at zi(tk). After δ seconds, on the other
hand, the predicted state zp

i (tk; tk−1) is generally in a different location, represented by the
blue diamond. The reason is that i computes zp

i (·; tk−1) assuming neighbors follow ẑ−i(·; tk−1),
when in fact each neighbor is likewise computing and applying an updated predicted control.
The assumed trajectory ẑi(·; tk) shown is constructed according to (4), comprised of the
remainder of zp

i (·; tk−1) concatenated with the decoupled linear controlled response. The
feasible trajectory z̄i(·; tk) is constructed according to (6) and is also shown in the schematic.
To meet certain feasibility requirements (refer to text), parametric conditions are identified
to ensure that ẑi(t; tk) and z̄i(t; tk) are within the indicated ellipsoids over the interval t ∈
[tk−1 + T, tk + T ], and that ‖z̄i(t; tk) − ẑi(t; tk)‖Pi

≤ ε′/(2q) = ε/(2(q + 1)
√

Na) for all
t ∈ [tk, tk + T ].
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state pair (ūi(·; tk), z̄i(·; tk)) is a feasible solution to Problem 1 for any i ∈ V and at any

update k ≥ 1.

Lemma 2. Suppose that Assumptions 1–4 hold and z(t0) ∈ Z. For any k ≥ 0, if Problem

1 has a solution at update time tk, then

ẑi(t; tk+1) ∈ Ωi(ε/2), ∀t ∈ [tk + T, tk+1 + T ],

and ẑi(tk+1 + T ; tk+1) ∈ Ωi(ε
′/2),

for every i ∈ V , where ε′ , εq/(q + 1) and q ∈ {1, 2, 3, ...}, provided the update parameter δ

satisfies

δ ≥ ln [(q + 1)2/q2]

mini∈V{λmin(P
−1/2
i Q̂iP

−1/2
i )}

. (13)

Proof. The following reasoning applies for any agent i ∈ V . Since Problem 1 has a solution

at update time tk, ẑi(·; tk+1) is well-defined from (4). By construction, it follows from the

terminal constraint that ‖ẑi(tk + T ; tk+1)‖Pi
= ‖zp

i (tk + T ; tk)‖Pi
≤ ε/(2

√
Na). With the

Lyapunov function Vi(ẑi(t)) = ‖ẑi(t; tk+1)‖2
Pi

for t ∈ [tk + T, tk+1 + T ], it follows that

V̇i(ẑi(t)) ≤ −‖ẑi(t; tk+1)‖2bQi
≤ −λmin(P

−1/2
i Q̂iP

−1/2
i )Vi(ẑi(t)).

Therefore, Vi(ẑi(tk +T )) ≤ ε2/(4Na) implies Vi(ẑi(t)) ≤ ε2/(4Na) for all t ∈ [tk +T, tk+1 +T ],

completing the first part of the proof. From the Comparison Lemma [12],

Vi(ẑi(t)) ≤ exp[−(t− (tk + T ))λmin(P
−1/2
i Q̂iP

−1/2
i )]Vi(ẑi(tk + T )).

To ensure ‖ẑi(tk+1 + T ; tk+1)‖Pi
≤ εq/(2(q + 1)

√
Na), a sufficient condition is that

exp[−δλmin(P
−1/2
i Q̂iP

−1/2
i )]Vi(ẑi(tk + T )) ≤ ε2

4Na

q2

(q + 1)2
.

To ensure the bound holds for every i ∈ V , a sufficient condition on δ is

δ min
i∈V

{
λmin(P

−1/2
i Q̂iP

−1/2
i )

}
≥ ln[(q + 1)2/q2],

concluding the proof. �

Condition (13) suggests a minimum amount of time required to steer each zp
i (tk +T ; tk) from
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Ωi(ε/2) to Ωi(ε
′/2), using the decoupled terminal controllers. The larger the chosen value

of q, the smaller ln[(q + 1)2/q2] becomes and the smaller the required lower bound on the

update parameter. Likewise, ε′ approaches ε as q increases, so it should require less time to

drive zp
i (tk + T ; tk) from Ωi(ε/2) to Ωi(ε

′/2) for larger values of q.

The analysis in Lemmas 3 will require a local Lipschitz property on the collective dynam-

ics. In vector form, the collective set of differential equations for the predicted trajectories

(using (3) for each i ∈ V) is denoted

żp(t; tk) = F (zp(t; tk), ẑ(t; tk), u
p(t; tk)), t ∈ [tk, tk + T ],

where F : RnNa × RnNa × RmNa → RnNa , zp = (zp
1 , ..., z

p
Na

), ẑ = (ẑ1, ..., ẑNa) and up =

(up
1, ..., u

p
Na

). By definition, the function F satisfies F (z, z′, u) = f(z, u) whenever z = z′.

Assumption 5. Given P and R, there exist positive constants β and γ such that the

Lipschitz bound

‖F (z, z′, u)− F (y, y′, v)‖P ≤ ‖z − y‖P + β‖z′ − y′‖P + γ‖u− v‖,

holds for all z, z′, y, y′ ∈ Z, and u, v ∈ UNa .

More generally, the Lipschitz bound would take the form ‖F̂ (z, z′, u)‖P ≤ α̂‖z‖P +

β̂‖z′‖P + γ̂‖u‖ for some positive constants (α̂, β̂, γ̂). Thus, Assumption 5 presumes that

one can identify the Lipschitz constants (α̂, β̂, γ̂), and that the differential equation f (or

F ) is already normalized so that β = β̂/α̂ and γ = γ̂/α̂. The local Lipschitz constant β

represents a normalized measure of the amount of coupling in the collective dynamic model.

The following lemma makes use of the Lipschitz parameters stated above, as well as a design

parameter r ∈ {1, 2, 3, ...} in addition to the design parameter q introduced in Lemma 2.

Lemma 3. Suppose that Assumptions 1–5 hold and z(t0) ∈ Z. For any k ≥ 0, if Problem

1 has a solution at every update time tl, l = 0, ..., k, then,

‖z̄(t; tk+1)− ẑ(t; tk+1)‖P ≤
ε

2(q + 1)
√

Na

, ∀t ∈ [tk+1, tk+1 + T ],

provided the following parametric conditions hold:

δc
√

Na exp [δ(1 + γ
K
)]

(q + 1)(r + 1)

r
≤ 1, (14)

β2T (r + 1) exp [T + δ(1 + β + γ
K
)] ≤ 1, (15)
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where q, r ∈ {1, 2, 3, ...}, c = 1/(10λmax(Q̂
−1/2PQ̂−1/2)) + λ

1/2
max(P−1/2AT

o PAoP
−1/2), and

γ
K

= γλ
1/2
max(P−1/2KT KP−1/2).

Proof. Define the functions

y(t; tl) , ‖zp(t; tl)− ẑ(t; tl)‖P , Θ(t; tl) , ‖z̄(t; tl)− ẑ(t; tl)‖P ,

for all t ∈ [tl, tl + T ]. By assuming the existence of a solution to Problem 1 at each update

t0, ..., tk, the functions y(t; tl) and Θ(t; tl) are all well defined for l = 1, ..., k. Additionally,

y(tk+1; tk+1) and Θ(t; tk+1) are well defined. The proof follows by making use of the local

Lipschitz bounds stated in Assumption 5, and recursive use of the triangle and Gronwall-

Bellman inequalities. To begin, observe that from the consistency constraint (12), for each

l = 1, ..., k and for all t ∈ [tl, tl + T ],

‖zp
i (t; tl)− ẑi(t; tl)‖2

Pi
≤ ‖z̄i(t; tl)− ẑi(t; tl)‖2

Pi
+

[
ε

2(q + 1)Na

]2

∀i ∈ V ,

=⇒ y2(t; tl) ≤ Θ2(t; tl) +

[
ε

2(q + 1)
√

Na

]2

=⇒ y(t; tl) ≤ Θ(t; tl) +
ε

2(q + 1)
√

Na

.

Next, a bound on the deviation of the predicted state from the actual state over any update

period [tl−1, tl] is quantified. Define the function v(t; tl−1) = ‖z(t; tl−1) − zp(t; tl−1)‖P for

all l = 1, ..., k + 1, where z(t; tl−1) = z(t) is the actual closed-loop response, satisfying

ż(t) = f(z(t), up(t; tl−1)) for all t ∈ [tl−1, tl] (same as (5)). Observe that y(tl; tl) = v(tl; tl−1)

for all l = 1, ..., k + 1. Also, v(t; t0) ≡ 0 for all t ∈ [t0, t1] by Assumption 4, and so

y(t1; t1) ≡ 0. Using the notation F from Assumption 5, the model for the actual response

can also be written as ż(t) = F (z(t), z(t), up(t; tl)). A bound on v(t; tl−1) for l = 2, ..., k + 1

proceeds as follows,

v(t; tl−1) =
∥∥∥∫ t

tl−1

F (z(s; tl−1), z(s; tl−1), u
p(s; tl−1))− F (zp(s; tl−1), ẑ(s; tl−1), u

p(s; tl−1))ds
∥∥∥

P

≤
∫ t

tl−1

v(s; tl−1) + β‖z(s; tl−1)− ẑ(s; tl−1)± zp(s; tl−1)‖P ds

≤
∫ t

tl−1

(1 + β)v(s; tl−1) + βy(s; tl−1)ds.
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Using the Gronwall-Bellman inequality yields

y(tl; tl) = v(tl; tl−1) ≤ βeδ(1+β)

∫ tl

tl−1

y(s; tl−1)ds.

Next, a bound on Θ(t; tk+1) is derived. On the time interval t ∈ [tk+1, tk + T ],

Θ(t; tk+1) =
∥∥∥z̄(tk+1; tk+1)− ẑ(tk+1; tk+1) +

∫ t

tk+1

F (z̄(s; tk+1), z
p(s; tk), u

p(s; tk))

− F (ẑ(s; tk+1), ẑ(s; tk), u
p(s; tk))ds

∥∥∥
P

≤ y(tk+1; tk+1) +

∫ t

tk+1

Θ(s; tk+1) + βy(s; tk)ds

≤
∫ t

tk+1

Θ(s; tk+1)ds + βeδ(1+β)

∫ tk+T

tk

y(s; tk)ds.

Using the Gronwall-Bellman inequality on the time interval [tk+1, tk + T ] yields

Θ(t; tk+1) ≤ Γk, where Γ0 , 0, Γk , βeT+δβ

∫ tk+T

tk

y(s; tk)ds, k ≥ 1.

The bound on Θ(t; tk+1) over the time domain t ∈ [tk + T, tk+1 + T ] is given by

Θ(t; tk+1) =
∥∥∥z̄(tk + T ; tk+1)− ẑ(tk + T ; tk+1) +

∫ t

tk+T

F (z̄(s; tk+1), ẑ(s; tk+1), Kz̄(s; tk+1))

− Adẑ(s; tk+1)± F (ẑ(s; tk+1), ẑ(s; tk+1), Kẑ(s; tk+1))± Aoẑ(s; tk+1)ds
∥∥∥

P

≤Θ(tk + T ; tk+1) +

∫ t

tk+T

(1 + γ
K
)Θ(s; tk+1) + ‖φ(ẑ(s; tk+1))‖P + ‖Aoẑ(s; tk+1)‖P ds,

where φ(z) , F (z, z,Kz) − (Ad + Ao)z. From the proof of Lemma 1, ‖φ(ẑ(s; tk+1))‖P ≤
‖ẑ(s; tk+1)‖P /(10λmax(Q̂

−1/2PQ̂−1/2)), since ẑ(s; tk+1) ∈ Ωε for all s ∈ [tk + T, tk+1 + T ] by

construction. From Lemma 2, ẑi(s; tk+1) ∈ Ωi(ε/2) for all s ∈ [tk + T, tk+1 + T ], and so

‖ẑ(s; tk+1)‖P ≤ ε/2. With c defined in the statement of the lemma, then,

‖φ(ẑ(s; tk+1))‖P + ‖Aoẑ(s; tk+1)‖P ≤ cε/2, ∀s ∈ [tk + T, tk+1 + T ]

Using the bound on Θ(tk + T ; tk+1) and applying the Gronwall-Bellman inequality over the

18



time domain t ∈ [tk + T, tk+1 + T ] yields

Θ(t; tk+1) ≤ eδ(1+γ
K

) [Γk + δcε/2] . (16)

Observe that this bound holds over the entire time interval [tk+1, tk+1+T ]. From the previous

bound on y(t; tk) for all t ∈ [tk, tk + T ], the bound above can be rewritten as

Θ(t; tk+1) ≤ βeT+δ(1+β+γ
K

)

∫ tk+T

tk

[
Θ(s; tk) +

ε

2(q + 1)
√

Na

]
ds +

δcε

2
eδ(1+γ

K
). (17)

By induction on k, the result of the lemma is now proven. For the base case (k = 0), since

Γ0 = 0, (16) and (14) imply that

Θ(t; t1) ≤ δcε

2
eδ(1+γ

K
) ≤ r

(r + 1)(q + 1)

ε

2
√

Na

≤ ε

2(q + 1)
√

Na

,

for any r ∈ {1, 2, 3, ...} and for all t ∈ [t1, t1+T ]. Now, assuming Θ(t; tk) ≤ ε/(2(q+1)
√

Na), it

must be shown that the same bound holds for Θ(t; tk+1). From (17), the inductive hypothesis

and (14), it follows that

Θ(t; tk+1) ≤ βTeT+δ(1+β+γ
K

) ε

(q + 1)
√

Na

+
r

(r + 1)(q + 1)

ε

2
√

Na

≤ 1

2(r + 1)

ε

(q + 1)
√

Na

+
r

(r + 1)(q + 1)

ε

2
√

Na

=
ε

2(q + 1)
√

Na

,

where the second line results from condition (15). By the Principle of Mathematical Induc-

tion, Θ(t; tk+1) ≤ ε/(2(q+1)
√

Na) holds for all t ∈ [tk+1, tk+1 +T ] and any k ≥ 0, concluding

the proof. �

To ensure that the control and state pair (ūi(·; tk), z̄i(·; tk)) is a feasible solution to

Problem 1 at every update k ≥ 1, the analysis that follows makes use of the bound

‖z̄i(t; tk) − ẑi(t; tk)‖Pi
≤ ε/(2(q + 1)

√
Na) for all t ∈ [tk, tk + T ] and every i ∈ V (shown

in Figure 2). A conservative sufficient condition to ensure this bound holds for every i ∈ V
is to require ‖z̄(t; tk+1)− ẑ(t; tk+1)‖P ≤ ε/(2(q +1)

√
Na), and Lemma 3 identifies parametric

conditions on the update period δ and coupling parameter β that ensure this bound holds.

The reason for doing the analysis on the full vector norm ‖z̄− ẑ‖P in Lemma 3, as opposed to

the individual norms ‖z̄i − ẑi‖Pi
, is that this choice facilitated a proof which relies primarily

on the Gronwall-Bellman inequality.
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The purpose of the design parameters q, r ∈ {1, 2, 3, ...} is now clarified. Equation (14)

places an upper bound on the update period δ, which can be rewritten and combined with

the lower bound (13) to give

eδ(1+γ
K

) ln [(q + 1)2/q2]

mini∈V{λmin(P
−1/2
i Q̂iP

−1/2
i )}

≤ δeδ(1+γ
K

) ≤ r

(r + 1)(q + 1)c
√

Na

.

The larger the chosen value of q, the smaller the lower and upper bounds on δ. The ability

to shift the feasible range for δ is useful for design purposes, as will be demonstrated in

the example of coupled oscillators considered in Section 5. Also, larger values of q reduce

the margin in the consistency constraint (12) that bounds how much the predicted state

can deviate from the assumed state. Equation (15) places an upper bound on the Lipschitz

coupling constant β, which can be rewritten as

βeδβ ≤ 1

2T (r + 1) exp[T + δ(1 + γ
K
)]

.

By increasing the design parameter r, one can increase the upper bound on δ at the price of

requiring a tighter bound on β. The utility of being able to choose r will be demonstrated

in Section 5 as well. To proceed with the feasibility results of this section, it is now shown

that ūi satisfies the control constraints.

Lemma 4. Suppose that Assumptions 1–5 hold, z(t0) ∈ Z and conditions (13)–(15) are

satisfied. For any k ≥ 0, if Problem 1 has a solution at every update time tl, l = 0, ..., k,

then, ūi(τ ; tk+1) ∈ U for all τ ∈ [tk+1, tk+1 + T ] and for every i ∈ V .

Proof. Since Problem 1 has a feasible solution at tk, ūi(·; tk+1) is well-defined. Since Lemma

3 will be invoked, a feasible solution to Problem 1 must be assume at each update t0, ..., tk.

Now, since ūi(t; tk+1) = up
i (t; tk) for all t ∈ [tk+1, tk + T ], it need only be shown that the

remainder of ūi is in U . A sufficient condition for this is if z̄i(t; tk+1) ∈ Ωi(ε) for all t ∈ [tk +

T, tk+1+T ], since ε is chosen to satisfy the conditions of Lemma 1 and, consequently, Kizi ∈ U
for all i ∈ V when z ∈ Ωε. From Lemma 3, ‖z̄i(t; tk+1)− ẑi(t; tk+1)‖Pi

≤ ε/(2(q + 1)
√

Na) for

all t ∈ [tk+T, tk+1+T ]. From Lemma 2, ‖ẑi(t; tk+1)‖Pi
≤ ε/(2

√
Na) for all t ∈ [tk+T, tk+1+T ].

Using the triangle inequality gives ‖z̄i(t; tk+1)‖Pi
= ‖z̄i(t; tk+1)± ẑi(t; tk+1)‖Pi

≤ ‖z̄i(t; tk+1)−
ẑi(t; tk+1)‖Pi

+ ‖ẑi(t; tk+1)‖Pi
≤ ε/(2(q + 1)

√
Na) + ε/(2

√
Na) < ε/

√
Na, since q ≥ 1. There-

fore, z̄i(t; tk+1) ∈ Ωi(ε) for all t ∈ [tk + T, tk+1 + T ] for every i ∈ V , concluding the proof. �

The first main theorem of the paper is now stated.
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Theorem 1. Suppose that Assumptions 1–4 hold, z(t0) ∈ Z and conditions (13)–(15) are

satisfied. Then, for every agent i ∈ V , the control and state pair (ūi(·; tk), z̄i(·; tk)), defined

by equations (6) and (7), is a feasible solution to Problem 1 at every update k ≥ 1.

Proof. The proof follows by strong induction. First, the k = 1 case. The trajectory

ūi(·; t1) trivially satisfies the constraint (11). The corresponding state trajectory z̄i(·; t1)
satisfies the dynamic equation (3) and the consistency constraint (12). Now, observe that

ẑi(t1; t1) = zp
i (t1; t0) = z̄i(t1; t1) = zi(t1) for every i ∈ V . Additionally, z̄i(t; t1) = zp

i (t; t0)

for all t ∈ [t1, t0 + T ], and so z̄i(t0 + T ; t1) ∈ Ωi(ε/2). By the invariance properties of the

terminal controller and the conditions in Lemma 1, it follows that the terminal state and

control constraints are also satisfied, concluding the k = 1 case. Now, the induction step.

By assumption, suppose up
i (·; tl) = ūi(·; tl) is a feasible solution for l = 1, ..., k. It must be

shown that ūi(·; tk+1) is a feasible solution at update k + 1. As before, the constraint (11)

and the consistency constraint (12) are trivially satisfied, and z̄i(·; tk+1) is the corresponding

state trajectory that satisfies the dynamic equation. Since there is a solution for Problem 1

at updates l = 1, ..., k, Lemmas 2–4 can be invoked. Lemma 4 guarantees control constraint

feasibility. The terminal constraint requires z̄i(tk+1 + T ; tk+1) ∈ Ωi(ε/2), for each i ∈ V .

From Lemma 3, ‖z̄i(tk+1 + T ; tk+1) − ẑi(tk+1 + T ; tk+1)‖Pi
≤ ε/(2(q + 1)

√
Na), and Lemma

2 guarantees that ‖ẑi(tk+1 + T ; tk+1)‖Pi
≤ εq/(2(q + 1)

√
Na). Combining these two bounds

and using the triangle inequality implies ‖z̄i(tk+1 + T ; tk+1)‖ ≤ ε/(2
√

Na) for each i ∈ V ,

concluding the proof. �

The existence of a feasible solution at every update is beneficial for numerical implemen-

tation purposes. In the next section, the stability of the closed-loop system is analyzed.

4.2 Stability

The stability of the closed-loop system (5) is now analyzed.

Theorem 2. Suppose that Assumptions 1–5 hold, z(t0) ∈ Z, conditions (13)–(15) are

satisfied, and the following parametric conditions hold

T ≥ 8δ, (q + 1) ≥ 2
T − δ

δ
. (18)

Then, by application of Algorithm 1, the closed-loop system (5) is asymptotically stabilized

to the origin.

21



Proof. From part 1(a) of Algorithm 1 and Lemma 1, if z(t) ∈ Ωε for any t ≥ 0, the terminal

controllers take over and stabilize the system to the origin. Therefore, it remains to show

that if z(t0) ∈ Z \ Ωε, then by application of Algorithm 1, the closed-loop system (5) is

driven to the set Ωε in finite time. Define the non-negative function

Vk =

∫ tk+T

tk

‖zp(s; tk)‖P ds.

In the following, it is shown that for any k ≥ 0, if z(t) ∈ Z \ Ωε for all t ∈ [tk, tk+1], then

there exists a constant η ∈ (0,∞) such that Vk+1 ≤ Vk − η. By the constraint (11)

‖zp
i (t; tk)‖2

Pi
≤ ‖z̄i(t; tk)‖2

Pi
+

[
δε

8T
√

Na

]2

,∀i ∈ V =⇒ ‖zp(t; tk)‖2
P ≤

[
‖z̄(t; tk)‖P +

δε

8T

]2

,

which implies ‖zp(t; tk)‖P ≤ ‖z̄(t; tk)‖P + δε/(8T ). Therefore,

Vk+1 =

∫ tk+1+T

tk+1

‖zp(s; tk+1)‖P ds ≤
∫ tk+1+T

tk+1

‖z̄(s; tk+1)‖P ds +
δε

8
.

Subtracting Vk from Vk+1 gives

Vk+1 − Vk ≤−
∫ tk+1

tk

‖zp(s; tk)‖P ds +

∫ tk+1+T

tk+T

‖z̄(s; tk+1)‖P ds

+

∫ tk+T

tk+1

[‖z̄(s; tk+1)‖P − ‖ẑ(s; tk+1)‖P ] ds +
δε

8
.

The actual closed-loop state response z(t; tk) = z(t) for t ∈ [tk, tk+1] can be bounded as

‖z(t; tk)‖P ≤ ‖z(t; tk)− zp(t; tk)‖P + ‖zp(t; tk)‖P .

Assuming z(t) ∈ Z \ Ωε for all t ∈ [tk, tk+1], it must be that

‖zp(t; tk)‖P ≥ ε− ‖z(t; tk)− zp(t; tk)‖P .

From the proof of Lemma 3,

‖z(t; tk)− zp(t; tk)‖P = v(t; tk) ≤ βe(t−tk)(1+β)

∫ tk+1

tk

y(s; tk)ds ≤ βδeδ(1+β)ε

(q + 1)
√

Na

.
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Therefore, using (15), (18), and that q, r,Na ≥ 1,

‖zp(t; tk)‖P ≥ ε− βTeδ(1+β)ε

8(q + 1)
√

Na

≥ ε− ε

16(r + 1)(q + 1)
√

Nae
T+δγ

K

≥ 63ε

64
.

From the proof of Lemma 4, on the interval t ∈ [tk + T, tk+1 + T ]

‖z̄i(t; tk+1)‖Pi
≤ ε(q + 2)

2(q + 1)
√

Na

=⇒ ‖z̄(s; tk+1)‖P ≤
ε(q + 2)

2(q + 1)
.

For the remaining term, using the triangle inequality,

‖z̄(t; tk+1)‖P − ‖ẑ(t; tk+1)‖P ≤ ‖z̄(t; tk+1)− ẑ(t; tk+1)‖P = Θ(t; tk+1).

From the proof of Lemma 3 and (15), on the interval t ∈ [tk+1, tk + T ]

‖z̄(t; tk+1)− ẑ(t; tk+1)‖P ≤ βeT+δβ

∫ tk+T

tk

y(s; tk)ds ≤ βTeT+δβε

(q + 1)
√

Na

≤ ε

2(r + 1)(q + 1)
√

Nae
δ(1+γ

K
)
≤ ε

4(q + 1)
.

Combining terms and integrating yields

Vk+1 − Vk ≤ δε

[
−63

64
+

q + 2

2(q + 1)
+

T − δ

4δ(q + 1)
+

1

8

]
From (18), (T − δ)/(4δ(q + 1)) ≤ 1/8, and q + 1 ≥ 14 which implies (q + 2)/(q + 1) ≤ 15/14.

Combining these bounds yields

Vk+1 − Vk ≤ δε

[
−47

64
+

15

28

]
≤ −δε

6
, −η.

Thus, for any k ≥ 0, if z(tk), z(tk+1) ∈ Z \ Ωε, then there exists a constant η ∈ (0,∞) such

that Vk+1 ≤ Vk − η. From this inequality, it follows by contradiction that there exists a

finite time t′ such that z(t′) ∈ Ωε. If this were not the case, the inequality implies Vk → −∞
as k → ∞. However, Vk ≥ 0; therefore, there exists a finite time t′ such that z(t′) ∈ Ωε,

concluding the proof. �

The feasibility and stability results in this paper are closely related to those of Michalska

and Mayne [15], who demonstrated robust feasibility and stability in the presence of model
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error by placing parametric bounds on (combinations of) the update period and a Lipschitz

constant. While there is no model error here, bounds are likewise derived to ensure robustness

to the bounded discrepancy between what agents do, and what their neighbors believe they

will do.

As stated at the beginning of Section 3, if N u
i \ {i} = ∅ for any agent i ∈ V , that agent

needs no information from neighbors to calculate a solution to (1). In the algorithm and

theory developed in this paper, it is assumed that N u
i \ {i} 6= ∅ for every i ∈ V , which is

the more complicated case. When N u
i \ {i} = ∅ for any agent i ∈ V, the same algorithm

can be implemented and all of the theoretical results still apply. This is the case, in fact,

for the numerical experiments presented in Section 5, where oscillator 1 has dynamics that

depend only on its own state and control. In this case, ẑi(t; tk) and z̄i(t; tk) are identical,

except over the interval t ∈ (tk + T − δ, tk + T ] where ẑi is a linearized response and z̄i is

a nonlinear response. As a result, the consistency constraint (12) simplifies over most of

the time interval, reducing to a constant bound on the deviation ‖zp
i − ẑi‖2

Pi
. This form of

consistency constraint is in fact employed in other distributed RHC implementations [7]. As

a final note, when N u
i \{i} = ∅, ẑi could be redefined to incorporate the nonlinear closed-loop

terminal controller response over (tk+T−δ, tk+T ]. Since ẑi = z̄i in this case, there is no need

to compute z̄i separately and Algorithm 1 simplifies for that agent (remove step 2(b)). The

next section presents complexity comparisons between the distributed RHC implementation

and a centralized RHC implementation.

4.3 Comparison of Complexity Bounds

In this section, the computation and communication complexity bounds are compared be-

tween the distributed RHC algorithm and a centralized RHC implementation. In the cen-

tralized implementation, a single node is presumed to do all computations and communicate

directly with all agents. For both implementations, complexity bounds are compared for a

single RHC update period. It is also assumed for both implementations that the optimiza-

tion problem is discretized and transcribed into a nonlinear programming problem (NLP).

In general, an NLP with ρ variables has computational complexity O(ρ3). If the optimiza-

tion problem is quadratic, the exponent on the variables changes from 3 to 2. Let the time

domain [tk, tk + T ] for any RHC update k be discretized into Nd − 1 intervals, and so there

are Nd discretization points in time. For simplicity, it is assumed that the optimization

problem is formulated to have the control as the free variable, and the state is assumed to
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be determined uniquely from the differential equation1.

For computational complexity bounds, consider the cost of solving an optimal control

problem at any RHC update. In a single centralized optimal control problem, the total

number of variables at each update is mNdNa, since there are mNd variables per agent (m

dimensional vector of control variables at each time discretization point) and there are Na

total agents. Consequently, the computational complexity is O ((mNdNa)
3). In contrast,

from step 2(c) of Algorithm 1, the computational complexity bound for any single agent

i ∈ V is O ((mNd)
3). The distributed implementation clearly offers a substantial savings in

computational cost, particularly if Na is large.

The communication complexity is defined as being the total number of variables being

transmitted and received during any single RHC update period [tk, tk+1). For example, if a

node sends ρ1 variables and receives ρ2 variables, the bound for that node is ρ1 + ρ2. For a

dual-mode implementation of RHC, be it centralized or distributed, the full state z(t) must

be monitored continuously (in theory) to determine if the state has entered Ωε, at which

time the control switches from RHC to the terminal controllers. Since the cost of monitoring

z(t) is mutual, it is left out of the comparison between communication costs of the two

implementations.

The centralized implementation requires that every agent send its initial condition (di-

mension n) to the computing node. However, this cost is being ignored, as we are ignoring

the cost of the availability of z(t). The centralized RHC update is complete once the com-

puting node transmits the RHC law to every agent. Since the update period is typically

much smaller than the planning horizon, one could assume δNd = T . In this case, the cost of

transmitting the RHC law to each agent is proportional to m, the dimension of the control

vector. Since the centralized computing node must send m variables to every agent, the

communication complexity at the centralized node is mNa. To compute the communication

complexity bound for the distributed implementation for any agent i ∈ V , refer to Algorithm

1. Between RHC update times, i must transmit a trajectory to |N d
i | neighbors and receive

a trajectory from |N u
i | neighbors, where any such trajectory is proportional to nNd. Thus,

the communication complexity at distributed node i is nNd(|N u
i |+ |N d

i |).
In comparing the bounds, since it is typical that m ≤ n, the stated communication cost

of the distributed implementation is typically higher than the stated communication cost of

1Instead, if the state is parameterized as a free variable (as in collocation methods), and the control is not
parameterized but determined through differential flatness, as in the numerical experiments presented in the
next section, the same computation complexity bounds derived still hold, replacing the control dimension m
with the state dimension n.
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the centralized node implementation. However, if m ∼ n and the graph G is sparse such that

|N u
i |+ |N d

i | is small for any i ∈ V , then the cost of the distributed implementation need not

be substantially higher than that of the centralized node implementation. The computation

and communication complexity bound comparisons are summarized in Table 1.

Table 1: Comparison of computation and communication complexity bounds for centralized
and distributed RHC algorithms over a single RHC update period. Variables are the number
of agents Na, the dimension of each agents control vector m, the dimension of each agents
state vector n, the common number of time intervals Nd− 1 in each discretized optimization
problem, and the number of upstream |N u

i | and downstream |N d
i | neighbors of any agent

i ∈ V .

Centralized Node Distributed Node (any i ∈ V)
Computation O ((mNdNa)

3) O ((mNd)
3)

Communication mNa nNd(|N u
i |+ |N d

i |)

5 Coupled Oscillators

In this section, the example of three coupled Van der Pol oscillators is considered for appli-

cation of the distributed RHC algorithm. The three oscillators modeled here are physically

meaningful in that they capture the thigh and knee dynamics of a walking robot experi-

ment [8]. In the following, θ1 ∈ [−π/2, π/2] is the relative angle between the two thighs,

θ2 ∈ [−π/2, π/2] is the right knee angle (relative to the right thigh), and θ3 ∈ [−π/2, π/2]

is the left knee angle (relative to left thigh). The controlled equations of motion in units of

(rad/sec)2 are

θ̈1(t) = 0.1
[
1− 5.25θ2

1(t)
]
θ̇1(t)− θ1(t) + u1(t)

θ̈2(t) = 0.01
[
1− p2 (θ2(t)− θ2e)

2] θ̇2(t)− 4(θ2(t)− θ2e)

+ 0.057θ1(t)θ̇1(t) + 0.1(θ̇2(t)− θ̇3(t)) + u2(t)

θ̈2(t) = 0.01
[
1− p3 (θ3(t)− θ3e)

2] θ̇3(t)− 4(θ3(t)− θ3e)

+ 0.057θ1(t)θ̇1(t) + 0.1(θ̇3(t)− θ̇2(t)) + u3(t),

subject to |ui(t)| ≤ 1, ∀t ≥ 0, i = 1, 2, 3.

Two-phase biped locomotion is generated by these equations with zero control (open-loop)

and time-varying parameter values, given by (θ2e, θ3e, p2, p3)(t) = (−0.227, 0.559, 6070, 192)
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for t ∈ [0, π), and equal to (−0.559, 0.226, 226, 5240) for t ∈ [π, 2π). Figure 3 shows the

resulting open-loop stable limit cycle response, starting from the initial position (40, 3,−3)

degrees, with θ̇i(0) = 0 for i = 1, 2, 3. Through perturbation analysis and the method

of harmonic balance, the limit cycle is closely approximated by θlc
1 (t) = (50π/180) cos(t),

θlc
2 (t) = θ2e + (3π/180 − θ2e) cos(2t), and θlc

3 (t) = θ3e + (3π/180 − θ3e) cos(2t). The chosen

0 5 10 15

−1

−0.5

0

0.5

1

time (sec)

(r
ad

)
θ

1

θ
2

θ
3

Figure 3: Open-loop stable limit cycle, showing the angular positions starting from (40, 3,−3)
degrees with zero initial angular velocity.

initial condition demonstrates the attractivity of the stable limit cycle. For example, note

that the amplitude of θ1(t) starts at 0.70 radians and approaches 0.87 radians, the amplitude

of θlc
1 (t). While the robot has 6 total degrees of freedom when walking in accordance with

the limit cycle response above, the remaining degrees of freedom (including two ankles and

one free foot) can be derived from the three primary degrees of freedom, θ1, θ2 and θ3 [8].

With zero control, there are two equilibrium conditions. One is the limit cycle defined

above, and the other is the unstable fixed point (θ1, θ2, θ3) = (θ1e, θ2e, θ3e) with θ1e = θ̇i = 0

for i = 1, 2, 3. A reasonable control objective is to command torque motors (controls ui)

to drive the three angles from the stable limit cycle response to the fixed point; that is,

to stably bring the robot to a stop. To do so within one half-period of the limit cycle

response means that one set of parameter values (θ2e, θ3e, p2, p3) can be considered in the

model. As such, for control purposes, these parameters are assumed to take on the values

(−0.227, 0.559, 6070, 192). In this way, discontinuous dynamic equations are also avoided.

Now, through a change of variables, the dynamics and input constraints satisfy the conditions

of Assumption 1.

Denoting zi = (θi − θie, θ̇i), the dynamics are linearized around (zi, ui) = (0, 0). The
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matrix A11 has unstable eigenvalues 0.05 ± j, and the matrices A22 and A33 are unstable

with eigenvalues 0.055± 2j. For all three oscillators, the dynamics are linearly controllable

around the origin. In accordance with Assumption 2, the following gain matrices are used to

stabilize the linearized dynamics: K1 = [3.6 5.3], K2 = K3 = [2.0 5.0]. The resulting closed-

loop matrix Ac has eigenvalues (−1.1,−4.1,−3,−2.4 ± 0.5j,−2). For the cost function Ji,

the chosen weights are Qi = diag(30, 30) and Ri = 0.1, i = 1, 2, 3. Then, each Pi is calculated

according to the Lyapunov equation (8). Since the maximum eigenvalue of PAo+AT
o P−Q̂/2

is −11, Assumption 3 is satisfied. The constraint parameter ε = 0.2 satisfies the conditions of

Lemma 1, as calculated by solving (9) for the coupled oscillator system. In accordance with

Assumption 4, a centralized optimal control problem is solved at initial time t0 = 0. In this

problem, and in the centralized RHC implementation, the sum of the three cost functions

J1 +J2 +J3 is minimized, enforcing terminal state and input constraints with a horizon time

of T = 6 seconds. The initial condition is kept the same as that shown in Figure 3.

To solve the centralized optimal control problem, and each of the distributed optimal

control problems, the same approach is used. The computer with MATLAB 7.0 software has

a 2.4 GHz Intel Pentium(R) 4 CPU, with 512 MB of RAM. In the spirit of the Nonlinear

Trajectory Generation package developed by Milam et al. [16], a collocation technique is

employed within MATLAB. First, each angular position trajectory θi(t) is parameterized as a

C2[tk, tk+T ] 6-th order B-spline polynomial. The constraints and cost functions are evaluated

at 121 breakpoints over each 6 second time window. The resulting nonlinear programming

problem is solved using the fmincon function, generating the 27 B-spline coefficients for each

position θi(t). Using the concept of differential flatness [18], the control inputs ui are not

parameterized as polynomials for which the coefficients must also be calculated. Instead, each

control input is defined in terms of the parameterized positions θi(t) and their derivatives

through the dynamics (see [18] for a detailed description of this procedure and when it is

applicable). With an update period of δ = 0.15 seconds, the centralized RHC state and

control response is shown in Figure 4. The position and control trajectories are denoted θi,C

and ui,C, respectively, where the subscript C denotes “centralized.” Note that the positions

are brought suitably close to their fixed point values (shown by dashed lines) within a half-

period of π seconds, validating the assumption that the model parameters (θ2e, θ3e, p2, p3)

are constant over the time horizon of 6 seconds.

With an initially feasible solution available, the distributed RHC algorithm can be em-

ployed. Before presenting the results, the theoretical conditions are evaluated. In total, the

parametric equations that must be satisfied are (13)–(15) and (18). In accordance with As-
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Figure 4: The centralized RHC response, showing the angular position trajectories θi,C (left
plot) and the control trajectories ui,C (right plot), for each i = 1, 2, 3.

sumption 5, the Lipschitz parameters for F must first be identified. Through simulation and

application of the triangle inequality, the oscillator dynamics satisfy ‖F̂ (z, z′, u)‖P ≤ 4‖z‖P +

0.1‖z′‖P +1‖u‖. To facilitate calculation of an update period δ that satisfies the parametric

conditions, time scaling is introduced to normalize the horizon time from T = 6 seconds to 1

second. For the dynamics F̂ , let τ(t) = t/T ∈ [0, 1] such that d
dτ

z(τ) = T F̂ (z(τ), z′(τ), u(τ))

for all τ ∈ [0, 1]. Now, the scaled dynamics satisfy ‖T F̂ (z, z′, u)‖P ≤ 4T‖z‖P + 0.1T‖z′‖P +

T‖u‖. To get into the normalized form, the dynamics are scaled as F = F̂ /(4T ). Then,

the normalized Lipschitz bounds become ‖F (z, z′, u)‖P ≤ ‖z‖P + β‖z′‖P + γ‖u‖, where

β = 0.1/4 = 0.025 and γ = 1/4 = 0.25. The design parameter q = 90, the lower bound on

δ from (13) is δ ≥ 0.025 seconds, and so the update period (for the time-scaled dynamics)

is chosen to be δ = 0.025 seconds. To satisfy the conditions of Lemma 3 (equations (14)

and (15)), the parameter c is calculated and choosing the design parameter r = 6, the left

hand side of (14) is 0.998 and the left hand side of (15) is 0.997. Since both numbers are

less than one, both conditions (14) and (15) are satisfied. Lastly, equation (18) is a suffi-

cient condition for stability, and it is satisfied for the values T = 1, δ = 0.025 and q = 90.

Therefore, the parametric conditions of the theory guaranteeing feasibility and stability of

the distributed RHC algorithm are satisfied. Scaling time back to a planning horizon of 6

seconds corresponds to an update period of δ = 0.15 seconds, and this is the update period

used in the centralized and distributed RHC implementations.

Distributed RHC is implemented precisely according to Algorithm 1, with one modi-

fication to Problem 1. In the optimization code, the constants on the right-hand side of
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constraints (11) and (12) are set to 0.1. The actual constants in (11) and (12) are small

enough (∼ 10−7) to cause feasibility problems in each distributed optimization code. The

value of 0.1, on the other hand, worked quite well. Of course, the constants defined in

constraints (11) and (12) are derived based on the sufficient conditions of the theory, and

are likely to be conservative. The closed-loop position and control trajectories generated

by applying the distributed RHC algorithm are shown in Figure 5. The position and con-
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Figure 5: The distributed RHC response, showing the angular position trajectories θi,D (left
plot) and the control trajectories ui,D (right plot), for each i = 1, 2, 3. The response is quite
close to the centralized RHC response shown in Figure 4.

trol trajectories for this closed-loop solution are denoted θi,D and ui,D, respectively, where

the subscript D denotes “distributed.” While the algorithm and theory suggest switching

to the terminal controllers once z(t) ∈ Ωε, the distributed receding horizon controllers are

employed for all time in these results. To compute the actual closed-loop response between

RHC updates requires numerical integration of the dynamic equations (see (5)). Also, to

calculate each z̄i, as required in part 2(b) of Algorithm 1, requires numerical integration of

equation (6). In all cases, numerical integration was performed using the ode23 function in

MATLAB.

The centralized and distributed RHC responses are quite close, with the distributed

position responses showing slightly more overshoot than the centralized counterparts, par-

ticularly for angles θ2 and θ3. To more explicitly show the difference between the centralized

and distributed RHC responses, Figure 6 shows a plot of the angular position deviation

∆θi = θi,C − θi,D and the control deviation ∆ui = ui,C − ui,D, for each i = 1, 2, 3. The close-

ness in the two responses can be attributed in part to the weak coupling in the dynamics as

quantified by the coefficient β = 0.025. For weakly coupled dynamics, the error introduced
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Figure 6: Deviation between the centralized RHC trajectories shown in Figure 4 and the
distributed RHC trajectories shown in Figure 5. The left plot shows the angular position
deviation (∆θi = θi,C−θi,D), and the right plot shows the control deviation (∆ui = ui,C−ui,D).

by relying on ẑj for neighbors has less of an impact on the closed-loop response, than for

systems with dynamics that are strongly influence by neighboring responses. Application

of the theory to systems with stronger dynamic coupling would be useful in identifying dif-

ference between centralized RHC and the distributed RHC algorithm presented here. A

hypothesis worth testing is that, even in the stronger coupling case, if the update period δ is

sufficiently small, the distributed RHC response is likely to be close to the centralized RHC

response. The intuition behind this hypothesis is that the error introduced by relying on ẑj

for neighbors is likely smaller for smaller update periods.

To compare the computational burden of the centralized problem and the distributed

problems, the cputime function is used in MATLAB. The centralized optimal control prob-

lem has 81 variables to solve for at each RHC update. The computational time for each

RHC update, corresponding to the response shown in Figure 4, is shown in the top plot

in Figure 7. Each distributed optimal control problem has 27 variables to solve for, where

each problem is solved in parallel. The computational time for each RHC update per agent,

corresponding to the responses shown in Figure 5, is shown in the bottom plot in Figure 7

From the figure, the distributed optimal control problems were solved between 43 and 58

times faster than the centralized optimal control problem, over all updates. On average, each

distributed problem was solved 50 times faster, than the single centralized problem. Clearly,

for this example, there is substantial savings in being able to solve the distributed problems

in parallel. The savings are also consistent with the computational complexity comparison

given in Table 1, which suggests savings on the order of O(N3
a ).
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Figure 7: Comparison of computation times, at each receding horizon update, to solve the
centralized optimal control problem (top plot), and the distributed optimal control problems
in parallel (bottom plot). The computation times correspond to the responses shown in
Figures 4 and 5.

6 Conclusions

In this paper, a distributed implementation of receding horizon control is developed for the

case of dynamically coupled nonlinear systems subject to decoupled input constraints. A cen-

tral element to the feasibility and stability analysis is that the actual and assumed responses

of each agent are not too far from one another, as quantified by a consistency constraint.

Parametric bounds on the receding horizon update period are identified. Also, conditions

that bound the amount of dynamic coupling, parameterized by a Lipschitz constant, are

also identified. While the theoretical results are sufficient, the proposed algorithm with mi-

nor relaxations is shown to be applicable to the problem of distributed control of coupled

nonlinear oscillators. In the numerical results, the time it takes to solve the distributed

optimal control problems in parallel is two orders of magnitude less than the time it takes

to solve a corresponding centralized optimal control problem, underlining the computational

savings incurred by employing the distributed algorithm. Moreover, the closed-loop response

generated by the distributed algorithm is quite close to a centralized receding horizon imple-

mentation. In addition to the oscillator example considered here, relaxations of the theory

have been employed in the venue of supply chain management [6]. A theory more specific

to the supply chain management case (coupled nonlinear discrete-time dynamics with time

delays) is currently under development. Finally, while it makes sense to compare central-

ized RHC with the distributed implementation for the academic coupled oscillator example
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considered here, centralized RHC is not a viable option in other venues (such as supply

chain management) where the distributed RHC algorithm may prove relevant. Moreover,

even in the absence of a specific application venue that warrants a distributed approach

over a centralized approach, there is solid philosophical justification for designing hierar-

chical/distributed control methods in a world in which centralized optimal control is often

typically out of reach [9].
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