Bayesian Hierarchical/Multilevel and Latent-Variable (Random-Effects) Modeling

2: Fixed- and random-effects models in meta-analysis

David Draper

Department of Applied Mathematics and Statistics
University of California, Santa Cruz

draper@ams.ucsc.edu
http://www.ams.ucsc.edu/~draper

National University of Ireland, Galway
1 Jun 2010

© 2010 David Draper (all rights reserved)
Hierarchical Models for Combining Information

Formulating hierarchical models for quantitative outcomes from scientific context

Case Study: Meta-analysis of effects of aspirin on heart attacks. Table 5.1 (Draper et al., 1993a) gives the number of patients and mortality rate from all causes, for six randomized controlled experiments comparing the use of aspirin and placebo by patients following a heart attack.

Table 5.1. Aspirin meta-analysis data.

<table>
<thead>
<tr>
<th>Study (i)</th>
<th>Aspirin</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># of Patients</td>
<td>Rate (%)</td>
</tr>
<tr>
<td>UK-1</td>
<td>615</td>
<td>7.97</td>
</tr>
<tr>
<td>CDPA</td>
<td>758</td>
<td>5.80</td>
</tr>
<tr>
<td>GAMS</td>
<td>317</td>
<td>8.52</td>
</tr>
<tr>
<td>UK-2</td>
<td>832</td>
<td>12.26</td>
</tr>
<tr>
<td>PARIS</td>
<td>810</td>
<td>10.49</td>
</tr>
<tr>
<td>AMIS</td>
<td>2267</td>
<td>10.85</td>
</tr>
<tr>
<td>Total</td>
<td>5599</td>
<td>9.88</td>
</tr>
</tbody>
</table>

Comparison

\[y_i = \frac{\text{Diff}}{\sqrt{V_i}} = \text{SE} \]

<table>
<thead>
<tr>
<th>Study (i)</th>
<th>Diff (%)</th>
<th>SE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK-1</td>
<td>2.77</td>
<td>1.65</td>
</tr>
<tr>
<td>CDPA</td>
<td>2.50</td>
<td>1.31</td>
</tr>
<tr>
<td>GAMS</td>
<td>1.84</td>
<td>2.34</td>
</tr>
<tr>
<td>UK-2</td>
<td>2.56</td>
<td>1.67</td>
</tr>
<tr>
<td>PARIS</td>
<td>2.31</td>
<td>1.98</td>
</tr>
<tr>
<td>AMIS</td>
<td>-1.15</td>
<td>0.90</td>
</tr>
<tr>
<td>Total</td>
<td>0.86</td>
<td>0.59</td>
</tr>
</tbody>
</table>

\[Z_i \] denotes the ratio of the difference in mortality rates over its standard error, assuming a binomial distribution. \[p_i \] is the one-sided \(p \) value associated with \(Z_i \), using the normal approximation.
Meta-Analysis

The first five trials are reasonably consistent in showing a (weighted average) mortality decline for aspirin patients of 2.3 percentage points, a 20% drop from the (weighted average) placebo mortality of 11.5% (this difference is highly clinically significant).

However, the sixth and largest trial, AMIS, went the other way: an increase of 1.2 percentage points in aspirin mortality (a 12% rise from the placebo baseline of 9.7%).

Some relevant questions (Draper, 1995):

Q₁ Why did AMIS get such different results?

Q₂ What should be done next to reduce the uncertainty about **Q₁**?

Q₃ If you were a doctor treating a patient like those eligible for the trials in Table 5.1, what therapy should you employ while answers to **Q₁** and **Q₂** are sought?

One possible paraphrase of **Q₃**: **Q₄** How should the information from these six experiments be combined to produce a more informative summary than those obtained from each experiment by itself?

The discipline of [meta-analysis](#) is devoted to answering questions like **Q₄**.

One leading school of [frequentist meta-analysis](#) (e.g., Hedges and Olkin, 1985) looks for methods for combining the Z and p values in Table 5.1, an approach that often leads only to an overall p value.
A Gaussian HM

A more satisfying form of meta-analysis (which has both frequentist and Bayesian versions) builds a **hierarchical model (HM)** that indicates how to combine information from the mortality differences in the table.

A Gaussian meta-analysis model for the aspirin data, for example (Draper et al., 1993a), might look like

\[
\begin{align*}
& (\mu, \sigma^2) \sim p(\mu, \sigma^2) \quad \text{(prior)} \\
& (\theta_i|\mu, \sigma^2) \overset{\text{IID}}{\sim} N(\mu, \sigma^2) \quad \text{(underlying effects)} \\
& (y_i|\theta_i) \overset{\text{indep}}{\sim} N(\theta_i, V_i) \quad \text{(data)}.
\end{align*}
\]

The bottom level of (1), the **data** level of the HM, says that—because of relevant differences in patient cohorts and treatment protocols—each study has its own **underlying treatment effect** \(\theta_i\), and the observed mortality differences \(y_i\) are like random draws from a normal distribution with mean \(\theta_i\) and variance \(V_i\) (the normality is reasonable because of the **Central Limit Theorem**, given the large numbers of patients).

In meta-analyses of data like those in Table 5.1 the \(V_i\) are typically taken to be known (again because the patient sample sizes are so big), \(V_i = SE_i^2\), where \(SE_i\) is the standard error of the mortality difference for study \(i\) in Table 5.1.

The middle level of the HM is where you would bring in the **study-level covariates**, if you have any, to try to explain why the studies differ in their underlying effects.

Here there are no study-level covariates, so the middle level of (1) is equivalent to a **Gaussian regression with no predictor variables**.
A Gaussian HM (continued)

Why the “error” distribution should be Gaussian at this level of the HM is not clear—it’s a conventional option, not a choice that’s automatically scientifically reasonable (in fact I’ll challenge it later).

\(\sigma^2 \) in this model represents study-level heterogeneity.

The top level of (1) is where the prior distribution on the regression parameters from the middle level is specified.

Here, with only an intercept term in the regression model, a popular conventional choice is the normal/scaled-inverse-\(\chi^2 \) prior we looked at earlier in our first Gaussian case study.

Fixed effects and random effects. If \(\sigma^2 \) were known somehow to be 0, all of the \(\theta_i \) would have to be equal deterministically to a common value \(\mu \), yielding a simpler model:
\[
(y_i|\mu) \overset{\text{indep}}{\sim} N(\mu, V_i), \mu \sim p(\mu).
\]

Meta-analysts call this a fixed-effects model, and refer to model (1) as a random-effects model.

When \(\sigma^2 \) is not assumed to be 0, with this terminology the \(\theta_i \) are called random effects (this parallels the use of this term in the random-effects Poisson regression case study).
Approximate Fitting of Gaussian Hierarchical Models: Maximum Likelihood and Empirical Bayes

Fitting HM (1). Some algebra based on model (1) yields that the conditional distributions of the study-level effects θ_i given the data and the parameters (μ, σ^2), have a **simple and revealing form** (I’ll show this later):

$$ (\theta_i|y_i, \mu, \sigma^2) \sim^{\text{indep}} N[\theta_i^*, V_i(1 - B_i)], $$

with

$$ \theta_i^* = (1 - B_i) y_i + B_i \mu \quad \text{and} \quad B_i = \frac{V_i}{V_i + \sigma^2}. $$

In other words, the conditional mean of the effect for study i given y_i, μ, and σ^2 is a **weighted average** of the sample mean for that study, y_i, and the overall mean μ.

The weights are given by the so-called **shrinkage factors** B_i (e.g., Draper et al., 1993a), which in turn depend on how the variability V_i **within study** i compares to the **between-study** variability σ^2: the more accurately y_i estimates θ_i, the more weight the “local” estimate y_i gets in the weighted average.

The term **shrinkage** refers to the fact that, with this approach, unusually high or low individual studies are **drawn back** or “shrunken” toward the overall mean μ when making the calculation $(1 - B_i) y_i + B_i \mu$.

Note that θ_i^* uses data from all the studies to estimate the effect for study i—this is referred to as **borrowing strength** in the estimation process.

Closed-form expressions for $p(\mu|y)$ and $p(\theta_i|y)$ with $y = (y_1, \ldots, y_k), k = 6$ are not available even with a normal-χ^{-2} prior for (μ, σ^2); **MCMC** is needed (see below).
Maximum Likelihood and Empirical Bayes

In the meantime maximum likelihood calculations provide some idea of what to expect: the likelihood function based on model (1) is

$$l(\mu, \sigma^2 | y) = c \left[\prod_{i=1}^{k} \frac{1}{\sqrt{V_i + \sigma^2}} \right] \exp \left[-\frac{1}{2} \sum_{i=1}^{k} \frac{(y_i - \mu)^2}{V_i + \sigma^2} \right].$$

(4)

The maximum likelihood estimates (MLEs) \((\hat{\mu}, \hat{\sigma}^2)\) then turn out to be the iterative solutions to the following equations:

$$\hat{\mu} = \frac{\sum_{i=1}^{k} \hat{W}_i y_i}{\sum_{i=1}^{k} \hat{W}_i} \quad \text{and} \quad \hat{\sigma}^2 = \frac{\sum_{i=1}^{k} \hat{W}_i^2 \left[(y_i - \hat{\mu})^2 - V_i \right]}{\sum_{i=1}^{k} \hat{W}_i^2},$$

where \(\hat{W}_i = \frac{1}{V_i + \hat{\sigma}^2}\).

(5)

Start with \(\hat{\sigma}^2 = 0\) and iterate (5–6) to convergence (if \(\hat{\sigma}^2\) converges to a negative value, \(\hat{\sigma}^2 = 0\) is the MLE); the MLEs of the \(\theta_i\) are then given by

$$\hat{\theta}_i = (1 - \hat{B}_i) y_i + \hat{B}_i \hat{\mu} \quad \text{where} \quad \hat{B}_i = \frac{V_i}{V_i + \hat{\sigma}^2}.$$

(7)

These are called empirical Bayes (EB) estimates of the study-level effects, because it turns out that this analysis approximates a fully Bayesian solution by (in effect) using the data to estimate the prior specifications for \(\mu\) and \(\sigma^2\).

Large-sample (mainly meaning large \(k\)) approximations to the (frequentist) distributions of the MLEs are given by

$$\hat{\mu} \sim N \left(\mu, \left[\sum_{i=1}^{k} \frac{1}{V_i + \hat{\sigma}^2} \right]^{-1} \right) \quad \text{and} \quad \hat{\theta}_i \sim N \left[\theta_i, V_i (1 - \hat{\theta}_i) \right].$$

(8)
MLEB (continued)

NB The variances in (8) don’t account fully for the uncertainty in \(\sigma^2 \) and therefore underestimate the actual sampling variances for small \(k \) (adjustments are available; see, e.g., Morris (1983, 1988)).

MLEB estimation can be implemented simply in about 15 lines of R code (Table 5.2).

Table 5.2. R program to perform MLEB calculations.

```r
mleb <- function( y, V, m ) {
  sigma2 <- 0.0
  for ( i in 1:m ) {
    W <- 1.0 / ( V + sigma2 )
    theta <- sum( W * y ) / sum( W )
    sigma2 <- sum( W^2 * (( y - theta )^2 - V ) ) / sum( W^2 )
    B <- V / ( V + sigma2 )
    effects <- ( 1 - B ) * y + B * theta
    se.theta <- 1.0 / sqrt( sum( 1.0 / ( V + sigma2 ) ) )
    se.effects <- sqrt( V * ( 1.0 - B ) )
    print( c( i, theta, se.theta, sigma2 ) )
    print( cbind( W, ( W / sum( W ) ), B, y, effects, se.effects ) )
  }
}
```

With the aspirin data it takes **18 iterations** (less than 0.1 second on a 400MHz UltraSPARC Unix machine) to get convergence to **4-digit accuracy**, leading to the summaries in Table 5.3 and the following estimates (standard errors in parentheses):

\[
\hat{\mu} = 1.45 \ (0.809), \quad \hat{\sigma}^2 = 1.53.
\]

Table 5.3. Maximum likelihood empirical Bayes meta-analysis of the aspirin data.

<table>
<thead>
<tr>
<th>study(i)</th>
<th>(\hat{W}_i)</th>
<th>normalized (\hat{W}_i)</th>
<th>(\hat{B}_i)</th>
<th>(y_i)</th>
<th>(\hat{\theta}_i)</th>
<th>(\hat{SE}(\hat{\theta}_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.235</td>
<td>0.154</td>
<td>0.640</td>
<td>2.77</td>
<td>1.92</td>
<td>0.990</td>
</tr>
<tr>
<td>2</td>
<td>0.308</td>
<td>0.202</td>
<td>0.529</td>
<td>2.50</td>
<td>1.94</td>
<td>0.899</td>
</tr>
<tr>
<td>3</td>
<td>0.143</td>
<td>0.0934</td>
<td>0.782</td>
<td>1.84</td>
<td>1.53</td>
<td>1.09</td>
</tr>
<tr>
<td>4</td>
<td>0.232</td>
<td>0.151</td>
<td>0.646</td>
<td>2.56</td>
<td>1.84</td>
<td>0.994</td>
</tr>
<tr>
<td>5</td>
<td>0.183</td>
<td>0.120</td>
<td>0.719</td>
<td>2.31</td>
<td>1.69</td>
<td>1.05</td>
</tr>
<tr>
<td>6</td>
<td>0.427</td>
<td>0.280</td>
<td>0.346</td>
<td>-1.15</td>
<td>-0.252</td>
<td>0.728</td>
</tr>
</tbody>
</table>
Aspirin Meta-Analysis: Conclusions

Note that (1) AMIS gets much less weight (normalized \hat{W}_i) than would have been expected given its small V_i; (2) the shrinkage factors (\tilde{B}_i) are considerable, with AMIS shrunk almost all the way into positive territory (see Figure 5.1); (3) there is considerable study-level heterogeneity ($\tilde{\sigma} = 1.24$ percentage points of mortality); and (4) the standard errors of the effects are by and large smaller than the $\sqrt{V_i}$ (from the borrowing of strength) but are still considerable.

![Shrinkage plot](image)

Figure 5.1. Shrinkage plot for the aspirin MLEB meta-analysis.

The 95% interval estimate of μ, the overall underlying effect of aspirin on mortality, from this approach comes out

$$\hat{\mu} \pm 1.96 \cdot \hat{SE}(\hat{\mu}) \doteq (-0.140, 3.03),$$

which if interpreted Bayesianly gives

$$P(\text{aspirin reduces mortality} | \text{data}) \doteq 1 - \Phi\left(\frac{0-1.45}{0.809}\right) = 0.96,$$

where Φ is the standard normal CDF.

Thus although the interval includes 0, so that in a frequentist sense the effect is not statistically significant, in fact from a Bayesian point of view the evidence is running strongly in favor of aspirin’s usefulness.
MCMC Details

In many cases (as with this example) empirical Bayes methods have the advantage of yielding closed-form solutions, but I view them at best as approximations to fully Bayesian analyses—which can in any case be carried out with MCMC—so I won’t have any more to say about EB methods here (see Carlin and Louis, 1996, for more on this topic).

MCMC details. First let’s derive that likelihood function I mentioned on page 7: the model, once again, is

\[
\begin{align*}
(\mu, \sigma^2) & \sim p(\mu, \sigma^2) \quad \text{(prior)} \\
(\theta_i | \mu, \sigma^2) & \sim \text{IID } N(\mu, \sigma^2) \quad \text{(underlying effects)} \quad (9) \\
(y_i | \theta_i) & \sim \text{indep } N(\theta_i, V_i) \quad \text{(data)}.
\end{align*}
\]

The parameters we’re interested in here are \((\mu, \sigma^2)\); Bayes’s Theorem gives (as usual)

\[
p(\mu, \sigma^2 | y) = c p(\mu, \sigma^2) p(y | \mu, \sigma^2), \quad (10)
\]

so let’s look at the sampling distribution for a single \(y_i\):

\[
p(y_i | \mu, \sigma^2) = \int_{-\infty}^{\infty} p(y_i, \theta_i | \mu, \sigma^2) d\theta_i
\]

\[
= \int_{-\infty}^{\infty} p(y_i | \theta_i, \mu, \sigma^2) p(\theta_i | \mu, \sigma^2) d\theta_i \quad (11)
\]

\[
= \int_{-\infty}^{\infty} p(y_i | \theta_i) p(\theta_i | \mu, \sigma^2) d\theta_i
\]

(what we’re doing here is integrating out the random effect \(\theta_i\)).

Now \(p(y_i | \theta_i)\) is normal in this model, and \(p(\theta_i | \mu, \sigma^2)\) is also normal; you could put in the normal densities and grind away at the algebra and integration, but there’s a better way: the last line of (11) is a mixture representation, and a normal mixture of normals is normal, so I know that \(p(y_i | \mu, \sigma^2)\) is normal, and the only questions are, what are its mean and variance?
Adam and Eve

These questions can be answered with little difficulty via the Double Expectation Theorem, which has two parts that are so central to Bayesian calculations that Carl Morris refers to them as Adam and Eve: for any two random variables X and Y,

$$
\begin{align*}
E(Y) &= E_X[E(Y|X)] & \text{(Adam)} \\
V(Y) &= E_X[V(Y|X)] + V_X[E(Y|X)] & \text{(Eve),}
\end{align*}
$$

(12)
in which E_X and V_X refer to expectation and variance with respect to the distribution of X.

If there's additional conditioning going on, you just need to remember to include it in all the relevant places: for any three random variables X, Y and Z,

$$
\begin{align*}
E(Y|Z) &= E_{(X|Z)}[E(Y|X,Z)] \\
V(Y|Z) &= E_{(X|Z)}[V(Y|X,Z)] + V_{(X|Z)}[E(Y|X,Z)],
\end{align*}
$$

(13)
and so on.

The application here is in two parts (Adam and Eve):

$$
\begin{align*}
E(y_i|\mu, \sigma^2) &= E_{(\theta_i|\mu, \sigma^2)}[E(y_i|\mu, \sigma^2, \theta_i)] \\
&= E_{(\theta_i|\mu, \sigma^2)}[E(y_i|\theta_i)] \\
&= E_{(\theta_i|\mu, \sigma^2)}[\theta_i] \\
&= \mu, \quad \text{and}
\end{align*}
$$

$$
\begin{align*}
V(y_i|\mu, \sigma^2) &= E_{(\theta_i|\mu, \sigma^2)}[V(y_i|\mu, \sigma^2, \theta_i)] + V_{(\theta_i|\mu, \sigma^2)}[E(y_i|\mu, \sigma^2, \theta_i)] \\
&= E_{(\theta_i|\mu, \sigma^2)}[V(y_i|\theta_i)] + V_{(\theta_i|\mu, \sigma^2)}[E(y_i|\theta_i)] \\
&= E_{(\theta_i|\mu, \sigma^2)}[V_i] + V_{(\theta_i|\mu, \sigma^2)}[\theta_i] \\
&= V_i + \sigma^2.
\end{align*}
$$

(14)
Direct Use of Gibbs Sampling

So (a) $(y_i|\mu, \sigma^2) \sim N(\mu, V_i + \sigma^2)$, (b) by inspection of the form of the model, the y_i are independent given (μ, σ^2), so

$$l(\mu, \sigma^2|y) = cp(y|\mu, \sigma^2) = c \prod_{i=1}^{k} p(y_i|\mu, \sigma^2)$$

$$= c \left[\prod_{i=1}^{k} \frac{1}{\sqrt{V_i + \sigma^2}} \right] \exp \left[-\frac{1}{2} \sum_{i=1}^{k} \frac{(y_i - \mu)^2}{V_i + \sigma^2} \right],$$

as desired.

MCMC: how best to sample from the posterior?

All MCMC (with a parameter space of fixed dimension) is one special case or another of the Metropolis-Hastings algorithm, but (as usual) we have a number of possibilities: generic (e.g., random-walk) Metropolis? Metropolis mixed with Gibbs steps? All Gibbs? With or without auxiliary (e.g., latent) variables? ...

First let’s try direct Gibbs, for which we would need the full conditionals:

$$p(\mu|\sigma^2, y) = cp(\mu, \sigma^2, y)$$

$$= cp(\mu, \sigma^2) p(y|\mu, \sigma^2).$$

By virtue of integrating out the random effects above, we have $p(y|\mu, \sigma^2)$ as a product of independent univariate Gaussians; what shall we take for the prior $p(\mu, \sigma^2)$, given that there’s no conjugate choice?

Even with somewhat informative priors on a vector of parameters, for simplicity people often assume independence of the components — in this case, $p(\mu, \sigma^2) = p(\mu) p(\sigma^2)$ — on the ground that whatever correlation the parameters should have in the posterior will be learned via the likelihood function; let’s make this simplifying assumption; then

$$p(\mu|\sigma^2, y) = cp(\mu) p(\sigma^2) p(y|\mu, \sigma^2) = c p(\mu) p(y|\mu, \sigma^2).$$
Direct Gibbs; Latent Gibbs

Now the **product of two Gaussians is Gaussian**, so if we take the **prior** for μ to be Gaussian we’ll have a Gaussian **full conditional** for μ that’ll be **easy to sample from**; what about σ^2?

$$p(\sigma^2|\mu, y) = c p(\mu, \sigma^2, y)$$
$$= c p(\mu, \sigma^2) p(y|\mu, \sigma^2)$$
$$= c p(\mu) p(\sigma^2) p(y|\mu, \sigma^2)$$
$$= c p(\sigma^2) p(y|\mu, \sigma^2).$$

Here we run into **trouble**: when considered as a **function** of σ^2 for fixed μ and y, $p(y|\mu, \sigma^2)$ is **not recognizable** as a member of a **standard parametric family** (because the y_i (given μ and σ^2) are **independent** but **not identically distributed**); we could choose, e.g., a χ^2 prior on σ^2 and use **rejection sampling** to sample from the resulting **non-standard full conditional**, but that would not be especially **pleasant**.

So instead let’s use a **trick** that’s generally helpful in **random-effects** models: treat the **(latent) random effects** as **auxiliary variables** to be sampled along with (μ, σ^2).

In other words, letting $\theta = (\theta_1, \ldots, \theta_k)$, we’re going to sample from the **augmented posterior** $p(\mu, \sigma^2, \theta|y)$; the hope is that this will have **completely tractable full conditionals**; let’s see.

$$p(\mu|\sigma^2, \theta, y) = c p(\mu, \sigma^2, \theta, y)$$
$$= c p(\mu, \sigma^2) p(\theta|\mu, \sigma^2) p(y|\theta, \mu, \sigma^2)$$

Notice how naturally this **factorization** matches the **hierarchical character** of (9), which starts at the **top** with a model for (μ, σ^2), and then builds a **model** for $(\theta|\mu, \sigma^2)$, and then at the **bottom** there’s a model for $p(y|\theta, \mu, \sigma^2)$, which — by virtue of the **hierarchical** structure — can be **simplified** to $p(y|\theta)$.
Latent Gibbs (continued)

Since (a) we’re assuming that \(p(\mu, \sigma^2) = p(\mu) p(\sigma^2) \) and (b) \(p(y|\theta) \) doesn’t involve \(\mu \), the full conditional for \(\mu \) becomes

\[
p(\mu|\sigma^2, \theta, y) = c p(\mu) p(\theta|\mu, \sigma^2);
\]
(20)

with a Gaussian prior on \(\mu \) this will be Gaussian; how about \(\sigma^2 \)?

\[
p(\sigma^2|\mu, \theta, y) = c p(\mu, \sigma^2, \theta, y)
= c p(\mu, \sigma^2) p(\theta|\mu, \sigma^2) p(y|\theta, \mu, \sigma^2)
= c p(\mu) p(\sigma^2) p(\theta|\mu, \sigma^2) p(y|\theta)
= c p(\sigma^2) p(\theta|\mu, \sigma^2).
\]
(21)

Here’s another trick: instead of slogging through the details, try to recognize situations in which you already know the conjugate updating, and just use what you already know.

For example, in this calculation \((\theta|\mu, \sigma^2) \) is Gaussian with known \(\mu \) and unknown \(\sigma^2 \), and we know the conjugate prior for \(\sigma^2 \) in that model — \(\chi^{-2} \) — so with that prior choice the full conditional for \(\sigma^2 \) will also be \(\chi^{-2} \); how about \(\theta \)?

\[
p(\theta|\mu, \sigma^2, y) = c p(\mu, \sigma^2, \theta, y)
= c p(\mu, \sigma^2) p(\theta|\mu, \sigma^2) p(y|\theta, \mu, \sigma^2)
= c p(\theta|\mu, \sigma^2) p(y|\theta).
\]
(22)

Here \(p(\theta|\mu, \sigma^2) \) and \(p(y|\theta) \) are both Gaussian, so the full conditional for \(\theta \) — the product — will also be Gaussian.

Thus using the latent Gibbs approach in this random-effects model, all of the full conditionals have familiar forms; this approach will work smoothly; we just need to work out the details.

(I recommend this as a basic Gibbs strategy: in the first step make a sketchy pass through the full conditionals without working out all of the details, to ensure that everything works fine, and then go back and fill in the details.)
Details

(1) Full conditional for μ:
\[
p(\mu|\sigma^2, \theta, y) = c p(\mu) p(\theta|\mu, \sigma^2).
\] (23)

In this calculation (a) σ^2 is known and (b) the latent vector $\theta = (\theta_1, \ldots, \theta_k)$ acts like the data vector $y = (y_1, \ldots, y_n)$ in the model $\mu \sim N(\mu_0, \sigma^2_{\mu_0}), (y_i|\mu) \overset{\text{IID}}{\sim} N(\mu, \sigma^2)$ ($i = 1, \ldots, n$), so we already know the answer: $(\mu|\sigma^2, \theta, y) \sim N(\mu_k, \sigma_k^2)$, where
\[
\mu_k = \frac{k_0 \mu_0 + k \bar{\theta}}{k_0 + k} \quad \text{and} \quad \sigma_k^2 = \frac{\sigma^2}{k_0 + k},
\] (24)
and in which the prior sample size is $k_0 = \frac{\sigma^2}{\sigma^2_{\mu_0}}$ and
\[
\bar{\theta} = \frac{1}{k} \sum_{i=1}^k \theta_i.
\]

(2) Full conditional for σ^2:
\[
p(\sigma^2|\mu, \theta, y) = c p(\sigma^2) p(\theta|\mu, \sigma^2).
\] (25)

In parallel with the situation with μ, in this calculation (a) μ is known and (b) the latent vector $\theta = (\theta_1, \ldots, \theta_k)$ acts like the data vector $y = (y_1, \ldots, y_n)$ in the model $\sigma^2 \sim \chi^{-2}(\nu_0, \sigma^2_{\sigma_0}), (y_i|\sigma^2) \overset{\text{IID}}{\sim} N(\mu, \sigma^2)$ ($i = 1, \ldots, n$), so we already know the answer: $(\sigma^2|\mu, \theta, y) \sim \chi^{-2}(\nu_k, \sigma_k^2)$, where
\[
\nu_k = \nu_0 + k \quad \text{and} \quad \sigma_k^2 = \frac{\nu_0 \sigma^2_{\sigma_0} + k v}{\nu_0 + k},
\] (26)
in which $v = \frac{1}{k} \sum_{i=1}^k (\theta_i - \mu)^2$.

15
Details (continued)

(3) **Full conditional for \(\theta \):**

\[
p(\theta | \mu, \sigma^2, y) = c p(\theta | \mu, \sigma^2) p(y | \theta) \\
= c \prod_{i=1}^{k} p(\theta_i | \mu, \sigma^2) p(y_i | \theta_i).
\]

Now \((\theta_i | \mu, \sigma^2) \sim N(\mu, \sigma^2) \) and \((y_i | \theta_i) \sim N(\theta_i, V_i) \) (with \(V_i \) known), so this is just our **old friend**

\{ **Gaussian likelihood** (for \(y_i \)) with **unknown mean** \(\theta_i \) and

known variance \(V_i + \) **Gaussian prior** for \(\theta_i \) with

hyper-parameters \(\mu \) and \(\sigma^2 \};

the (un-normalized) product \(p(\theta_i | \mu, \sigma^2) p(y_i | \theta_i) \) is just the **posterior** for \(\theta_i \), and the **answer** is therefore the **same** as it was in the **full conditional** for \(\mu \):

\[
(\theta_i | \mu, \sigma^2, y) \sim N(\theta_i^*, \sigma_i^2), \\
\theta_i^* = \frac{1}{\sigma_i^2} \mu + \frac{1}{V_i} y_i = \frac{V_i \mu + \sigma_i^2 y_i}{V_i + \sigma_i^2} = B_i \mu + (1 - B_i) y_i \quad \text{and}
\sigma_i^2 = \frac{1}{\sigma_i^2} + \frac{1}{V_i} = \frac{V_i \sigma_i^2}{V_i + \sigma_i^2} = V_i (1 - B_i),
\]

in which \(B_i = \frac{V_i}{V_i + \sigma_i^2} \) is the **shrinkage factor** for study \(i \) (this is the **demonstration** of equations (2) and (3) earlier).

Thus \((\theta | \mu, \sigma^2, y) \sim N_k(\theta^*, \Sigma) \) with \(\theta^* = (\theta_1^*, \ldots, \theta_k^*) \) and

\(\Sigma = \text{diag}(\sigma_i^2) \), and **one scan** of the **Gibbs sampler** can be described as follows:

(a) **draw** \(\mu \) from \(p(\mu | \sigma^2, \theta, y) \), **obtaining** \(\mu_* \);

(b) **draw** \(\sigma^2 \) from \(p(\sigma^2 | \mu_*, \theta, y) \), **obtaining** \(\sigma_*^2 \); and

(c) **draw** \(\theta \) from \(p(\theta | \mu_*, \sigma_*^2, y) \), either **univariately** on the \(\theta_i \)

(one by one) or **multivariately** on \(\theta \) all at once.
R Code

meta.analysis.gibbs <- function(mu.0, sigma2.mu.0, nu.0, sigma2.sigma.0,
mu.initial, sigma2.initial, theta.initial, y, V, M, B) {
 k <- length(y)
 mu <- rep(0, M + B + 1)
 sigma2 <- rep(0, M + B + 1)
 theta <- matrix(0, M + B + 1, k)
 mu[1] <- mu.initial
 sigma2[1] <- sigma2.initial
 theta[1,] <- theta.initial
 for (m in 2:(M + B + 1)) {
 mu[m] <- mu.full.conditional(mu.0, sigma2.mu.0, sigma2[m - 1],
 theta[m - 1,], y)
 sigma2[m] <- sigma2.full.conditional(nu.0, sigma2.sigma.0,
 mu[m], theta[m - 1,], y)
 theta[m,] <- theta.full.conditional(mu[m], sigma2[m], y, V)
 if (m %% 1000 == 0) print(m)
 }
 return(cbind(mu, sigma2, theta))
}

mu.full.conditional <- function(mu.0, sigma2.mu.0, sigma2.current,
 theta.current, y) {
 k <- length(y)
 k.0 <- sigma2.current / sigma2.mu.0
 theta.bar <- mean(theta.current)

 mu.0 <- mu.0 + k.0 * theta.bar
 sigma2.mu.0 <- sigma2.mu.0 + k
 return(list(mu = mu.0, sigma2 = sigma2.mu.0))
}
R Code (continued)

mu.k <- (k.0 * mu.0 + k * theta.bar) / (k.0 + k)

sigma2.k <- sigma2.current / (k.0 + k)

mu.star <- rnorm(n = 1, mean = mu.k, sd = sqrt(sigma2.k))

return(mu.star)
}

sigma2.full.conditional <- function(nu.0, sigma2.sigma.0, mu.current, theta.current, y) {

k <- length(y)

nu.k <- nu.0 + k

v <- mean((theta.current - mu.current)^2)

sigma2.k <- (nu.0 * sigma2.sigma.0 + k * v) / (nu.0 + k)

sigma2.star <- rsichi2(1, nu.k, sigma2.k)

return(sigma2.star)
}

rsichi2 <- function(n, nu, sigma2) {

sigma2.star <- 1 / rgamma(n, shape = nu / 2,
 rate = nu * sigma2 / 2)

return(sigma2.star)
}

theta.full.conditional <- function(mu.current, sigma2.current, y, V) {

k <- length(y)

theta.star <- (V * mu.current + sigma2.current * y) /
 (V + sigma2.current)
R Code (continued)

sigma2.star <- V * sigma2.current / (V + sigma2.current)

theta.sim <- rnorm(n = k, mean = theta.star,
 sd = sqrt(sigma2.star))

return(theta.sim)

mu.0 <- 0.0

sigma2.mu.0 <- 100^2

nu.0 <- 0.001

sigma2.sigma.0 <- 1.53

mu.initial <- 1.45

sigma2.initial <- 1.53

theta.initial <- c(1.92, 1.94, 1.53, 1.84, 1.69, -0.252)

y <- c(2.77, 2.50, 1.84, 2.56, 2.32, -1.15)

V <- c(1.65, 1.31, 2.34, 1.67, 1.98, 0.90)^2

M <- 100000

B <- 1000

mcmc.data.set <- meta.analysis.gibbs(mu.0, sigma2.mu.0, nu.0,
 sigma2.sigma.0, mu.initial, sigma2.initial, theta.initial,
 y, V, M, B)

% took 47 seconds

mcmc.data.set <- cbind(mcmc.data.set[, 1:2],
apply(mcmc.data.set[1001:101001,], 2, mean)

 mu sigma2
1.33013835 2.24106295 1.12196766 1.68639681 1.67526967 1.38514567 1.62389213 1.51615795 0.09356775

apply(mcmc.data.set[1001:101001,], 2, sd)

 mu sigma2
0.9042468 4.4707971 0.9910910 1.1576621 1.0311309 1.2381000 1.1391841 1.1917662 0.9944885

mu.star <- mcmc.data.set[1001:101001, 1]

sum(mu.star > 0) / length(mu.star)

[1] 0.9484605

sigma.star <- mcmc.data.set[1001:101001, 3]

par(mfrow = c(2, 1))

hist(mu.star, nclass = 100, main = '', probability = T, xlab = 'mu')

hist(sigma.star[sigma.star < 5], nclass = 100, main = '', probability = T, xlab = 'sigma')
WinBUGS Analysis of Aspirin Data

Aspirin meta-analysis revisited. I create three files for WinBUGS: a model file, a data file, and an initial values file (I’m using the most recent release, 1.4.1, of WinBUGS).

The (first) model file for the aspirin data:

```
{

  mu ~ dnorm( 0.0, 1.0E-6 )
  tau.theta ~ dgamma( 1.0E-3, 1.0E-3 )

  for ( i in 1:k ) {

    theta[ i ] ~ dnorm( mu, tau.theta )
    y[ i ] ~ dnorm( theta[ i ], tau.y[ i ] )

  }

  sigma.theta <- 1.0 / sqrt( tau.theta )

}
```
WinBUGS Analysis of Aspirin Data

Here μ plays the role of θ in model (10) above to avoid using the name θ twice for two different purposes in the WinBUGS program.

In specifying a normal distribution WinBUGS works not with a standard deviation (SD) or a variance but with a precision—the reciprocal of the variance—so that the $N(\mu, \sigma^2)$ distribution is specified by $\text{dnorm}(\mu, \tau)$ with $\tau = \frac{1}{\sigma^2}$.

Then the SD has to be computed as a derived quantity $(\sigma = \frac{1}{\sqrt{\tau}})$ which is written above as

$$\text{sigma.theta <- 1.0 / sqrt(tau.theta)}$$

If—before the aspirin experiments were performed—I’m relatively ignorant about the quantities $\theta (\mu)$ and σ in model (10), or equivalently μ and $\tau = \frac{1}{\sigma^2}$, I can build a diffuse or flat prior for both quantities that expresses this relative ignorance.

Since μ lives on $(-\infty, \infty)$ a convenient choice for a flat prior for it is a normal distribution with mean (say) 0 and very small precision: $\mu \sim \text{dnorm}(0.0, 1.0E-6)$

For τ, which lives on $(0, \infty)$, I want something that’s flat throughout (almost) all of that range; a convenient choice (to get an initial idea of where the posterior distribution for sigma.theta is concentrated) is a gamma distribution with small positive values of both of its parameters.

This is the $\Gamma(\epsilon, \epsilon)$ distribution for some small $\epsilon > 0$ like 0.001: $\tau \sim \text{dgamma}(1.0E-3, 1.0E-3)$
Figure 3.1. The $\Gamma(0.001,0.001)$ distribution.

The data file in the aspirin meta-analysis is

\[
\text{list(} k = 6, \ y = c(2.77, 2.50, 1.84, 2.56, 2.31, -1.15), \\
\tau.y = c(0.3673, 0.5827, 0.1826, 0.3586, 0.2551, 1.235) \)
\]

Here, e.g., $\tau.y[1] = \frac{1}{1.65^2} \approx 0.3673$, where 1.65 is the standard error of the difference $y[1]$ for experiment 1 in Table 2.1 on p. 20.

Finally, the initial values file in the aspirin meta-analysis is

\[
\text{list(} \mu = 0.0, \ \tau.theta = 1.0 \)
\]

In a simple example like this there’s no harm in starting the Markov chain off in a generic location: since μ and τ_θ live on $(-\infty, \infty)$ and $(0, \infty)$, convenient generic choices for their starting values are 0 and 1, respectively (more care may be required in models with more complex random-effects structure).
I (1) get a Specification Tool from the Model menu, (2) click on the model window and click check model, (3) click on the data window and click load data and compile, (4) click on the initial values window and click load inits, and (5) click gen inits (because the random effects θ_i were uninitialized in the inits file); I’m now ready to do some MCMC sampling.

I (6) get an Update Tool from the Model menu, and click update to perform a burn-in of 1,000 iterations (the default), which takes 0s at 1.6 Pentium GHz; (7) I then get a Sample Monitoring Tool from the Inference menu, and type sigma.theta and click set.
(8) I type 50000 in the updates window in the Update Tool and click update to get a monitoring run of 50,000 iterations (this took 15s).

Then (9) selecting sigma.theta in the node window, all 10 buttons from clear through autoc are active, and I click on history (to get a Time Series window), density (to get a Kernel density window), autoc to get an Autocorrelation function window, and stats (to get a Node statistics window), yielding the screen above.

The output of an MCMC sampler, when considered as a time series, often exhibits positive autocorrelation; in fact it often looks like a realization of an autoregressive AR\(_p\) model of order \(p = 1\) (\(\theta_t = \alpha + \beta\theta_{t-1} + e_t\)) with positive first-order autocorrelation \(\rho\).
WinBUGS Aspirin Analysis (continued)

This does not affect the **validity** of Monte Carlo inferences about the unknowns (e.g., the mean of any **stationary stochastic process** is a **consistent** estimator of the underlying process mean), but it does affect the **efficiency** of these inferences: for example, the Monte Carlo variance of the sample mean \(\bar{\theta} \) based on \(M \) draws from an AR\(_1\) time series is

\[
V(\bar{\theta}) = \frac{\sigma^2}{M} \left(\frac{1 + \rho}{1 - \rho} \right), \tag{29}
\]

and the **sample size inflation factor** \(\frac{1+\rho}{1-\rho} \to \infty \) as \(\rho \to \pm 1 \).

An MCMC sampler which produces output for any given unknown \(\theta \) with \(\rho \) near 0 (if \(\rho = 0 \) the output is white noise, i.e., equivalent to IID draws from the posterior) is said to be **mixing well** in that unknown.

The time series trace for \(\sigma_\theta \) above is only mixing **moderately well**: the autocorrelation function has the familiar ski-slope shape of an AR\(_1\) series with \(\hat{\rho} = 0.7 \) (the height of the bar at lag 1).

The **marginal posterior distribution** for \(\sigma_\theta \) (from the Kernel density window) looks heavily skewed to the right, which makes sense for a scale parameter.

The **posterior mean** and **SD** of \(\sigma_\theta \) (using the \(\Gamma(\epsilon, \epsilon) \) prior for \(\tau_\theta \)) are estimated to be 1.14 and 1.00, respectively; the **Monte Carlo standard error** of the posterior mean estimate is 0.021 (so that with 50,000 monitoring iterations I don’t yet have **3 significant figures** of accuracy for the posterior mean); the **posterior median** is estimated to be 0.96; and a **95% central interval** for \(\sigma_\theta \) with this prior is estimated to run from 0.042 to 3.57.
The main thing to notice, however, is that the range of plausible values for sigma.theta in its posterior is approximately from 0 to 16.

It has recently been shown that the simplest diffuse prior on σ_θ that has good calibration properties (i.e., such that 95% nominal Bayesian interval estimates for all of the parameters in model (10) do in fact have actual coverage close to 95%) is

$$
\sigma_\theta \sim U(0, c),
$$

where c is chosen to be (roughly) the smallest value that doesn’t truncate the likelihood function for σ_θ; here it’s evident that $c \approx 16$ will work well.
So I estimate a **second model** placing a Uniform(0, c) prior on \(\sigma_\theta \) (this model also requires a **new initial values file** that initializes sigma.theta instead of tau.theta).

This time in the Sample Monitor Tool I set all of the **interesting** quantities: mu, sigma.theta, theta, and positive.effect, and I use the same MCMC strategy as before (a **burn-in of 1,000** followed by a **monitoring run of 50,000**).
With the Uniform(0, c) prior on σ_θ the posterior mean of σ_θ is now **sharply higher** than before (2.02 versus the 1.14 value I got with the initial $\Gamma(\epsilon, \epsilon)$ prior (this sort of **discrepancy** will only arise when the number of studies k is **small**; when it does arise I trust the results from the Uniform(0, c) prior).

Note that the posterior mean of σ_θ is also quite a bit bigger than the value (1.24) obtained from MLEB back on page 25—this is a reflection of the **tendency of MLEB to understate the between-study heterogeneity** in model (10) with small k.
On pp. 25–26 above we saw that the MLEB estimate of μ was 1.45 with an approximate standard error of 0.809, and an approximate 95% confidence interval for μ ran from −0.14 to +3.03.

The corresponding Bayesian results are: posterior mean 1.52, posterior SD 1.21, 95% interval (−0.72, 4.06).

As is often true, the simple MLEB approximations leading to these estimates have underestimated the actual uncertainty about μ: the Bayesian 95% interval with the Uniform prior is 50% wider.

It's easy to monitor the posterior probability that aspirin is beneficial, with the built-in step function applied to μ:

$$P(\mu > 0 | \text{data, diffuse prior information}) = 0.93,$$

i.e., posterior betting odds of about 12.5 to 1 that aspirin reduces mortality.
The marginal density plots of the θ_i values show **interesting departures from normality**, and the Bayesian estimates (a) exhibit **rather less shrinkage** and (b) have **27–43% larger uncertainty estimates**.

Table 3.1. MLEB and Bayesian (posterior mean) estimates of the θ_i.

<table>
<thead>
<tr>
<th>study(i)</th>
<th>Maximum Likelihood</th>
<th>Bayesian Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\theta}_i$</td>
<td>$SE(\hat{\theta}_i)$</td>
</tr>
<tr>
<td>1</td>
<td>1.92</td>
<td>0.990</td>
</tr>
<tr>
<td>2</td>
<td>1.94</td>
<td>0.899</td>
</tr>
<tr>
<td>3</td>
<td>1.53</td>
<td>1.09</td>
</tr>
<tr>
<td>4</td>
<td>1.84</td>
<td>0.994</td>
</tr>
<tr>
<td>5</td>
<td>1.69</td>
<td>1.05</td>
</tr>
<tr>
<td>6</td>
<td>-0.252</td>
<td>0.728</td>
</tr>
</tbody>
</table>
Hierarchical Model Expansion

Looking at the shrinkage plot on p. 26 or the raw data values themselves, it’s evident that a Gaussian model for the θ_i may not be appropriate: study 6 is so different than the other 5 that a heavier-tailed distribution may be a better choice.

This suggests expanding the HM (10), by embedding it in a richer model class of which it’s a special case (this is the main Bayesian approach in practice to dealing with model inadequacies).

A natural choice would be a t model for the θ_i with unknown degrees of freedom ν:

$$(\theta, \sigma^2, \nu) \sim p(\theta, \sigma^2, \nu) \quad \text{(prior)}$$

$$(\theta_i | \theta, \sigma^2, \nu) \overset{\text{IID}}{\sim} t(\theta, \sigma^2, \nu) \quad \text{(underlying effects)}$$

$$(y_i | \theta_i) \overset{\text{indep}}{\sim} N(\theta_i, V_i) \quad \text{(data)}.$$

Here $\eta \sim t(\theta, \sigma^2, \nu)$ just means that $\left(\frac{\eta - \theta}{\sigma} \right)$ follows a standard t distribution with ν degrees of freedom. This is amazingly easy to implement in WinBUGS (it is considerably more difficult to carry out an analogous ML analysis).

The new model file is

```
mu ~ dnorm( 0.0, 1.0E-6 )
sigma.theta ~ dunif( 0.0, 16.0 )
nu ~ dunif( 3.0, 30.0 )

for ( i in 1:k ) {
    theta[ i ] ~ dt( mu, tau.theta, nu )
    y[ i ] ~ dnorm( theta[ i ], tau.y[ i ] )
}

tau.theta <- 1.0 / pow( sigma.theta, 2 )
```
To express comparative prior ignorance about ν I use a uniform prior on the interval from 2.0 to 30.0 (below $\nu = 2$ the t distribution has infinite variance, and above about 30 it starts to be indistinguishable in practice from the Gaussian).

A burn-in of 1,000 and a monitoring run of 100,000 iterations takes about twice as long as with 50,000 iterations in the Gaussian model (i.e., about the same speed per iteration) and yields the posterior summaries above.

It’s clear that there’s little information in the likelihood function about ν: the prior and posterior for this parameter virtually coincide.

The results for μ and the θ_i are almost unchanged; this would not necessarily be the case if study 6 had been more extreme.
Educational Meta-Analysis

Incorporating Study-Level Covariates

Case Study: Meta-analysis of the effect of teacher expectancy on student IQ (Bryk and Raudenbush, 1992). Do teachers’ expectations influence students’ intellectual development, as measured by IQ scores?

Table 5.4. Results from 19 experiments estimating the effects of teacher expectancy on pupil IQ.

<table>
<thead>
<tr>
<th>Study (i)</th>
<th>Weeks of Prior Contact (x_i)</th>
<th>Estimated Effect Size (y_i)</th>
<th>Standard Error of $y_i = \sqrt{V_i}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rosenthal et al. (1974)</td>
<td>2</td>
<td>0.03</td>
<td>0.125</td>
</tr>
<tr>
<td>2. Conn et al. (1968)</td>
<td>3</td>
<td>0.12</td>
<td>0.147</td>
</tr>
<tr>
<td>3. Jose & Cody (1971)</td>
<td>3</td>
<td>-0.14</td>
<td>0.167</td>
</tr>
<tr>
<td>4. Pellegrini & Hicks (1972)</td>
<td>0</td>
<td>1.18</td>
<td>0.373</td>
</tr>
<tr>
<td>5. Pellegrini & Hicks (1972)</td>
<td>0</td>
<td>0.26</td>
<td>0.369</td>
</tr>
<tr>
<td>6. Evans & Rosenthal (1969)</td>
<td>3</td>
<td>-0.06</td>
<td>0.103</td>
</tr>
<tr>
<td>7. Fielder et al. (1971)</td>
<td>3</td>
<td>-0.02</td>
<td>0.103</td>
</tr>
<tr>
<td>8. Claiborn (1969)</td>
<td>3</td>
<td>-0.32</td>
<td>0.220</td>
</tr>
<tr>
<td>9. Kester & Letchworth (1972)</td>
<td>0</td>
<td>0.27</td>
<td>0.164</td>
</tr>
<tr>
<td>10. Maxwell (1970)</td>
<td>1</td>
<td>0.80</td>
<td>0.251</td>
</tr>
<tr>
<td>11. Carter (1970)</td>
<td>0</td>
<td>0.54</td>
<td>0.302</td>
</tr>
<tr>
<td>12. Flowers (1966)</td>
<td>0</td>
<td>0.18</td>
<td>0.223</td>
</tr>
<tr>
<td>13. Keshock (1970)</td>
<td>1</td>
<td>-0.02</td>
<td>0.289</td>
</tr>
<tr>
<td>14. Henrickson (1970)</td>
<td>2</td>
<td>0.23</td>
<td>0.290</td>
</tr>
<tr>
<td>15. Fine (1972)</td>
<td>3</td>
<td>-0.18</td>
<td>0.159</td>
</tr>
<tr>
<td>16. Greiger (1970)</td>
<td>3</td>
<td>-0.06</td>
<td>0.167</td>
</tr>
<tr>
<td>17. Rosenthal & Jacobson (1968)</td>
<td>1</td>
<td>0.30</td>
<td>0.139</td>
</tr>
<tr>
<td>18. Fleming & Anttonen (1971)</td>
<td>2</td>
<td>0.07</td>
<td>0.094</td>
</tr>
<tr>
<td>19. Ginsburg (1970)</td>
<td>3</td>
<td>-0.07</td>
<td>0.174</td>
</tr>
</tbody>
</table>
Teacher Expectancy

Raudenbush (1984) found \(k = 19 \) experiments, published between 1966 and 1974, estimating the effect of teacher expectancy on student IQ (Table 5.4).

In each case the experimental group was made up of children for whom teachers were (deceptively) encouraged to have high expectations (e.g., experimenters gave treatment teachers lists of students, actually chosen at random, who allegedly displayed dramatic potential for intellectual growth), and the controls were students about whom no particular expectations were encouraged.

The estimated effect sizes \(y_i = \frac{T_i - C_i}{SD_{i, \text{pooled}}} \) (column 3 in Table 5.4) ranged from \(-0.32\) to \(+1.18\); why?

One good reason: the studies differed in how well the experimental teachers knew their students at the time they were given the deceptive information—this time period \(x_i \) (column 2 in Table 5.4) ranged from 0 to 3 weeks.

Figure 5.2 plots \(y_i \) against \(x_i \)—you can see that the studies with bigger \(x_i \) had smaller IQ effects on average.

![Figure 5.2. Scatterplot of estimated effect size against weeks of prior contact in the IQ meta-analysis. Radii of circles are proportional to \(w_i = V_i^{-1} \) (see column 4 in Table 5.4); fitted line is from weighted regression of \(y_i \) on \(x_i \) with weights \(w_i \).](image-url)
Conditional Exchangeability

Evidently model (1) will not do here — it says that your predictive uncertainty about all the studies is exchangeable (similar, i.e., according to (1) the underlying study-level effects θ_i are like IID draws from a normal distribution), whereas Figure 5.2 clearly shows that the x_i are useful in predicting the y_i.

This is another way to say that your uncertainty about the studies is not unconditionally exchangeable but conditionally exchangeable given x (Draper et al., 1993b).

In fact Figure 5.2 suggests that the y_i (and therefore the θ_i) are related linearly to the x_i.

Bryk and Raudenbush, working in the frequentist paradigm, fit the following HM to these data:

\[
(\theta_i|\alpha, \beta, \sigma_\theta^2) \overset{\text{indep}}{\sim} N(\alpha + \beta x_i, \sigma_\theta^2) \quad \text{(underlying effects)}
\]

\[
(y_i|\theta_i) \overset{\text{indep}}{\sim} N(\theta_i, V_i) \quad \text{(data).} \quad (32)
\]

According to this model the estimated effect sizes y_i are like draws from a Gaussian with mean θ_i and variance V_i, the squared standard errors from column 4 of Table 5.4—here as in model (1) the V_i are taken to be known—and the θ_i themselves are like draws from a Gaussian with mean $\alpha + \beta x_i$ and variance σ_θ^2.

The top level of this HM in effect assumes, e.g., that the 5 studies with $x = 0$ are sampled representatively from \{all possible studies with $x = 0$\}, and similarly for the other values of x.

This (and the Gaussian choice on the top level) are conventional assumptions, not automatically scientifically reasonable—for example, if you know of some way in which (say) two of the studies with $x = 3$ differ from each other that’s relevant to the outcome of interest, then you should include this in the model as a study-level covariate along with x.

36
An MLEB Drawback

Bryk and Raudenbush used MLEB methods, based on the EM algorithm, to fit this model.

As in Section 5.2, this estimation method combines the two levels of model (9) to construct a single likelihood for the y_i, and then maximizes this likelihood as usual in the ML approach.

They obtained $(\hat{\alpha}, \hat{\beta}) = (0.407 \pm 0.087, -0.157 \pm 0.036)$ and $\hat{\sigma}_\theta^2 = 0$, naively indicating that all of the study-level variability has been “explained” by the covariate x.

However, from a Bayesian point of view, this model is missing a third layer:

\[
(\alpha, \beta, \sigma_\theta^2) \sim p(\alpha, \beta, \sigma_\theta^2) \\
(\theta_i | \alpha, \beta, \sigma_\theta^2) \overset{\text{indep}}{\sim} N(\alpha + \beta(x_i - \bar{x}), \sigma_\theta^2) \\
(y_i | \theta_i) \overset{\text{indep}}{\sim} N(\theta_i, V_i).
\]

(it will help convergence of the sampling-based MCMC methods to make α and β uncorrelated by centering the x_i at 0 rather than at \bar{x}).

As will subsequently become clear, the trouble with MLEB is that in Bayesian language it assumes in effect that the posterior for σ_θ^2 is point-mass on the MLE. This is bad (e.g., Morris, 1983) for two reasons:

- If the posterior for σ_θ^2 is highly skewed, the mode will be a poor summary; and

- Whatever point-summary you use, pretending the posterior SD for σ^2 is zero fails to propagate uncertainty about σ_θ^2 through to uncertainty about α, β, and the θ_i.

The best way to carry out a fully Bayesian analysis of model (10) is with MCMC methods.
For $p(\alpha, \beta, \sigma^2_\theta)$ in model (10) I’ve chosen the usual WinBUGS diffuse prior $p(\alpha)p(\beta)p(\sigma^2_\theta)$: since α and β live on the whole real line I’ve taken marginal Gaussian priors for them with mean 0 and precision 10^{-6}, and since $\tau_\theta = \frac{1}{\sigma^2}$ is positive I use a $\Gamma(0.001, 0.001)$ prior for it.

Model (10) treats the variances V_i of the y_i as known (and equal to the squares of column 4 in Table 5.4); I’ve converted these into precisions in the data file (e.g., $\tau_1 = \frac{1}{0.125^2} = 64.0$).
A burn-in of 1,000 (certainly longer than necessary) from default initial values \((\alpha, \beta, \tau_\theta) = (0.0, 0.0, 1.0)\) and a monitoring run of 10,000 yield the following preliminary MCMC results.

Because this is a random-effects model we don’t expect anything like IID mixing: the output for \(\alpha\) behaves like an \(AR_1\) time series with \(\hat{\rho}_1 = 0.86\).

The posterior mean for \(\alpha\), 0.135 (with an MCSE of 0.002), shows that \(\alpha\) in model (10) and \(\alpha\) in model (9) are not comparable because of the recentering of the predictor \(x\) in model (10): the MLE of \(\alpha\) in (9) was \(0.41 \pm 0.09\).
But \(\beta \) means the same thing in both models (9) and (10): its posterior mean in (10) is \(-0.161 \pm 0.002\), which is not far from the MLE \(-0.157\).

Note, however, that the posterior SD for \(\beta \), 0.0396, is 10\% larger than the standard error of the maximum likelihood estimate of \(\beta \) (0.036).

This is a reflection of the underpropagation of uncertainty about \(\sigma_{\theta} \) in maximum likelihood mentioned on page 15.
In these preliminary results σ_θ has posterior mean 0.064 ± 0.002 and SD 0.036, providing clear evidence that the MLE $\hat{\sigma}_\theta = 0$ is a poor summary.

Note, however, that the likelihood for σ_θ may be appreciable in the vicinity of 0 in this case, meaning that some sensitivity analysis with diffuse priors other than $\Gamma(0.001, 0.001)$—such as $U(0, c)$ for c around 0.5—would be in order.
When you specify node theta in the Sample Monitor Tool and then look at the results, you see that WinBUGS presents parallel findings with a single click for all elements of the vector θ.

Some of the θ_i are evidently mixing better than others.
WinBUGS Implementation

The marginal density traces of the θ_i look rather like t distributions with fairly low degrees of freedom (fairly heavy tails).
Many of the θ_i have **posterior probability concentrated near 0**, but not all; $\theta_4, \theta_5, \theta_9, \theta_{11}$, and θ_{12} are particularly large (looking back on page 12, what’s **special** about the corresponding studies?).
Some of the θ_i are not far from white noise; others are mixing quite slowly.
It’s also useful to monitor the $\mu_i = \alpha + \beta (x_i - \bar{x})$, because they represent an important part of the shrinkage story with model (10).
Shrinkage Estimation

In a manner parallel to the situation with the simpler model (1), the posterior means of the underlying study effects θ_i should be at least approximately related to the raw effect sizes y_i and the μ_i via the shrinkage equation

$$E(\theta_i|y) \doteq (1 - \hat{B}_i) y_i + \hat{B}_i E(\mu_i|y); \quad (34)$$

here $\hat{B}_i = \frac{V_i}{V_i + \hat{\sigma}_\theta^2}$ and $\hat{\sigma}_\theta^2$ is the posterior mean of σ_θ^2.

This is easy to check in R:

```R
> mu <- c( 0.09231, -0.06898, -0.06898, 0.4149, 0.4149, -0.06898, -0.06898,
         -0.06898, 0.4149, 0.2536, 0.4149, 0.4149, 0.2536, 0.09231, -0.06898,
         -0.06898, 0.2536, 0.09231, -0.06898 )

> y <- c( 0.03, 0.12, -0.14, 1.18, 0.26, -0.06, -0.02, -0.32, 0.27, 0.80,
         0.54, 0.18, -0.02, 0.23, -0.18, -0.06, 0.30, 0.07, -0.07 )

> theta <- c( 0.08144, -0.03455, -0.07456, 0.4377, 0.4076, -0.0628,
             -0.05262, -0.08468, 0.3934, 0.289, 0.4196, 0.3938, 0.2393, 0.1014,
             -0.08049, -0.06335, 0.2608, 0.08756, -0.06477 )

> V <- 1 / tau

> B.hat <- V / ( V + 0.064^2 )

> theta.approx <- ( 1 - B.hat ) * y + B.hat * mu
```
The Shrinkage Story (continued)

You can see that equation (11) is indeed a **good approximation** to what's going on: the posterior means of the θ_i (column 3 of this table, counting the leftmost column of study indices) all fall between the y_i (column 2) and the posterior means of the μ_i (column 4), with the closeness to y_i or $E(\mu_i | y)$ expressed through the **shrinkage factor** \hat{B}_i.

Since $\hat{\sigma}_\theta^2$ is small (i.e., most—but not quite all—of the between-study variation has been explained by the covariate x), the raw y_i values are shrunken **almost all of the way toward the regression line** $\alpha + \beta(x_i - \bar{x})$.