\[p(\theta) = U(0, 1) \]

Improper prior \(U(0, \infty) \)

Sometimes incoherent
$p(y_1 | y_{-1})$

$y_{-1} = (y_2, \ldots, y_n)$ (cross-validation)

$P(y_1 | y_{-1})$

log score criterion
\[\begin{bmatrix} 0 \\ \vdots \\ 1 \\ 1 \end{bmatrix} \beta \\
\begin{bmatrix} 1 \\ 1 \end{bmatrix} \alpha \]

\[\Rightarrow (\alpha + \beta) = 30 \]

prior like a data set

\[\Rightarrow \text{prior sample size} \]

mean \(\frac{\alpha}{\alpha + \beta} = 0.15 \)

\[\begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 1 \end{bmatrix} \frac{(n-s)}{n} \]

\[\Rightarrow n = 400 \text{ sample size} \]

data

mean \(\bar{y} = \frac{5}{n} = 0.18 \)

the prior is like a data set: imagine merging prior, sample data set, I feel merged data to the likelihood

\[\begin{bmatrix} 0 \\ \vdots \\ (n-s) \end{bmatrix} (\beta + \frac{1}{n-s}) \]

machinery: equivalent to Bayesian analysis with this prior, this is sample.
\[p(\theta | y) \]

Bayesian posterior

\[\text{post} \]

\[S^* = \sqrt{\frac{\alpha^* \beta^*}{(\alpha^* + \beta^*)^2 (\alpha^* + \beta^* + 1)}} \]

\[\alpha^* = d + s \]
\[\beta^* = n - s - \alpha^* - \beta^* \]

\[= \sqrt{\frac{\alpha^*}{(\alpha^* + \beta^*)}} \left(\frac{\beta^*}{(\alpha^* + \beta^*)} \right) \left(\frac{1}{(\alpha^* + \beta^*)} \right) \]

\[\hat{\theta}_B (1 - \hat{\theta}_B) \]

\[n_B \leq \text{posterior sample size} \]

\[\frac{\alpha^*}{\alpha^* + \beta^*} = \text{posterior mean} = \hat{\theta}_B = \text{Bayesian point estimate} \]

\[\frac{1}{\alpha^* + \beta^* + \beta^*} = \text{Frequentist point estimate} \]

\[\hat{\theta}_{\text{MLE}} = \frac{1}{\hat{\theta}} \]

\[\text{SE}(\hat{\theta}_{\text{MLE}}) = \sqrt{\frac{\hat{\theta} (1 - \hat{\theta})}{n}} \]
\[\text{repeated sampling distribution of } \bar{Y} \]

\[\text{posterior distribution of } \theta \text{ given } \bar{Y} \]

\[Y \text{ fixed} \]

\[\text{random} \]

\[F \]

\[\text{squared if } n \text{ large and prior info small} \]

\[\text{(Bernstein - Von Mises Theorem)} \]
\[p(\theta) \]

An I case study

\[\text{not possible in beta} \]

\[0 \quad 0.4 \quad \text{family} \]

\[\begin{bmatrix} Y \\ X \end{bmatrix} \]

standard logistic regression model:

\[n \quad (Y_i | p_i) \sim B(p_i) \]

\[\log \left(\frac{p_i}{1 - p_i} \right) = \beta_0 + \beta_1 X_i \]

- natural parameterisation in Bernoulli likelihood
steps in Bayesian conjugate machinery:

1. identify joint sampling distribution for observables

\[P(z_1, \ldots, z_n \mid \gamma_0, \ldots, \gamma_n) \]

2. think of 1 as f(\theta) of \theta for fixed \gamma = (\gamma_1, \ldots, \gamma_n) \Rightarrow \text{like } f(\theta) \mid \gamma_0 \]

3. think of \(l(\theta \mid y) \) as density in \(\theta \) & try to find another density \(p(\theta) \) st. \(l(\theta \mid y) \cdot p(\theta) \) has same \text{pdf} form as \(p(\theta) \); this is conj. prior for \(\theta \) (choose a member of this family)
4 use boys' theorem to do conj. updating
5 create prediction list for future data
\[L(Y) = \sum_{k=0}^{\infty} \frac{(\gamma^k e^{-\gamma})}{k!} \left(\frac{e^{-\lambda}}{\lambda^k} \right)^{n_k} \]

\[= \sum_{k=1}^{\infty} \frac{\gamma^k e^{-\gamma}}{k!} \left(\frac{e^{-\lambda}}{\lambda^k} \right)^{n_k} \]

S is evidently sufficient for \(J \)

in this model lots of suff. stat.
in any given problem, e.g. \(Y \) is itself suff. (but not helpful to notice this)
Another such stat is \((\eta, \sigma^2)\) from \(n \) dim. to \(2\) but \(s^2\) goes down from \(n \) to \(2\) \& is therefore a "better" suff. stat \((s^2 \in \mathbb{Q}\) minimal suff. stat because can't get any lower than \(1\) dimension with \(2\) parameter)

Empirical Rule

For almost any dist., if you start at mean \(\mu\) and

1. \(\mu\) either way, you'll capture about \(\frac{2}{3}\) (68%)
2. \(\pm \sigma\) most (95%)
3. \(\pm 2\sigma\) almost all (99.7%)
E.R. exactly followed by all Gaussian dist. & approx. true for almost all non-Gaussian dist. as well.
\[V(y_{n+1}, y) = \left(\frac{x+5}{\beta + n} \right) \left(1 + \frac{1}{\beta + n} \right) \]

\[
\begin{bmatrix}
 y_2 \\
 \vdots \\
 y_n
\end{bmatrix} = y_{n-1}
\]

\[p(y, y_{n-1}) \]

Out each \(y_i \) one at a time in turn

\[\text{histogram of } z \]