
Bayesian Decision Theory

in Biostatistics:

the Utility of Utility

David Draper (joint work with Dimitris Fouskakis

and Ioannis Ntzoufras)

Department of Applied Mathematics and Statistics

University of California, Santa Cruz, USA

draper@ams.ucsc.edu

www.ams.ucsc.edu/∼draper

Bayesian Biostatistics Conference

MD Anderson Cancer Center, Houston TX

28 Jan 2009

Bayesian decision theory in biostatistics 1



What Biostatisticians Do

The practice of statistics in general (and biostatistics in particular) can be

roughly divided into four activities:

• Description of available information (e.g., one or more data sets)

relevant to answering a question of interest, without an attempt to generalize

outward from the available data;

• Inference about aspects of the underlying process

that gave rise to the data;

• Prediction of future data values under interesting scenarios; and

• Decision-making (choosing an action from among the available

possibilities, in spite of the current uncertainty about relevant

unknowns), e.g., experimental or sampling design.

Description is largely non-probabilistic and relatively uncontroversial.

Two probability paradigms are in widespread use today in biostatistics:

• Frequentist probability: Restrict attention to phenomena that are

inherently repeatable under (essentially) identical conditions;
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Use of Frequentist and Bayesian Probability in Biostatistics

then, for an event A of interest, PF (A) is the limiting relative frequency with

which A occurs in the n (hypothetical) repetitions, as n→ ∞.

• Bayesian probability: numerical weight of evidence in favor of an

uncertain proposition, obeying a series of reasonable axioms to ensure that

Bayesian probabilities are coherent (internally logically consistent).

Two facts about these paradigms:

• With the frequentist approach, inference is much easier than (good)

prediction and decision-making.

• For several reasons (e.g., computing technology), the frequentist

paradigm dominated work in biostatistics in the 20th century.

An unpleasant by-product of these two facts is that

In biostatistical work it’s a common practice to use frequentist

inferential tools, such as hypothesis testing and benefit-only

variable selection methods, for decision-theoretic purposes for

which they may not be optimal.
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Three Examples

In this talk I’ll give three examples of how thinking

decision-theoretically can lead to better results.

• Variable selection in generalized linear models is a familiar task that is

usually accomplished in what may be termed a benefit-only manner: we try,

using inferential tools, (e.g.) to find a subset of the available predictors

that maximizes predictive accuracy on future data.

This ignores the cost of data collection of the predictors, which may vary

considerably from one variable to another; Bayesian decision theory with

an appropriate utility structure can improve on this.

References:

— Fouskakis D, Draper D (2008). Comparing stochastic optimization methods for

variable selection in binary outcome prediction, with application to health policy.

Journal of the American Statistical Association, forthcoming.

— Fouskakis D, Ntzoufras I, Draper D (2009). Bayesian variable selection using

cost-adjusted BIC, with application to cost-effective measurement of quality of health

care. Annals of Applied Statistics, forthcoming
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Three Examples (continued)

— Fouskakis D, Ntzoufras I, Draper D (2009). Population-based reversible jump

MCMC for Bayesian variable selection and evaluation under cost constraints. Journal

of the Royal Statistical Society, Series C, forthcoming.

• When a clinical trial has been adequately planned

(“appropriately powered”), as far as sample size is concerned, to

bring the notions of clinical and statistical significance into good

agreement with respect to its primary objectives, it may well still be

true that it is “underpowered” for secondary subgroup analyses.

The use of frequentist multiple comparisons (inferential) methods

in such situations — e.g., to make choices about whether to run new

trials on the promising subgroups — is a bad idea that can

nevertheless be seen in the literature (e.g., in a published trial I’m now

reanalyzing, assessing the efficacy of an HIV vaccine).
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Three Examples (continued)

The problem (of course) is that (in frequentist language) multiple

comparisons methods are terrified of making type I errors without any

concern about type II mistakes.

The use of Bayesian decision theory, to make the trade-off explicit in

cost-benefit terms, can again come to more sensible conclusions.

• In phase II clinical trials, where the sample sizes are typically fairly

small, good frequentist statisticians (such as the ones with whom I’ve

worked at Roche in Switzerland) know that it may well be a bad idea to

conduct hypothesis tests at the usual 0.05 level, because this does not strike

a sensible balance between type I and type II error; the usual thing to

do (when this problem is realized at all) is to informally choose a higher

type I error rate, such as 0.2 or 0.25 or 0.3.

Setting the problem up decision-theoretically instead of inferentially offers

explicit and non-ad-hoc guidance on where the optimal balance between

type I and type II errors may be found.
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Measuring Sickness at Admission

Variable selection (choosing the “best” subset of predictors) in

generalized linear models is an old problem, dating back at least to the

1960s, and many methods have been proposed to try to solve it; but

virtually all of them ignore an aspect of the problem that can be important:

the cost of data collection of the predictors.

Example 1. (Fouskakis and Draper, JASA, 2008; Fouskakis, Ntzoufras and

Draper (FND), AoAS, 2009; JRSS-C, 2009). In the field of quality of health

care measurement, patient sickness at admission is often assessed by

using logistic regression of mortality within 30 days of admission on a

fairly large number of sickness indicators (on the order of 100) to construct

a sickness scale, employing standard variable selection methods (e.g.,

backward selection from a model with all predictors) to find an “optimal”

subset of 10–20 indicators.

Such “benefit-only” methods ignore the considerable differences among the

sickness indicators in cost of data collection, an issue that’s crucial when

admission sickness is used to drive programs (now implemented or
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Choosing Utility Function (continued)

under consideration in several countries, including the U.S. and U.K.) that

attempt to identify substandard hospitals by comparing observed and

expected mortality rates (given admission sickness).

When both data-collection cost and accuracy of prediction of 30-day

mortality are considered, a large variable-selection problem arises in which

costly variables that do not predict well enough should be omitted from

the final scale.

There are two main ways to solve this problem — you can (a) put cost and

predictive accuracy on the same scale and optimize, or (b) maximize the

latter subject to a bound on the former — leading to three methods:

(1) a decision-theoretic cost-benefit approach based on maximizing

expected utility (Fouskakis and Draper, 2008),

(2) an alternative cost-benefit approach based on posterior model odds

(FND, 2009a), and

(3) a cost-restriction-benefit analysis that maximizes predictive

accuracy subject to a bound on cost (FND, 2009b).
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The Data

Data (Kahn et al., JAMA, 1990): p = 83 sickness indicators gathered on

representative sample of n = 2, 532 elderly American patients hospitalized in

the period 1980–86 with pneumonia; original RAND benefit-only scale

based on subset of 14 predictors:

Variable Cost (U.S.$) Correlation Good?

Total APACHE II

score (36-point scale)
3.33 0.39

Age 0.50 0.17 ∗

Systolic blood pressure

score (2-point scale)
0.17 0.29 ∗∗

Chest X-ray congestive

heart failure score (3-point scale)
0.83 0.10

Blood urea nitrogen 0.50 0.32 ∗∗

APACHE II coma

score (3-point scale)
0.83 0.35 ∗∗

Serum albumin (3-point scale) 0.50 0.20 ∗

Shortness of breath (yes, no) 0.33 0.13 ∗∗

Respiratory distress (yes, no) 0.33 0.18 ∗

Septic complications (yes, no) 1.00 0.06

Prior respiratory failure (yes, no) 0.67 0.08

Recently hospitalized (yes, no) 0.67 0.14

Ambulatory score (3-point scale) 0.83 0.22

Temperature 0.17 −0.16 ∗
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Decision-Theoretic Cost-Benefit Approach

Approach (1) (decision-theoretic cost-benefit). Problem formulation:

Suppose (a) the 30–day mortality outcome yi and data on p sickness

indicators (xi1, . . . , Xip) have been collected on n individuals sampled

exchangeably from a population P of patients with a given disease, and (b)

the goal is to predict the death outcome for n∗ new patients who will in the

future be sampled exchangeably from P, (c) on the basis of some or all of the

predictors X·j , when (d) the marginal costs of data collection per patient

c1, . . . , cp for the X·j vary considerably.

What is the best subset of the X·j to choose, if a fixed amount of money is

available for this task and you’re rewarded based on the

quality of your predictions?

Since data on future patients are not available, we use a cross-validation

approach in which (i) a random subset of nM observations is drawn for creation

of the mortality predictions (the modeling subsample) and (ii) the quality of

those predictions is assessed on the remaining nV = (n− nM ) observations (the

validation subsample, which serves as a proxy for future patients).
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Utility Elicitation

Here utility is quantified in monetary terms, so that data collection part

of utility function is simply negative of total amount of money required

to gather data on specified predictor subset (manual data abstraction from

hardcopy patient charts will gradually be replaced by electronic medical

records, but still widely used in quality of care studies).

Letting Ij = 1 if X·j is included in a given model (and 0 otherwise), the

data-collection utility associated with subset I = (I1, . . . , Ip) for patients in

the validation subsample is

UD(I) = −nV

p
∑

j=1

cjIj , (1)

where cj is the marginal cost per patient of data abstraction for variable

j (the second column in the table above gave examples of these marginal costs).

To measure the accuracy of a model’s predictions, a metric is needed that

quantifies the discrepancy between the actual and predicted values, and in

this problem the metric must come out in monetary terms on a scale

comparable to that employed with the data-collection utility.
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Utility Elicitation (continued)

In the setting of this problem the outcomes Yi are binary death indicators

and the predicted values p̂i, based on statistical modeling, take the form of

estimated death probabilities.

We use an approach to the comparison of actual and predicted values that

involves dichotomizing the p̂i with respect to a cutoff, to mimic the

decision-making reality that actions taken on the basis of

observed-versus-expected quality assessment will have an all-or-nothing

character at the hospital level (for example, regulators must decide either to

subject or not subject a given hospital to a more detailed, more expensive

quality audit based on process criteria).

In the first step of our approach, given a particular predictor subset I, we fit

a logistic regression model to the modeling subsample M and apply this

model to validation subsample V to create predicted death probabilities p̂I
i .

In more detail, letting Yi = 1 if patient i dies and 0 otherwise, and taking

Xi1, . . . ,Xik to be the k sickness predictors for this patient under model I,

the usual sampling model which underlies logistic regression in this case is
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Utility Elicitation (continued)

(Yi | p
I
i )

indep
∼ Bernoulli(pI

i ),

log(
pI

i

1−pI
i

) = β0 + β1Xi1 + . . .+ βkXik.
(2)

We use maximum likelihood to fit this model (as a computationally efficient

approximation to Bayesian fitting with relatively diffuse priors), obtaining a

vector β̂ of estimated logistic regression coefficients, from which the predicted

death probabilities for the patients in subsample V are as usual given by

p̂I
i =

[

1 + exp

(

−

k
∑

j=0

β̂jXij

)]−1

, (3)

where Xi0 = 1 (p̂I
i may be thought of as the sickness score for patient i under

model I).

In the second step of our approach we classify patient i in the validation

subsample as predicted dead or alive according to whether p̂I
i exceeds or

falls short of a cutoff p∗, which is chosen — by searching on a discrete grid

from 0.01 to 0.99 by steps of 0.01 — to maximize the predictive accuracy

of model I.
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Utility Elicitation (continued)

We then cross-tabulate actual versus predicted death status in a 2 × 2

contingency table, rewarding and penalizing model I according to the

numbers of patients in the validation sample which fall into the cells of the

right-hand part of the following table.

Rewards and
Penalties Counts

Predicted Predicted

Died Lived Died Lived

Died C11 C12 n11 n12
Actual

Lived C21 C22 n21 n22

The left-hand part of this table records the rewards and penalties in US$.

The predictive utility of model I is then

UP (I) =
2
∑

l=1

2
∑

m=1

Clm nlm. (4)

To elicit the utility values Clm we reason as follows.
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Utility Elicitation (continued)

(1) Clearly C11 (the reward for correctly predicting death at 30 days) and C22

(the reward for correctly predicting living at 30 days) should be positive, and

C12 (the penalty for a false prediction of living) and C21 (the penalty for a

false prediction of death) should be negative.

(2) Since it’s easier to correctly predict that a person lives than dies with these

data (the overall pneumonia 30–day death rate in the RAND sample was 16%,

so a prediction that every patient lives would be right about 84% of the time),

it’s natural to specify that C11 > C22.

(3) Since it’s arguably worse to label a “bad” hospital as “good” than the

other way around, one should take |C12| > |C21|, and furthermore it’s natural

that the magnitudes of the penalties should exceed those of the rewards.

(4) We completed the utility specification by eliciting information from

health experts in the U.S. and U.K, first to anchor C21 to the cost of

subjecting a “good” hospital to an unnecessary process audit and then to

obtain ratios relating the other Clm to C21.
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Utility Elicitation (continued)

Since the utility structure we use is based on the idea that hospitals have to

be treated in an all-or-nothing way in acting on the basis of their apparent

quality, the approach taken was (i) to quantify the monetary loss L of

incorrectly subjecting a “good” hospital to a detailed but unnecessary process

audit and then (ii) to translate this from the hospital to the patient level.

Rough correspondence may be made between left-hand part of contingency

table above at patient level and hospital-level table with rows representing

truth (“bad” in row 1, “good” in row 2) and columns representing decision

taken (“process audit” in column 1, “no process audit” in column 2).

Unnecessary process audits then correspond to cell (2, 1) in these tables

(hospitals where a process audit is not needed will typically have an excess of

patients who are predicted to die but actually live).

Discussions with health experts in the U.S. and U.K. suggested that detailed

process audits cost on the order of L =$5,000 per hospital (in late 1980s

U.S. dollars), and RAND data indicated that the mean number of pneumonia

patients per hospital per year in the U.S. at the time of the RAND quality of

care study was 71.8.
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Utility Elicitation (continued)

This fixed C21 at approximately −$5,000
71.8

= −$69.6.

Our health experts judged that C12 should be the largest in absolute value

of the Clm, and averaging across the expert opinions, expressed as orders of

magnitude base 2, the elicitation results were
∣

∣

∣

C12
C21

∣

∣

∣
= 2,

∣

∣

∣

C11
C21

∣

∣

∣
= 1

2
, and

∣

∣

∣

C22
C21

∣

∣

∣
= 1

8
, finally yielding (C11, C12, C21, C22) = $(34.8, –139.2, –69.6, 8.7).

The results in Fouskakis and Draper (2008) use these values; Draper and

Fouskakis (2000) present a sensitivity analysis on the choice of the Clm

which demonstrates broad stability of the findings when the utility values

mentioned above are perturbed in reasonable ways.

With the Clm in hand, the overall expected utility function to be

maximized over I is then simply

E [U(I)] = E [UD(I) + UP (I)] , (5)

where this expectation is over all possible cross-validation splits

of the data.
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Results

The number of possible cross-validation splits is far too large to evaluate the

expectation in (5) directly; in practice we therefore use Monte Carlo

methods to evaluate it, averaging over N random

modeling and validation splits.

Results. We explored this approach in two settings:

• a Small World created by focusing only on the p = 14 variables in the

original RAND scale (214 = 16, 384 is a small enough number of

possible models to do brute-force enumeration of the estimated expected

utility of all models), and

• the Big World defined by all p = 83 available predictors (283 .
= 1025 is far

too large for brute-force enumeration; we compared a variety of stochastic

optimization methods — including simulated annealing, genetic

algorithms, and tabu search — on their ability to find

good variable subsets).
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Results: Small World
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The 20 best models included the same three variables 18 or more times

out of 20, and never included six other variables; the five best models were

minor variations on each other, and included 4–6 variables (last column in

table on page 9).
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Approach (2)

The best models save almost $8 per patient over the full 14-variable model;

this would amount to significant savings if the observed-versus-expected

assessment method were applied widely.

Approach (2) (alternative cost-benefit) Maximizing expected utility, as

in Approach (1) above, is a natural Bayesian way forward in this problem, but

(a) the elicitation process was complicated and (b) the utility structure we

examine is only one of a number of plausible alternatives, with utility framed

from only one point of view; the broader question for a decision-theoretic

approach is whose utility should drive the problem formulation.

It’s well known (e.g., Arrow, 1963; Weerahandi and Zidek, 1981) that Bayesian

decision theory can be problematic when used normatively for group

decision-making, because of conflicts in preferences among members of the

group; in the context of the problem addressed here, it can be difficult to

identify a utility structure acceptable to all stakeholders (including

patients, doctors, hospitals, citizen watchdog groups, and state and

federal regulatory agencies) in the quality-of-care-assessment process.
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Approach (2) (continued)

As an alternative, in Approach (2) we propose a prior distribution that

accounts for the cost of each variable and results in a set of posterior model

probabilities which correspond to a generalized cost-adjusted version of

the Bayesian information criterion (BIC).

This provides a principled approach to performing a cost-benefit trade-off

that avoids ambiguities in identification of an

appropriate utility structure.

Details. Bayesian parametric model comparison and variable selection

are based on specifying a model m, its likelihood f(y|θm,m), the prior

distribution of model parameters f(θm|m) and the corresponding prior model

weight (or probability) f(m), where θm is a parameter vector under model m

and y is the data vector.

Parametric inference is based on the posterior distribution f(θm|y,m), and

quantifying model uncertainty by estimating the posterior model probability

f(m|y) is also an important issue.
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Parametric Model Comparison

Hence, when we consider a set of competing models M = {m1,m2, · · · ,m|M|},

we focus on the posterior probability of model m ∈ M, defined as

f(m|y) =
f(y|m)f(m)

∑

ml∈M
f(y|ml)f(ml)

=





∑

ml∈M

POml,m





−1

(6)

=





∑

ml∈M

Bml,m
f(ml)

f(m)





−1

,

where POmi,mj =
f(mi|y)

f(mj |y)
is the posterior model odds and Bmi,mj is the

Bayes factor for comparing models mi and mj .

When we limit ourselves in the comparison of only two models we typically

focus on POmi,mj and Bmi,mj , which have the desirable property of

insensitivity to the selection of the model space M.

By definition the Bayes factor is the ratio of the posterior model odds over

the prior model odds; thus large values of Bmi,mj (usually greater than 12,

say) indicate strong posterior support of model mi against model mj .
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Variable Selection in Logistic Regression

The posterior model probabilities and integrated likelihoods f(y|mi) in

(6) are rarely analytically tractable; we use a combination of Laplace

approximations and Markov Chain Monte Carlo (MCMC) methodology

to approximate posterior odds and Bayes factors.

In the sickness-at-admission problem at issue here, we use a simple logistic

regression model with response Yi = 1 if patient i dies and 0 otherwise.

We further denote by Xij the sickness predictor variable j for patient i and

by γj an indicator, often used in Bayesian variable selection problems, taking

the value 1 if variable j is included in the model and 0 otherwise; thus in this

case M = {0, 1}p, where p is the total number of variables.

In order to map the set of binary model indicators γ onto a model m we

can use a representation of the form m(γ) =
∑p

i=1 2i−1γi.

Hence the model formulation can be summarized as

(Yi | γ)
indep
∼ Bernoulli[pi(γ)],

ηi(γ) = log

[

pi(γ)

1 − pi(γ)

]

=

p
∑

j=0

βjγjXij , (7)
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Prior on Model Parameters

η(γ) = X diag(γ) β = Xγ βγ ,

defining Xi0 = 1 for all i = 1, . . . , n and γ0 = 1 with prior probability one

since here the intercept is always included in all models.

Here pi(γ) is the death probability (which may be thought of as the

sickness score) for patient i under model γ, η(γ) = [η1(γ), . . . , ηn(γ)]T ,

γ = (γ0, γ1, . . . , γp)T , β = (β0, β1, . . . , βp)T , and

X = (Xij , i = 1, . . . , n; j = 0, 1, . . . , p); the vector βγ stands for the subvector

of β which is included in the model specified by γ, i.e.,

βγ = (βi : γi = 1, i = 0, 1, . . . , p), and is equivalent to the θm vector defined

above; similarly Xγ is the submatrix of X with columns corresponding to

variables included in the model specified by γ.

Prior on model parameters. We proceed in two steps:

(1) First we build a prior on β that is a modified version of the unit

information prior for this problem (to avoid Lindley’s paradox); then

(2) We adjust this prior for differences in marginal costs of variables.
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Sensitivity to Prior Variance

Step (1). One important problem in Bayesian model evaluation using

posterior model probabilities is their sensitivity to the prior variance of

the model parameters: large variance of the βγ (used to represent prior

ignorance) will increase the posterior probabilities of the simpler models

considered in the model space M (Lindley’s paradox).

We address this issue by using ideas proposed by Ntzoufras et al. (2003): we

use a prior distribution of the form

f(βγ |γ) = N(µγ ,Σγ ) (8)

with prior covariance matrix given by Σγ = n
[

I(βγ)
]−1

, where n is the

total sample size and I(βγ ) is the information matrix

I(βγ) = X
T
γW γXγ ;

here W γ is a diagonal matrix which in the Bernoulli case takes the form

W γ = diag {pi(γ)[1 − pi(γ)]} .
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Unit Information Prior

This is the unit information prior of Kass and Wasserman (1996), which

corresponds to adding one data point to the data.

Here we use this prior as a base, but we specify pi(γ) in the information

matrix according to our prior information; in this manner we avoid (even

minimal) reuse of the data in the prior.

When little prior information is available, a reasonable prior mean for βγ is

µγ = 0.

This corresponds to a prior mean on the log-odds scale of zero, from which a

sensible prior estimate for all model probabilities is pi(γ) = 1/2; with this

choice (8) becomes

f(βγ |γ) = N

[

0, 4n
(

X
T
γXγ

)−1
]

. (∗) (9)

This prior distribution can also be motivated by combining the idea of

imaginary data with the power prior approach of Chen et al. (2000); it

turns out that (9) introduces additional information to the posterior equivalent

to adding one data point to the likelihood and therefore we support a priori

the simplest model with a weight of one data point.
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Laplace Approximation

Step (2). To introduce costs we again proceed in two sub-steps:

(2a) First we specify a Laplace approximation (and the BIC

approximation that corresponds to it) for the posterior model odds in our

problem, using the prior in Step (1), and

(2b) Then we see how to adjust the approximations in Step (2a) to account for

cost differences among the variables.

Step (2a). We denote by POk` the posterior odds of model γ(k) versus

model γ(`); then we have

−2 logPOk` = −2
[

log f(γ(k)|y) − log f(γ(`)|y)
]

. (10)

Following the approach of Raftery (1996), we can approximate the posterior

distribution of a model γ using the following Laplace approximation:

−2 log f(γ|y) = −2 log f(y|β̃γ ,γ) − 2 log f(β̃γ |γ) − dγ log(2π)

− log |Ψγ | − 2 log f(γ) +O(n−1), (11)
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Details

where β̃γ is the posterior mode of f(βγ |y,γ), dγ =
∑p

j=0 γj is the dimension

of the model γ, and Ψγ is minus the inverse of the Hessian matrix of

h(βγ) = log f(y|βγ ,γ) + log f(βγ |γ) evaluated at the posterior mode β̃γ .

Under the model formulation given by equation (7) and the prior

distribution (9) we have that

Ψγ =






−
∂2 log f(y|βγ ,γ)

∂β2
γ

∣

∣

∣

∣

∣

βγ=β̃γ

−
∂2 log f(βγ |γ)

∂β2
γ

∣

∣

∣

∣

∣

βγ=β̃γ







−1

=






X

T
γ diag











exp
(

Xγ,i β̃γ

)

[

1 + exp
(

Xγ,i β̃γ

)]2 +
1

4n











Xγ







−1

, (12)

where Xγ,i is row i of the matrix Xγ for i = 1, . . . , n.

By substituting the prior (9) in expression (11) we get

−2 log f(γ|y) = −2 log f(y|β̃γ ,γ) + φ(γ) − 2 log f(γ) +O(n−1), (13)
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Penalized Log Likelihood Ratio

where φ(γ) =
1

4n
β̃

T

γX
T
γXγβ̃γ + dγ log(4n) + log

|Ψ−1
γ |

|XT
γXγ |

. (14)

From the above expression it’s clear that the logarithm of a posterior model

probability can be regarded as a penalized log-likelihood evaluated at the

posterior mode of the model, in which the term φ(γ) − 2 log f(γ) can be

interpreted as the penalty imposed upon the log-likelihood.

In pairwise model comparisons, we can directly use the posterior model

odds (10), which can now be written as

−2 logPOk` = −2 log

{

f(y|β̃γ(k) ,γ(k))

f(y|β̃γ(`) ,γ(`))

}

+ φ
(

γ
(k)
)

− φ
(

γ
(`)
)

−2 log
f(γ(k))

f(γ(`))
+O(n−1). (15)

Therefore, the comparison of the two models is based on a penalized

log-likelihood ratio, where the penalty is now given by

ψ(γ(k),γ(`)) = φ(γ(k)) − φ(γ(`)) − 2 log
f(γ(k))

f(γ(`))
.
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Decomposing the Penalty Term

Each penalty term is divided into two parts: φ(γ) and −2 log f(γ).

The first term, φ(γ), has its source in the marginal likelihood f(y|γ) of

model γ and can be thought of as a measure of discrepancy between the data

and the prior information for the model parameters; the second part comes

from the prior model probabilities f(γ).

Indifference on the space of all models, usually expressed by the uniform

distribution (i.e., f(γ) ∝ 1), eliminates the second term from the model

comparison procedure, since the penalty term in (15) will then be based only on

the difference of the first penalty terms φ(γ(k)) − φ(γ(`)).

For this reason the penalty term φ(γ) is the imposed penalty which appears

in the penalized log-likelihood expression of the Bayes factor BFk` with a

uniform prior on model space.

A simpler but less accurate approximation of logPOk` can be obtained

following the arguments of Schwartz (1978):
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BIC Approximation

−2 logPOk` = −2 log

[

f(y|β̂γ(k) ,γ(k))

f(y|β̂γ(`) ,γ(`))

]

+
(

dγ(k) − dγ(`)

)

logn

−2 log
f(γ(k))

f(γ(`))
+O(1) (16)

= BICk` − 2 log
f(γ(k))

f(γ(`))
+O(1),

where BICk` is the Bayesian Information Criterion for choosing between

models γ(k) and γ(`) and β̂γ is vector of maximum likelihood estimates of βγ .

Since BICk` is an O(1) approximation, it might diverge from the exact value

of the logarithm of the Bayes factor even for large samples; even so, it has often

been shown to provide a reasonable measure of evidence (for finite n) and

its straightforward calculation has encouraged its widespread use in practice.

Step (2b). From the above argument and equations (13) and (15), it’s clear

that an additional penalty can be directly imposed on the posterior model

probabilities and odds via the prior model probabilities f(γ).
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Cost Adjustment

Therefore we may use prior model probabilities to induce prior

preferences for specific variables depending on their costs.

For this reason we propose to use prior model probabilities of the form

(∗) f(γj) ∝ exp

[

−
γj

2

(

cj − c0
c0

)

logn

]

for j = 1, . . . , p, (17)

where cj is the marginal cost per observation for variable Xj and (as will

be seen below) the desire for our approach to yield a cost-adjusted

generalization of BIC compels the definition c0 = min{cj , j = 1, . . . , p}.

We further assume that the constant term is included in all models by

specifying f(γ0 = 1) = 1, resulting in

−2 log f(γ) =

p
∑

j=1

γj
cj
c0

logn− dγ log n+ 2

p
∑

j=1

log

[

1 + n
− 1

2

(

1−
cj
c0

)

]

. (18)

If all variables have the same cost or we’re indifferent concerning the cost then

we can set cj = c0 for j = 1, . . . , p, which reduces to the uniform prior on

model space (f(γ) ∝ 1) and posterior odds equal to the usual Bayes factor.
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Cost Adjustment (continued)

When comparing two models γ(k) and γ(`), the additional penalty imposed

on the log-likelihood ratio due to the cost-adjusted prior model

probabilities is given by

−2 log

[

f(γ(k))

f(γ(`))

]

=

p
∑

j=1

(

γ
(k)
j − γ

(`)
j

) cj
c0

logn−
(

dγ(k) − dγ(`)

)

logn

=

[

Cγ(k) − Cγ(`)

c0
−
(

dγ(k) − dγ(`)

)

]

logn, (19)

where Cγ =
∑p

j=1 γjcj is the total cost of model γ; thus two models of the

same dimension and cost will have the same prior weight.

In the simpler case where we compare two nested models that differ only on

the status of variable j, the prior model ratio simplifies to

−2 log

[

f(γj = 1,γ\j)

f(γj = 0,γ\j)

]

=

(

cj
c0

− 1

)

logn, (20)

where γ\j is the vector of γ excluding element γj .
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Cost-Adjusted Laplace Approximation

The above expression can be viewed as a prior penalty for including the

variable j in the model, while the term
(

cj

c0
− 1
)

can be interpreted as the

proportional additional penalty imposed upon (−2 logBF ) if the variable

Xj is included in the model due to its increased cost.

Using the prior model odds (19) in the approximate posterior model

odds (15) we obtain

−2 logPOk` = −2 log

[

f(y|β̃γ(k) ,γ(k))

f(y|β̃γ(`) ,γ(`))

]

+ ψ(γ(k),γ(`)) +O(n−1), (21)

where the penalty term is given by

ψ(γ(k),γ(`)) =
1

4n

(

β̃T

γ(k)X
T

γ(k)Xγ(k) β̃γ(k) − β̃T

γ(`)X
T

γ(`)Xγ(`) β̃γ(`)

)

+
(

dγ(k) − dγ(`)

)

log(4) + log
|Ψ−1

γ(k) |

|XT

γ(k)Xγ(k) |
(22)

− log
|Ψ−1

γ(`) |

|XT

γ(`)Xγ(`) |
+
Cγ(k) − Cγ(`)

c0
logn.
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Cost-Adjusted BIC

Finally we consider the BIC-based approximation (16) to the logarithm of

the posterior model odds with the prior model odds (19), yielding (∗)

−2 logPOk` = −2 log

[

f(y|β̂γ(k) ,γ(k))

f(y|β̂γ(`) ,γ(`))

]

+
Cγ(k) − Cγ(`)

c0
logn+O(1). (23)

The penalty term dγ logn of model γ used in (16) has been replaced in the

above expression by the cost-dependent penalty c−1
0 Cγ log n; ignoring

costs is equivalent to taking cj = c0 for all j, yielding c−1
0 Cγ = dγ , the

original BIC expression.

Therefore, we may interpret the quantity log n as the imposed penalty for

each variable included in the model γ when no costs are considered (or

when costs are equal).

Moreover, this baseline penalty term is inflated proportionally to the cost

ratio
cj

c0
for each variable Xj ; for example, if the cost of a variable Xj is twice

the minimum cost (cj = 2 c0) then the imposed penalty is equivalent to adding

two variables with the minimum cost.
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MCMC Implementation

For this reason, (23) can be considered as a cost-adjusted generalization of

BIC when prior model probabilities of type (17) are adopted.

MCMC implementation. As noted earlier, in our quality of care study

with p = 83 predictors there are on the order of 1025 possible models.

In such situations, sampling algorithms will not be able to estimate posterior

model probabilities with high accuracy in a reasonable amount of CPU time

due to the large model space.

For this reason, we implemented the following two-step method:

(1) First we use a model search tool to identify variables with high

marginal posterior inclusion probabilities f(γj |y), and we create a

reduced model space consisting only of those variables whose marginal

probabilities are above a threshold value.

According to Barbieri and Berger (2004) this method of selecting variables

based on their marginal probabilities may lead to the identification of

models with better predictive abilities than approaches based on

maximizing posterior model probabilities.
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MCMC Implementation (continued)

Although Barbieri and Berger proposed 0.5 as a threshold value for

f(γj = 1|y), we used the lower value of 0.3, since our aim was only to identify

and eliminate variables not contributing to models with high posterior

probabilities.

(2) Then we use a model search tool in the reduced model space to

estimate posterior model probabilities (and the corresponding odds).

To ensure stability of our findings we explored the use of two model search

tools in step (1):

• A reversible-jump MCMC algorithm (RJMCMC), as implemented for

variable selection in generalized linear models by Dellaportas et al. (2002) and

Ntzoufras et al.(2003); and

• the MCMC model composition (MC3) algorithm (Madigan and

York, 1995).

More specifically, we implemented reversible-jump moves within Gibbs for

the model indicators γj , by proposing the new model to differ from the current

one in each step by a single term j with probability one.

Bayesian decision theory in biostatistics 37



MCMC Implementation (continued)

The algorithm can be summarized as follows:

(1) For j = 1, . . . , p, use RJMCMC to compare the current model γ with the

proposed one γ′ with components γ′
j = 1 − γj and γ′

k = γk for k 6= j with

probability one; the updating sequence of γj is randomly determined in

each step.

(2) For j = 0, . . . , p, if γj = 1 then generate model parameters βj from the

corresponding posterior distribution f(βj |β\j ,γ,y), otherwise set βj = 0.

In our context the MC3 algorithm may be summarized by the following steps:

(1) For j = 1, . . . , p, propose a move from the current model γ to a new one γ ′

with components γ′
j = 1 − γj and γ′

k = γk for k 6= j with probability one; the

updating sequence of γj is randomly determined in each step.

(2) Accept the proposed model γ ′ with probability

α = min

[

1,
f(γ′|y)

f(γ|y)

]

= min
(

1, POγ,γ′

)

.
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MCMC Implementation (continued)

Since the posterior model odds POγ,γ′ used in MC3 are not analytically

available here, we also explored two methods for calculating them —

approximating the acceptance probabilities with cost-adjusted Laplace

(equation 21) and cost-adjusted BIC (equation 23) — and in addition we

further explored one additional form of sensitivity analysis: initializing the

MCMC runs at the null model (with no predictors) and the full model (with

all predictors).

All of this was done both for the benefit-only analysis (specified by setting

all variable costs equal) and the cost-benefit approach.

In moving from the full to the reduced model space to implement step (1) of

our two-step method, for both the benefit-only and cost-benefit analyses we

found a striking level of agreement — across (a) the two model search

tools, (b) the two methods to approximate the acceptance probabilities in

MC3, and (c) the two choices for initializing the MCMC runs — in the subset

of variables defining the reduced model space; this made it unnecessary to

perform a similar sensitivity analysis in step (2).
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Results

Results are therefore presented below only for RJMCMC (starting from the

full model).

Convergence of the RJMCMC algorithm was checked using ergodic mean

plots of the marginal inclusion probabilities for the full model space and

the posterior model probabilities for the reduced space.

In what follows we refer to the cost-benefit results as “RJMCMC,” but we

could equally well have used the term “MC3 with cost-adjusted BIC” (or

just “cost-adjusted BIC” for short), because the results from the two

methods were in such close agreement.

Results. The table below presents the marginal posterior probabilities of

the variables that exceeded the threshold value of 0.30, in each of the

benefit-only and cost-benefit analyses, together with their data collection

costs (in minutes of abstraction time rather than US$), in the Big World of all

83 predictors.

In both the benefit-only and cost-benefit situations our methods reduced

the initial list of p = 83 available candidates down to 13 predictors.
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Results (continued)

Marginal Posterior Probabilities

Variable Analysis

Index Name Cost Benefit-Only Cost-Benefit

1 SBP Score 0.50 0.99 0.99

2 Age 0.50 0.99 0.99

3 Blood Urea Nitrogen 1.50 1.00 0.99

4 Apache II Coma Score 2.50 1.00

5 Shortness of Breath Day 1? 1.00 0.97 0.79

8 Septic Complications? 3.00 0.88

12 Initial Temperature 0.50 0.98 0.96

13 Heart Rate Day 1 0.50 0.34

14 Chest Pain Day 1? 0.50 0.39

15 Cardiomegaly Score 1.50 0.71

27 Hematologic History Score 1.50 0.45

37 Apache Respiratory Rate Score 1.00 0.95 0.32

46 Admission SBP 0.50 0.68 0.90

49 Respiratory Rate Day 1 0.50 0.81

51 Confusion Day 1? 0.50 0.95

70 Apache pH Score 1.00 0.98 0.98

73 Morbid + Comorbid Score 7.50 0.96

78 Musculoskeletal Score 1.00 0.54

Note that the most expensive variables with high marginal posterior

probabilities in the benefit-only analysis were absent from the set of

promising variables in the cost-benefit analysis (e.g., Apache II Coma Score).
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Results (continued)

Common variables in both analyses: X1 +X2 +X3 +X5 +X12 +X70

Benefit-Only Analysis

Common Variables Additional Model Posterior

k Within Each Analysis Variables Cost Probabilities P O1k

1 X4 + X15 + X37 + X73 +X8 +X27+X46 22.5 0.3066 1.00

2 +X8 +X27 22.0 0.1969 1.56

3 +X8 20.5 0.1833 1.67

4 +X27+X46 19.5 0.0763 4.02

5 17.5 0.0383 8.00

Cost-Benefit Analysis

Common Variables Additional Model Posterior

k Within Each Analysis Variables Cost Probabilities P O1k

1 X46 + X51 +X49+X78 7.5 0.1460 1.00

2 +X14 +X49+X78 7.5 0.1168 1.27

3 +X13 +X49+X78 7.5 0.0866 1.69

4 +X13+X14 +X49+X78 8.0 0.0665 2.20

5 +X14 +X49 7.0 0.0461 3.17

6 +X49 6.5 0.0409 3.57

7 +X37 +X78 7.5 0.0382 3.82

8 +X13+X14 +X49 7.5 0.0369 3.96

9 +X13 6.5 0.0344 4.25
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Results (continued)

Analysis Percentage

Benefit-Only Cost-Benefit Difference

Minimum Deviance 1553.2 1635.8 +5.3

Median Deviance 1564.5 1644.8 +5.1

Cost 22.5 7.5 –66.7

Dimension 13 10 –23.1

The table above presents a comparison of measures of fit, cost and

dimensionality between the best models in the reduced model space of the

benefit-only and cost-benefit analyses (percentage difference is in relation to

benefit-only).

• The deviance statistic for the benefit-only RAND model summarized in

Table 1 turned out to be 1587.3 (achieved with 14 predictors), substantially

worse than the median deviance (1564.5, achieved with 13 predictors) of the

best model visited by the benefit-only approach we investigate; in other

words, in this case study, frequentist backward selection from the model

with all predictors (the RAND approach) was substantially out-performed

by Bayesian RJMCMC.
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Results (continued)

Analysis Percentage

Benefit-Only Cost-Benefit Difference

Minimum Deviance 1553.2 1635.8 +5.3

Median Deviance 1564.5 1644.8 +5.1

Cost 22.5 7.5 –66.7

Dimension 13 10 –23.1

• The minimum and median values of the posterior distribution of the

deviance statistic for the benefit-only analysis were lower by a relatively

modest 5.3% and 5.1% compared to the corresponding values of the

cost-benefit analysis, but the cost of the best model in the cost-benefit analysis

was almost 67% lower than that for the benefit-only analysis; similarly, the

dimensionality of the best model in the cost-benefit analysis was about

23% lower than that for the benefit-only analysis.

These values indicate that the loss of predictive accuracy with the

cost-benefit analysis is small compared to the substantial gains achieved

in cost and reduced model complexity.
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Utility Versus Cost-Adjusted BIC

Method

Variable Utility RJMCMC

Cost Posterior

Index Name (Minutes) Good? Good? Probability

1
Systolic Blood Pressure

Score (2-point scale)
0.5 ∗∗ ∗∗ 0.99

2 Age 0.5 ∗ ∗∗ 0.99

3 Blood Urea Nitrogen 1.5 ∗∗ ∗∗ 1.00

4
APACHE II Coma

Score (3-point scale)
2.5 ∗∗ ∗∗ 1.00

5 Shortness of Breath Day 1 (yes, no) 1.0 ∗∗ ∗∗ 0.99

6 Serum Albumin (3-point scale) 1.5 ∗ ∗∗ 0.55

7 Respiratory Distress (yes, no) 1.0 ∗ ∗∗ 0.92

8 Septic Complications (yes, no) 3.0 0.00

9 Prior Respiratory Failure (yes, no) 2.0 0.00

10 Recently Hospitalized (yes, no) 2.0 0.00

12 Initial Temperature 0.5 ∗ ∗∗ 0.95

17
Chest X-ray Congestive

Heart Failure Score (3-point scale)
2.5 0.00

18 Ambulatory Score (3-point scale) 2.5 0.00

48
Total APACHE II

Score (36-point scale)
10.0 0.00

It’s clear that the utility and cost-adjusted BIC approaches have reached

nearly identical conclusions in the Small World of p = 14 predictors.
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Utility Versus Cost-Adjusted BIC (continued)

With p = 83 the agreement between the two methods is also strong

(although not as strong as with p = 14): using a star system for variable

importance given in FND (2007a), 60 variables were ignored by both methods,

8 variables had identical star patterns, 3 variables were chosen as important

by both methods but with different star patterns, 10 variables were marked

as important by the utility approach and not by RJMCMC, and 2 variables

were singled out by RJMCMC and not by utility: thus the two methods

substantially agreed on the importance of 71 (86%) of the 83 variables.

Median

p Method Model Cost Deviance LSCV

14
RJMCMC

X1 + X2 + X3 + X4 + X5 + X6 + X7 + X12 9.0 1654 −0.329

X1 + X2 + X3 + X4 + X5 + X7 + X12 7.5 1676 −0.333

Utility X1 + X3 + X4 + X5 5.5 1726 −0.342

83

RJMCMC
X1 + X2 + X3 + X5 + X12

+X46 + X49 + X51 + X70 + X78
7.5 1645 −0.327

Utility
X1 + X3 + X4 + X12

+X46 + X49 + X57
6.5 1693 −0.336

To the extent that the two methods differ, the utility method favors models

that cost somewhat less but also predict somewhat less well.
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Utility Versus Cost-Adjusted BIC (continued)

The fact that the two methods may yield somewhat different results in

high-dimensional problems does not mean that either is wrong; they are

both valid solutions to similar but not identical problems.

Both methods lead to noticeably better models (in a cost-benefit sense)

than frequentist or Bayesian benefit-only approaches, when — as is often the

case — cost is an issue that must be included in the problem formulation to

arrive at a policy-relevant solution.

Summary. In comparing two or more models, to say whether one is

better than another I have to face the question: better for what purpose?

This makes model specification a decision problem: I need to either

(a) elicit a utility structure that’s specific to the goals of the current study

and maximize expected utility to find the best models, or

(b) (if (a) is too hard, e.g., because the problem has a group decision

character) I can look for a principled alternative (like the cost-adjusted

Laplace and BIC methods described here) that approximates the utility

approach while avoiding ambiguities in utility specification.
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HIV–1 Vaccine Efficacy

Recall two of the main points in this talk: (1) Inference and decision-making

are not the same thing. (2) People sometimes use inferential tools to make

an implied decision when decision-making methods lead to a

better choice.

Example 2: A randomized controlled trial of an rgp120 vaccine

against HIV (rgp120 HIV Vaccine Study Group (2005). Placebo-controlled phase 3

trial of a recombinant glycoprotein 120 vaccine to prevent HIV–1 infection. Journal of

Infectious Diseases, 191, 654–663).

5403 healthy HIV-negative volunteers at high risk of getting HIV were

randomized, 3598 to the vaccine and 1805 to placebo (in both cases, 7

injections over 30 months), and followed for 36 months; the main outcome

was presence or absence of HIV infection at the end of the trial, with

Vaccine Efficacy (VE) defined as

V E = 100(1 − relative risk of infection) = 100

[

1 −
P (infection|vaccine)

P (infection|placebo)

]

.

Secondary frequentist analyses examined differences in VE by gender,

ethnicity, age, and education and behavioral risk score at baseline.
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Vaccine Efficacy

Rate (%) of

HIV–1 Infection VE P Value

Group Vaccine Placebo (95% CI) Unadj Adj D-M

All

Volunteers

241/3598

(6.7)

127/1805

(7.0)

6 (–17

to 24)
.59 > .5

Black

(Non-Hisp)

6/233

(2.6)

9/116

(7.8)

67 (6

to 88)
.028 .24

Black

Women

1/112

(0.9)

4/57

(7.0)

87 (19

to 98)
.033

Nonwhite
30/604

(5.0)

29/310

(9.4)

47 (12

to 68)
.012 .13

Nonwhite

Men

27/461

(6.1)

25/236

(10.6)

43 (3

to 67)
.036

The trial found a small decline in infection overall (6.7% vaccine, 7.0% placebo)

that was neither practically nor statistically significant; large preventive

effects of the vaccine were found for some subgroups (e.g., nonwhites), but

statistical significance vanished after adjustment for multiple comparisons.
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Frequentist Multiple Comparisons Adjustment

Rate (%) of

HIV–1 Infection VE P Value

Group Vaccine Placebo (95% CI) Unadj Adj D-M

Nonwhite
30/604

(5.0)

29/310

(9.4)

47 (12

to 68)
.012 .13

Note that the P value for the nonwhite subgroup was 0.012 before, but

0.13 after, (frequentist) multiple comparisons adjustment.

However, frequentist multiple comparisons methods are an inferential

approach to what should really be a decision problem (Should this

vaccine be given to nonwhite people at high risk of getting HIV? Should

another trial focusing on nonwhites be run?), and when multiple

comparison methods are viewed as “solutions” to a Bayesian decision

problem they do not have a sensible implied utility structure: they’re

terrified of announcing that an effect is real when it’s not (a type I

error), and have no built-in penalty for failing to announce an effect is

real when it is (a type II error).
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Decision-Making

In the frequentist approach, type II errors are supposed to be taken care

of by having done a power calculation at the time the experiment was

designed, but this begs the question of what decision should be taken,

now that this study has been run, about whether to run a new trial

and/or give the vaccine to nonwhite people now.

When the problem is reformulated as a decision that properly weighs all of

the real-world costs and benefits, the result (interpreted in frequentist

language) would be a third P value column in the table on page 4 (a column

called “Implied P from a decision-making perspective”, or D-M for

short) that would look a lot more like the first (unadjusted) P value

column than the second (multiple-comparisons adjusted) column,

leading to the decision that a new trial for nonwhites for this vaccine is

a good clinical and health policy choice.

The point is that when the problem is really to make a decision,

decision-theoretic methods typically lead to better choices than

inferential methods that were not intended to be used in this way.
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Decision-Theoretic Re-Analysis

Rate (%) of

HIV–1 Infection VE P Value

Group Vaccine Placebo (95% CI) Unadj Adj D-M

All

Volunteers

241/3598

(6.7)

127/1805

(7.0)

6 (–17

to 24)
.59 > .5

A

Lot

Black

(Non-Hisp)

6/233

(2.6)

9/116

(7.8)

67 (6

to 88)
.028 .24

More

Like

Black

Women

1/112

(0.9)

4/57

(7.0)

87 (19

to 98)
.033 The

Nonwhite
30/604

(5.0)

29/310

(9.4)

47 (12

to 68)
.012 .13 Unadj

Nonwhite

Men

27/461

(6.1)

25/236

(10.6)

43 (3

to 67)
.036 Col

When both type I and type II losses are properly traded off against each other

(and gains are correctly factored in as well), the right choice is (at a minimum) to

run a new trial in which Nonwhites (principally Blacks and Asians, both

men and women) are the primary study group.
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Details

Example 3: This can be seen in an even simpler setting: consider a

randomized controlled Phase 3 clinical trial with no subgroup

analysis, and define ∆ to be the population mean health improvement

from the treatment T as compared with the control condition C.

There will typically be some point c along the number line (a kind of

practical significance threshold), which may not be 0, such that if ∆ ≥ c

the treatment should be implemented (note that this is really a decision

problem, with action space a1 = {implement T} and a2 = {don’t}).

The frequentist hypothesis-testing inferential approach to this problem

would test H0: ∆ < c against HA: ∆ ≥ c, with (reject H0) corresponding to

action a1.

In the frequentist inferential approach H0 would be rejected if ∆̂ ≥ ∆∗,

where ∆̂ is a good estimator of ∆ based on clinical trial data D with

sample size n and ∆∗ is chosen so that the corresponding P value is no

greater than α, the type I error probability (the chance of rejecting H0

when H0 is true).
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Details (continued)

As noted above, α is usually chosen to be a conventional value such as 0.05,

in conjunction with choosing n large enough (if you can do this at design

time) so that the type II error probability β is no more than another

conventional value such as 0.2 (the real-world consequences of type I

and type II errors are rarely contemplated in choosing α and β, and in

practice you won’t necessarily have a large enough n for, e.g., subgroup

analyses to correctly control the type II error probability).

The Bayesian decision-theoretic approach to this decision problem

requires me to specify a utility function that addresses these real-world

consequences (and others as well); a realistic utility structure here would

depend continuously on ∆, but I can look at an oversimplified utility

structure that permits comparison with hypothesis-testing: for uij ≥ 0,

Truth

Action ∆ ≥ c ∆ < c

a1 u11 −u12

a2 −u21 u22
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Details (continued)

Truth

Action ∆ ≥ c ∆ < c

a1 u11 −u12

a2 −u21 u22

The utilities may be considered from the point of view of several different

actors in the drama; in the context of the HIV vaccine study, for instance,

considering the situation from the viewpoint of a non-HIV+ person at high

risk of becoming HIV+,

• u11 is the gain from using a vaccine that is thought to be effective and

really is effective;

• −u12 is the loss from using a vaccine that is thought to be effective and

really is not effective;

• −u21 is the loss from not using a vaccine that is thought to be not

effective but really is effective; and

• u22 is the gain from not using a vaccine that is thought to be not

effective and really is not effective (i.e., u22 = 0).
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Details (continued)

Note that the frequentist inferential approach at analysis time only

requires you to think about something (α) corresponding to one of these four

ingredients (−u12), and even then α is on the wrong (probability) scale

(the uij will be on a real-world-relevant scale such as quality-adjusted

life years (QALYs)).

The optimal Bayesian decision turns out to be

choose a1 (implement T ) ↔ P (∆ ≥ c|D) ≥
u12 + u22

u11 + u12 + u21 + u22
= u∗.

The frequentist inferential approach is equivalent to this only if

α = 1 − u∗ =
u11 + u21

u11 + u12 + u21 + u22
.

In the context of the HIV vaccine, with realistic values of the uij that

appropriately weigh both the loss from taking the vaccine when it

doesn’t work and failing to take the vaccine when it does work, the

analogous frequentist inferential “action” would be to reject H0 for P

values that are much larger than the usual threshold

(e.g., 0.3 instead of 0.05).
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