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Preface
The Model Quality Report in Business Statistics project was set up to develop a detailed
description of the methods for assessing the quality of surveys, with particular application in
the context of business surveys, and then to apply these methods in some example surveys to
evaluate their quality. The work was specified and initiated by Eurostat following on from the
Working Group on Quality of Business Statsitics. It was funded by Eurostat under SUP-COM
1997, lot 6, and has been undertaken by a consortium of the UK Office for National
Statistics, Statistics Sweden, the University of Southampton and the University of Bath, with
the Office for National Statistics managing the contract.

The report is divided into four volumes, of which this is the first. This volume deals with the
theory and methods for assessing quality in business surveys in nine chapters following the
survey process through its various stages in order. These fall into three parts, one dealing
with sampling errors, one with a variety of non-sampling errors, and one covering coherence
and comparability of statistics.

Other volumes of the report contain:
•  a comparison of the software methods and packages available for variance estimation in

sample surveys (volume II);
•  example assessments of quality for an annual and a monthly business survey from

Sweden and the UK (volume III);
•  guidelines for and experiences of implementing the methods (volume IV).

An outline of the chapters in the report is given on the following page.
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1 Methodology overview and introduction
Paul Smith, Office for National Statistics

1.1 General structure
This volume covers the theory and methods for assessing quality in business surveys under
eight main headings. The main body of the report is divided into nine chapters, with the
probability sampling main heading split into two chapters. The non-sampling error sections
follow the classification of the Eurostat working group on Quality of Business Statistics. The
chapters are
2. Probability sampling: basic methods
3. Probability sampling: extensions
4. Sampling errors under non-probability sampling
5. Frame errors
6. Measurement errors
7. Processing errors
8. Nonresponse errors
9. Model assumption errors
10. Comparability and coherence

These fall into three parts, with chapters 2-4 dealing with sampling errors (part 1), chapters 5-
9 with various aspects of non-sampling errors (part 2) and chapter 10 forming a part on its
own (part 3). The coverage of each chapter is described in summary in section 1.2, and the
ideas are synthesised and linked to the Model Quality Reports in the final chapter, chapter 11.
References to other work mentioned in this volume appear at the end, and the notation
generally follows Särndal, Swensson & Wretman (1992) except where further notation is
required, in which case it is defined.

1.2 A guide to the contents
1.2.1 Total survey error
It is sensible to try to link the methods in these sampling and non-sampling error chapters into
a common framework (a) as a guide to what is of most interest and relevance and which
source of error is likely to be most important in a given context, and (b) to help in navigation
through the topics contained in the various chapters. This is especially important in some of
the non-sampling error chapters where topics will often fit comfortably under more than one
heading, and it may not be immediately obvious where to look for information on a particular
topic.

The best concept for providing a unifying framework is the concept of total survey error
(Groves 1989), which embodies the difference between the survey estimate and the
conceptual �real� or �true� value. In business surveys the real value (total sales by
manufacturing industries, for example) mostly has a foundation in reality � if it were possible
to look at every manufacturing business� sales and record them accurately, we could arrive at
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the real value. For other statistics such as the average price movement the �true value� is not
well-defined and this construct breaks down. So, assuming that the real value is well-defined,
we can imagine that we want to measure the difference between our survey estimate and the
true value.

Consider the problem of estimating a total � iU y  of a variable y across a population U. The

typical estimator takes the form � ′iis yw , where wi is the survey weight, iy′  is the reported

value of iy  and the sum is over the sample s. The total survey error is then

� �−′= iUiis yywerrorsurvey  total

and this may be broken down into two components (see Groves, 1989, p.11):

��

���
−=

−′=−′=

U is ii

s iiis iis ii

yyw

yywywyw

n observatio-non fromerror 

)(n observatio fromerror 

The first (observation error) component reflects measurement errors, as well as processing,
coding and imputation errors and would disappear if the recorded values iy′  were equal to the

true values iy . The second (non-observation error) component reflects sampling errors, frame
errors and nonresponse errors and would disappear if the units s upon which the estimate is
based comprised precisely the target population U.

The total survey error provides an overall measure of quality. The problem is how to assess
its magnitude. To measure the sampling error it is usual to set up a model for the distribution
of the sampling error and then to estimate the characteristics of this distribution. Usually, it is
assumed (the assumption being based on asymptotic theory) that this sampling distribution is
approximately normal and centred at zero so that the only task is to estimate the variance of
the distribution. To extend this idea to total survey error it is necessary to set up a model for
the distribution of the other components of error.

Total survey error can be considered in a different way too − broken down into two
components, a difference which is approximately invariant over repetitions of the survey, the
bias, and a difference which varies with different repetitions of the survey, the variance. The
repetitions used in this definition are often hypothetical, that is the survey is not actually
repeated. We explore these two types of error in more detail below.

The bias and variance together contribute to a measure of the total survey error, called the
mean squared error (mse), such that

mse = bias variance2 +

also sometimes expressed as its square root, the root mean square error (rmse). Both the bias
and the variance are made up of several component terms corresponding to particular types of
errors. In the case of the bias some of these components will almost certainly cancel each
other out (we say that there are positive and negative biases), so that the overall bias will be
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the net of these effects. Variances are always non-negative1 and so will cumulate over
components. If all the relevant biases and variances are included in calculating the mse, it
will be a good estimator of the total survey error.

This gives us two broad approaches to many errors. We can treat the response of a given unit
as fixed for any occasion when it is included in the sample (a kind of deterministic approach).
That is, if a business is included in the sample, we assume that it always makes the same
response/nonresponse decision, always gives the same answers on the questionnaire, and so
on. This almost always leads us to estimate biases. Alternatively we can consider that a
business�s response/nonresponse decision arises from some probability distribution, and that
its answers also come from some distribution, in which case most of the errors will
additionally have a variance component. This latter approach is akin to the model-based
sampling approach (section 2.3.2), as we assume a superpopulation of possible outcomes
with the sampling forming only one component of determining which outcomes we actually
observe in the survey. We will use this distinction in approach between deterministic and
superpopulation models in discussing the errors which make up total survey error.

1.2.2 Sampling errors
Certain assumptions and models are required to estimate the components of total survey
error, and we begin by considering random sampling mechanisms; in this section we assume
that all survey stages after sampling are error-free. When a survey is to be conducted, the
sample can be selected according to some probability mechanism. At least conceptually we
can select more then one sample using the same probability mechanism (by running the
selection process several times), and each sample would result in a different estimate if the
survey were actually run, simply because different units would be included in the sample.
Each of these potential estimates would in general be different from the true total. We have
here the situation that the survey estimates are different by repetition over different samples,
and we can measure how much these estimates differ from their mean on average, using the
average distance of the sample elements from their mean to estimate the average distance of
population elements from the mean. This gives us a variance, the sampling variance. Over all
possible different samples, the mean of the estimates is the same as the true value (still
assuming no other errors); in practice we normally have only one sample, and have to use the
mean of that sample to approximate the true population mean. Effectively , as mentioned in
section 1.2.1, we assume that the sampling error is centred around the estimate we do have.

Chapter 2 covers the theory and methods which give rise to sampling error and sampling
error estimates using firstly the design-based and model-assisted approaches, under which
different models of the relationship between a survey response and known auxiliary values
are used to improve the estimation. These approaches basically involve accounting for the
selection probabilities from the sampling in all the estimation and variance calculation in an
appropriate way. This chapter also introduces the model-based approach, which assumes that

                                                          
1 Unless estimated by a variance component model; if a negative variance is obtained it probably indicates that
the model is inappropriate.
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the survey responses are realisations from an hypothetical infinite population of possible
outcomes. In this case, with an appropriate model the selection probabilities are ignorable,
that is they have no effect on the estimation or variance estimation and do not need to be
included explicitly.

Chapter 3 takes these two approaches and extends them from straightforward estimation
methods to more complicated statistics, including estimation of changes, estimation for
domains (subsets of the population) and estimation in the presence of outliers. There is also a
summary of some work on the variability of a multisource indicator, which considers the
effects of the variability of different series which go to make up an index on its total variance.

Consider now sample selection mechanisms which are not based on probability. In these
cases the types of errors we obtain depend on the actual mechanism of selection. If repetition
has no effect on the sample composition (that is, the same sample elements are chosen every
time), then the difference between the survey estimate and the true value is constant over
repetitions: it is a (pure) bias. If the sample can be different over repetitions, then there will
be a range of potential estimates, and there will be a variance component and a bias. In
practice the two effects may not be separately estimable, or even estimable at all if the true
value is unknown (which is typically the case). This subject is addressed in chapter 4
(nonprobability sampling), concentrating particularly on cut-off sampling and voluntary
sampling (samples obtained from voluntary surveys), but also mentioning quota sampling and
judgemental sampling.

1.2.3 Non-sampling errors
Now relaxing the assumption from section 1.2.2 that everything else apart from sampling is
perfect, let us consider the other possible errors. These are arranged to follow approximately
the order of processing in a business survey.

Frame errors � contributing mainly to the bias component of the total error � are discussed in
chapter 5. These errors generally stem from differences between frame- and target
populations. Hence problems of under- and over-coverage are important. Since business
populations usually change rapidly, the updating of units and of variables attached to these
units become important. Delineation of businesses into different types of units (local units,
kind-of-activity units etc) is another activity with a large impact on frame quality. All of these
issues are dealt with in chapter 5.

Measurement errors are errors which are introduced when trying to get the desired
information from contributors. In chapter 6, we look at a measurement error model for how
answers vary over different (conceptual) repeated questionings, and this contributes to the
variability of the estimates by giving a variable measurement for a single respondent.
Measurement errors are likely to contribute to both components � bias and variance � of the
total error but they are often difficult or expensive to assess, especially in cases where follow-
up studies become necessary. Yet measurement errors may often have a large influence on
accuracy in business surveys. Approaches to detection and assessment of measurement errors
are discussed in chapter 6.
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Processing errors are discussed in chapter 7. These are errors connected with data handling
activities � whether manual or automated � such as data transmission, data capture, coding
and data editing. A particular form of processing errors, called systems error in chapter 7, are
errors arising from software and hardware. It is difficult to envisage a probability mechanism
with a real interpretation for systems errors, and in fact they are very difficult to measure at
all. Processing errors in general may contribute to both components � the bias and the
variance � of the total error although the bias is likely to be the more important one.

Nonresponse, treated in chapter 8, arises when a sampled unit fails to provide complete
responses to all questions asked in a survey. There are two ways of considering nonresponse
in a fixed sample. The deterministic approach assumes a fixed but unknown response
indicator value (1 if value is recorded, 0 if value is missing) for every unit in the sample. The
stochastic approach treats the response indicator variables as outcomes of random variables.
The nature of errors arising from nonresponse then depends on assumptions about this
random mechanism. The stochastic approach is the one followed in chapter 8. Methods to
measure or indicate the impact of nonresponse on accuracy are treated. This chapter also
treats implications of nonresponse such as bias, variance inflation and effects of confusing
nonresponse with over-coverage. Re-weighting and imputation methods to compensate for
bias caused by nonresponse are discussed.

Chapter 9 discusses errors and inaccuracy caused by using model assumptions concentrating
on estimation problems and types of models which are not mentioned elsewhere. The aim of
introducing a model may be to reduce variance and/or to reduce bias, but there is also a risk
of introducing bias if the model is not well chosen. Small area estimation is one part of the
survey process where models are important, benchmarking another (note that calibration
belongs to sampling errors; the idea is similar but the technique different). Non-ignorable
nonresponse is discussed here, although it has strong links to the non-response methods in
chapter 8. The discussion of cut-off sampling was started in chapter 4, non-probability
sampling, and it is continued here, emphasising the use of models to estimate for the part of
the population that was cut off. Another reason for using models is to help to compensate for
a lack of up-to-date information, for example on weights in chained price indices, a problem
which is introduced in this chapter. Seasonal adjustment is also described, including
comments on the software in use; assessment of the resulting accuracy is a difficult matter.

1.2.4 Comparability and coherence
This is an area which does not fit under the usual definition of total survey error, because it
does not deal with the errors in a single survey, but instead considers how well two or more
sets of statistics can be used together. This chapter covers definitions in theory and in
practice, accuracy, different co-ordination activities, and comparability of surveys over time
and national boundaries. Both user and producer perspectives are considered, and illustrations
are given.
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1.2.5 Concluding remarks
The final chapter in this volume, chapter 11, links the concepts described in this introduction
and draws out the important themes for assessing total survey error in some given contexts. It
also corresponds with chapter 2 of the Implementation Guidelines (volume IV), which
provides a summary of the methods described in this volume as they are applied in the Model
Quality Reports.

There is an example running through the sampling error chapters (2 and 3), and which also
appears in chapters 4, 8 and 9, which corresponds strongly with the Annual Business Inquiry
in the UK, which is the annual structural survey example from the UK in the Model Quality
Reports (volume III, chapter 3).
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Part 1: Sampling Errors

2 Probability sampling: basic methods
Ray Chambers, University of Southampton

2.1 Basic concepts
Many scientific and social issues revolve around the distribution of some type of
characteristic over a population of interest. Thus the number of unemployed people in a
country�s labour force and the average annual profit made by businesses in the private sector
of a country�s economy are two key indicators of that country�s economic well-being. The
first of these numbers depends on the distribution of labour force states among the individuals
making up the country�s labour force while the second is determined by the distribution of
annual profits achieved by the country�s businesses. Both these numbers are typically
measured by sample surveys. That is, a sample of individuals belonging to the country�s
labour force is surveyed and their employment/unemployment statuses determined. Similarly
a sample of private sector businesses is surveyed and their annual profits measured. In both
cases the information obtained from the survey can be used to �infer� the unknown
corresponding value (unemployment total or average profit) for the country.

2.1.1 Target population and sample population
Since in general it is meaningless to talk about a sample without referring to what it is a
sample of, the concept of a population from which a sample is taken is basic to sample survey
theory. In the examples above there are two populations � the population of individuals
making up the labour force of the country, and the population of businesses making up the
private sector economy of the country.

In general, however, the population from which a sample is taken, and the population of
interest can and do differ. The target population of a survey is the population at which the
survey is aimed, that is the population of interest. However, a target population is not
necessarily a population that can be surveyed. The actual population from which the survey
sample is drawn is called the survey population. A basic measure of the overall quality of a
sample survey is the coverage of the survey population, or the degree to which target and
sample population overlap. Assessment of this quality is considered in Chapter 5. Here we
shall assume there is no difference between the target and survey populations. That is, we
have complete coverage. From now on we will just refer to the population.

2.1.2 Sample frames and auxiliary information
A standard method of sampling is to select the sample from a list (or series of lists) which
enumerate the units (individuals, businesses, etc) making up the sample population. This list
is called the (sample) frame for the survey. Existence of a sample frame is necessary for the
use of many sampling methods. Furthermore, application of these methods often requires that
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a frame contain more than just identifiers (for example, names and addresses) for the units
making up a sample population. For example, stratified sampling requires the frame to
contain enough identifying information about each population unit for its stratum
membership to be determined. In general, we refer to this information as auxiliary
information. Typically, this auxiliary information includes characteristics of the survey
population that are related to the variables measured in the survey. These include stratum
identifiers and measures of �size�. For economic populations, the latter correspond to values
for each unit in the population which characterise the level of economic activity by the unit.

The extent to which the sample frame enumerates the sample population is another key
measure of sample survey quality. This issue is considered in Chapter 5. In what follows
however we shall assume a sample frame exists and is perfect. That is, it lists every unit in
the population once and only once, and there is a known number N of such units.

2.1.3 Probability sampling
A probability sampling method is one that uses a randomisation device to decide which units
on the sample frame are in the sample. With this type of selection method, it is not possible to
specify in advance precisely which units on the frame make up the sample. Consequently
such samples are free of the (often hidden) biases that can occur with sampling methods that
are not probability-based. In what follows we make the basic assumption that the probability
sampling method used is such that every unit on the frame has a non-zero probability of
selection into the sample. This assumption is necessary for validity of the design-based
approach to survey estimation and inference described in section 2.3.1 below. Some relevant
theory for the case where a non-probability sampling method is used is set out in Chapter 4.

2.2 Statistical foundation
As noted earlier, the basic aim of a sample survey is to allow inference about one or more
characteristics of the population. Such characteristics are typically defined by the values of
one or more population variables. A population variable is a quantity that is defined for every
unit in the population, and is observable when that unit is included in the sample. In general,
surveys are concerned with many population variables. However, most of the theory for
sample surveys has been developed for the case of a small number of variables, typically one
or two. In what follows we adopt the same simplification. Issues arising out of the need to
measure many variables simultaneously in a sample survey are considered in section 2.3.4.

2.2.1 Y and X variables
Associated with each unit in the population is a set of values for the population variables.
Some of these are recorded on the frame, and so are known for every unit in the population.
We refer to these auxiliary variables as X-variables. The others constitute the variables of
interest (the study variables) for the survey. These are not known. However we assume that
their values are measured for the sampled units, or can be derived from sample data. We
usually refer to these variables as Y-variables.
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For example, the quarterly survey of capital expenditure (CAPEX) carried out by the U.K.
Office for National Statistics (ONS) has several study (Y) variables, the most important being
acquisitions, disposals and the difference between acquisitions and disposals, the net capital
expenditure. The frame for this survey is derived from the Inter-Departmental Business
Register (IDBR) of the ONS. There are a number of X-variables on the survey frame, the
most important of which are the industry classification of a business (Standard Industry
Classification), the number of employees of the business and the total VAT turnover of the
business in the preceding year.

2.2.2 Finite population parameters
The population characteristics that are the focus of sample surveys are sometimes referred to
as its targets of inference. In general, these targets are well-defined functions of the
population values of Y-variables, typically referred to as parameters of the population. Any
population covered by a frame-based survey is necessarily finite in terms of the number of
units it contains. Such a parameter will be referred to as a finite population parameter (FPP)
in what follows in order to distinguish it from the parameters that characterise the infinite
populations used in standard statistical modelling. Some common examples of FPP�s are:
- the population total and average of a Y-variable;
- the ratio of the population averages of two Y-variables;
- the population variance of a Y-variable;
- the population median of a Y-variable.

2.2.3 Population models
A population of Y-values at any one point in time represents the outcome of many chance
occurrences. However, this does not mean that these values are completely arbitrary. There is
typically a structure inherent in a set of population values that can be characterised in terms
of a model. Such models are usually based on past exposure to data from other populations
very much like the one of interest, or subject matter knowledge about how the population
values ought to be distributed. Consequently this model is not causal � it does not say how
these Y-values came to be � but descriptive, in the sense that it is a mathematical description
of their distribution. In many cases this model is itself defined in terms of parameters which
�capture� these distributional characteristics.

A standard way of specifying such a statistical model is in terms of an underlying stochastic
process. That is, the N values constituting the finite population of interest are assumed to be
realisations of N random variables whose joint distribution is described by the model. If this
approach is taken, then the model itself is referred to as a superpopulation model for the finite
population of interest. The parameters that characterise this model are typically unknown, and
are referred to as the superpopulation parameters for the population. Unlike FPP�s,
superpopulation parameters are not real � they can never be known precisely, even if the
superpopulation model is an accurate depiction of how the finite population values are
distributed and every population value is known. Some examples of such superpopulation
parameters are moments (means, variances, covariances) of the joint distribution of the Y-
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variables defining the population values and related quantities (for example regression
coefficients).

2.2.4 Sample error and sample error distribution
Once a sample has been selected, and sample values of Y-variables obtained, we are in a
position to calculate the values of various quantities based on these data. These quantities are
typically referred to as statistics. The aim of sample survey theory is to define two types of
statistics:
(i) estimates of the FPP�s of interest;
(ii) quality measures for the estimates in (i).

In this report we will be mainly concerned with the second type of statistic above, that is
statistics measuring the quality of the estimates. However, before we can describe how such
statistics can be derived, we need to discuss the concepts of sample error and sample error
distribution.

The sample error of a survey estimate is just the difference between its observed value and
the unknown value of the FPP of which it is an estimate. Clearly one would expect a high
quality survey estimate to have a small sample error. However, since the actual value of the
FPP being estimated is unknown, the sample error of its estimate is also unknown. But this
does not mean that there is nothing we can say about this error. The method by which the
sample is chosen, and the superpopulation model for the population, allow us to specify a
variety of distributions for the sample error. In turn, this allows us to use statistical methods
to measure the quality of the survey estimate in terms of the characteristics of these
distributions.

Before going on to describe how these distributions are derived and interpreted, it is
important to note that this quality measurement relates to a quantity (the sample error) which
assumes that there are no other sources of error in the survey. In reality, there are many other
sources of error (frame error, nonresponse error, measurement error, model specification
error, processing error) in a survey. Methods for assessing these are discussed in Part 2 of this
report.

2.2.5 The repeated sampling distribution vs. the superpopulation distribution
There are two standard ways of defining a distribution for a sample error. One is its repeated
sampling distribution. This is the distribution of possible values this error can take under
repetition of the sampling method. Conceptually, this corresponds to repeating the sampling
process, selecting sample after sample from the population, calculating the value of the
estimate for each sample, generating a (potentially) different sample error each time and
hence a distribution for these errors.

The other way of defining a distribution for a sample error is in terms of the superpopulation
distribution. Under this distribution the sample estimate as well as the FPP are both based on
realisations of the Y-variables that define the population values. Consequently the sample
error is also a random variable with a distribution defined by the superpopulation model.
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Operationally this distribution corresponds to the range of potential values the sample error
can take given the range of potential values for the population Y-variables under this model.

There are fundamental differences between these distributions. The repeated sampling
distribution treats the population values as fixed. Consequently the source of variability
underlying this distribution is the sample selection method. Sample selection methods that are
not probability based are therefore not suited to evaluation under this distribution. In contrast,
the superpopulation distribution treats the sample as fixed. That is, the underlying variability
in this case arises from the uncertainty about the distribution of Y-values for the sample units
and non-sample units, but the sample/non-sample distinction is fixed according to that
actually observed.

To distinguish between these two distributions, we use a subscript of p in what follows to
denote expectations, variances, etc, taken with respect to the repeated sampling distribution,
and a subscript of ξ to denote corresponding quantities taken with respect to the
superpopulation distribution.

There are statistical arguments for and against the use of these two distributions for the
sample error when we want to characterise the quality of the actual sample estimate.
Basically, the repeated sampling (or randomisation) distribution of the sample error is viewed
as appropriate for measuring the quality of a survey design, that is the method used to select
the sample. This is because it reflects our uncertainty about which sample will be chosen
prior to the actual choice of sample. However, both methods have been used to characterise
uncertainty about the size of the sample error after the sample data are obtained. The
argument for using the randomisation distribution involves the assumption that these data do
nothing to change the source of our uncertainty, they just provide us with a means to measure
it. We still characterise uncertainty by the distribution of sample errors associated with
samples that might have been chosen but were not. In contrast, use of the superpopulation
distribution essentially comes down to saying that the population Y-values, being unknown,
represent the true source of uncertainty as far as survey inference is concerned. In particular,
after the sample data are obtained we have no uncertainty about which sample was selected,
but we still have uncertainty about the population Y-values defining the FPP of interest. In
this report we will develop measures based on both distributions, indicating their strengths
and weaknesses where appropriate.

2.2.6 Bias, variance and mean squared error
In order to use a distribution for the sample errors to measure the quality associated with the
actual sample estimate, we need to specify the characteristics of this distribution that are
appropriate for this purpose. Statistical practice essentially focuses on two such
characteristics � the central location of the distribution, as defined by its mean or expectation,
and the spread of this distribution around this mean, as defined by its variance. Often both are
combined in the mean squared error, which is the variance plus the squared mean. The mean
of the sample error distribution is typically referred to as the bias of the estimation method, so
the mean squared error becomes variance plus squared bias.
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A high quality estimate will be associated with a sample error distribution that has bias close
to or equal to zero and low variance. In this case we can be sure that the observed value of the
estimate will, with high probability, be close to the unknown FPP being estimated.
Consequently we focus on the bias and variance of the sample error distribution as the key
quality measures of a sample estimation method. In the next section we develop expressions
for these quantities, together with relevant methods for estimating them from the sample data.
In doing so we focus on one FPP that is of particular interest in many survey sampling
situations. This is the FPP defined by the total t of the values taken by a single Y-variable.

2.3 Estimates related to population totals
Let U denote the finite population of interest, and let j∈ U denote the N units making up this
population. For each unit we assume that a Y-variable is defined, with the realised (but
unknown) value of this variable for the jth unit denoted by yj. The total of the N values of this
Y-variable in the population will be denoted t. Following common practice we do not
distinguish between yj as a realisation (that is a number) and yj as the random variable that led
to that realisation. It will be clear from the context what particular interpretation should be
placed on this quantity. Similarly, we will not distinguish between an estimate (a realised
value) and an estimator (the procedure that led to the realised value).

2.3.1 The design-based approach
This approach, often referred to as design-based theory, evaluates an estimate of t in terms of
the repeated sampling distribution of its sample error. That is, a good estimate for t is defined
as one for which the associated sample error is known to be a �draw� from a repeated
sampling distribution that has either zero bias or bias that is approximately zero and a small
variance. As will become clear below, the usefulness of this approach depends on whether or
not a random method with known sample inclusion probabilities is employed for sample
selection.

2.3.1.1 Sample inclusion probabilities
In order to generate this repeated sampling distribution we need to introduce the concept of a
sample inclusion indicator. This is a binary valued random variable that takes the value 1 if a
unit is included in sample and is zero otherwise. We denote it by I in what follows. Clearly
the distribution of Ij depends on the process used to choose the sample. Suppose now that this
process is random in some way. Then we can put πj = Prp(Ij = 1) = Pr(unit j is included in
sample given fixed population values for Y and the auxiliary variable X). Since we assume
that every unit in the population has a non-zero probability of inclusion in the sample, we
must have πj > 0 for all j∈ U.

Note that we do NOT assume that the Ij are independent random variables. The properties of
the joint distribution of any subset of these random variables will depend on the actual
sampling method employed. The simplest joint distribution is of two inclusion variables, Ij

and Ik, where j ≠ k. In this case we put πjk = Prp(Ij = 1, Ik = 1) = Pr(units j and k are both
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included in sample given fixed population values for Y and X). It is standard to refer to πj as
the inclusion probability for unit j, and πjk as the joint inclusion probability for units j and k.

2.3.1.2 The Horvitz-Thompson estimate
Suppose now that the values πj are known for each unit in the population. Then, irrespective
of which sample is actually chosen, we can define an estimate of t of the form

�
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jjHT yt 1� π .

The notation j∈ s means that the summation above is restricted to the sample units, while the
subscript HT refers to the fact that this estimate was first put forward in Horvitz & Thompson
(1952).

2.3.1.3 Design-based theory for the Horvitz-Thompson estimate
It is straightforward to show that the repeated sampling distribution of the sample error of the
HTE (Horvitz-Thompson estimate) has mean zero. An equivalent way of stating this is to say
that HTt�  is unbiased under repeated sampling, or, more commonly, that it is design unbiased �
that is, unbiased with respect to repeated sampling under the probability sampling design.

The mean and variance of the repeated sampling distribution of (the sample error defined by)

HTt�  are easily obtained. It just requires one to notice that the only random variables
contributing to this distribution are the sample inclusion variables Ij defined above. All other
quantities (and in particular the values of Y) are held fixed at their population values.
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That is, the sample error distribution of the HTE has zero bias under repeated sampling. Note
that this proof is dependent on every unit in the population having a non-zero probability of
inclusion in sample.

The design variance of HTt�  (that is the variance of the repeated sampling distribution of the

sample error defined by HTt� ) is obtained through a very similar argument. Since t is
considered fixed in this case, this variance is given by
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Without loss of generality we define πjj = πj. Then the above variance is
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Note that this variance is a FPP. Consequently we can use the argument that shows   � t HT  is
design unbiased to obtain an estimate of this variance that is also design unbiased. This is the
so-called HT estimate of variance
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2.3.1.4 Design-based theory for fixed sample size designs
An important class of sample designs have fixed sample size. For such designs the sum of
any realisation of the N sample inclusion indicators equals a fixed number n (the sample
size). It immediately follows that for fixed sample size designs the sum of the population
values of πj must also equal n. Furthermore, then
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These equalities allow us to express the design variance of  � t HT  a little differently. That is,
when a fixed sample size design is used this variance is
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A design unbiased estimate of this variance is easily seen to be
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The superscript SYG above stands for Sen-Yates-Grundy, the original developers of this
particular variance estimate (Yates & Grundy, 1953; Sen, 1953).
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The HT variance estimate can take negative values when sampled units have high inclusion
probabilities. Similarly, the SYG variance estimate can be negative if πjπk < πjk for some j ≠ k.
Since in most practical cases this condition does not hold, the SYG estimate is usually
preferred for estimating the design variance of the HTE.

2.3.1.5 Approximating second order inclusion probabilities
An important practical problem underlying both variance estimates above is that they require
the survey analyst to know the joint inclusion probabilities πjk. In the case of simple random
sampling, or stratified random sampling, these probabilities are known. For example, under
stratified random sampling
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For other methods of sampling, however, the joint inclusion probabilities are rarely known. In
such cases, one can approximate these probabilities so that, within strata, they are at least
correct for simple random sampling. That is, we put
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when j and k are in the same stratum h. Obviously, when j and k are in different strata we
have πjk = πj πk.

In the special case of probability proportional to size (PPS) sampling Berger (1998) has
proposed an alternative approximation. This is based on the following approximation to the
variance of the HTE (Hajek, 1964):
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Berger�s variance estimate replaces the population quantities in Hajek�s approximation by
design-unbiased estimates, leading to the variance estimate
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It should be emphasised that this variance estimator is only suitable for PPS designs. It can
give seriously misleading results if used with general unequal probability designs. For
example, if used with stratified random sampling it has a large positive bias. Conditions for
applicability of ( )ttHT

B
p −�V�  are set out in Berger (1998).

2.3.1.6 Problems with the design-based approach
The main strength of design-based theory is that it makes no assumptions about the
population values being sampled. However this is also its weakness, since there is nothing in
the approach to indicate how to make efficient inferences. In particular, the HTE can be quite
inefficient.

Under the design-based approach to sample survey inference, design unbiasedness is a key
measure of quality for a survey estimate. As will be clear from the development above, this
property has nothing to do with the actual value of the sample error of this estimate. It is a
property of the probability sampling method. On average, over repeated sampling from the
fixed finite population of Y-values actually �out there�, this error is zero. But the size of the
actual error may be far from zero. If the variance of the repeated sampling distribution is also
small, then this error will be small with high probability. Standard probability theory assures
us that this will be the case provided the sample size is �large�. However, there is little to
guide one on what �large� means here, since the conditions required for this theory to hold
depend on the (unknown) characteristics of the population. Furthermore, in many practical
situations sample sizes are NOT �large�, and design-unbiasedness is of limited usefulness.
These comments apply equally well to a design-unbiased estimate of the design variance of
an estimate. When a sample is not �large� the accuracy of this estimate of variance (that is the
difference between it and the true sampling variance of the estimate) suffers from the same
problem as the actual sample error itself � we cannot say how small (or how large) it actually
is. All we can say is that the procedure used to calculate this estimate will on average produce
an estimate that is the right value.

A further problem relates to the use of the design variance as the measure of the error of a
particular sample estimate. This quantity is not the actual value of this error. In fact, the
design variance remains the same irrespective of the size of this error. This invariance has
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been criticised (Royall, 1982). Furthermore, the standard estimates of this design variance
(which, since they vary from sample to sample, DO vary with the actual error) have been
criticised as being misleading. In particular, in some circumstances these variance estimates
can be negatively correlated with the actual errors, leading to misleading quality assessments
for the survey estimates. See Royall & Cumberland (1981).

Both the above problems (efficient estimates and meaningful variance estimates) can be
resolved if one adopts a model-based approach to sample survey inference. However, this is
not free of cost. One then has to rely on the adequacy of one�s model for the superpopulation
distribution of the Y-variable of interest. Since all models are, to a greater or lesser extent,
incorrect this means that one should adopt robust model-based methods, that is methods that
do not seriously lose efficiency under �smooth� deviations from assumptions. This issue is
taken up in more detail in 2.3.2.8. Below we develop the basic theory underlining the model-
based approach.

2.3.2 The use of models for estimating a population total
As shown above, the design variance of the HTE depends on the actual population values of
Y. Consequently, without some way of �modelling� the distribution of these population Y-
values, there is little one can say about the properties of the HTE. Over the last 25 years a
considerable body of theory has therefore developed which attempts to utilise knowledge
about the probable distribution of population values for Y in order to improve estimation of a
FPP. Typically, this information is characterised in terms of a stochastic model for this
distribution.

There are two basic ways such a model can be used. The model-assisted approach essentially
uses it to improve estimation of the FPP within the design-based framework. That is, the
model is used to motivate an estimate with good model-based properties. However, this
estimate is still assessed in terms of desirable design-based properties like design
unbiasedness and low design variance. Furthermore, the key quality measure of an estimate
under this approach remains its estimated design variance.

The other basic approach is fully model-based. Here the restrictions of design unbiasedness
and low design variance are dispensed with, being replaced by model unbiasedness and low
model variance. Below we describe the basics of the model-based approach. Corresponding
development of the model-assisted approach is set out in section 2.3.3.

2.3.2.1 The superpopulation model
In order to describe this approach, we introduce the idea of a superpopulation model. This is a
model for the joint distribution of the N random variables Yj, j∈ U whose realisations
correspond to the population Y-values, given the values of the auxiliary variable X. Typically
such a model specifies the first and second order moments of this joint distribution rather
than the complete distribution. Thus we can write
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where µ and σ are specified functions of x whose values depend on ω, a typically unknown
parameter. Note that the assumption that distinct population units are uncorrelated given X
may seem restrictive, but is standard for surveys of economic units where X can be quite
informative about Y. In household surveys X may provide very little information about Y, in
which case it is standard to allow units that �group together� (for example individuals in
households) to be correlated. See section 2.3.2.5 below.

2.3.2.2 The homogeneous strata model
This model is widely used in business survey practice. Here, the population is split into strata
and it is assumed that the means and variances of the population Y-variables are the same for
all units within a stratum, but different across strata. In this case X is a stratum indicator.
Assuming the strata are indexed by Hh ,,2,1 �= , then for j in stratum h we have

( ) hjx µωµ =;  and ( ) hjx σωσ =; . Note that this model does not assume any relationship

between the stratum means and variances.

2.3.2.3 The simple linear regression model
Another commonly used model is where xj is a measure of the �size� of the jth population
unit, and it is reasonable to assume a linear relationship between Y and X. Typically this
linear relationship is coupled with heteroskedasticity in X, in the sense that the variability in Y
tends to increase with increasing X. A specification that allows for this behaviour for positive
valued X is ( ) jj xx βαωµ +=;  and ( ) γφψωσ jj xx +=; . In many economic populations the

regression of Y on X goes through the origin, and this model reduces to the simple �ratio�
form defined by α = ψ = 0.

2.3.2.4 The general linear regression model
Both the homogeneous strata model and the simple linear regression model are special cases
of a model where the auxiliary information corresponding to X contains a mix of stratum
identifiers and size variables. We denote this multivariate auxiliary variable by X. Then

( ) βxx T; jj =ωµ . It is standard in this case to express the heteroskedasticity in Y in terms of a

single auxiliary variable Z, which can be one of the auxiliary size variables in X, or some
positive valued function of the components of this vector (for example a power
transformation like xγ above). In either case we put ( ) jj zσωσ =;x . It is important to note that

the specification of X is quite general. In most applications this vector contains only �main
effects�, but conceptually there is nothing to stop it containing any function (including
interaction terms) defined by the auxiliary information on the sample frame.
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2.3.2.5 The cluster model
A common feature of the models set out above is that they assume individual population units
are uncorrelated, irrespective of their �distance� from other population units. That is, after
conditioning on the auxiliary information in X, there is no reason to expect population units
that are contiguous in some sense to be �more alike� with respect to their values of Y than
units that are not contiguous. Another way of expressing this is that these models assume the
observed similarity in Y values for contiguous units is completely explained by their similar
values of X.

When the explanatory power of X is weak, as is the case in most human populations, this
assumption of lack of correlation cannot be sustained. In such cases it is usual to expand the
model in 2.3.2.1 to allow correlation between contiguous units. In particular, a hierarchical
structure for the population is often assumed, with individuals grouped together into small
non-overlapping clusters (for example households). All clusters are assumed to be more or
less similar in size, and essentially similar in terms of the range of Y values they contain.
However, individuals from the same cluster are assumed to be more alike than individuals
from different clusters. Typically this is modelled by an unobservable �cluster effect�
variable which has a distribution across the clusters making up the population. The effect of
this variable is to induce a within cluster correlation for Y.

Since the focus of this report is quality measures for business surveys, and cluster type
models are rarely used to model business populations, we will not pursue this issue any
further. See Royall (1986) for further discussion of model-based estimation under a cluster
specification.

2.3.2.6 Ignorable sampling
An important assumption that is typically made at this stage is that the joint distribution of the
sample values of Y can be deduced from the assumed superpopulation model. In particular, it
is often assumed that if unit j is in sample, then the mean and variance of yj are the same as
specified by the model. That is, the fact that a unit is selected in the sample has no impact on
our uncertainty about the distribution of potential values associated with its corresponding Y-
value. This is the so-called ignorable sampling assumption. It is satisfied by any method of
probability sampling that depends at most on known population auxiliary information. We
shall assume ignorable sampling in what follows, since this is what is done in practice. An
investigation of non-ignorable sampling is set out in Chapter 4.

2.3.2.7 Bias, variance and mean squared error under the model-based approach
Under the model-based approach the total t of the population values of Y is a random
variable, so the problem of estimating this FPP is actually a prediction problem. An estimate
  � t  of the population total of Y is a function of the sample Y-values, each one of which is a
realisation of a random variable under the assumed superpopulation model. Consequently  � t 
is also the realisation of a random variable. The sample error tt −�  is a prediction error under
this approach. The model bias of an estimate  � t  of t is then the expected value of its sample
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error under the model, that is ( )tt −�Eξ  . This estimate is said to be model unbiased if this

model bias is zero, that is ( ) 0�E =− ttξ .

The model mean squared error of   � t  is the sum of its model variance and the square of its
model bias

( ) ( ) ( )[ ] .�E�V�E 22 tttttt −+−=− ξξξ

Note that both bias and mean squared error above will depend on ω. Provided this parameter
can be estimated from the sample data, say by  � ω , then we can estimate the model mean
squared error of   � t  by replacing ω by  � ω  in the variance and bias terms above. Such a �plug-
in� estimate may itself be biased, however. Bias corrections can be constructed, depending on
the actual population model assumed.

2.3.2.8 Weaknesses of the model-based approach
It is important to realise that the model-based properties of an estimate are a consequence of
the superpopulation model assumed. Since the �correctness� of this assumption is essentially
unverifiable (although the sample data can throw light on its appropriateness) there has been
criticism of this approach as being model dependent. A crucial quality requirement of a
model-based approach therefore is robustness to specification of the superpopulation model.

There are two basic ways such robustness can be achieved. The first (and most effective) is to
design the sample so that the survey estimate is in fact model unbiased with respect to both
the superpopulation model thought to be most appropriate for the population values as well as
with respect to a large class of alternative superpopulation models that could potentially
underlie these values. The second (and typically less effective) is to use a very general model,
typically one that is overspecified, at the estimation stage of the survey. That is, we replace
the original survey estimate (which was designed to be unbiased with respect to a much
�smaller� model) by the estimate suggested by this extended model. See section 2.3.4.

Probability sampling is a key element of a robust sample design strategy. This is because
probability sampling can provide average robustness by selecting samples where the bias due
to misspecification of the superpopulation model is small. However, it is usually advised that
one should not rely entirely on probability sampling in this regard, effectively leaving
robustness �to chance�, but that one should also implement robust sample design strategies
like size stratification and ordered systematic sampling within strata. These strategies
effectively �spread� the sample across the population in such a way that misspecification bias
is considerably reduced. For further discussion of this issue see Royall & Herson (1973).

2.3.2.9 Linear prediction
A widely used class of estimates of t is linear in the sample Y-values. That is, the estimate  � t 
is of the form

�
∈

=
sj

jjsL ywt� .
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In general, the weight wjs above will depend on xj and will be sample dependent, in the sense
that it will also depend on the X-values of all the sample units. However, it is not a function
of the sample Y-values, and hence is a fixed quantity under the population model. This is in
contrast to the design-based approach, which would treat this weight as a random variable in
this case.

For a large number of commonly used superpopulation models it is possible to construct
weights wjs that ensure the linear estimate Lt�  above is model unbiased and has minimum
prediction variance. Such weights are typically referred to as Best Linear Unbiased (BLU)
sample weights, and the estimate Lt�  is then the Best Linear Unbiased Predictor (BLUP) of t
under the model. Since these weights depend on the actual superpopulation model, they will
vary according to how this model is specified.

To illustrate, the homogeneous strata model and the linear regression model of 2.3.2.2 and
2.3.2.3 are often merged to give a model where the population is partitioned into strata with a
separate regression relationship between the study variable Y and the auxiliary variable X in
each stratum. If, in addition, both the linear regression of Y on X in each stratum, and the
variation of Y about this regression line, are strictly proportional to X (that is the regression
line goes through the origin, with residual variance proportional to X) then the general model
in 2.3.2.1 becomes

( )
( )

( ) kjyy
hjxy
hjxy

kj

jhj

jhj

≠=
∈=
∈=

for 0,C
 stratum for V
 stratum for E

2

ξ

ξ

ξ

σ
β

Under this model the BLUP of t is the separate ratio estimator

( )�� ==
h

shhshh
h

hhhsepR xxyNxbNt ��
,

where   
� b h  is the Best Linear Unbiased Estimate (BLUE) of βh, defined as the ratio of the

sample mean shy  of Y in stratum h to the corresponding sample mean shx  of X, and hx  is the

population mean of X in stratum h. Note that this estimator is a particular case of Lt� , with

( ) ( )shhhhjs xnxNw =  for sample unit j in stratum h.

Under the superpopulation model set out in 2.3.2.1, the model bias of Lt�  is easily seen to be

( ) ( ) ( )��
∈∈

−=−
Uj

j
sj

jjsL xxwtt ωµωµξ ;;�E

Since ( )ωµ ;jx  is O(1), it immediately follows that wjs must be O(N/n) if Lt�  is to be model

unbiased. Furthermore, the prediction variance of Lt�  under the model is

( ) ( ) ��
∉∈

+−=−
sj

j
sj

jjsL xxwtt );();(1�V 222 ωσωσξ .
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Given an estimate   � ω  of ω calculated from the sample data, a simple �plug-in� estimate of
this prediction variance is

( ) ( ) ��
∉∈

+−=−
sj

j
sj

jjsL
L xxwtt )�;()�;(1�V� 222 ωσωσξ

Since wjs is O(N/n), it is clear that the leading term in this estimated variance is the first
(sample) term on the right hand side above. The validity of this estimate therefore rests on the
accuracy of ( )ωσ ;2

jx  as a specification for the variance of yj.

Returning to the case of the separate ratio estimator defined above, one can show that this
estimated prediction variance then becomes
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2.3.2.10 Robust prediction variance estimation

A more robust estimate of the prediction variance of Lt�  can be defined by replacing this
leading term by one whose validity only depends on the superpopulation model being correct
to first, rather than second, order. In particular, suppose ( )ωµµ �;� jj x=  is an unbiased

estimate of ( )ωµ ;jx  under the superpopulation model. Then

( ) ( )12 )(V�E −+=− nOyy jjj ξξ µ

irrespective of the actual �true� specification of the superpopulation variance of yj.
Consequently the alternative prediction variance estimate for Lt�

( ) ( ) ( ) ( )��
∉∈

+−−=−
sj

j
sj

jjjsL
R xywtt ωσµξ �;�1�V� 222

will be valid even when the second order moments in the superpopulation model are
incorrectly specified. In practice, slightly modified versions of this robust variance estimate
are usually employed, typically with the squared residual above multiplied by an O(1)
adjustment, thus ensuring it is also then an unbiased estimate of the variance of yj as specified
by the superpopulation model.

To illustrate this approach, consider the case where it is convenient to assume that all units in
some specified part of the population (for example a stratum) have the same mean value, say
µ, and the same variance σ2. For convenience we shall assume that this subpopulation is the
only one we are interested in, and so we treat it as the target population. Suppose also that
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sample weights wjs are available, and it is proposed to estimate t using the linear predictor Lt�

described in 2.3.2.9. Under this model

( ) �
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�

�
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∈
Nwtt

sj
jsL µξ

�E

so the sample weights have to sum to the population size N for this estimate to be unbiased.
We assume this. The prediction variance of Lt�  is then
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An unbiased estimate of µ is the weighted average
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Also, an unbiased estimate of σ2 is then
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so an unbiased estimate of the prediction variance of Lt�  under this model is
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Unfortunately, this estimate will be biased if the assumption of constant variance for the yj is
incorrect. In particular, suppose that the units in the population have potentially different (and
unknown) variances, say 2

jσ . To distinguish this case from the constant variance model ξ

assumed so far, we use a subscript of η below. The true prediction variance of Lt�  will then be
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The robust variance estimate R
ξV� is then
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It is easy to see that this robust variance estimate will not be exactly unbiased under ξ.

However, the slightly modified alternative D
ξV�  below is:
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Extension of this robust approach to prediction variance estimation for the separate ratio
estimator introduced in 2.3.2.9 is discussed in Royall & Cumberland (1981). This leads to the
variance estimate
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As we shall see in 2.3.3.2 below, it turns out that the leading term above in this robust model-
based variance estimate is essentially identical to a design-based variance estimate for the
separate regression estimate that arises under the model-assisted approach to sample survey
inference.

2.3.3 The model-assisted approach
An alternative approach to incorporating superpopulation model information into survey
estimation is to use the model to suggest improvements to the standard HTE, but to continue
to base all inference on the design-based properties of the resulting estimate. This approach is
commonly referred to as model-assisted. See Särndal et al. (1992).

2.3.3.1 The GREG and GRAT estimates for a population total
Given a superpopulation model of the form set out in 2.3.2.1, there are two standard ways the
HTE is typically �improved upon�. This is via generalised regression estimation (GREG) or
via generalised ratio estimation (GRAT). In order to motivate these approaches, consider the
following equivalent ways of rewriting the population total t of Y, where ( )ωµµ ;jj x= ,
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An improved estimate of t based on the first decomposition above can then be defined by
replacing the unknown µj by a suitably chosen �plug-in� estimate, and the population total of
the ej by its HTE. This leads to the GREG extension of the HTE:
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where )�;(� pjj x ωµµ = , jjj ye µ�� −=  and pω�  is a �design consistent� estimate of the

parameter ω defined by the superpopulation model. Typically, the last condition is equivalent
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to requiring that in large populations and samples, pω�  has a design bias of ( )21−nO  when

used as an estimate of a FPP Nω , which is itself a model unbiased estimate of ω based on the

full population.

An alternative improved estimate of t can be based on the second decomposition above. This
is the GRAT extension of the HTE:
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Clearly the design unbiasedness of the HTE, coupled with the design consistency of pω� ,

ensures that both the GREG and the GRAT are approximately design unbiased in large
samples.

2.3.3.2 Variance estimates for the GREG and GRAT
Exact expressions for the design variances of the GREG and GRAT estimates are unavailable
in general. However, it is relatively straightforward to write down first order approximations.
In the case of the GREG, one can note that the design consistency of pω�  implies that the

leading term in the design variance of this estimate is the design variance of the generalised
difference �estimate�  � t GDIFF , which is just the GREG estimate but with pω�  replaced by Nω .

The HT estimate of variance for this generalised difference estimate is
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On the other hand, if a fixed sample size design has been used, the SYG variance estimate can
be calculated
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A first order estimate of the design variance of the GREG is then obtained by substituting pω�

for ωN in either of the above variance estimates. For example the SYG estimate of the design
variance of the GREG is
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A similar leading term approximation to the design variance of the GRAT can be developed.
We again replace pω�  by Nω  in the specification of this estimate and then use a first order
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Taylor Series approximation to the variance of the ratio term in the resulting �estimate� to get
the approximation ( pC denotes design-based covariance)
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Assuming a fixed sample size design and substituting SYG estimates for the variances and
covariances on the right hand side of this expression, replacing Nω  by pω� , NR  by pR�  and

collecting terms leads to the following first order estimate for the design variance of the
GRAT
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Note that this estimate is similar to, but not the same as, the variance estimate for the GREG.

If the mean function µ(x; ω) is linear in x, and the estimate pω�  is a model-unbiased linear

function of the sample Y-values, then both the GREG and GRAT estimators are also model-
unbiased linear functions of the sample Y-values. That is, they can be written in the form  � t L
introduced in 2.3.2.9. In such a case we can derive an alternative variance estimate for the
GREG/GRAT which is closely related to the robust model-based prediction variance
estimates described in 2.3.2.10.

To start, put ( )Njj x ωµµ ;~ =  and jjj ye µ~~ −= . Let wjs denote the sample weight of the jth

sample unit in the �linear representation� of the GREG. Since the mean function is linear in x,
and the GREG is model-unbiased, it immediately follows that
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where gjs = wjsπj is the g-weight associated with the GREG. It immediately follows that
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and we can use standard design-based theory to write down an estimate of this variance,
substituting jjj ye µ�� −=  for the unknown je~ . For example, the HT estimate of variance

arising from this representation is
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Equivalent variance estimates for the GRAT are easily developed.

We illustrate the preceding theory by returning to the case of the separate ratio estimate
introduced in 2.3.2.9, assuming in addition that the sampling method within a stratum is
simple random sampling. Since sample inclusion probabilities within a stratum are constant
under this design, and recollecting that the definition of  

� b h  ensures the sum of residuals
within a stratum is zero, we can represent this estimate in the form
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That is, the separate ratio estimate is a GREG estimate, with g-weight shjs xxg /=  for sample

unit j in stratum h. Furthermore, under simple random sampling within a stratum the HT and
SYG variance estimates are identical, and so the theory above leads to the variance estimate
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As noted at the end of 2.3.2.10, this is essentially the leading term in the robust model-based
variance estimate for the separate ratio estimate.

2.3.4 Calibration weighting
This is an area of survey estimation that has seen considerable development over the last five
years. It is also an area where both design-based and model-based ideas are relevant.
Basically, calibration is the process by which a set of survey weights (either model-based
BLU weights or design-based inverse π-weights) are modified in a �minimal� way so that
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when these modified weights are applied to specified �control� variables, known population
totals for these variables are recovered from the survey data.

Design-based justification for calibration is mainly heuristic. The idea is that since the
calibrated weights recover population control totals, they should also be �good� for other
survey variables. Calibration makes more sense from a model-assisted viewpoint, since with
certain types of calibration (essentially based on a minimum chi-square criterion for the
�distance� between the original uncalibrated weights and the calibrated weights), calibration
is equivalent to GREG estimation based on a superpopulation model that is linear in the
variables defining the control totals. From a model-based viewpoint minimum chi-square
calibration is straightforward. It essentially corresponds to modifying the initial set of sample
weights so that the final calibrated estimate is model unbiased under this linear
superpopulation model. Other types of distance criteria can be similarly model-motivated.

In the model-based framework calibration is a natural way to generalise sample weights so
they are valid under �larger� models (specified by the control totals) than those that were
originally thought to be appropriate for the population. In this sense calibration is also a
strategy for dealing with a multipurpose survey, particularly one with many Y variables each
one following perhaps a different superpopulation model specified by different X-variables.
By calibrating to the control totals of each of these potential covariates, one can define a
single sample weight that should lead to unbiased estimates for any particular Y variable.

Since choice of calibration control totals is equivalent to choice of a superpopulation model,
all the problems associated with under- and over-specification of such models flow through
to calibration weighting. Thus calibrating on too large a range of control totals is analogous to
model overspecification and tends to result in inefficient estimates and highly variable
weights. In particular, under minimum chi-square calibration one can obtain weights that are
negative or large positive in such cases. On the other hand, missing out a key calibration
constraint is equivalent to leaving a key explanatory factor out of a model, and can lead to
substantial model bias in the survey estimate.

Since assessing the quality of survey weighting methodology is not the primary focus of this
report, we do not pursue this issue further. Interested readers are referred to Chambers
(1997).

2.4 Methods for nonlinear functions of the population values
Although estimation of population totals is a key objective of many business surveys, it is
also important to be able to construct estimates of FPP�s that are nonlinear functions of the
population values. For example, ratios of population totals are often of interest, as are finite
population quantiles.
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2.4.1 Variance estimation via Taylor series linearisation

2.4.1.1 Differentiable functions of population totals

In general, let ( )mtttf ,,, 21 �=θ  denote a differentiable function of the population totals of

m Y-variables. Furthermore, let mttt �,,�,�
21 �  denote estimates of these totals. A natural

estimate of θ is then the �plug-in� estimate ( )mtttf �,,�,��
21 �=θ . If the component estimates

mttt �,,�,�
21 �  are unbiased, then   � θ  will be approximately unbiased in large samples.

A first order approximation to the sample error of  � θ  is
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where atf ∂∂  denotes the partial derivative of f with respect to its ath argument, evaluated at

mttt ,,, 21 � . Consequently, under either the design-based or model-based approaches, a first
order approximation to the variance of this sample error is
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Here V denotes variance and C denotes covariance. It immediately follows that an estimate of
this first order approximation is

( ) ( )��
= =

−−��
�

�
��
�

�
��
�

�
��
�

�
≈−

m

a

m

b
bbaa

ba

tttt
t
f

t
f

1 1

�,�C���
�V�

∂
∂

∂
∂θθ

where C�  denotes an estimated covariance and atf �∂∂  denotes the partial derivative of f with

respect to its ath argument, evaluated at mttt �,,�,�
21 � . Note that C�  can be calculated using any

of the different variance estimation methods described in section 2.3.

An important special case is where the estimates mttt �,,�,�
21 � all have the linear form discussed

in 2.3.2.9, which includes the HTE, linear prediction estimation and calibration estimation.
Then straightforward algebra can be used to show
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where tz is the population total of the linearised variable

�
=

��
�

�
��
�

�
=

m

a
aj

a
j y

t
fz

1 ∂
∂

and   � t z  is the linear weighted estimate of this total. That is,

� ��
∈ =∈

�
�

�

�

�
�

�

�
��
�

�
��
�

�
==

sj

m

a
aj

a
js

sj
jjsz y

t
fwzwt

1

�
∂
∂ .



30

Note that yaj denotes the value of the variable defining ta for the jth population unit. In
principle a first order approximation to the variance of  � θ  can then be computed as the
estimated variance of the sample error of  � t z .

In practice we do not know the values of the partial derivatives defining zj since they are
evaluated at the unknown ta, ma ,,2,1 �= . However these values can be replaced by the

estimates mttt �,,�,�
21 � , to give an estimate jz�  which replaces zj in the formula for zt�  above

and is then treated as a �standard� Y-variable. This approach was first suggested by Woodruff
(1971).

2.4.1.2 Functions defined as solutions of estimating equations
Not all FPP�s of interest can be expressed as smooth functions of the population totals of
distinct Y-variables, for example the finite population median. A wider class of FPP�s is
therefore obtained by considering those that can be defined as solutions to population level
estimating equations. In general, θ is defined by a population level estimating equation if it is
a solution to

( ) ( ) 0;,,1 ==�
∈ Uj

mjj yyfH θθ �

where f is typically assumed to be a differentiable function of θ. A �linear� estimate of θ is  � θ ,
where
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Taylor series linearisation can be used estimate the variance of  � θ . We write
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from which we obtain the first order approximation
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The so-called �sandwich� estimate of variance is obtained by evaluating the partial
derivatives above at θ� , and replacing the variance term in the middle by an appropriate
�plug-in� estimate. For arbitrary θ
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where ( ) ( )θθ ;,1 mjjj yyfz �=  is just another population Y-variable. Consequently the

variance on the right hand side above is the variance of a linear estimate of the population
total of this derived variable, and we can use the theory developed in the previous section to
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estimate it. �Plugging in�   � θ  for θ in this variance estimate gives an estimate of this variance

when θ is replaced by  � θ . We denote this estimate by ( )( )θ��V� H . The final sandwich estimate

of variance for   � θ  is then
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2.4.2 Replication-based methods for variance estimation
Although most FPP�s of interest can be defined in terms of a smooth function of population
totals, or as the solution of a population estimating equation, there remain situations where
the definition of the FPP is so complex that application of Taylor series linearisation methods
for variance estimation is difficult. In such cases we can use alternative variance estimation
methods that are �simple� to implement, but are typically numerically intensive.

The basis for all these methods is the idea that one can �simulate� the variance of a statistic
by (i) making repeated draws from a distribution whose variance is related in a simple (and
known) way to the variance of interest; (ii) empirically estimating the variance of this
�secondary� distribution, and (iii) adjusting this variance estimate so that it is an estimate of
the variance of interest.

2.4.2.1 Random groups estimate of variance
The simplest way of implementing the above idea is through the use of interpenetrating
samples, see Mahalonobis (1946), Deming (1956). Here the actual sample selected is made
up of G independent replicate or interpenetrating subsamples, each one of which is
�representative� of the population, being drawn according to the same design and with the
same sample size n/G. Let gθ�  denote the estimate of the FPP θ based on the gth replicate

sample. The overall estimate of this quantity is the average  � θ  of these gθ� .

By construction, the set of replicate estimates { }Ggg ,,1,�
�=θ  are independent and

identically distributed. Consequently, we can estimate the variance of their (common)
distribution by their empirical variance around their average, the overall estimate  � θ .
Furthermore the variance of   � θ  is just this �replicate variance� divided by the number of
replicates, G. Consequently we can estimate the variance of  � θ  by simply dividing this
empirical variance by G, leading to the estimate
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In fact, the above idea still works even if the replicate estimates are not identically
distributed. All that is required is that they are independent of one another, and each is
unbiased for the FPP θ. Straightforward algebra can then be used to show
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so the replicate variance estimate is still unbiased for the variance of the average of the
replicate estimates.

In practice replicated sample designs as described above are rare. However, the idea of
replication-based variance estimation is still applicable. What is done in these cases is to
construct the replicates after the sample is selected, by randomly allocating sample units to G
groups in such a way that each group is at least approximately independent of the other
groups.

With stratified designs such post-sample random grouping can be accomplished by random
grouping within the strata, provided there is sufficient sample size within each stratum to
carry this out. If this is not the case, then random grouping can be applied to the sample as a
whole, preserving the strata when splitting the sample between the groups. In the case of
multistage designs, splitting is typically carried out at PSU (primary sampling unit) level. In
addition, the �average� estimate   � θ  in the variance formula above is often replaced by the
�full sample� estimate of this quantity.

Finally, it should be pointed out that the replication variance estimate is an estimate of the
variance (either design-based or model-based) of  � θ , not the variance of the sample error

θθ −� . A consequence is that this variance estimate does not go to zero as the sample size
approaches the population size. This is of no great concern when sample sizes within strata
are small compared to stratum population sizes. However, in many business surveys, sample
sizes within strata are a substantial fraction of the stratum populations. In such cases, it is
standard to multiply the stratum level replicated groups variance estimates by appropriate
finite population correction factors.

2.4.2.2 Jackknife estimate of variance
A problem with the replication-based approach to variance estimation is the stability of these
estimates. Clearly, the more groups there are, the more stable these variance estimates are.
However, the more groups there are, the harder it is to �randomly group� the sample. A
methodology that circumvents this problem, but at the cost of dropping the property of
independent subgroup estimates, is to use overlapping groups.

There are essentially two approaches to using overlapping groups. The first is via Balanced
Repeated Replication (BRR) where the groups are formed using experimental design precepts
so that covariances induced by the same unit belonging to different groups �cancel out� in the
(non-overlapping) random groups variance formula above. This can be quite difficult to
accomplish in general, and so this method is typically restricted to certain types of multistage
designs that are rarely used in business surveys. See Wolter (1985) and Shao & Tu (1995).
The second, and more common method, is to compute a jackknife variance estimate.
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Under the jackknife approach, the sample is again divided into G groups, but this time G
estimates are computed by �dropping out� each of the G groups from the sample in turn. The
variability between these dependent estimates is then used to estimate the variability of the
overall estimate of θ. Let )(

�
gθ  denote the estimate of θ based on the sample excluding group

g. The jackknife estimate of variance is
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As with the replicated groups variance estimate, there are two forms of the jackknife variance
estimate. The first, which we refer to as the Type 1 jackknife, defines  � θ  as the average of the
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the Type 2 jackknife will be more conservative than the Type 1 jackknife.

Unbiasedness of the jackknife variance estimate does not follow as easily as unbiasedness of
the replicated groups variance estimate. For the Type 1 jackknife, sufficient conditions for
unbiasedness are
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For the Type 2 jackknife the second condition above should be replaced by

( ) ( )θθθ �V�,�C )( =g .

As with the random groups variance estimate, the jackknife variance estimate is typically
computed at PSU level in multistage samples. That is, the G groups are defined as groups of
PSUs. Furthermore, the most common type of jackknife is when G is equal to the number of
PSUs in sample, that is one PSU is dropped from the sample each time a value of )(

�
gθ  is

calculated. There is empirical evidence that, provided the target parameter θ is sufficiently
�smooth�, this choice of G minimises the variance of the estimate of variance (Shao & Tu,
1995; example 2.1.4). Finally, one can note that, like the random groups variance estimate,
the jackknife variance estimate does not include a finite population correction. This needs to
be applied separately.

2.4.2.3 The linearised jackknife
The computational demands of the jackknife when G = n (the number of sample PSUs) has
led to research into ways of approximating it so that it can be computed in one �pass� of the
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sample data. If   � θ  is a �smooth� function of the sample data, this can be accomplished by
essentially replacing ( )θ�V� J  by a first order Taylor series approximation to it.

In what follows we assume single stage sampling. Furthermore, we assume the existence of a
superpopulation model ξ under which ( ) jjy µξ =E  for j∈ s. Let µ denote the n-vector of these

sample expected values. We can then approximate  � θ  by
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where ( )µθ�  denotes the value of   � θ  when the sample Y-values are replaced by µ and the

partial derivatives in the second term on the right hand side are evaluated at µ as well.
Similarly, let µ(j) denote µ with the expected value for yj deleted, and put )(

�
jθ  equal to the

estimate based on the sample excluding yj. The corresponding approximation to ( )jθ�  is then
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where ( ) ( )( )jj µθ�  denotes ( )jθ�  evaluated at µ(j). We now make two extra assumptions:
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The first of these assumptions is uncontroversial, since it essentially corresponds to the
requirement that the �drop out 1� and full sample estimates are estimating the same thing.
The second assumption is reasonable when  � θ  is linear in Y, but may not be reasonable in
other cases. With these assumptions we can replace the approximation to ( )jθ�  above by
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Substituting this approximation into the Type 1 jackknife variance estimate leads to the
linearised version of this estimate
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where   � µ  denotes the full sample estimate of µ. The corresponding linearised Type 2
jackknife is obtained similarly, after replacing 0θ  by  � θ . It is
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Comparing the preceding two expressions one can easily see that the linearised Type 2
jackknife variance estimate will always be greater than the linearised Type 1 jackknife
variance estimate, a property that is generally observed for Type 2 jackknife variance
estimates.

Note that the linearised jackknife is essentially a model-based variance estimation procedure,
since it requires specification and estimation of µ. Furthermore, it is unclear whether it leads
to anything substantially different from using the Taylor approximation approach within a
model-based framework for variance estimation. For example, the linearised Type 1 jackknife
estimate of the variance of the linear estimator Lt�  defined in 2.3.2.9,
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is (to a first order approximation) equivalent to the robust model-based variance estimator
( )ttL

R −�V� ξ  described in 2.3.2.10.

2.4.2.4 Bootstrapping
Both the random groups and the jackknife methods result in estimates of variance for a
statistic that is an estimate of a FPP. In general, however, our interest in such estimates is
based on the desire to compute interval estimates (for example confidence intervals) for this
FPP. Such quantities are defined in terms of the properties of the sampling distribution of the
estimate. For large samples, the central limit theorem typically applies, and this sampling
distribution can be well approximated by a normal distribution. In such cases it is sufficient
(provided the estimate is asymptotically unbiased for the FPP) to estimate the variance of the
sampling distribution in order to write down confidence intervals for this FPP.

However, for many sampling designs the level at which variances are calculated can be quite
detailed (for example fine strata or domains containing relatively few units). Here an
assumption of central limit behaviour may be quite inappropriate, in the sense that the
sampling distribution (either design-based or model-based) may be quite non-normal. In these
cases we may want to compute an estimate of the sampling distribution directly. The
bootstrapping idea provides a way by which this objective can be achieved.

To start, we describe a model-based bootstrap, since this is relatively straightforward. In
particular, we assume that the FPP of interest is defined in terms of the population values of a
single Y-variable whose superpopulation distribution is specified by the model in 2.3.2.1, and
a model-unbiased estimate   � ω  of the parameter ω in this model can be calculated from the
sample data.
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Let { }sjr jstd ∈;,  denote the set of studentised residuals generated by the sample data under

this model. That is, these residuals depend on  � ω  and satisfy ( ) 0E , =jstdrξ  and ( ) 1V , =jstdrξ .

By sampling at random with replacement from { }sjr jstd ∈;,  we can then generate a set of N

bootstrap residuals { }Ukrk ∈;*  and consequently a bootstrap realisation of the population
values of Y, defined by

( ) ( ) ** �;�; kkkk rxxy ωσωµ += .

Given this bootstrap realisation, we can compute a bootstrap estimate of θ based on the
values { }sjy j ∈;* , which we denote by *�θ , together with the actual value of θ for the

bootstrap population, which we denote by *θ . The bootstrap realisation of the sample error is
then **� θθ − . This process is now repeated a large number of times, leading to a distribution
of such bootstrap sample errors. We denote the mean of this bootstrap distribution by

( )*** �E θθ − , and its variance by ( )*** �V θθ − .

The bootstrap estimate of θ is then ( )*** �E�� θθθθ −+=B . The bootstrap variance of this

estimate is sometimes taken as ( )*** �V θθ − . However, this will typically be an underestimate
since it does not take account of the error in estimation of ω in the above process.
Consequently it is usually better to rescale the bootstrap sample error distribution so that its
variance is the larger of this initial variance or an estimate of the variance which allows for
error in estimation of ω (for example, a jackknife estimate). If it is also believed that  � θ 
represents a �best� estimate of θ, then the bootstrap sample error distribution can be centred
at zero prior to this rescaling.

In any case, after recentering and rescaling, it is simple to �read off� a 100(1−α)% confidence
interval for θ from the bootstrap sample error distribution. Essentially such a confidence
interval is defined by
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where Q*(γ) denotes the γ-th quantile of this distribution.

One problem with the bootstrap procedure defined above is that it depends on correct
specification of the heteroskedasticity function σ(x; ω). A heteroskedasticity-robust model-
based bootstrap is easily defined, however. Essentially, all one needs to do is to replace the
studentised residuals underpinning the bootstrap procedure by �raw� residuals

( )ωµ �;, jjjraw xyr −= . The remaining steps in the bootstrap procedure are unchanged. See

Chambers & Dorfman (1994).

Bootstrapping the design-based distribution of the sample error is also possible, but can be
quite complicated depending on the actual survey design used. This is because one needs to



37

sample with replacement from the sample Y-values in such a way as to at least �preserve� the
first and second order inclusion probabilities of the design. Consequently, at the time of
writing, a number of �bootstrap-type� methods for estimating the design variance have been
suggested (Shao & Tu, 1995, Chapter 6), with no obvious preferred method.

The simplest of these at present is the bootstrap procedure described by Canty & Davison
(1997). We describe this in the context of estimation of the variance of the linear estimate  � t L
defined in 2.3.2.9, where the sample weights are calibrated to the population total of an
auxiliary variable X. That is, when the estimate Lt�  is calculated with the sample Y-values
replaced by sample X-values, the known population total of X is obtained. A bootstrap
replication here consists of the following steps:

(1) select a simple random sample of n labels from s with replacement. Let i index the n
draws making up this bootstrap sample. Thus *

iy  denotes the value of Y corresponding

to the sample label selected at the ith draw, *
isw  denotes the sample weight associated

with this value, and *
ix  denotes the corresponding value of the auxiliary variable;

(2) recalibrate the weights associated with the bootstrap sample. Let *
iw  denote the

recalibrated weight associated with the ith bootstrap sample Y-value;

(3) recompute the bootstrap realisation of Lt� . Assuming Lt�  is a GREG estimate, this will
be of the form:
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where *�β  denotes the estimate of the regression of Y on X based on the bootstrap
sample.

Repeating the above procedure a large number of times then generates the bootstrap
distribution of Lt� . As usual we denote the mean and variance of this bootstrap distribution
(that is, conditional on the sample Y-values) by E* and V* respectively. The bootstrap
variance estimate is the empirical variance of the bootstrap values *�

Lt  over these replications.

Although exact expressions for the moments of the above bootstrap distribution are generally
unavailable, good approximations are easily worked out. For any particular bootstrap
replication, define *

jiI  as one if the jth sample unit was selected at the ith draw making up the

bootstrap sample selected at that replication, and as zero otherwise. Then
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denotes the number of times the jth sample unit contributes to this bootstrap sample. It follows
( ) 1E ** =jI , ( ) ( ) nnI j 1V ** −=  and ( ) nII kj 1,C *** −= . Furthermore, since we can write



38

�
�
�

�
�
�
�

�
−+= ���

∈∈∈ sj
jjjs

sj
jjs

sj
jjjsL IxwxwIywt **** �� β

we can approximate this bootstrap realisation of Lt�  by replacing *�β  by the coefficient β�  of
the �full sample� regression of Y on X. With this approximation it is easy to see that
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That is, this first order approximation to the Canty-Davison bootstrap variance estimate is
(n − 1)/n times the linearised Type 1 jackknife variance estimate. Clearly, this approximation
is exactly the jackknife variance estimate provided we modify the bootstrap procedure above
to select n − 1 rather than n sample labels at each replication.

2.5 Conclusions
The purpose of this chapter has been to set out the basic theory for sampling error related bias
and variance assessment of standard survey estimates. This theory has either depended on, or
required, the use of some form of probability sampling method. Two basic paradigms for
defining bias and variance have been presented: the design-based approach which measures
these quantities relative to the uncertainty associated with the different samples that could
have been selected under the method used; and the model-based approach which measures
the uncertainty in terms of the possible values that the survey variable can take in the target
population. Both approaches have strengths and weaknesses, and these have been pointed
out. In the end, it seems clear that robust model-based/model-assisted methods and sensibly
conditioned design-based methods for assessing bias and variance tend to lead to similar
conclusions, and so this chapter has attempted, where possible, to indicate the connection
between the two.

From the point of view of best practice as far as minimisation of sampling bias and
assessment of sampling variance are concerned, we suggest the following points be kept in
mind:
•  robust probability sampling methods should be used wherever possible. These are designs

which blend randomisation and modelling ideas in order to ensure that the samples that
are finally selected are not only �random� but also representative of the full range of
potential Y-values under a carefully specified model for the target population. Such
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samples are necessary if the size of the sampling error is to be kept within acceptable
bounds;

•  robust methods of sampling variance estimation should be used if at all possible. Given
the representative �balanced� samples that arise under the preceding recommendation,
these methods provide stable and accurate assessments of the potential size of the sample
error. However, it should also be kept in mind that these methods are not guaranteed to
work if the sample is unrepresentative. Essentially all robust methods for estimating
sample error variability assume that the variability in the sample values is representative
of that in the target population. This is not the case if the sample is unrepresentative;

•  for complex FPP�s one has a choice between �plug-in� methods based on Taylor series
linearisation arguments or a variety of replication or resampling methods. The former are
less computer intensive but (sometimes) require considerable analytic skill to develop and
program. The latter are generally easy to program but are typically highly computer
intensive. The choice between these methods depends on the resources at hand. Some
appreciation for the different operating characteristics of these methods can be obtained
by reading the volume of this report dealing with assessment of different computer
software for survey inference. It suffices to point out that generally, because of their
�plug-in� nature, Taylor series linearisation methods tend to underestimate sampling
variability, while replication/resampling methods tend to overestimate it. In medium to
large samples, however, there is little to choose between these methods since all are
essentially first order equivalent.
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3 Probability sampling: extensions
Ray Chambers, University of Southampton

3.1 Domain estimation
A common problem in survey inference is estimation of the population total of a survey
variable Y for a domain of interest. For example, in many business surveys the sample frame
is out of date, so the industry and size classifications of many units on the frame do not agree
with their �current� industry and size classifications. After the survey is carried out, estimates
are required for the current industry by size classes. These classes then correspond to
domains of interest as far as the survey is concerned.

In general, a domain is some subgroup of the sample population. Often domains cut across
stratum boundaries and are referred to as �cross-classes�. A basic assumption in domain
estimation is that domain membership is observable on the sample. That is, one can define a
domain membership variable D with value dj for population unit j, such that dj = 1 if unit j is
in the domain and is zero otherwise, and the values of D are observable for the sample units.
The number of population units in the domain is just the population sum of D and is denoted
by Nd. By construction, the population total for the domain is
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3.1.1 Design-based inference for domains
Within the design-based framework, domain estimation poses no special problems. It is
sufficient to note that the domain total is just the population total of the variable DY.
Consequently the HTE for td is just

�
∈

−=
sj

jjjdHT ydt 1� π

with design variance

( ) ( )
��
∈ ∈

−
=−

Uj Uk kj

kkjjkjjk
ddHTp

ydyd
tt

ππ
πππ�V

The SYG estimate of the variance of this estimate is

( )
2

2
1�V�

�
�

�

�

�
�

�

�
−

�
�

�

�

�
�

�

� −
=−

≠
∈ ∈
��

k

kk

j

jj

jk
sj sk jk

jkkj
ddHT

SYG
p

ydyd
tt

πππ
πππ

.

3.1.2 Design-based inference under SRSWOR
The case of simple random sampling without replacement (SRSWOR) is instructive, since it
is the one situation where model-based inference and design-based inference �come
together�. In this case
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where sdy  is the sample average of Y for units in the domain, and psd is the sample proportion
of units in the domain. This estimator is intuitively reasonable. One modifies an estimate of
the population total that effectively treats all population units as belonging to the domain by
an estimate of the proportion of population units that actually belong to the domain. The
design variance of this estimator is (after some algebra)
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where NNp dd =  is the proportion of population units that are in the domain, dy  is the
average value of Y in the domain and sd is the standard deviation of the Y-values in the
domain. Ignoring ( )1−

dNO  terms, the SYG estimate of this variance is
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where ssd is the standard deviation of the sample Y-values in the domain.

3.1.3 Model-based inference when Nd is unknown
Model-based inference for a domain total depends on what one knows about the domain, and
in particular on whether one knows how many population units are in the domain. That is, it
depends on whether one knows the value of Nd. It also depends on whether the method of
sample selection depends on domain inclusion or not (remember we are assuming that the
sampling method is uninformative as far as Y is concerned). To start, we consider the most
common situation, where the value of Nd is unknown.

To illustrate the model-based approach, consider the case where the estimator of choice is the
HTE defined in 3.1.2. As usual, we let a subscript of ξ denote quantities defined with respect
to a superpopulation model ξ. The particular model we assume is very simple and is specified
by
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That is, domain membership in the population is modelled as the outcome of a Bernoulli
process with fixed �success� probability θd, and conditional on domain membership the
population values of Y are uncorrelated with constant mean and variance.

As with the model-based approach in general, there is an implicit assumption that sample
inclusion is independent of the values of the variables of interest. In this context, this requires
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that sample inclusion and domain membership be independent of one another. This
assumption is valid if the sample is chosen via simple random sampling.

Under the above model it is easy to see that
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so the Best Linear Unbiased Predictor (BLUP) for td is just the HTE. Furthermore the model
variance of the HTE/BLUP is
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so the SYG variance estimate in 3.1.2 is also an unbiased estimate of this model variance. For
this case, model-based and design-based inference coincide.

3.1.4 Model-based inference when Nd is known
Here one is lead to inference that conditions on this known value of Nd. To illustrate, we
consider the same situation as in 3.1.3. In this case, however, we need to modify the model
considered there to take account of the extra information provided by knowledge of Nd. Let

ddd ξξξ C,V,E  denote expectation, variance and covariance conditional on knowing Nd. As

before we put NNp dd = . Then, since ( ) ddd NN =ξE  and ( ) 0V =dd Nξ , symmetry-based

arguments can be used to show that
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Furthermore, if we assume that Y is independent of Nd conditional on D (that is, knowing Nd

tells us nothing extra about yj than knowing the value of dj), and the conditional moments of
Y given D are as specified in 3.1.3, then the following results hold

( )
( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )11,C

1,C
1)1(,C

1V

E

2

22

−−−=

−−=

−−−=

−+=

=

Nppdyd
ppdyd

Nppydyd

pppyd

pyd

dddkjjd

dddjjjd

dddkkjjd

dddddjjd

ddjjd

µ
µ

µ

µσ

µ

ξ

ξ

ξ

ξ

ξ

From the first three identities above we see that, with respect to this conditional distribution,
the �derived� random variable DY has a mean and variance that is the same for all population
units. Furthermore, the covariance between any two population values of DY is constant. It is
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straightforward to show that the BLUP defined in terms of this �derived� variable is then still
the HTE. In fact, we have
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However, in this situation there seems no strong reason why one should restrict attention to
estimates that are linear in DY. An obvious alternative is the nonlinear ratio-type estimate
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This estimate is approximately model-unbiased in large samples. Furthermore, the variance
of this estimate can be approximated using a standard Taylor series argument. In fact, one can
show
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Comparing this variance with the variance of the HTE, we see that there will typically be
large efficiency gains from use of the ratio-type estimate.

There is a fundamental principle sometimes invoked in model-based inference called the
conditionality principle (Cox & Hinkley, 1974). This states that one should always condition
on ancillary variables in inference. An ancillary variable is one whose distribution depends on
parameters that are distinct from those associated with the distribution of the variable of
interest. In the context of domain analysis, it can be argued that the parameter(s) associated
with the distribution of the domain inclusion variable D are distinct from those associated
with the distribution of the survey variable Y. Consequently, one should condition on D in
inference. This is equivalent to conditioning on both the population count Nd of the number of
units in the domain, and the corresponding sample count nd.

If one conditions in this way it is straightforward to show that the ratio-type estimate above is
the BLUP for td (defined in terms of Y) and has model variance
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This is sometimes referred to as the variance of the poststratified estimate for the domain
total.
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Which of the two immediately preceding variances for the ratio-type estimate is �correct� is
the subject of debate. Clearly, �plug in� estimates for both will be different in general, with
equality only if the population sampling fraction equals the domain sampling fraction. An
argument against the poststratified approach is based on the fact that the distribution of the
population parameter td depends on the parameters of Y as well as the parameters of D.
Consequently this is a case where the ancillarity principle is not applicable. Raised against
this, however, is the argument that, unlike the conditional variance, the poststratified variance
is zero if Nd = nd, when we know that the ratio-type estimate has zero error. However, often
one will have Nd >> nd and so a cautious approach would be to estimate the variance of the
ratio-type estimate by the maximum of the two variance estimates.

3.1.5 Model-based inference utilising auxiliary information
We return to the case where the domain count Nd is unknown. However, we extend the model
for Y to the one considered in 2.3.2.1. That is, we assume
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We continue to assume that domain membership is defined by a sequence of independent and
identically distributed Bernoulli trials, independently of the value of Y. However, domain
membership can depend on X, so
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With this set-up we have
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Given probability sampling, consistent estimates for the parameters ωd and γd above can be
obtained from the sample data. A plug in model-based estimate of td is then
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where a �hat� denotes a sample estimate. Clearly this estimate will also be consistent.

The model-variance of this estimate can be written
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The leading (biggest) term in this variance is V1ξ. It can be estimated using computer
intensive methods like the jackknife or bootstrap. For example, the �drop-out 1� Type 2
jackknife estimate of this quantity is
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where ( )jdω� denotes the sample estimate of ωd based on the sample units excluding unit j, and

( )jdγ�  is defined similarly. Typically ( )jdω�  is just dω�  for all sample units not in the domain, so

some simplification of the above formula is possible.

Alternatively, a Taylor series linearisation approach can be used to construct a �direct�
estimate of V1ξ. This is based on the approximation
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where d0γ  and d0ω  are the �true� values of 0γ  and 0ω , and the partial derivatives are
evaluated at these �true� values.

Depending on the specification of the functions µ and θ, estimates of the variances of dω�  and

dγ�  and their covariance can be estimated from the sample data. Using �hats� to denote these

estimates in the usual way, this suggests a Taylor series estimate of V1ξ of the form
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The second term V2ξ in the variance formula has a simple plug-in estimate based on the
model specification above. This is
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3.1.6 An example
A simple example illustrating the above theory is where the population is stratified and the
regression of Y on X is linear and through the origin for units in the domain, but the slope of
this regression line varies from stratum to stratum. Furthermore, the proportion of the
population in the domain varies significantly from stratum to stratum. Here we put θh equal to
the probability that a population unit in stratum h lies in the domain and βh equal to the slope
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of the regression line for domain units in stratum h. Our estimate of the domain total of Y for
the population is then
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Here h indexes the strata, pshd denotes the sample proportion of stratum h units in the domain,

hβ�  denotes the stratum h estimate for the slope of the regression of Y on X in the domain, hx

denotes the stratum average for X and shx  is the sample average for X in stratum h. The
Taylor series estimate of the leading term in the model-variance of this estimate is
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where ( )shdpξV�  denotes the estimated variance of phd and ( )hβξ
�V�  denotes the estimated

variance of hβ� . Note that independence of D and Y within a stratum causes the covariance
term in this estimate to disappear. Typically
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and, if we also assume that the residual variance for the regression of Y on X is proportional
to X within a stratum by domain �cell�, then
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where hσ�  is the usual estimate of the residual scale parameter for this regression, nhd is the

number of domain units in sample in stratum h and shdx  is their average X-value. Substituting

theses estimates and adding on ξ2V�  for this case leads to a variance estimate of the form
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where 2
hx  denotes the average of X2 in stratum h, and 2

shx  is the corresponding sample

quantity. In the special case where X ≡ 1 it is straightforward to see that this expression
reduces to the stratified random sampling version of the SYG variance estimate described in
3.1.2.

3.1.7 Domain estimation using a linear weighted estimate
Most computing packages for survey estimation which use a linear estimate of the form Lt�

described in 2.3.2.9 carry out domain estimation by simply replacing the yj in this estimate by
djyj. That is, they calculate the linear weighted domain estimate
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Under the general domain model of 3.1.5 the model-bias of this estimate is
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There is no particular reason for this model-bias to be zero, or even close to zero. To
illustrate, suppose (as is often the case) that the regression of Y on X in the population is
linear in X and the weights wjs are calibrated on X. This is sufficient to ensure model-
unbiasedness of Lt� . Suppose also that the regression of Y on X in the domain is linear in X,
but with the addition of a domain �shift� term. That is
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Unless the domain inclusion probability does not depend on X, it is clear that both terms in
this bias will be nonzero in general, irrespective of the calibrated nature of the weights.

One situation where the second term in the above bias disappears is where X includes stratum
indicators, so the calibrated weights sum to the stratum population count within a stratum,
and where domain inclusion probabilities are constant within a stratum. In this case (sh

denotes the stratum subsample, Uh denotes the stratum population)
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where zj denotes xj with stratum indicators removed, and βz is the corresponding component
of β. Clearly this remaining model-bias will vanish if the weights are actually calibrated on X
within strata, which is equivalent to requiring model-unbiasedness for Lt�  in the case where
the linear regression model for Y includes interactions between the stratum indicator
components of X and the remaining components of this auxiliary variable.

In principle, one can estimate the model-bias of the linear weighted domain estimate via
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and hence �correct� this estimate for its model-bias. For example, in the stratified case
discussed above this bias estimate is
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where wshz  is the weighted average of the sample zj in stratum h, and hz  is the actual stratum
average for this auxiliary variable. The statistical properties of this bias corrected estimate are
unknown at the time of writing.

3.1.8 Model-assisted domain inference
We focus on the extension of the GREG idea to domain estimation. The corresponding
modification to the GRAT idea is straightforward. Thus, applying the GREG idea under the
general model of 3.1.5 leads to the estimate
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where pdω�  is a design consistent estimate of ωd, and pdγ�  is defined similarly. Defining

residuals ( ) ( )pdjpdjjjdj xxyde γθωµ �;�;� −= , a first order approximation to the SYG estimate

of the leading term in the design variance of this estimate is then easily seen to be
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Note that the GREG estimate above is not the same in general as the estimate obtained by
substituting djyj for yj in a �standard� GREG estimate for a population total. This simple
�substitution� estimate is model-biased, as shown in 3.1.7 above.

3.2 Estimation of change
Most business surveys are continuing surveys. That is, the survey is repeated monthly,
quarterly, annually or with some other fixed frequency. An important reason for doing this is
to estimate the change in population quantities from one survey period to the next. This
estimation would be relatively straightforward if the target population and the survey sample
remained the same from one period to the next. Unfortunately, this is almost never the case.
Methods for coping with the complications caused by sample and population change over
time are discussed below.

To keep notational complexity to a minimum we restrict ourselves to change in a finite
population total between two time points. Let t1 denote the population total of a survey
variable Y at time T1 and let t2 denote the corresponding total at time T2. The values of Y at
time T1 will be denoted y1j and the values of Y at time T2 will be denoted y2j. The aim is to
estimate either the absolute change 12 tt −=δ  or the relative change ( ) 112112 −=−= tttttφ .

Real populations are rarely static. Thus, the units making up the population contributing to t1

will be different from those making up the population contributing to t2. We put Nu, u = 1, 2
equal to the number of units in the population at time Tu. In many cases there will be
considerable overlap between the populations at the two time points. We put C (�continuing�)
equal to the set of population units common to both time points. The set of population units
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contributing to t1 and not t2 will be denoted D (�deaths�) while the set contributing to t2 and
not t1 will be denoted B (�births�). Let NC, ND and NB denote the numbers of units in these
sets respectively. Then N1 = NC + ND and N2 = NC + NB. The �total� population will be
denoted as the set of units contributing to either t1 or t2 or both. Clearly this contains NC + ND

+ NB units.

A similar decomposition of the sample s at times T1 and T2 can be defined. Thus s1 is the
sample at time T1, s2 is the sample at time T2, sc is the sample common to both times, sd is the
set of sample units unique to time T1 and sb denotes the sample units unique to time T2. Note
that units in sc must, by definition, be in C, but units in sd do not have to be in D, and
similarly units in sb do not have to be in B. We put sdD equal to those units in sd and D, with
sdC = sd − sdD. Similarly, we put sbB equal to those units in sb and B, with sbC = sb − sbB.

3.2.1 Linear estimation
Suppose some form of weighted linear estimate of the population total of Y is computed at
each time period. These are estimates of the form (u = 1, 2)

�
∈

=
usj

ujuju ywt�

where the �L� and �s� subscripts have been dropped for the sake of clarity. The weights wuj

are assumed to be calibrated with respect to known population characteristics at time Tu.

An obvious estimate of δ is then the difference 12
��� tt −=δ . Provided the �level� estimate ut�  is

unbiased for tu, it is clear that δ�  will also be unbiased for δ. A corresponding estimate for φ
is then 1���

12 −= ttφ .

Development of design variances for these estimates is complicated by the need to evaluate
the design covariance between 1

�t  and 2
�t . To illustrate, suppose both 1

�t  and 2
�t  are HTEs, and

let the indicator Iuj denoting sample inclusion/exclusion at time Tu, so the probability of
inclusion in sample of population unit j at time Tu is equal to πuj. Let U1 denote the population
at T1 and U2 denote the population at T2. Then
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which can only be expanded further provided the joint distribution of I1j and I2j can be
specified for all pairs of units in the �total� population. This is trivial if independent samples
are selected at each time period. However, it is far more common that some form of
controlled sample rotation scheme is used. In such cases calculation of this variance can be
rather complex. For example, Nordberg (1998) sets out the theory for estimation of the design
variance of both δ�  and φ�  under the SAMU sample co-ordination system used at Statistics
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Sweden for the particular case where simple random sampling within strata is employed at
each time period. This approach conditions on the realised sample sizes defined by the
random sets sd, sb, sc, sdD and sbB, and so is essentially equivalent to the model-based
approach outlined below.

A model-based approach to measuring the variance of δ�  is reasonably straightforward to
develop, though notationally cumbersome. We have
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where σuj denotes the model standard deviation of yuj, and ρj denotes the model correlation
between y1j and y2j. Note that B\sbB denotes all elements of B that are not in sbB, and so on.
Provided units belonging to the various sample components in the above variance are
identifiable, we can estimate the model-variance of δ�  using �plug in� estimates for the
various model parameters in this expression.

A �heteroskedasticity� robust estimate of the model-variance of δ�  can be written down using
the theory set out in 2.3.2.10. Define ujµ  as the model expectation of yuj, with unbiased

estimate ujµ� . Suppose further that for some known constant huj we have

( )[ ] ( )22 E�E ujujujujuj yyh µµ ξξ −=− . Then we can estimate the model-variance of δ�  by
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where 2� ujσ , u = 1, 2 and j12�χ  are model-based estimates of Vξ(yuj) and Cξ(y1j, y2j)

respectively. Thus, for the situation considered in 2.3.2.10, we have
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Turning now to φ� , we note that a first order approximation to its model-variance can be
written down using a Taylor series argument. This is
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We can estimate the components of this variance using the �heteroskedasticity� robust
variance estimation theory set out in 2.3.2.10. Details are omitted, but follow the
corresponding development for δ�  closely.

3.2.2 Estimates of change for functions of population totals
The Taylor series linearisation methods described in 2.4.1 can also be used to estimate the
variance of the estimate of change in a function of the population totals at each time point. To
illustrate, consider the case where we are interested in the change in the ratio of the

population totals of two variables, say Ya and Yb. This change is defined as
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Suppose further that these totals are estimated via unbiased linear weighted estimates at each
time point. A consistent estimate of δR is then
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The approach described in 2.4.1.1 can be used to �linearise� the estimates of the ratio at each
time point. Thus
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and we can apply the results in 3.2.1 above to estimate the variance of Rδ� , replacing ykj in the
variance estimate formula there by
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uj yw

yRy
z

�
� .

Alternatively, either the bootstrap or jackknife approaches to variance estimation can be used.
In either case, the �sample� underlying the procedure is the union bcd ssss ++=  of the
samples s1 and s2. Thus the �drop out 1� jackknife in this case proceeds by deleting one unit
at a time from s. See Canty & Davison (1997) for an application of the bootstrapping idea to
estimation of change.

3.2.3 Estimates of change in domain quantities
Given linear weighted estimation at each time period, an estimate of the change in domain
totals between t1 and t2,
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where duj denotes the value of the domain indicator at time Tu for unit j, is
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jjjd ydwydwδ . As noted in 3.1.7, the level estimate components of dδ�

may be biased, and so this estimate of change may be biased as well. To illustrate, consider
the stratum model of 3.1.7 with auxiliary variable X defined by stratum indicators plus a size
variable Z, and with calibrated weights. Assume further that the coefficient for Z in the
regression of Y on X is the same at both time periods. The bias in dδ�  is then
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where a subscript of h denotes restriction to stratum h. This bias vanishes if θh is the same for
all h (the condition for the domain estimates at each time period to be unbiased). In general,
however, there is little we can say about this bias. One exception is where the births and
deaths within a stratum have approximately the same distribution for Z, in which case the
third term in braces above should be small. Similarly, if the weights for the common sample
within a stratum remain approximately the same from T1 to T2, and the incoming sample at
time T2 is chosen so that it �represents� the same proportion of the stratum total of Z as the
outgoing sample from T1, then the first and second terms in braces will also be close to zero
and so the bias in dδ�  will be small. Variance estimation for a linear weighted dδ�  is
straightforward. We replace ykj in the variance formulae in the preceding sections by dkjykj.
Note that a corresponding modification to the estimate of the expected value µkj of this
variable is also required when computing residuals for use in the variance estimate.
Furthermore, since the domain inclusion variable D and the survey variable Y are
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uncorrelated under ξ (that is, given the values of the auxiliary variable),
( ) ( )[ ]2EV kjkjkjkjkj ydyd µξξ −= . Applying the model-robust variance estimate developed in

3.2.1 then leads to
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where the estimated variances and covariances contributing to the second order (unweighted)
terms in this variance estimate are given by ( )kjkjkjkjkjkjv θθµθσ �1���� 222 −+=  and

[ ]jjjjjjjjv 211221121212
������� θθθµµθσ −+= . Here σ12j is the covariance between y1j and y2j, and θ12j

is the probability of domain inclusion at both T1 and T2. Both these quantities need to be
modelled using data from the common sample sc.

3.3 Outlier robust estimation
Outliers are a common problem in sample surveys, and particularly in business surveys.
Given a model ξ for a survey variable Y, an outlier is a value for this variable, which is
essentially �impossible� under ξ. An outlier is therefore an indication of a breakdown in the
model specification for Y. Outliers can be both sample and non-sample values. In the latter
case, however, they are not observed, and so this misspecification is never identified. In what
follows therefore we confine attention to sample outliers. We also assume such outliers are
�representative�, in the sense that they are not caused by errors in data collection or
processing. That is these values are �real� � they are just not at all like the rest of the sample
values.

By definition, outliers are rare. Consequently, although their presence in the sample tells us
that ξ is misspecified, there are so few of them that there is not enough information to modify
the definition of ξ in order to accommodate them. For example, outliers often arise because
industry and size characteristics used to define strata are out of date, and so a stratum ends up
containing units whose �current� characteristics (and resulting economic performance) are
quite unrelated to that of the majority of units in the stratum. If there is a substantial
proportion of these incorrectly classified units, then stratum level estimates can be replaced
by domain estimates. However, typically there are only a few such outliers, and domain
estimation procedures based on these are highly unstable.
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There are three basic approaches to dealing with sample outliers. The first is the most
common in practice and the least defensible. This is to delete the outliers from the sample.
This cannot be justified unless there is strong evidence that the sample outliers are
�unrepresentative�, being due to incorrect data collection methods or errors introduced in
sample processing. The second is to keep the outliers in sample, but to give them weights
equal to one. This corresponds to the assumption that the outliers are unique, and that there
are no remaining outliers in the nonsampled part of the population. This assumption stabilises
the overall sample estimate, but at the cost of a potentially large bias. The theoretically most
acceptable option is to keep the outliers in the sample, but to modify them so that their impact
on the sample estimate is kept small. In effect, the �normal� sample weight that would be
associated with the outlier is kept, but the outlier value is modified to something less extreme.

In the following two sub-sections we discuss approaches to this �value modification�. By
definition these are model-based. Strictly speaking, outliers are irrelevant from the design-
based point of view since this theory makes no assumptions about whether a realised sample
value is consistent with an assumed superpopulation model for the population data.

We also restrict ourselves to what are sometimes referred to as �Y-outliers�, that is where the
problem is in the realised Y-values of certain sample units. Another class of outliers occur
where the X values of a few sample units are very distant from the X-values of the other
sample units. These are �X-outliers�, and they can have a substantial impact on the stability
of the overall sample estimate because of their so-called �leverage�. This is typically
manifested in outlying sample weights, rather than outlying sample values. There are
methods for dealing with such outlying weights (see Chambers, 1997), but since they
primarily relate to efficient weighting methods rather than to bias and variance issues under
probability sampling, they are not discussed further in this report.

3.3.1 Outlier robust model-based estimation
Robust model-based methods for survey estimation are reviewed in Chambers & Kokic
(1993). See also Lee (1995). We assume that the �non-outlier� sample values follow the
superpopulation model ξ specified in 2.3.2.1, that is where
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However, the sample data contain a few values that are inconsistent with this model. If we
ignore these inconsistencies (that is, include the data as normal), our estimate of the
population total of Y is typically of the form
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where ω�  is an estimate of ω based on the sample data. Typically, in the interests of
efficiency, this estimate is based on the application of nonrobust estimation methods like least
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squares or maximum likelihood. The presence of sample outliers can seriously destabilise this
estimate however.

Outliers in the population can be modelled by assuming that the population is in fact a
mixture of outliers and non-outliers. That is, the �true� superpopulation model for Y is made
up of values drawn from ξ and values drawn from an �outlier� model η. This can be
represented as

( )( ) ( ) ( )( )jjjjjjj xxy ηξ εγνδεωµδ +−++= ;1;

where δj is an indicator random variable which determines whether a value is an outlier
( 0=jδ ) or a non-outlier ( 1=jδ ), and jξε  and jηε  are zero mean random variables such that

( ) ( )ωσεξξ ;V 2
jj x=  and ( ) ( )γτεηη ;V 2

jj x= , with ( ) ( )ωσγτ ;; 22
jj xx >> . If we further

assume that the random variables δj and jξε , jηε  are independent of one another, then the

�true� population model is such that
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and
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where πj = Pr(δj = 1). The bias in ξt�  is therefore
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The first term on the right hand side above will be essentially zero provided the method for
calculating ω�  can be made outlier robust (for example if the sample outliers have little or no
influence on its value). This leads to the estimate
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where robustω�  is the outlier robust estimate of ω (this may be simply the estimate of ω
obtained after outliers are deleted from the sample). In any case we shall assume that

( ) ( ){ } 0;�;E ≈− ωµωµ jrobustj xx

so the bias of *�
ξt  becomes
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This bias can still be substantial. Consequently, it is generally insufficient to replace
nonrobust parameter estimates by robust parameter estimates when dealing with outliers in
sample survey data. However, since
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one can see that this bias can be estimated by estimating the nonsample total of the residuals
generated by ξ. It follows *�

ξt  can be corrected by subtracting this estimated bias.

One problem with this estimated bias correction is that the presence of sample outliers can
make it very unstable. Chambers (1986) therefore suggested that this correction be
�robustified� as well, leading to the modified estimate
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where mj is a suitable chosen weight of order O((N − n)/n) and ψ is a bounded skew-
symmetric function which determines the �influence� of the sample residuals on the bias
correction.

In the case where ξt�  is a general linear weighted estimate, defined by sample weights {wjs},
**�

ξt  is given by
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A GREG version of **�
ξt  can also be written down. This is
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where robustπω�  denotes a design consistent estimate of a FPP which is itself a robust estimate

of ω.

Choice of the influence function ψ is typically left to the user. A wide variety of such
functions are available in the statistics literature (Huber, 1981). In general a �safe� choice
seems to be the Huber influence function ψ(t) = sgn(t) × min(abs(t), c), with c not too small,
say c = 6. This allows the sample outliers to have some say in the bias correction term, but
not enough to destabilise it completely.

In general, none of the above versions of the robust estimate **�
ξt  is unbiased. However, their

mean squared error properties are typically superior to both ξt�  and the naive robust estimate *�
ξt .

Variance estimation for **�
ξt  is complicated by this bias property, as well as by the intrinsic

nonlinearity of the estimate. Chambers & Dorfman (1994) report on the use of the bootstrap
to estimate confidence intervals for robust estimates like **�

ξt . In general, they found that the
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bootstrap variance estimates could not handle the bias, leading to actual confidence interval
coverage that was less than nominal coverage.

The estimate **�
ξt  is motivated by what is sometimes referred to as a �gross error model� for

the population outliers. This model is questionable when the outliers are the consequence of a
long tailed error distribution for Y rather than contamination. Here the outliers arise because
of misspecification of ξ. Chambers et al. (1993) suggested that in this case one should add a
nonparametric bias correction term to ξt� . Under long-tailed alternatives to ξ, it is wise to

�robustify� this nonparametric correction term so that, like the parametric correction term
used in **�

ξt , it is relatively unaffected by a few very extreme sample values. This leads to the

estimate

�
∉

+ +=
sj

jBtt ���
ξξ

where jB�  is the fitted value at xj of a robust nonparametric smooth of the sample residuals

( ),�;ωµ kkk xyr −=  k∈ s. In the empirical study reported in Chambers & Dorfman (1994), this

estimate, based on a Huber-type local linear smoother, performed extremely well, recording
both a low bias and a low mean squared error. Bootstrap confidence intervals based on +

ξt�

also had the best coverage properties of all the robust estimates considered in that reference.

3.3.2 Winsorisation-based estimation
As has been noted a number of times before, the use of sample weighted estimates is
common in business surveys. Consequently, there is a demand for robust estimation methods
that can (at least nominally) fit into this linear estimation framework. The model-based robust
estimation methods described above are not easily computed in this way. An alternative
method that fits naturally into this framework and has good outlier robustness properties is
the so-called winsorisation approach. Under this method, outlying sample Y-values are
modified so they are no longer outlying, and the linear weighted estimate is then calculated
using these modified values.

More precisely, since any linear weighted estimate of a population total can be expressed as

( )���
∈∈∈

−+==
sj

jjs
sj

j
sj

jjsL ywyywt 1� ,

winsorisation proceeds by replacing an outlying yj value in the second term on the right hand
side above by a less outlying value. In particular, the winsorised estimate can be written

( ) ( ) ( ) ( )[ ]���
∈∈∈

>+<+≤≤−+==
sj

jjjjjjjjjjjs
sj

j
sj

jjsL UyIULyILUyLIywyywt 1�*

where ( )⋅I  denotes an indicator function which takes the value 1 if its argument is true and is
zero otherwise and Lj, Uj are lower and upper bounds for the Y-value of population unit j∈ s.
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Determination of these bounds depends on the superpopulation model ξ for Y. As usual we
assume the general superpopulation model of 2.3.2.1. That is, we assume the mean and
variance of yj under ξ are given by ( )ωµ ;jx  and ( )ωσ ;2

jx  respectively, where ω is an

unknown parameter. In many business survey applications, Y is intrinsically positive, and so
Lj is set to zero. This is referred to as one-sided winsorisation. For this case Kokic & Smith
(1999a) parameterise the upper bound Uj in terms of a single parameter U, via

( )
1

�;
−

+=
js

jj w
UxU ωµ

where ( )ωµ �;jx  is an unbiased estimate of the expected value of yj under ξ. They then

develop procedures for choosing U in order to minimise the mean squared error of *�
Lt  under

ξ. These procedures require access to historical survey information in order to estimate ω.
Empirical results quoted in their paper indicate substantial gains from winsorisation in
surveys of �outlier prone� populations.

A problem with one-sided winsorisation is that, by construction, the resulting estimate has a
negative bias. Typically, estimation is carried out separately in various strata and these
estimates are then added to give an overall population estimate. If winsorisation is applied
within each stratum (that is U above is determined separately for each stratum in order to
minimise mean squared error at stratum level), then the overall population estimate may have
a substantial negative bias caused by summation of the individual stratum biases. Thus,
although the individual stratum level estimates are well behaved, the overall estimate may
have an unacceptable level of error. On the other hand, if U is determined at population level
(that is, the same U in all strata), then this may lead to stratum level estimates that are
unacceptable.

In a subsequent paper (Kokic & Smith, 1999b) have extended their methodology so that both
lower and upper bounds are determined in such a way as to ensure that the winsorised
estimate has minimum variance under ξ subject to it being (approximately) unbiased under
this model. Their parameterisations for Uj and Lj in this case are

( ) ( )UxxU robustjjj ωσωµ �;~; +=

and

( ) ( )LxxL robustjjj ωσωµ �;~; −=

where ω~  is an independent unbiased estimate of ω (for example obtained from historical
survey data) and ( )robustjx ωσ �;  is an outlier robust estimate of the standard deviation of yj

under ξ. The cut-off parameters U and L are then chosen in order to minimise the model
variance of *�

Lt  subject to it having zero model bias. It turns out that these optimal values
depend on solution of two differential equations defined by the common distribution F of the
standardised residuals ( ) ( )( )ωσωµ ;; jjjj xxyr −= . These are
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( ) ( )( )dUUFdLLF −=− 1

and

( ) ( ) ( ){ }dUdLLfUfdLdULU −++=+ 1

where f is the density corresponding to F. Empirical results reported in Kokic & Smith
(1999b) indicate that this two-sided winsorised estimate overcomes the �cumulative bias�
problem described above for one-sided winsorisation, while still retaining the outlier
robustness properties associated with the winsorisation idea.

Provided ω~  (and hence Uj and Lj) is based on independent historical information, variance
estimation for *�

Lt  is straightforward, since the methods described in previous sections of this
report can be applied, with yj replaced by its winsorised value

( ) ( ) ( )jjjjjjjjjjj UyIULyILUyLIyy >+<+≤≤=*

When historical data are not available, it is unclear how one can proceed to determine L and
U above. One possibility is to use cross-validation, using part of the sample to determine ω~

and the rest to determine L and U, and then repeating this process for a set of nonoverlapping
subsamples which essentially cover the original sample. The final values of L and U are then
obtained as averages of these subsample-based estimates. The properties of this approach are
unknown at the time of writing.

3.4 Variance estimation for indices
Many key official statistics are presented in the form of indices, themselves calculated using
estimates derived from a number of sources, both surveys and administrative systems. The
purpose of this section is to briefly outline methodology for variance estimation for such
statistics. To provide a focus for this discussion, the case of variance estimation for the UK
Index of Production (IoP) will be considered. For a more comprehensive assessment, see
Kokic (1998).

The IoP is an economic indicator produced by United Kingdom�s Office for National
Statistics (ONS). It is a monthly index of the total volume of industrial output (or
production). It covers the Mining, Manufacturing and Agricultural sectors of the UK
economy and is currently based to 1990 prices. It is one of the main indicators of economic
growth within the UK.

The IoP is obtained by combining several different sources of data. By far the most
significant source is ONS surveys. These include the Monthly Production Inquiry (MPI),
Producer Price Index (PPI) and the Quarterly Stocks Inquiry (QSI). Other data used in its
construction include the Export Price Deflator (EPD), which is currently derived from a
combination of data collected by ONS and by UK Customs and Excise, and additional data
on the oil, gas, electricity and mining industries from the UK Department of Trade and
Industry, and on food production from the UK Ministry of Agriculture, Fisheries and Food.
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The IoP is first constructed within industry groups at the 4-digit standard industrial
classification (SIC) level (Central Statistical Office, 1992). Let I0Th be the IoP estimate for
time period T relative to a reference period 0 in industry group h. Higher level estimates are
produced by taking weighted averages of these IoP estimates, where the weights are
determined by the value added in the base year (estimated from the Annual Business Inquiry
survey). Thus the overall index I0T is given by
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where w0h is a �value added� weight for industry h. The relative change in the IoP between
time periods T1 and T2 may be written as
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From now on, except where necessary for clarity, we shall only make reference to one base
year, a single reference period T and one 4�digit industry h, and so for simplicity the
subscripts 0, T and h will be dropped. The process of index construction can be broken down
into a number of distinct steps.

Step 1: Construction of the combined price deflator. A price deflator for home (that is,
domestic) sales is estimated from PPI data, and another for export sales is estimated from
EPD data. The inverses of these deflators estimate the average price increase from the base
year for commodities produced and sold by all members of a given industry. The combined
deflator is a harmonic mean of these home and export price deflators, weighted by total home
sales and total export sales, both estimated from MPI data. It is defined by

S
D
S

D
SD �

�
�

�
��

1

export

export

home

home

−

�
�

�

�

�
�

�

�
+=

where home
�D  is the estimated home price deflator (from PPI), export

�D  is the estimated export

price deflator (from EPD), home
�S  is estimated home sales (from MPI), export

�S  is estimated

export sales (from MPI) and exporthome
��� SSS += .

Step 2: Construction of a deflated weighted sales index. This index represents the relative
increase in real terms of sales in the current month compared to the base year. For this
purpose sales are split between merchanted goods and non-merchanted goods. Merchanted
goods are those products �sold on� by a business without being subjected to a manufacturing
process. The index is defined by
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where mS�  is the estimate of sales of merchanted goods (from MPI), mG�  is the estimate of

monthly average sales of these goods in the base year, and G�  is the corresponding estimate
of monthly average sales of all goods in the base year.

Step 3: Creation of a benchmark sales index. This index is calculated by a linear
transformation of the deflated weighted sales index. A multiplicative adjustment is used to
ensure that the index meets certain (externally imposed) constraints for publication, and
additive tuning constants are used for minor adjustments where the index value does not
follow patterns expected in the relevant industry. The index value that is produced is
therefore

a
d
cII += �sales

where c is the constraining factor, d�  is the monthly average of the deflated weighted sales
index in the base year and a is the tuning constant.

The final value of the IoP is obtained after carrying out a further additive stock adjustment to
the benchmark sales index above. This is then seasonally adjusted before publication, using
X11-ARIMA.

Taylor series linearisation and bootstrap methods for estimating the variance of the non-
seasonally adjusted IoP are discussed in Kokic (1998). Both are based on the assumption that
d�  is approximately one and
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It follows that

( ) ( )sales
2 VV IcI ≈

where V(Isales) can be estimated via Taylor series linearisation or bootstrapping. In the former
case this leads to the estimate
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where a �hat�, as usual, denotes an estimate, and we have used the fact that G� , home
�D , export

�D

and ( )exporthome
�,� SS  are uncorrelated estimates, being based on data collected at two different

time points and from three different sources (PPI, EPD and MPI).

A parametric bootstrap estimate of the variance of Isales is also easily computed. This involves
sampling with replacement from the large sample approximate joint distribution of G� , home

�D ,

export
�D  and ( )exporthome

�,� SS . Using a subscript of b to denote such a draw, we have

bb cII sales,=
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IID
~  denotes a random draw from the indicated distribution. Given B simulated values Ib

generated according to this model, the bootstrap variance estimate for I is therefore
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In the simulation study reported in Kokic (1998), this approach and Taylor series linearisation
led to comparable variance estimates.

3.5 Conclusions
This chapter has extended the theory for estimation and sample error variance estimation
introduced in the previous chapter to four important special cases that occur often in business
surveys. These are estimation for domains, estimation of change, estimation in the presence
of sample outliers and estimation of indices. All four situations require careful application of
the theory developed in chapter 2, with an emphasis perhaps on the use of model-based ideas
to highlight issues relating to the overall quality of the estimates produced.

High quality domain estimation is a fundamental objective of most business surveys. For
example, it is a basic requirement for any survey where the industry and size classification on
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the frame is out of date. In section 3.1, therefore, we set out the relevant theory for this
objective. It is interesting to note that if one treats domain membership on the same basis as
any other survey variable, then standard design-based and model-based estimation methods
essentially result in the same inference. However, the introduction of extra information about
the domains (for example their sizes) can only be easily accommodated from a model-based
perspective, though even here there is some debate about exactly how this should be done.
Consequently we recommend that when methodology for domain estimation is used in a
survey, careful attention is paid to informing the user of these estimates about the method of
computation, plus the basis of the sampling variance calculations (that is, whether they are
conditional on domain membership in the sample or not).

Estimation of change based on data obtained from typically overlapping samples is another
common feature of business surveys. One could in fact claim that such a measure of change
is in fact the key objective of most such surveys. In this context we have indicated the manner
in which variance estimates both for absolute as well as relative change need to be calculated.
Of necessity, these calculations are rather complex involving the integration of survey data
from two (and sometimes more) sources. At present we are not aware of any software that
can �automatically� carry out these calculations, so the appropriate methodology needs to be
�custom programmed� into a survey data analysis system. The theory set out in section 3.2
should be helpful in this regard.

Sample outliers are a perennial problem in business surveys and form the focus of the
discussion in section 3.3. Here it suffices to note that a consensus on dealing with these units
has yet to be reached, in large part due to the fact that the concept of what constitutes an
�outlier� remains the object of debate. The winsorisation methods discussed in section 3.3.2
offer considerable promise and are the subject of current research. Again, use of these
methods will generally stabilise the estimated variance of a survey estimate, but at the cost of
some increase in bias. This trade-off is typically advantageous if one�s main concern is
�tracking� the behaviour of the non-volatile part of the target population. In doing so, one
should take care, however, to ensure that sample units identified and downweighted as
outliers should be investigated and the reasons for their outlying values established. At the
end of the day the presence of outliers is a symptom of a badly specified model for the
population, and so the information they provide needs to be used to update and improve
sample estimation and inference procedures.

Finally, in section 3.4 we tackle the issue of variance estimation for an index calculated on
the basis of continuing survey data. Because of the wide variety of such indices in use, we
have chosen to confront this problem via discussion of one particular index, the UK Index of
Production, and to show how the �complex statistics� methodology discussed in section 2.4
can be adapted to the problem of estimating the sampling variability of this index. The
methods (Taylor series linearisation, bootstrapping) we describe are generally applicable to
any index, however.
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4 Sampling errors under non-probability sampling
David Draper and Russell Bowater2, University of Bath

4.1 Introduction
In Chapter 2 we examined sampling errors arising from probability sampling. In the random-
sampling approach to surveys � and assuming (as we did in Chapter 2) (a) that the target and
survey populations coincide, so that one may speak without confusion simply about the
population, and (b) that the available frame is perfect � the sampling method is assumed to
treat the N population units in such a way that every unit has a non-zero probability of
inclusion in the sample.

Continuing the notation in Chapter 2, let y be an outcome variable of interest and define the
sample inclusion indicators 1=jI  if unit j is in the sample and 0 otherwise. Probability

sampling makes the jI  random variables, so that it is meaningful to speak of the inclusion

probability for unit j, ( )1== jpj IPπ , and the joint inclusion probability for units j and k,

( )1,1 === kjpjk IIPπ . Here, as in Chapter 2, the subscript p denotes probability as defined

by the (design-based) hypothetical process of repeated random sampling.

As Särndal et al. (1992) note, a probability sampling design for which the following two
properties hold,

,      1  allfor  0  
     1  allfor  0   

Nkj
Nj

jk

j

≤≠≤>

≤≤>

π
π

(4.1)

and for which all of the jπ  and jkπ are known, is called measurable. The first of the

conditions in (4.1) (together with the stipulation that the jπ are known) is necessary and

sufficient for obtaining a design-unbiased estimator of the population total � =
= N

j jyt
1

   and

the second condition permits the calculation of a (nearly) design-unbiased estimate of the
variance of the sample error distribution for estimators of t.

From the design-based point of view, measurable probability sampling designs are thus
clearly desirable (Neyman 1934, Cochran 1977), and � as noted in Chapter 2 � probability
sampling also provides an important degree of robustness from the model-based perspective.
Despite this, non-measurable sampling is frequently employed in some fields even today:
samples of convenience, in which the jπ are unknown because no attempt was made to

choose the sample randomly, are ubiquitous in medicine and the social sciences (Draper
1995b gives several examples of such samples), and probability-sampling designs in which

                                                          
2 We are grateful to Ray Chambers (University of Southampton), Eva Elvers (Statistics Sweden) and Paul Smith
(UK Office for National Statistics) for comments and references, and to Paul Smith for some suggested text
fragments. Membership on this list does not imply agreement with the ideas expressed here, nor are any of these
people responsible for any errors or omissions that may be present.
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some of the jkπ  are zero (such as stratified random sampling with only one sample unit in

one or more strata) can occur in practice.

Non-probability sampling is also sometimes used in business surveys (see Särndal et al. 1992
and Lessler & Kalsbeek 1992 for examples). As noted in Eurostat (1996:04), this can occur
when there is no readily available sampling frame, or when the survey is voluntary. In this
chapter in Sections 4.2−4.5 we consider each of the four leading potential instances of non-
probability sampling in business surveys - voluntary sampling, quota sampling, judgemental
sampling, and cut-off sampling. In Section 4.6 we provide some conclusions, including brief
recommendations on best practice and their implications for model quality reports.

It is perhaps worth emphasising at the outset (a) that one of the main problems posed by non-
probability sampling is bias (as defined in Chapter 2), and (b) that bias is qualitatively
different from the kinds of errors that can arise with (small) random samples. In the latter
case (design) unbiasedness is guaranteed, in the usual long-run-average sense (see chapters 2
and 3), by the randomisation, and we have only to take larger samples to diminish the likely
amount by which our estimates will differ from their true values. Bias is more insidious: it
will not go away with increasing sample size, because repeating a biased method of data
collection on a larger scale merely perpetuates the bias. Thus there is a major burden on
anyone who wishes to use a non-probability sampling method, namely demonstrating that
any bias induced by the sampling method can be largely diminished by adjustments such as
poststratification (to be described in Section 4.2). Even if bias is largely controlled, the
unavailability (or non-positivity) of the jπ  and/or jkπ  may create serious problems for

accurate uncertainty assessment.

4.2 Voluntary sampling
Voluntary sampling arises when, for example, businesses are requested, but not required, to
take part in a survey, and the survey results are based just on the data received from the
companies who choose to respond. The choice of whether to participate thus makes the
sample non-probability-based: even if one wished to acknowledge uncertainty, before the
data arrive, about which companies will respond by regarding the sample inclusion indicators

jI  as random, the inclusion probabilities jπ  are rendered unknown by the choice

mechanism. As with quota sampling (Section 4.3), the result can range from highly accurate
to highly inaccurate, depending on the (possibly unknown) degree to which the volunteer
units represent the population in all relevant respects. Any bias that arises from failure of the
voluntary sample to match the population in this way is an example of selection bias (see
Freedman et al. 1998 for a discussion), in which the self-selection mechanism is correlated
with the outcome of interest and some or all of its most important predictors.

An example of voluntary sampling is provided by the Stocks Inquiry business survey,
conducted by the UK Office for National Statistics (ONS). This survey has both a monthly
voluntary component and a quarterly component based on probability sampling: random
samples of companies are (a) chosen, (b) required to provide quarterly data, and (c) requested
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(in addition) to provide monthly data, so that the companies providing voluntary monthly
information form a self-selected subset of the probability sample. In practice about 30% of
the sampled companies choose to supply the voluntary data. Note that this type of sample
could equally well be described as a probability sample (a) with a voluntary sub-sample or
(b) with a high degree of (almost certainly) non-ignorable non-response (see chapter 8 and
section 9.7).

Industry 1 Industry 2 Industry 3Period
P V B� P V B� P V B�

�97/Q1 3,420 5,425 +2,005 38,011 38,905 +894 26,617 61,534 +34,917
�97/Q2 3,456 6,148 +2,692 40,502 43,271 +2,769 27,439 62,990 +35,551
�97/Q3 3,455 6,008 +2,553 36,940 44,170 +7,320 26,059 59,931 +33,872

Table 4.1 Estimates based on the Probability (P) and voluntary (V) samples, by industry and
period, for work-in-progress Opening stocks. All figures are in £000. B�  = estimated bias.

Available variables in the analysis we present here include industry group number (four-digit
SIC92; we focus here on only 3 industries, coded 1-3); period of return from 01/1997 to
09/1997; register employment and (VAT) turnover (in £000) based on data gathered roughly
3 months previously; and the Opening and Closing stocks (in £000) for each of three
categories: materials, work in progress, and finished goods. The numbers of companies
involved in the voluntary and probability samples in this period were 77-87 and 261-275,
respectively, varying a bit from quarter to quarter. We concentrate here on the work-in-
progress stocks (results for the other two categories were similar). For ease of exposition (a)
we present results only on the 77 and 226 companies in the voluntary and probability samples
with complete data at all time points relevant to the analyses below, and (b) we analyse the
data as if the probability sample had been a simple random sample (in fact it was a stratified
random sample; the points we wish to make in this section come through more clearly
without the extra issue of re-weighting the probability sample back to the population).

Industry 1 Industry 2 Industry 3Period
P V B� P V B� P V B�

�97/Q1 3,456 6,148 +2,692 40,502 43,271 +2,769 27,439 62,990 +35,551
�97/Q2 3,455 6,008 +2,553 36,940 44,170 +7,320 26,059 59,931 +33,872
�97/Q3 3,898 7,828 3,930 39,356 49,605 +10,249 24,627 56,638 +32,011

Table 4.2 Estimates based on the Probability (P) and voluntary (V) samples, by industry and
period, for work-in-progress Closing stocks. All figures are in £000. B�  = estimated bias.

Some indication of the biases that could arise from basing inferences on the voluntary
monthly samples is provided by a direct comparison between the monthly and quarterly data
in each of the three periods 01-03/97, 04-06/97, and 07-09/97 that were common to both
surveys (for comparability between the monthly and quarterly series, the opening and closing
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of the first quarter of 1997 were taken to be 01/97 and 03/97 for the voluntary series, and
analogously for the other quarters). Table 4.1-Table 4.3 present sample estimates by industry
and period for work-in-progress Opening, Closing, and (Closing − Opening) stocks in each of
these three quarters. Within each industry code, probability (P) and voluntary (V) estimates
are given, and − since we are taking the probability-sampling results to be (design)

unbiased � the estimated bias PVB −=�  from the voluntary data may also be calculated. It is
evident from these tables (a) that the voluntary results for both opening and closing stocks are
enormously biased on the high side, and (b) that much − though by no means all − of this bias
cancels in the subtraction when producing the (Closing − Opening) stocks estimates, which
are the principal outcomes of interest.

Industry 1 Industry 2 Industry 3Period
P V B� P V B� P V B�

�97/Q1 36 723 +687 2,491 4,366 +1,875 822 1,456 +634
�97/Q2 -1 -140 -139 -3,562 899 +4,461 -1,380 -3,059 -1,679
�97/Q3 443 1,820 +1,377 2,416 5,435 +3,019 -1,432 -3,293 -1,861

Table 4.3 Estimates based on the Probability (P) and voluntary (V) samples, by industry and
period, for work-in-progress (Closing −−−− Opening) stocks. All figures are in £000. B�  =
estimated bias.

The leading method for bias reduction with voluntary samples is poststratification (for
example, Holt & Smith 1979, Jagers 1986, Smith 1991, Little 1993). Taking for simplicity
the case of a single outcome of interest, two ingredients are required for this method: (i) a list,
preferably (close to) exhaustive, of covariates likely to be (highly) correlated with the
outcome; and (ii) the ability to gather data on these covariates both in the voluntary sample
and in the population itself. Dividing each covariate into strata and cross-tabulating the
resulting categorical variables, poststratification involves (a) estimating both population and
voluntary sample prevalences in the cells of this stratification grid, and (b) re-weighting the
voluntary sample to match the estimated population prevalences. Ideally the stability of this
method should be checked by sensitivity analysis (see Draper et al. 1993a for examples),
varying the covariates used and the cut-points defining their strata across plausible ranges and
seeing whether the bias-adjusted estimates are similar. The (approximate) success of this
method rests on the assumption that (most or all of) the important covariates have been
correctly identified, measured, and adjusted for.

Probability Sample Voluntary Sample
Variable

Industry 1 Industry 2 Industry 3 Industry 1 Industry 2 Industry 3
Register employment 152 153 197 334 276 605
Register turnover 11,949 7,171 9,775 25,206 16,425 28,388
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Table 4.4 Comparison of probability and voluntary samples on median register employment
(numbers of people) and turnover ( £000), by industry, in the first quarter of 1997 (results for
the other two quarters were similar).

In this example the only available covariates are register employment (E) and turnover (T),
which are fairly highly correlated in both the P and V samples (for example, the correlation,
with both variables on the log scale, is +0.74 in the voluntary sample). Table 4.4 shows that
at least some of the discrepancy between the probability and voluntary samples should indeed
be explainable on the basis of E and/or T: the 30% of the quarterly probability sample that
chose to volunteer monthly data heavily over-represented large companies.

To avoid redundancy we present poststratification results here only for one industry (results
were similar with the other two industries). With only 17 companies per quarter in this
industry in the voluntary sample, bivariate stratification on both E and T would leave empty
cells, which does not permit re-weighting, so in the work presented here we first stratified
only on register turnover (in any case the high correlation between E and T indicates that
there is not much information in E after T has been accounted for). We chose four strata, with
the smallest cutpoint selected so that the lowest stratum had at least one company in both
samples, and with the other two cutpoints chosen to spread the rest of the distribution out
approximately evenly.

Table 4.5 indicates how the probability and voluntary samples in industry 1 were distributed
across strata based on register turnover. This provides another view of how sharply the large
companies were over-sampled in the voluntary survey, for example, 43% of the probability-
sampled companies were in the smallest register-turnover stratum, versus 6% in the voluntary
sample. The weights used in the poststratification are also given in this table; for example, the
voluntary-sample company in the lowest stratum was given weight ( ) ( ) 29.71717030 ≅ ,
whereas the 6 voluntary companies in the highest stratum received weight
( ) ( ) 57.01767014 ≅ .

Register turnover intervals (£000) P V Weight
[0-8,455] 30 1 7.29
(8,455-14,784] 12 4 0.73
(14,784-84,657] 14 6 0.57
(84,657-2,284,224] 14 6 0.57
Total 70 17 −

Table 4.5 Frequency distribution of probability (P) and voluntary (V) samples, across the four
register turnover strata, together with the poststratification weights.

Table 4.6 presents the results of the bias reduction arising from poststratification on register
turnover. Separately for each of the stocks categories {Opening, Closing, and (Closing −
Opening)}, the P column gives the probability-sample estimate (reported previously in Table
4.1-Table 4.3), the PV column is the voluntary-sample estimate re-weighted by the
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poststratification on register turnover, PPVB −=�  is the estimated bias after
poststratification, and R�  is the percentage (relative) reduction in estimated bias yielded by
the poststratification. For example, in 1997/Q2 the raw voluntary-sample estimate for

Opening Closing
Period

P PV B� R� (%) P PV B� R� (%)
Q1 3,420 3,223 -197 90.2 3,456 3,556 +100 96.3
Q2 3,456 3,556 +100 96.3 3,455 3,541 +86 96.6
Q3 3,455 3,541 +86 96.6 3,898 4,628 +730 81.4

Closing − Opening
Period

P PV B� R� (%)
Q1 36 333 +297 56.8
Q2 -1 -15 -14 89.9
Q3 443 1,087 +644 53.2

Table 4.6 Results, by period, from poststratifying on register turnover. In each of the stocks
categories {Opening, Closing, and (Closing − Opening)}, P is the probability-sample

estimate, PV is the poststratified voluntary sample estimate, PPVB −=�  is the estimated bias
after poststratification, and R�  is the percentage reduction in estimated bias arising from the
poststratification.

industry 1 was 6,148, giving an estimated bias of +2,692 (Table 4.1); after re-weighting the
new voluntary-sample estimate is 3,556, with an estimated bias of +100 (Table 4.6); and
diminishing the estimated bias from 2,692 to 100 represents an estimated bias reduction of
( ) %3.962692100692,2 ≅− . Poststratification has resulted in massive estimated bias
reductions ranging from 81% to 97% for the opening and closing stocks, but has produced a
more modest estimated improvement in the crucial difference (Closing − Opening), with
gains from 53% to 90%.

Opening Closing
Period

P PV B� R� (%) P PV B� R� (%)
Q1 3,420 3,301 -119 94.1 3,456 3,598 +142 94.7
Q2 3,456 3,598 +142 94.7 3,455 3,549 +94 96.3
Q3 3,455 3,549 +94 96.3 3,898 4,528 +630 84.0

Closing − Opening
Period

P PV B� R� (%)
Q1 36 307 +271 60.6
Q2 -1 -49 -48 65.5
Q3 443 979 +536 61.1

Table 4.7 Results, by period, from poststratifying on register employment. In each of the
stocks categories {Opening, Closing, and (Closing − Opening)}, P is the probability-sample
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estimate, PV is the poststratified voluntary sample estimate, PPVB −=�  is the estimated bias
after poststratification, and R�  is the percentage reduction in estimated bias arising from the
poststratification.

Sensitivity analysis on the poststratification process is straightforward. For example, basing
the strata on register employment and using three strata instead of four (with stratum
definitions [20-215], (215-449], and (449-12,378]), chosen to create approximately equal-
sized groups in the voluntary sample, yielded the results in Table 4.7. The two approaches to
poststratification have in this case led to similar amounts of bias reduction, although this need
not always be true. In practice, when a �gold-standard� (such as the probability-sample
results here) is not available, any differences revealed by a comparison of this type may
indicate that other variables should ideally have been part of the stratum definitions, that is
that poststratification may not have been entirely successful in removing the selection bias
present in the voluntary sample.

4.3 Quota sampling
For a straightforward definition of quota sampling we turn to Särndal et al. (1992, p 530)

�Quota sampling is often used in market research. The basic principle is that the
sample contains a fixed number of elements in specified population cells. Suppose
that the population is divided according to three controls: sex, age group, and
geographic area. With two sexes, four age groups, and six areas, we get a total of

48642 =××  population cells. In each cell, the investigator fixes a number (a
�quota�) of elements to be included in the sample. Now the interviewer simply �fills
the quotas�, that is, interviews the predetermined number of persons in each of the
quota cells. These may be the first persons encountered, or it may be left to the
interviewer to exercise judgement in the quota selection. The method resembles
stratification, but the selection within strata is non-probabilistic [emphasis added].
Because that selection is non-probabilistic, there is neither an unbiased point estimate
nor a valid variance estimate within the cell.�

(Also see Deville 1991 for one attempt at establishing a theoretical basis for quota sampling.)
In practice quota samplers often simply assume that the population units which end up in
each of the cells are like what one would have obtained with simple random sampling within
each cell, both for want of anything better to assume and because this assumption turns quota
sampling into stratified random sampling (StRS) and the usual estimates of error (for
example, Cochran 1977) are then available. Indeed, as Särndal et al. (1992) note, adopting a
model-based approach in which the jy  are assumed to be random variables with

( ) hjy µξ =E , ( ) 2V hjy σξ =  , where h indexes the cell in the quota-sampling grid in which jy

is observed, yields precisely the same estimate of the population total t as with StRS,

�
=

=
H

h
shh yNt

1
  � (4.2)

where H is the number of cells in the grid and hN  and shy  are the population size and sample
mean in cell h, respectively. Moreover, the usual StRS estimated variance of this estimator,
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where hn  is the sample size in cell h and 
h

h
h N

n
f = , is unbiased under this model. Thus valid

interval estimates for such quantities as the population total or mean and stratum (cell) means
are available, under the assumption that the model is correct (see also chapter 9). In Bayesian
treatments of sample surveys this sort of assumption would be described as a judgement that
the sampled and unsampled units in each of the population cells are exchangeable (see
Draper et al. 1993b for discussion), which just means that one�s predictive uncertainty for
both the sampled and unsampled units before any data are gathered would be the same.

If additional relevant stratifiers (what Särndal et al. (1992) called controls in the quote above)
are available in the quota sample and population prevalences are known, poststratification (as
in Section 4.2) within each cell can be employed to adjust for possible selection bias arising
from the haphazard choice mechanism (see Smith 1983, 1993 for examples).

Quota sampling does not seem to be much in use in European structural and short-term
business surveys at present, although a kind of quota sampling that could also be termed
judgemental sampling (see Section 4.4 below) is employed by many EU Member States in
the compilation of price statistics (Eurostat 1998:07).

4.4 Judgemental sampling
As noted by Eurostat (1996:04), �several [EU] countries use judicious samples based on a
high coverage of relevant characteristics (for example, production, employment, and
turnover). This mainly concerns production and output price indices for which there is no
register of products.� In effect, such samples are based on expert judgement as to
representativeness rather than full probability sampling.

An example of how this may arise occurs in one or more stages of the sampling process
supporting the creation of producer price indices. For instance, Eurostat (1998:07,
abbreviated E98) contains an extensive discussion of methodological aspects of estimating
producer prices on the export market; most of the material in this section is based on this
document.

4.4.1 Producer price index construction in the EU
Background on the problem addressed by export-market producer price indices is as follows.

�Producer price indices in general should cover the prices of all commodities produced in
a given country in order to be consistent with [the country's overall index of production].
... While total producer price indices (PPI) show the evolution of prices for goods
produced on the domestic market, irrespective of whether they are sold on the domestic
market or abroad, producer prices on the export market (PPIx) only take into account the
prices for those commodities which are sold abroad. ... The main purpose of the PPIx is to
provide rapid information on business cycle movements, that is, to serve as an economic
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indicator. Furthermore PPIx also serves as a deflator for foreign trade data and for
national accounts. ...

[The] PPIx for a given industry group should be calculated as a weighted average of
commodity price indices, based on a sample of enterprises and samples of representative
commodities. Thus the first step in the compilation of a PPIx is the selection of a basket
of representative �goods,� that is, headings at a given level of a product nomenclature
(such as PRODCOM or HS). In accordance with the selected goods, enterprises have to
be chosen which produce these goods on a regular basis destined to be sold abroad. The
last step consists in defining in each enterprise the products representing these goods, for
which prices will then be reported each month.� [E98, pp. 4−5]

In other words, the creation of a PPIx typically involves three stages of sampling: (i) choosing
a kind of market-basket of goods, (ii) selecting enterprises (companies) making those goods,
and (iii) taking a sample of actual products representing the goods made by the enterprises. In
practice each stage of selection in this hierarchy may use one or more sampling methods in a
more or less formal way, for example, stratification, probability proportional to size, cut-off
sampling, and/or expert judgement. Here are two examples from specific EU Member States:

1. In the Netherlands, �The selection of products and reporting units is based on detailed
base year production and consumption data from different statistical sources, such as
production statistics and foreign trade statistics. ... In order to guarantee a minimum
quality of price indices, the following rule applies: per commodity group the selected
reporting unit should on average cover 80% of sales (cut-off method). If for a particular
commodity more than 25 reporting units are required in order to attain 80% coverage, a
random sampling method can be applied. ... Once the reporting units have been selected,
the next step is to select for each reporting unit certain products within a specified
commodity group. The price statistician knows for what kinds of products he wants to
gather prices from the reporting unit. So, with the help of a field surveyor, a visit is made
to the reporting unit. The reporting unit is asked to specify the price of a product, within
the commodity group, which is representative for the export. At least one, but normally
two or more, prices are asked for. ... At present about 7,000 export price quotations are
collected at frequent intervals from about 5,500 reporting units.� [E98, pp. 23−24]

2. In Sweden, �The sample of representative items is revised annually and is made in four
steps: (i) Industrial activities (as specified by [the Swedish version of] SIC92) are
sampled by cut-off according to export value. Within each activity (ii) commodities (as
specified by HS) are then also sampled by cut-off according to Foreign Trade Statistics
which have been processed for the national accounts. (iii) Producers of selected
commodities are then sampled by cut-off from the Foreign Trade Statistics register of
exporters. (iv) Finally, representative items are selected [judgementally] in consultation
with the respondent (producer). They are selected with preference to products with high
sales values, which could be expected to be sold during all months, and if possible are
representative of price movements within the commodity group (HS number).� [E98, p.
44]
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As these excerpts demonstrate, the choice of detailed commodity specifications is likely to
involve discussion with each enterprise as a basis for expert judgement. The Swedish
example shows that these commodities are typically chosen to be representative of price
changes, and to be sold both frequently (so that monthly data are available) and for a long
period of time. It is important to assess the accuracy of the types of samples just mentioned.
For example, if products are chosen because they have enjoyed frequent sales, this may be
due to low prices, and those prices may, during periods of rising inflation, increase more than
others.

It does not appear that many EU Member States are attempting at present to assess the bias or
sampling variability with which their PPIx are estimated. The effects of judgemental sampling
are normally difficult to quantify, but there are several approaches which can be adopted,
some of which rely on the existence of other information, and some of which are only
available through additional studies. We conclude this section with a discussion of some
methods currently in use in the UK.

4.4.2 The UK experience
The first point to note, in the context of price indices, is that there is rarely a frame with
product information from which commodities can be selected. As mentioned above, this
means that sampling is usually restricted to choosing an enterprise, and then identifying a
�representative� product on a judgemental basis. There has been a tendency in the UK PPI to
obtain more than one quote from businesses for similar products, which in practice gives little
additional information, since businesses usually have consistent pricing policies; it would be
better to obtain quotes for different products, or to sample a new business. This is especially
important if the sample size in terms of number of price quotes is fixed or constrained.

Small-scale studies of the effect of this sampling can be made by enumerating the products
manufactured by a business, selecting a probability-based sample, and then looking at the
price movements over a short period in comparison to the existing judgemental sample. This
approach is expensive in collecting additional information and forming the product list to
sample from.

The UK is in the process of transition from a judgemental sample to a sample based on this
concept. Lists of product sales at the detailed (8-digit) level of the PRODCOM classification
are obtained as part of the PRODCOM survey for a (probability) sample of businesses from
the IDBR. These will then be used to form a frame from which sampling of 8-digit products
can take place according to a probability mechanism in the PPI, giving a two-phase design.
There is still an issue of which product to choose within an 8-digit heading, but at least the
business-product pair will be selected by a probability mechanism from the PRODCOM
sampling, and appropriate weighting can be used to give a design-unbiased estimator of the
�population PPI�. The first stage in the introduction of this design is underway in the UK, and
results comparing the current judgemental system (which also inherits many characteristics of
a previous voluntary survey) and the new probability-based system are expected around April
1999.
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There are particular problems with the products of some industries which may make
judgemental selection of a �representative� product extremely difficult. In the clothing
industry, for instance, items and fashions change on a seasonal basis, and getting a
continuous price quote for a transient line is impossible. Thus there will be a tendency to
select continuously-produced products, even when these do not accurately represent the
overall price movement under the appropriate heading.

In a similar way it might be expected that �typical� rather than representative products are
identified, and that for this reason minority production (which might have a more volatile
price) may be missed. This is very difficult to assess: the information required is about the
proportion of extreme price movements, which requires a large sample for estimation.
However, in cases where product identification instructions draw attention to this problem, it
should be noted as part of the quality assessment that this may be an issue.

Some assessment of the quality of a judgemental sample can also be made using the model-
based approach by invoking the ignorable sampling assumption (see Chapters 2 and 9). If we
assume (probably falsely) that the judgemental sample is approximately representative, then
we can calculate the variability of prices in product categories (choosing a higher or lower
level depending on the sample size available so as to obtain a reasonable estimate). This helps
to assess the �sampling variability� of the judgemental sample, and by reallocating the
sample using a Neyman-type allocation and calculating the expected variance (noting that the
expected variance is smaller than what will be achieved in practice because it uses the same
data for allocation and sampling variance estimation), the two can be compared. This
approach has been adopted in the optimisation of the UK CPI, where − for example − the
number of quotes for potatoes was increased because of the variability induced by the high
price of imported new potatoes at certain times of the year.

4.5 Cut-off sampling
Once again Särndal et al. (1992) is a good source for a simple description of cut-off sampling.
As in Section 4.1 let the N units in the population U be indexed by j, and define jπ  as the

probability that unit j is chosen in the sample.

�Probability sampling requires that 0>jπ  for all Uj ∈ . There are sampling

methods in current use that employ probability selection with 0>jπ  for part of the

population U, whereas 0=jπ for the remainder of U. Such methods take an

intermediate position between probability sampling and non-probabilistic selection
with jπ  that are unknown throughout the population. One of these techniques is cut-

off sampling. In cut-off sampling there is a usually deliberate exclusion of part of the
target population from sample selection. This procedure, which leads to biased
estimates, is justified by the following argument: (i) that it would cost too much, in
relation to a small gain in accuracy, to construct and maintain a reliable frame for the
entire population; and (ii) that the bias caused by the cut-off is deemed negligible. In
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particular, the procedure is used when the distribution of the values Nyy ,,1 �  is

highly skewed, and no reliable frame exists for the small elements. Such populations
are often found in business surveys. A considerable portion of the population may
consist of small business enterprises whose contribution to the total of a variable of
interest (for example, sales) is modest or negligible. At the other extreme, such a
population often contains some giant enterprises whose inclusion in the sample is
virtually mandatory in order not to risk large error in an estimated total. One may
decide in such a case to cut off (exclude from the frame, thus from sample selection)
the enterprises with few employees, say five or less. The procedure is not
recommended if a good frame for the whole population can be constructed without
excessive cost.�

(See Sugden & Smith (1984) and Haan, Opperdoes & Schut (1997) for more on cut-off
sampling.)

As an illustration of the kind of data for which cut-off sampling might be used, consider the
annual UK Annual Business Inquiry (ABI) survey, which estimates current employment,
turnover, and value added based on a sample chosen with the aid of register employment and
turnover (Table 4.8; the register contains information from 3-6 months before the survey).
ABI stratifies on industry (by 3-digit SIC), region (12 categories) and register employment,
over-sampling large companies (compare the raw-mean and weighted-mean columns in Table
4.8 to see how sharp the over-sampling is). The sample weights required to compensate for
this varied in 1996 from 1 to 27.9 with a mean of 3.45. We can use the samples of size 2,737
and 2,453 in 1995/96 as the basis of an exercise in which (a) simulated populations are
created and (b) cut-off samples are chosen from these populations, to explore the biases that
result from ignoring or modelling the smallest companies.

Variable Raw mean Weighted mean

Register employment 211.1 79.9

Returned employment 195.4 76.9

Register turnover (£000) 33,491.4 11,307.1

Returned turnover (£000) 31,374.6 10,757.5

Table 4.8 Variables available in the analysis of the UK ABI survey presented here (values are
from the 1996 sample).

Returning to the quote from Särndal et al. (1992),

�Let cU  denote the cut-off portion of the population and let 0U  be the rest of the

population, from which we assume that a probability sample is selected in the normal
way. The whole population is thus cUUU ∪= 0 . Each element in the cut-off

portion has zero inclusion probability; that is, 0=jπ  for all cUj ∈ . Let 0
�t  be an
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estimator of �=
0

0 U jyt , for example, �=
0

0
�

s
j

jy
t

π
. But we need an estimator of

the whole total �=
U jyt . How can this be achieved?�

The two possible courses of action in this situation are evidently to ignore the cut-off units
altogether or to try to estimate their contribution to the total. In the next two subsections we
consider each of these possibilities in turn.

4.5.1 Variation 1: Ignore the cut-off units
As Särndal et al. (1992) note, in this variation, which is equivalent to estimating the total
across the cut-off units as zero,

 �The statistician may be willing to assume that �=
cU jc yT  is a negligible portion

of the whole total �=
U jyt . If 0

�t  by itself is used to estimate t, the relative bias is
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which is negative but negligible under the assumption. We assume that y is an always
positive variable.�

Continuing the ABI example above, consider a given industry, with an outcome variable such
as turnover, and using a proxy variable for turnover such as number of employees. One way
to define the cut-off units cU  is by (a) sorting all companies in the register on employee

numbers, obtaining )()1( ,..., Nxx , where )( jx  is the jth smallest number of employees; (b)

calculating the cumulative sum of employee numbers from the smallest to the largest

companies, obtaining ( )� �= =
=== j

k

N

k kNkJ xSxSxS
1 1)()1(1 ,...,,..., ; and (c) cutting off all the

companies for Nj SS )1( ε−≤ , for some small ε such as 0.05. Here it is as though the

population of interest is defined to be just the top )%1(100 ε−  companies in employee
numbers. Probability sampling from the resulting set 0U  of non-cut-off companies could now
be undertaken, as Särndal et al. (1992) mention, or complete enumeration of the y values in

0U  could occur.

A strategy related to the one just outlined would be to simply define the population of interest
to be all companies with (say) 5 or more employees, sample from the companies with (say) 5-
200 employees, and attempt a full enumeration of the companies with more than 200
employees. Here one point of ignoring the tiny companies by definition is that laws
preventing the governmental survey burden on small companies from being too great may
make it impractical or impossible to get data from them in any case. However, by choosing ε
appropriately and over-sampling with sufficient vigour on the largest companies (defined by
employee numbers), this approach is seen to be a close approximation of the method in the
previous paragraph, on which we focus below.
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To estimate the bias arising from variation 1 of cut-off sampling, for each of several values of
ε we repeatedly (100 times) (a) drew a sample of size 2,453 (the 1996 ABI sample size) with
replacement from the ABI data but with unequal selection probabilities determined by the
sampling weights, to create a pseudo-population reflecting the actual distribution of UK
companies (this is a kind of weighted bootstrap; see Efron & Tibshirani 1993), (b) used the
register employment variable in this population to cut off the lower 100ε% of the companies
(by cumulative employee numbers, as described above), and (c) estimated the total returned
turnover by the total across the companies not cut off. To focus on bias issues we are thus
employing the strategy of full enumeration within 0U .

ε
Relative bias,

in % (SE)
Maximum
bias, in %

Average employment of
businesses cut-off (SE)

% of businesses
cut-off

0.20 -12.5  (0.16) -16.6 54.0  (0.6) 75.8  (0.2)

0.15 -9.15  (0.12) -12.1 36.1  (0.3) 66.7  (0.2)

0.10 -5.99  (0.08) -7.8 24.5  (0.1) 53.1  (0.2)

0.05 -2.98  (0.04) -3.9 15.7  (0.1) 32.5  (0.2)

Table 4.9 Simulation results from cut-off sampling the 1996 ABI data, based on 100
simulation repetitions (SE = Monte Carlo standard errors). The sample size in each case was
2,453.

Table 4.9 presents a summary of this simulation exercise. (Results with larger sample sizes of
5,000 and 10,000 were virtually identical.) To interpret the results in the table, consider the
row for ε = 0.20 (that is, using a 20% cut-off). Across the 100 simulation replications, the
average amount by which the cut-off estimate fell short of the total across all 2,453
companies was 12.5% of the true total, and the maximum such relative bias across the 100
replications was 16.6%. On average the cut-off companies had about 54 employees or less,
and such companies made up about 76% of all companies. It can be seen from the ε = 0.05
row in the table that, with data of this type, cutting off the 5% smallest companies (in terms
of total employees in the register) leads to a downward bias of about 3% in total turnover,
while allowing the sampling process to ignore about a third of the companies. Whether a bias
of this magnitude is acceptable depends on the context.

In practice the success of this variation of cut-off sampling varies strongly with ε, in a
population- and problem-specific manner. For instance, the discussion thus far has
emphasised the estimation of the level of, for example, turnover at one point in time rather
than the change in turnover level over time. When the main aim is to estimate change, the
proportion of cut-off units in the population may be taken to be higher (for a given bias
tolerance) than in the case of a level, because some of the bias should cancel in the
subtraction underlying the change estimate. To illustrate this point, we replicated the analysis
of Table 4.9 on both the 1995 and 1996 ABI samples, repeatedly (100 times) creating
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pseudo-populations for each year and recording the absolute and relative biases from ignoring
the cut-off units in 1995, 1996, and the change from 1995 to 1996.

Table 4.10 presents the results of this second simulation. Columns 6 and 7 (counting from
the left) in the table exhibit the expected bias cancellation, in absolute and relative terms,
in estimating the change from 1995 to 1996; for example, at ε = 0.15, biases of 7-9% in the

Bias 1995 Bias 1996 Bias (1996 − 1995)
ε Absolute Relative

(%)
Absolute Relative

(%)
Absolute Relative

(%)

0.20 -4,268 -10.0 -3,253 -12.3 1,014 -6.3

0.15 -3,114 -7.3 -2,373 -9.0 741 -4.6

0.10 -1,982 -4.7 -1,558 -5.9 424 -2.6

0.05 -981 -2.3 -776 -2.9 205 -1.3

Table 4.10 Absolute (in £M) and relative (in %) bias results from ignoring the cut-off units in
estimating the 1995 and 1996 total turnover values, and the change from 1995 to 1996, in the
UK ABI survey. The 1996 results differ a bit from those in Table 4.9 because a different
random number seed was used in each case.

individual years are reduced to 5% when the change from year to year is the quantity of
principal interest.

4.5.2 Variation 2: Model the cut-off units
The other leading approach to estimating population totals with cut-off sampling is to try to
estimate the contribution to the total provided by the cut-off portion of the population cU . As
Särndal et al. (1992) put it,

�A second approach is to use a ratio adjustment for the cut-off. Let x be an auxiliary
variable, for example, the variable of interest measured for the entire population at an
earlier date, or some other known variable roughly proportional to the current
variable of interest y. Let
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be the [design]-consistent estimator of 
0UR , based on the probability sample from

0U . To extend the conclusions to the whole population, an unverifiable assumption is
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which can be positive or negative. It is zero if the assumption 
0UU RR =  holds. This

assumption is one that the statistician may be more inclined to make than the
assumption in the first approach that ttc  is negligible.�

This strategy is based on ratio estimation, but this is not the only option: ratio estimation is
equivalent to regression estimation with the presumed regression line going through the
origin (see Cochran 1977), and one may use regression estimation without the intercept being
thus restricted. Moreover, as we will see in Chapter 9, the regression estimation could occur
either on the raw scale, for both the x and y variables, or on the log scale.

Eurostat (1997:04) contains another example of Variation 2: �When units are selected with
certainty following a structural auxiliary variable, such as yearly value added, a more
sophisticated indicator could be built using an econometric model in order to estimate the
effect of enterprises not selected.� The approach in this variation is now taken in most or all
EU regulations involving cut-off sampling (Eurostat 1997:06, 1997:07). Because of its
dependence on modelling assumptions we postpone further discussion of this variation to
Chapter 9.

In both variations, one problem is that legislation may say one should obtain data from the
companies providing the top (say) 95% of current employment, but in fact past employment
is typically used (whatever is the most current figure, which may be anywhere from 3-6
months to 1-2 years out of date, depending on EU Member State) as a proxy. The seriousness
of this problem naturally grows with the gap in time between current and register
employment.

4.6 Conclusions
We conclude this chapter with a set of recommendations for each of the non-probability-
sampling situations examined in the sections above.
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•  Recommendations: Model reporting in business surveys involving voluntary sampling
should

� Acknowledge explicitly that voluntary sampling has been used; and

� Present estimates and uncertainty assessments both with and without
poststratification on the most important available covariates, so that consumers of
the analysis can see both (a) whether they agree that all relevant covariates have
been accounted for and (b) the direction and magnitude of the bias adjustment.

•  Recommendations: Model reporting in business surveys involving quota sampling
should

� Acknowledge explicitly that quota sampling has been used;

� Present provisional estimates and uncertainty assessments as if the data had been
gathered using stratified random sampling, with the same stratification grid as that
used to define the quotas; and

� Present evidence, if available, demonstrating that the quota samples within the
cells of the grid provide approximately unbiased estimates of the population
means in those cells. This evidence could take the form of sensitivity analyses
showing that the results of principal interest are little changed when stratification
with respect to additional plausibly relevant variables is undertaken. If no such
evidence is available, the quota sampling estimates and uncertainty assessments
should be presented with an explicit statement that the unbiasedness of the
estimated cell means has not been conclusively established.

•  Recommendations: Model reporting in business surveys involving judgemental
sampling, for example, in the creation of producer price indices, should

� Routinely seek and present evidence that judgementally �typical� products are in
fact representative of actual price movements, and

� Periodically calculate the variability of prices in product categories based on an
assumption that the judgemental sample is approximately representative.

•  Recommendations: Model reporting in business surveys involving cut-off sampling
without any attempt to estimate the contribution of the cut-off population units (variation
1 in Section 4.5.1) should

� Provide evidence, of a simulation nature or otherwise, that the percentage of
population units cut off and ignored leads to acceptably low bias with problems
and populations similar to those currently under study.
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Part 2: Non-sampling errors

5 Frame errors
Eva Elvers3, Statistics Sweden

5.1 Introduction
Among the non-sampling errors that contribute to the overall inaccuracy are frame errors, to
be described in this chapter. The construction of a frame is one of the first steps in the
production process and essential for the steps to follow. The frame must, of course, be
defined with regard to the final goal, the resulting statistics. These are estimates of finite
population parameters (FPPs). Ingredients in such parameters are
− statistical measure (total, mean, median, etc);
− variable (production, number of hours worked, etc);
− unit (enterprise, kind-of-activity unit, etc);
− domain (sub-population, for example defined by a standard classification like NACE Rev. 1);
− reference times; both units and variable values relate to specific times.

The reference times are mostly time intervals, like a calendar year, a quarter, or a month.
However, some variables may refer to a point in time, for example the starting point of the
period. Usually reference times agree for all variables and units in a FPP. This means , for
example, for monthly statistics that the delineation of units should refer to the current month.
It follows from the above that units, classifications, other auxiliary variables, and reference
times are essential to statistics � and so also to the frame.

The emphasis here is to be on the assessment of quality, but some background is necessary.
Section 5.2 deals with a Business Register and its use as frame � a foundation without which
the statistics can hardly be built. Section 5.3 describes frame and target populations. The
accuracy to be measured depends on the frame but also on estimation procedures; Section 5.4
describes some situations. Sections 5.5-5.7 illustrate; showing administrative sources, time
delays and frame construction, and frame differences and quality assessment measures. There
are some summarising conclusions in Section 5.8.

5.2 A Business Register and its use as a frame
5.2.1 Units, delineation, and variables
The abbreviation SIC will be used for convenience for Standard Industrial Classification,
meaning NACE Rev. 1 and often referring to the primary activity.

                                                          
3 Many persons have contributed with data, examples, and comments, especially Pär Lundqvist at Statistics
Sweden, and Ole Black, John Perry, Ian Richardson, and Mark Williams at ONS, UK.
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A Business Register is here � in agreement with the Council regulation No 2186/93 on
drawing up business registers for statistical purposes, and, hence, also in agreement with the
Council regulation No 696/93 on statistical units � regarded as a database with
•  a set of units; at least enterprise, legal unit, and local unit;
•  a set of variables to each unit; such as SIC code and size, for example the number of

employees;
•  a set of time stamps (explicit or implicit); at least the time of registration for updates;
•  links between units, with time stamps.

The BR builds on administrative information, investigations of its own, and information from
statistical surveys. Note that survey feedback has to be used with care when sampling with
co-ordination over time in order not to distort the randomness of the sample, see Ohlsson
(1995). The information in the BR is as recent as possible. This goes both for each variable
and for the delineation of units. The delineation refers not only to single units but also to
information on links between units, for example links between legal units and enterprises.
How recent the BR information is varies between variables and also between units,
depending on updating procedures.

The BR shows each unit with its SIC code, size measures, links to other units etc. Variables
on a higher level in the hierarchy of units are in many cases derived by aggregation from a
lower level, for example number of employees and SIC code. Some variables may, however,
not be available on a low level, for example turnover connected to VAT (value-added tax).

The choice of which variables to put on the BR should consider both the unit level and the
usefulness as auxiliary variables in different procedures (for updating, creating frames,
estimation etc).

5.2.2 Updating the BR using several sources
Some typical examples of updates are as follows. Information on births and deaths arrives
from administrative sources regularly with known frequency. The time-lag between an actual
event and when it is recorded may be different for births and deaths. For example, the time-
lag from the first paying of VAT to birth in the BR may be short in comparison with the time-
lag from ceased activity to registration of death in the BR if that is based on a de-registration
at fiscal authorities. A survey may detect the no-activity state much quicker than the BR � the
difficulty for the survey may be to distinguish between this state and nonresponse.

The information available on an enterprise at its birth in the BR may be fairly limited, and it
usually takes some time before it has an adequate size and SIC code. For certain statistics, for
example on investments in fixed assets (investments for short in the following), an early
detection of new activity is important. At the time the investment is made, there are likely to
be few employees and the unit may not yet have turnover. Hence, it is desirable to find
additional sources of information which show such activities at an early stage. It is important
that these sources are consistent over time and space.
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The sources of the BR for births, deaths, and updates could be PAYE (this abbreviation will
be used in the following for administrative information from the collection of taxes on
earnings, which includes employment) and VAT. The BR may have a survey of its own, for
example concerning units, links between units, and classifications.

When an update is made, not only a change of the value is made, but there is also a notation
as to time. The simplest thing is to note the time of registration. There should preferably be
also a time of occurrence. A new SIC code may for example be registered in February 1998
but be valid from January 1996. The time is possibly known implicitly from the source. Time
stamps add to the information and they are valuable in demographic studies, but they also
make the handling more complex.

The use of several sources makes it necessary to have some identification. There may, for
example, be an identification number (id.nr) for legal units used by fiscal authorities, that is,
the BR obtains VAT data by legal unit id.nr.

Some identification is necessary not only to update but also to merge information from
different sources. Such merging is simple if there is a unique identification number common
to all sources. This is, however, rarely the case. For example, there are different id.nrs in
Germany and Ireland for the two administrative data sets regarding VAT and PAYE, making
it necessary to merge the information by name and address.

In Sweden, there is a singe number for a legal unit, but an enterprise consisting of several
legal units may choose to report VAT and PAYE data for one and the same activity as
belonging to different legal units. This means that the legal unit numbers are not
identification numbers in the sense of business activity.

The UK experience is that it has found business structures to be complex and based on
administrative procedures that are not always suitable for statistical inquiries. The VAT unit
is there to facilitate the collection of VAT, and it may not be able to provide the survey
information required. Also some employers maintain separate PAYE systems for salaried and
non-salaried workers, giving two administrative units and making it necessary to merge
information from the two systems when updating the frame.

The above examples show that duplicates can easily arise on the BR � unless counter-actions
are taken � since a single activity may lead to several births through different administrative
sources.

5.2.3 The BR as a frame � units, variables and reference times
Consider first units for different purposes in different parts of the production process.
Sampling is performed in one or possibly more stages with a sampling unit at each stage (for
example a single stage with enterprise as the sampling unit). The data collection is addressed
to the reporting unit (for example the enterprise through a questionnaire) or more generally to
the source of information (which could be an administrative register). The observations of the
statistical survey are tied to the observation units. The reporting unit can be equal to the
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observation unit or be different: an enterprise as the reporting unit and a kind-of-activity unit
as the observation unit provides an example of the latter case.

Note: The terminology is not unique; collection unit is sometimes used for reporting unit, and
reporting unit is sometimes used for observation unit.

It is important to consider the domains of estimation when choosing units. The observation
unit should not cut across several domains; for example an enterprise consisting of several
kind-of-activity units should not be the observation unit for statistics that are based on kind-
of-activity units, so-called functional statistics.

Here, the emphasis is on Structural Business Statistics (SBS) and Short-Term Statistics
(STS), with units of the FPPs being: enterprise for SBS, enterprise for parts of the STS, kind-
of-activity unit (KAU) for parts of the STS, and then possibly also legal unit, local unit, and
local kind-of-activity unit.

The BR (as defined here) is such that there is an agreement between the register units and the
units to be used in business statistics. The step from the BR and its units to a frame
population is then principally short and simple. It involves making a list of units with regard
to SIC code and possibly also size; variables that are available in the BR. The most
pronounced principal difficulty may be the kind-of-activity unit, depending on whether it is
included in the BR or not. This unit could alternatively be created at the data collection stage
(KAU from enterprise, and local KAU from local unit).

Struijs & Willeboordse (1995) discuss units and changes of units.

5.3 Frame and target populations
5.3.1 Target population
As stated, the target parameters have the reference time for both units and variables equal to
the current month/quarter/year. The target population could for example be all enterprises or
all kind-of-activity units in the manufacturing industry which are active in the current period.

5.3.2 Frame, and frame population
Ideally there is a perfect frame which lists every unit in the target population once and only
once together with basic design variables. In reality the frame is affected by various
imperfections for several reasons, for example time delays and coding mistakes. For business
statistics, like SBS and STS, the frame is normally based on a BR.

The frame population for a particular survey is based on the target population of that survey.
It is normally expressed in the same way as the target population, that is, in terms of units,
SIC codes, and possibly size; for example �all enterprises in the manufacturing industry�. It
uses the information available in the BR, and it may put on restrictions, for example that the
enterprises included are active when the frame is constructed.

An annual survey collects data after the reference year, and a short-term survey collects data
during the year (shortly after each month/quarter). If the frame is constructed shortly before
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sending out the questionnaires, that time is at the end of the year for the annual survey, and
shortly before the reference year for the short-term survey. The latter may take further
samples during the year. Anyhow, the frame errors are different for these two sets of statistics
� unless the annual statistics deliberately use the same frame as the short-term statistics for
the sake of agreement, compare Chapter 10.

The frame population is based on the information that is available at that time. For short-term
statistics regarding year t, the SIC codes refer to year ( )1−t  at best � more likely to year
( )2−t or possibly even earlier, depending on the production time of the statistics used and the
frequency of updating. In the case of the manufacturing industry this normally depends on
when PRODCOM information becomes available.

Note: PRODCOM is short for the French words �Production communautaire� meaning
Community production.

5.3.3 Differences between the frame population and the target population
There are two types of differences between the frame and target population:
•  differences for the population as a whole;
•  differences within the population, affecting domains (sub-populations).

Another way of expressing this is the classification of for example an enterprise into surveys
or into domains within a survey. (This could be manufacturing versus service industries, and
industries within the manufacturing industry, respectively.) Those two cases will be dealt
with in Sections 5.3.4 and 5.3.5, respectively.

A part of the target population may deliberately be left out of the survey, for example
enterprises below a certain size may be cut off. The estimation for this part of the population
has to be based on model assumptions, see Chapters 4 and 9. Administrative data may be
useful, especially if there are variables strongly related to those of the statistics.

A different classification of frame �errors� is with respect to the time it takes until they are
corrected. Some are simply due to time delays in the information from different sources. Such
errors can be evaluated after updates. Other errors are either detected in special circumstances
� like a survey or a change including that information � or (more or less) never detected.
Those errors can hardly be studied; at the least they require special investigations. Small units
especially may be subject to an error for a long time.

The updating procedure may sometimes be held back deliberately, as mentioned above in
Section 5.3.2 for coherence between short-term and annual statistics in some Member States.
Another example is for short-term statistics using the same set of classifications and size
measures during the year, used in the UK in order not to add the effects of re-classifications
to the within-year-changes. Both stratum and domain are �frozen�, see further Sections 5.6.1
and 5.7.1.
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5.3.4 Under- and over-coverage of the population
There are two types of deviations between the frame population and the target population:
•  under-coverage: units belonging to the target population but not to the frame population
•  over-coverage: units belonging to the frame population but not to the target population

There is an asymmetry between the two. A consequence of under-coverage is that
observations are not collected for a part of the target population. This may imply a bias in the
statistics. Over-coverage means that resources are used on uninteresting units. The over-
coverage may be regarded as an �extra� domain of estimation, and one of the results (in
comparison with no over-coverage) is an increase in uncertainty when estimating the
�regular� domains. If the unit�s membership of the target population is not checked, there
may be a bias.

For both under- and over-coverage, the resulting inaccuracy depends on the amount of the
coverage deficiencies, the ability to detect them, and the counter-actions taken in the
estimation procedure.

Furthermore, there may be practical difficulties in distinguishing over-coverage and unit
nonresponse. A unit outside the target population that receives a questionnaire may be more
or less inclined to return it than a unit belonging to the target � it is easy to return, but on the
other hand there seems to be no reason to fill in the questionnaire. Some questionnaires may
be returned by the postal authorities because the address is no longer valid � that should, of
course, be followed up. See Chapter 8.

5.3.5 Differences within the population
The reasoning that was used in the previous section for the whole population is to some
extent also valid for each sub-population. However, under-coverage of one domain is over-
coverage for another.

There are some different possibilities here for coverage deficiencies:
•  remain undetected (for example an erroneous SIC code remains)
•  detected for the sample (or more accurately for the responding units; for example the

number of employees in the questionnaire)
•  detected on the population level (for example a general update of SIC codes between

sampling and estimation)

Again, the resulting inaccuracy depends on the amount of the coverage deficiencies, the
ability to detect them, and the counter-actions taken in the estimation procedure.

5.3.6 Some comments on frame errors
Even if the construction of a frame population is easy in principle, there is much work in
practice with the BR and the frame with regard to births, deaths, organisational changes,
contradictory pieces of information, duplicates, mistakes, identification problems, time
delays, etc. Identification is important, for example to eliminate duplicates due to different
sources. Archer (1995) describes the maintenance of business registers, including some
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examples from New Zealand. One statement made is that identifying births typically involves
a quarter of the total resources needed.

A close co-operation between the BR and the statistical surveys using it as a frame is
important. This includes an understanding on both sides of the different uses. It also means a
lot of work on single cases to handle them correctly both over time and in different surveys,
for example in cases of reclassifications and reorganisations. Particular care is needed with
large enterprise groups which have complex structures and span several different activities.
Such entities may cut across different surveys, and the structures are subject to change. It is
important that they are monitored closely so that changes can be picked up quickly and
handled consistently. In the UK there is a Complex Business Unit to this end. A number of
other countries have a similar organisation, some of them also being responsible for all
survey data collection.

In the discussion of quality assurance for business surveys by Griffiths & Linacre (1995),
frame creation, maintenance, and monitoring is an important part, including illustrations of
births, deaths, and time lags.

The term frame error is not always a correct description � coverage deficiency is often more
adequate, showing the consequence and not just blaming the frame, for example for not
having included mergers in January 1998 in a frame constructed at the end of 1997.

5.3.7 Defining a Business Register covering a time period
The target population has reference times for the units that equal those of the variables, as
mentioned above. This means, for enterprises and annual statistics for example, that the
enterprises included should not be those that are active at the time of the frame construction
but all enterprises that are active during the year, whether active the whole year or during a
part of the year only.

If the frame is constructed at the end of the year (see discussions in Sections 5.3.2 and 5.6.1-
5.6.2), the enterprises missing in the frame are �early deaths and late births�, that is broadly
those that are (i) no longer active according to the BR but have been active previously in the
year, and (ii) not active in the BR but active later in the year. Moreover, with SIC codes
referring to a different period than the target calendar year, there will be misclassifications.

This shows the frame deficiencies affecting statistics unless actions are taken. A special BR
with the purpose of such actions is introduced below.

At some point after the calendar year it is possible � at least in principle and if the
information needed has been kept � to combine information from the BR including time
stamps, and possibly also from other sources, to derive a new Business Register that refers to
the calendar year. In the case of enterprises, it includes all enterprises that have been active at
some time during the calendar year. The values of the variables also refer to the full year. If
the basic values have reference times that are points in time, some procedure is needed,
perhaps a suitably chosen average of values before/during/after the year. The same is possible
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for a different period, like a quarter, but due to the time delay, such a register is less likely to
be useful.

Sweden has some experience of a BR covering a calendar year and its use, illustrated in
Sections 5.7.2-5.7.3. It is then regarded as the best knowledge attained. Statistics based on
this BR and another, previous version are compared. This is one way to evaluate effects of
frame errors. Furthermore, the improvement of the accuracy through using this BR should be
considered together with the efforts involved, to see if the effort is cost-effective.

An �ordinary� BR shows the situation at some point in time, like a snapshot. However,
considering that the rate of updating varies between variables and units, it is rather a mixture
of snapshots of the units with regard to delineation, SIC code, size measures etc.

5.4 The target population: estimation and inaccuracy
5.4.1 Estimation procedures and information needed
As stated several times, the target population has reference times of basic variables like SIC
code that are equal to those of the statistics. For example, both annual and short-term
statistics referring to year t should be based on delineation of units and SIC codes of that
year. The frame is based on a BR at a time too early to achieve this.

There are several possibilities at the estimation stage, with different ambitions for updating
the information and, at the same time, with different results as to accuracy with respect to
frame errors (coverage deficiencies). Whatever the procedure chosen, the resulting
(in)accuracy needs to be measured.

A typical situation is a design with stratification by industry and size. A random sample is
drawn for each stratum. The greatest size strata have the selection probability equal to one.
The stratification into sets of SIC codes corresponds to the domains, each stratum being equal
to (or more detailed than) a domain. Size is used in the stratification to improve accuracy.

The basic estimator of the total value of production, say, for a particular industry is then
simply a sum over the size groups for that industry. The variance of the estimator is also
computed by summing over these strata. The estimation procedure can use a Horvitz-
Thompson estimator, expanding sample values by inverted probabilities of selection (in the
case of full response), see further Chapter 2. This is so for the sampling unit and its domain as
given by the frame. With a different observation unit, the contribution to a particular industry
will also come from other strata, for example if enterprises are sampled and their kind-of-
activity units are the observation units.

There are further possible estimators, depending on what information is available in addition
to that in the frame. There are two main reasons to use further information:
•  to reduce bias by including corrections and updates;
•  to reduce variance through utilising auxiliary information.

The amount of further information may vary: it can be limited to the sample or it can be
available for the population, for example in terms of further variables or an updated BR.
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Some situations are described below in Sections 5.4.2-5.4.5. For estimation procedures, see
Chapters 2-3 or the literature, for example for calibrated weights in generalised regression
estimators see Deville & Särndal (1992).

5.4.2 Using the frame population only
The simplest estimation procedure is to keep to the frame population, that is, each unit keeps
its domain of estimation as on the frame. As described above, each pair of point estimate and
standard error is computed by summing over the corresponding strata.

This procedure can be used not only for classification but also for units that are in fact dead
or otherwise not belonging to the target population, by treating them like nonresponse. If
there is no renewal of the sample, such an estimation procedure can be regarded as including
a model assumption on the relationship of under- and over-coverage: that they are equal in
size. There is bias due to under- and over-coverage for the population as a whole and for each
domain, unless the assumption is true. When the birth rate is high compared to the death rate,
there is under-estimation and vice versa.

Care needs to be taken in using simplified assumptions. Investment provides a particular
challenge. New units and ones which are growing are likely to be strong investors.
Conversely units which are struggling and, as a result, diminishing in size will have little
opportunity to buy new assets. Elvers (1993) discusses this for a survey based on a cut-off
sample with the restriction 20 employees or more.

An alternative � leaving the frame information to some extent � is to identify the over-
coverage and put variable values equal to zero for these units. If there is no renewal of the
sample, there is then an imbalance, since over-coverage but not under-coverage is taken into
account.

Illustrations: Table 5.3-Table 5.4 in Section 5.7.3 show an example of over- and under-
coverage with a cut-off survey. The bias due to an old SIC-code is shown for an example in
Figure 5.1 in Section 5.7.2.

5.4.3 Updating the sample only
If the units in the sample have their domain �checked� in the survey, interior movements and
corrections can be taken into account by assigning each sample unit to its proper domain of
estimation. This implies that the bias from this error source is eliminated. There is, however,
an increased variance due to including this information � which may be a rare characteristic �
based on sample information only. Chapter 3 provides formulas in its sections on domain
estimation, for example a simple case in Section 3.1.2.

There may, in fact, be quite a difference in going from (i) the variance coming from a small
set of �tailor-made� strata as indicated in Sections 5.4.1-5.4.2, to (ii) the variance derived
from these strata and some further strata where a few units with actual values contribute to
the variance together with a large number of nil values. This is a consequence of frame
deficiency.
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There are also exterior movements/corrections, units leaving and entering the population. An
update in the first respect means for example identifying over-coverage and giving it a nil
value. There is then an asymmetry if no action is taken for the under-coverage, as stated in
Section 5.4.2. Either additional sampling or model assumptions are needed to estimate for
units not in the population originally sampled, the frame population. A very simple model is
to assume equal effects between over- and under-coverage, but this assumption is only likely
to be realistic when the economy is stable � and not always even then.

For units included with probability one, changes can be made without affecting the variance,
for example reorganisations can be taken into account and classification updates can be made,
as long as each such unit represents itself only. However, care must be taken if surveys into
different sectors are run independently. For example, if such a unit is reclassified from
retailing to manufacturing, it could be removed from the retailing survey. A second action
needs to be taken at the same time to ensure it is included in the manufacturing survey. There
may be difficulties in doing this in practice.

Illustrations: The increase in variance (or rather its square root) when updating an old SIC-
code based on sample information is shown for an example in Figure 5.1 in Section 5.7.2.

5.4.4 Utilising later BR information on the population
A situation with even more information is where there is a further variable for all units, not
used in the design, or where there is renewed information on the original design variables.

One estimation method is so-called poststratification, where a stratification variable is added
at the estimation stage. The calibration technique is an example of including such auxiliary
information (possibly quantitative) to improve the estimation. This may lead to a reduction of
both bias and variance. It is a model-assisted estimation method that is used for the surveyed
part of the population.

Movements of units into the population are not included in the procedures just mentioned.
They require model-based procedures with assumptions about these units. Again, there is an
asymmetry to be overcome.

There are illustrations of changes in SIC code and number of employees from one year to the
next in Table 5.2 and Figure 5.2, respectively. Table 5.1 has SIC code for a shorter period.

5.4.5 Utilising a BR covering the reference period
The technique of constructing a BR covering a period was described above in Section 5.3.7.
The target population is here considered fully known. This is, of course, a simplification,
since some errors will remain. This BR is, however, a considerable improvement over the
version at the time of frame construction. From the estimation point of view, the situation
with this BR covering the reference period is roughly the same as that in Section 5.4.4 in
terms of methods and assumptions. This means for example that poststratification and
calibration methods are available for interior movements.
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Movements out of the population are identified, that is, the over-coverage is known. The
under-coverage is also identified. The estimation has to be model-based for those units
(unless there is time for further questionnaires), using for example similar units in the
surveyed part of the population and/or administrative data. Again, the reasoning is based on
this late BR covering a period showing the truth; in practice there are, of course, remaining
deficiencies.

In Section 5.7.3, Table 5.3-Table 5.4 illustrate over- and under-coverage with a cut-off
survey, and there is information on the �extra� units provided by the BR covering the
calendar year.

5.4.6 Some comments on the BR and effects of coverage deficiencies
Discussions on the topic of quality of a BR are going on at the EU level (Eurostat 1998a).
The connections between Business Registers and the statistics using them are getting
stronger. There is an increasing interest in business demography, and regular work on quality
assessment of business registers is taking place at some statistical offices. See also Struijs &
Willeboordse (1995), Archer (1995), and Griffiths & Linacre (1995), already mentioned, and
illustrations below.

The measurement of inaccuracy caused by coverage deficiencies may be undertaken in three
different ways:
1) Review updating procedures of the BR to look at time delays. This will provide a broad

indicator only, but it is available at the time when the frame is constructed.
2) Compare units on an updated BR with the BR used. Counts can be made of the number of

units erroneously included or excluded. Likewise the number of units classified to the
wrong domain of estimation can be evaluated.

3) Compute approximately the level of inaccuracy. Estimates can be made for the frame
population and for the estimated target population, using a variable that is available at the
population level (for example turnover from VAT, or salaries and wages or number of
employees from PAYE). Whilst this method provides the most information it is the most
demanding and resource intensive.

The illustrations in Section 5.5 are tied to the BR, and Sections 5.6-5.7 provide a range of
illustrations for frames, although nearly restricted to the UK and Sweden. Most illustrations
in Sections 5.6 and 5.7 belong to the first and second of the above methods. There are,
however, a few examples on accuracy measures in Section 5.7 belonging to the third method.
This is the preferable one, since a quality assessment should aim at the effects of frame errors
(coverage deficiencies).

5.5 Illustrations � administrative data and business demography
Business Registers are dependent on administrative data and influenced by administrative
rules, which may vary over time and, of course, between countries.

As an example, a birth in the BR can have different causes: there are pure births in the sense
of new activity, and there are new registrations due to a new legal form or an enterprise
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reorganisation into several parts etc. According to a survey on different characteristics of new
Swedish enterprises, about 54 % of the 1997 new BR enterprises were purely new, see SOS
(1998); the figure for the previous year was 60 %. (These figures refer to enterprises with
more than SEK 30 000 (approximately 3 500 ECU) in annual turnover, but the survey also
covers smaller enterprises.) Statistics Finland (1996) gives similar results. The percentage
depends on the BR system, of course, and it varies between countries and over time. Another
way to study business demography is to utilise individual employment data together with the
BR. A description for Sweden is given in Statistics Sweden (1995); the method is stated to be
a transformation of original ideas from Denmark.

The dependence on administrative rules is illustrated in two tables. The first one shows the
number of units in the Swedish BR by year, with some comments on considerable changes.

Year Number of ac-
tive legal units

Changes in Tax and VAT-rules in Sweden

1986 520 657
1987 489 904
1988 491 747
1989 508 266
1990 568 356 From 1990 includes units without activity code
1991 494 802 Change in VAT-rules
1992 493 690
1993 493 070
1994 553 290 New kind of tax (some influence on 1993 also)
1995 562 765
1996 584 206

The next table is a related one from the UK. The basis of the data collection by the ONS is
the Inter-Departmental Business Register (IDBR), which was introduced in 1994 and became
fully operational in 1995. The IDBR combines information on VAT traders and PAYE
employers in a statistical register comprising 2 million enterprises, representing nearly 99%
of economic activity. The register comprises companies, partnerships, sole proprietors, public
authorities, central government departments, local authorities and non-profit making bodies.
The main administrative sources for the IDBR are HM Customs and Excise, for VAT
information (passed to the ONS under the Value Added Tax Act 1994) and Inland Revenue
for PAYE information (transferred under the Finance Act 1969). Other information is added
to the register if required for ONS statistical purposes. This table includes information only
on VAT-based enterprises.

Notes: The counts of businesses below the VAT threshold representing voluntary
registrations and with zero turnover are included in the two first parts of the table (1984-1993
and 1994-1995). Figures for the first part are counts of individual legal units. Counts for the
second part show VAT-based enterprises consisting of one or more legal units. The third part
(1995-1998) excludes units with zero VAT turnover and all enterprises without a VAT basis.
The GBP is currently around 1.4 ecus.
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Year Number of
legal units /
enterprises

Percentage
change in
number

Change in VAT-
registration date and
threshold value in GBP

1984 1 496 957 1984-03-14       18 700
1985 1 513 922 + 1.1 % 1985-03-20       19 500
1986 1 533 156 + 1.3 % 1986-03-19       20 500
1987 1 558 306 + 1.6 % 1987-03-18       21 300
1988 1 609 176 + 3.3 % 1988-03-16       22 100
1989 1 680 670 + 4.4 % 1989-03-15       23 600
1990 1 765 178 + 5.0 % 1990-03-21       25 400
1991 1 795 360 + 1.7 % 1991-03-20       35 000
1992 1 723 239 � 4.0 % 1992-03-11       36 600
1993 1 671 611 � 3.0 % 1993-03-17       37 600

1993-12-01       45 000
1994 1 628 969 � 2.6 % 1994-11-30       46 000
1995 1 606 067 � 1.4 % 1995-11-29       47 000
1995 1 551 525 as above
1996 1 537 645 � 0.9 % 1996-11-27       48 000
1997 1 547 175 + 0.6 % 1997-12-01       49 000
1998 1 573 935 + 1.7 % 1998-04-01       50 000

5.6 Illustrations � time delays and taking frames
5.6.1 The UK Business Register
The UK register holds two classifications and two measures of size. A current value shows
the latest position and is used to form the frame for the annual inquiries. A �frozen� value
(updated only at the start of the year, before January selections, from the current values at that
time) is taken through the year to ensure consistency throughout the year for sub-annual
inquiries. Thus the annual frame relates to a later period than the short-term frame, the UK
concentrating on accuracy for structural statistics in preference to congruence with short-term
surveys.

The register is updated from a number of sources during the year:
 i. PAYE Updates. Tapes are received from the tax authority every quarter giving details of

new units, closures and changes of structure.
 ii. VAT Updates. A weekly tape is received from HM Customs and Excise containing

details of births (new registrations), deaths (deregistrations) and amendments.
Enterprises with no local units or PAYE units have an employment imputed from the
VAT unit turnover using the turnover per head figure appropriate to the classification.

 iii. Survey Information. Size and classification data update only the current classification.
 iv. Visits by the Complex Business Unit (see Section 5.3.6). These are supplemented by

desk profiling within the Business Register Unit.

The births, deaths, and restructurings picked up from these sources are actioned immediately.
Classification and size amendments affect only current values unless a unless a business is in
the process of being profiled or a significant error is found.

Updating of the register takes place through the year from quarterly sources such as
PRODCOM, but the main update is in August from the Annual Employment Survey (to be
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incorporated into the annual structural survey from 1998). The results of the update will drive
selection for the sub-annual inquiries for the following year.

The sources of information used to update the IDBR are listed by variable below:
I. Turnover. The VAT administrative system is the main source. Survey data are used

from the distribution (�trade�) and services sectors but rarely from elsewhere.
Enterprises with no VAT or survey information have a turnover value imputed from
employment information.

II. Employment. The preferred source is the Annual Employment Survey (to be
incorporated into a new annual structural survey from 1998). Employment
information comes from the PAYE (�Pay-as-you-earn�) tax administrative system if
Annual Employment Survey data are not available. Enterprises with no employment
information (either from PAYE or from AES) have employment imputed from
turnover.

III. Classification information comes from a variety of sources. The following priority
applies:

A. Complex Business Unit
B. PRODCOM/Retail Inquiry/Financial inquiries
C. Annual Register Inquiry
D. Short Period Turnover Inquiry
E. Other business surveys
F. Builder's Address file
G. VAT
H. PAYE

The annual register inquiry is a new survey which will replace so-called �register
proving� from 1999. The Builder�s Address File contains information on construction
businesses from the Department of the Environment, Transport and the Regions�
(DETR) construction industry surveys.

Care must be taken when using two administrative sources such as PAYE and VAT to update
the BR to ensure that erroneous information is not taken on and used in producing estimates.
When a new PAYE unit is identified with 20 or more employees, an attempt is made to match
it with a VAT unit or a local unit elsewhere on the register. If no corresponding unit is found,
the unit is sent a register proving form and excluded from all estimates until its validity is
confirmed. Likewise a new VAT unit would be matched with PAYE, and proving undertaken
if no corresponding unit can be found. Extensive matching is carried out for units with fewer
than 20 employees, but there is no proving for these units due to resource and compliance
constraints. Small unmatched PAYE units in VAT exempt industries and corporate PAYE
units are added to the register without proving.

The annual structural survey samples are drawn at the end of October each year. The short-
term surveys are drawn dynamically each month or quarter. Samples from the short-term in-
quiries are drawn from the frozen field whilst the annual inquiries select from the current
fields. Samples are stratified by industry and size. The measure is usually employment. The
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size groups for the annual structural sample for the production industries and for the Monthly
Production Inquiry are shown below.

Annual Production Monthly Production
0-9 0-9

10-19
20-49 10-49

50-99
100-249
250+    

50-149

150+    

5.6.2 The Swedish Business Register
This description refers to the middle of the 1990�s, mainly before the EU Regulations came
into Swedish use (Sweden became a Member State in 1995). The Swedish BR obtains
information on births and deaths from the National Tax Board every second week. The num-
ber of employees is updated through several sources. The two main ones are the Tax Payroll
and a special questionnaire to multiple-location enterprises, both once a year. There is also in-
formation from the surveys of Statistics Sweden. For Divisions 10-37 of the Swedish SIC
1992 that is harmonised with NACE Rev.1 at the four digit level, there is an annual survey
roughly at the local unit level that is an important source for the SIC code (using output
information, including data on commodities).

There is a modified version of the BR, called the Statistical Register (SR), which is used as
the frame for business surveys. Some units on the SR consist of a set of legal units. They are
the smallest ones for which balance sheet and profit and loss data can be obtained. They are
essential to the Financial Accounts Survey, and they are included in other frames for
coherence. There are about 60 such large statistical units, consisting of more than 400 legal
units. In the following, the term enterprise will be used to mean such units whenever they
occur and legal units otherwise. (This enterprise definition is somewhat different from the EU
one. An enterprise includes more legal units in some cases, and fewer in other cases; there
should be further enterprises with several legal units. The number of such enterprises has,
however, increased recently.)

In the sampling system, most samples are drawn in November (and some in May). The SR
can then be expected to describe the situation at the end of September as to active enterprises
and local units. The number of employees refers to the spring this year, t, for multiple-
location enterprises (BR questionnaires) and to December last year, year ( )1−t , for single-
location enterprises (PAYE information). Single-location enterprises born in year t normally
have 0 employees in the BR that year. Hence surveys that require a minimum of for example
10 or 20 employees do not cover births in year t.

The samples obtained are used for that year by annual surveys and for the next year by short-
term surveys (some sampling is also made in May). All surveys use industry (the SIC code)
for stratification. Most surveys also stratify by size, and the size measure is mostly the
number of employees. The size groups in the surveys here are six, with the two top ones
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totally enumerated (that is 200 employees or more). They are based on enterprises in
Divisions 10-37 with at least 10 employees. They also include (roughly) local units with at
least 10 employees in Divisions 10-37 belonging to enterprises in other Divisions for
functional statistics, but that part of the population is disregarded here for simplicity.

number of employees: 10-19 20-49 50-99 100-199 200-499 500+

5.6.3 Some comparisons between UK and Sweden
UK and Sweden have similar routines in several respects, for example in using both PAYE
and VAT as sources, and by putting extra emphasis on the BR quality around October with
regard to frames. Samples for annual surveys depend on that frame, and so largely do short-
period samples. Stratification by industry and size is used.

There are also differences, for example UK uses dynamic sampling for short-period inquiries
and Sweden runs surveys with a cut-off limit. There are differences between units, for
example the enterprise concept and the extent of applying the kind-of-activity units. UK has a
special team for complex businesses, and Sweden has a special BR covering a calendar year.

5.7 Illustrations � changes between frames and their effects
5.7.1 Differences between UK current and frozen classifications
The matrix in Table 5.1 shows for the UK how enterprises are classified on the BR in relation
to current and frozen SIC classification. It reveals the extent to which the frozen classification
is wrong at one point in time (September 1998, following the take-on of the 1997 Annual
Employment Survey (AES) information). It should be remembered that short-term inquiries
select from the frozen field for purposes of consistency during the year. The matrix should be
interpreted in the following way:

Rows: the figure at the end of the row shows the percentage of businesses that have remained
in the division of their frozen classification following the AES update (and any other
information (for example from PRODCOM) received during the year). It also shows the
extent to which businesses will be reclassified out from an industry.

Columns: the figure at the bottom of the column shows the percentage of businesses currently
classified to a certain division which were classified to that division in the frozen field also. It
also shows the extent to which businesses will be reclassified in to an industry.

The matrix reveals a relatively small amount of reclassification in terms of numbers of
businesses with reclassifications in or out of less than 3 % for nearly all industries. It would
be interesting to see the analysis carried out on employment too. (Note: It would also be more
interesting to have a full year matrix, but this is not possible for 1997 or earlier.)

The industry with the highest percentage of inward reclassifications stored up is division 31.
Here, 95.2 % of the enterprises in the current field are also in the frozen field, so 4.8 % (308
businesses) will be added when the current field is copied over into the frozen field. The
industries which provide the most enterprises are divisions 32 and 33. Conversely, 2.1 % of
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Current Sic92

Frozen 
Sic92   10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 40 41 45 Total

% on 
diag-
onal

10        231 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 232 99.6
11        0 363 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 5 371 97.8
12        0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0
13        0 0 0 60 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 65 92.3
14        1 0 0 2 1349 1 0 0 0 0 0 0 0 1 0 0 3 0 1 1 0 0 0 0 0 1 0 0 0 0 7 1367 98.7
15        0 0 0 0 1 8676 0 0 0 0 1 0 0 0 6 0 0 0 1 5 0 0 0 1 0 0 4 0 0 0 1 8696 99.8
16        0 0 0 0 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 100.0
17        0 0 0 0 1 1 0 6874 32 8 1 2 6 0 4 4 1 0 1 2 0 1 0 0 1 0 10 1 0 0 5 6955 98.8
18        0 0 0 0 0 0 0 32 8427 33 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 9 1 0 0 2 8510 99.0
19        0 0 0 0 0 0 0 1 12 1354 0 1 2 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 1 1375 98.5
20        0 0 0 0 0 0 0 2 1 0 9042 4 2 0 1 9 7 0 23 3 0 1 0 0 1 4 47 0 0 0 78 9225 98.0
21        0 0 0 0 0 0 0 2 0 2 3 3130 37 0 2 10 1 0 1 2 1 1 0 0 0 0 3 0 0 0 1 3196 97.9
22        0 0 0 0 1 0 0 12 1 0 1 88 31428 0 2 2 1 0 3 6 2 4 1 1 0 2 7 0 0 0 5 31567 99.6
23        0 2 0 0 0 0 0 0 0 0 0 0 0 295 2 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 301 98.0
24        1 0 0 0 1 3 0 3 0 2 1 0 4 0 4532 19 4 0 11 5 2 2 0 4 0 0 6 0 0 0 5 4605 98.4
25        0 0 0 0 0 1 0 3 2 1 9 5 10 0 13 7345 10 0 26 22 0 7 1 4 5 5 14 2 0 0 17 7502 97.9
26        1 0 0 0 9 0 0 5 1 0 1 1 2 0 9 33 5969 2 10 5 0 4 1 2 3 0 8 0 0 0 42 6108 97.7
27        0 1 0 0 0 0 0 0 0 1 3 2 0 1 3 3 0 2920 109 9 0 5 0 0 1 0 9 2 0 0 11 3080 94.8
28        0 0 0 0 1 0 0 3 1 1 8 2 9 0 4 37 6 56 30686 163 1 24 3 9 11 13 47 2 0 0 84 31171 98.4
29        0 0 0 0 1 2 0 3 0 3 2 1 4 0 3 18 3 9 138 15961 2 22 8 27 12 9 14 0 0 0 49 16291 98.0
30        0 0 0 0 0 0 0 0 0 0 0 0 6 0 2 1 1 0 3 4 1923 29 13 50 0 0 3 0 0 0 1 2036 94.4
31        0 0 0 0 0 0 0 1 0 0 0 1 4 0 2 4 2 3 12 19 6 6154 18 22 4 0 3 0 0 0 34 6289 97.9
32        0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 3 1 0 5 5 5 49 3362 12 3 0 4 0 0 0 13 3464 97.1
33        0 0 0 0 0 1 0 0 0 1 1 1 2 0 5 9 0 0 13 36 40 69 33 6340 2 2 5 0 0 0 6 6566 96.6
34        0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 4 1 1 14 7 1 6 0 0 3487 2 3 1 0 0 4 3533 98.7
35        0 0 0 0 0 0 0 0 0 0 2 0 1 0 1 2 1 2 9 11 1 2 2 2 7 3481 2 0 0 0 6 3532 98.6
36        0 1 0 0 1 5 0 24 8 9 59 10 14 0 9 51 18 5 63 24 5 17 7 21 5 6 20888 2 0 0 62 21314 98.0
37        0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 2 0 0 0 0 0 0 1 1074 0 0 1 1081 99.4
40        0 2 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 256 0 30 293 87.4
41        0 0 0 0 0 8 0 0 0 0 0 0 0 0 1 0 0 0 0 3 0 0 0 0 0 0 0 0 0 91 3 106 85.8
45        1 5 0 0 9 8 0 10 1 1 179 1 7 0 5 86 61 5 268 139 5 63 17 28 4 14 76 2 1 0 209343 210339 99.5
Total 235 374 0 62 1378 8707 29 6975 8486 1416 9313 3250 31543 298 4608 7640 6093 3004 31399 16435 1994 6462 3467 6527 3546 3539 21165 1088 258 91 209817
% on 
diago-
nal 98.3 97.1 0.0 96.8 97.9 99.6 100 98.6 99.3 95.6 97.1 96.3 99.6 99.0 98.4 96.1 98.0 97.2 97.7 97.1 96.4 95.2 97.0 97.1 98.3 98.4 98.7 98.7 99.2 100 0.0

Table 5.1 Comparison of frozen and current SIC-codes in 1998 on two digit level
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the enterprises with the frozen classification in division 31 will be leaving the industry.
Divisions 32 and 33 feature again, now as the main destination industries .

The industries with the largest amount (in percentage terms) of outward reclassifications
awaited are divisions 40 and 41; 12.6 % and 14.2 % of businesses respectively will be leaving
the industry. Due to the fact that there are not that many businesses operating in these
industries this does not represent many businesses (37 and 15 respectively).

5.7.2 Differences within the Swedish population one year apart
There are four main data sources which can be used to study changes among enterprises in
Divisions 10-37 with at least 10 employees. First, the BR covering a calendar year, here
1995. Second, the frame for the short-term survey, both in November 1994 and in November
1995. The frame for this survey is essentially the same as that of the annual survey, but used
one year earlier. Third, the register where observations and imputations from the annual
survey 1995 have been added for comparative purposes. Fourth, there is administrative data,
PAYE and VAT.

The main files used in this Section are the frames from November 1994 and 1995, and they
include enterprises with at least 10 employees in Divisions 10-37. Hence, differences
between situations one year apart are shown. They correspond to the frames for the short-
term and annual statistics for 1995. The short-term statistics largely keep their classifications,
but the annual statistics make new ones, so the differences in industry in the statistics will be
based on data two years apart. The files are at the enterprise level.

The SIC code has five digits, the fifth being a Swedish addition, which is rarely different
from zero. Changes are for convenience studied by using all five digits, without regard to
letters, making differences based on the first two digits a bit unequal. Table 5.2 shows by row
to which digit the SIC codes agree for enterprises in 1994 and 1995. The column shows size
group in 1995. Nearly 500 units have a change in SIC code. There are not considerable
differences between size groups as to percentages of changes.

Size group for 1995 (number of employees)
10-19 20-49 50-99 100-199 200-499 500+ Total

0 40
2.11

36
1.81

19
2.32

2
0.49

4
1.39

1
0.52

102

1 37
1.95

42
2.11

19
2.32

8
1.96

1
0.35

1
0.52

108

2 64
3.38

50
2.52

19
2.32

9
2.21

5
1.74

4
2.09

151

3 26
1.37

22
1.11

8
0.98

4
0.98

4
1.39

1
0.52

65

4 24
1.27

24
1.21

11
1.34

4
0.98

0
0.00

5
2.62
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5 1704
89.92

1813
91.24

742
90.71

381
93.38

273
95.12

179
93.72

5092

Total 1895 1987 818 408 287 191 5586
Table 5.2 Comparison of SIC-codes 1994 and 1995 with regard to size 1995. In each cell, the
upper figure shows the frequency, and the lower figure shows the column percent.
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The changes here are considered fairly �normal�. (There is an exception for the division 22,
with considerable changes with the new SIC code. If changes from 1995 to 1996 had been
chosen to overcome the SIC code effect, there would have been a greater influence from
collecting commodity data in a new nomenclature and in a new way.)

Changes for large enterprises will have a considerable effect on institutional (enterprise-
based) statistics. The effect for short-term functional statistics may be fairly small: if there are
two kind-of-activity units with roughly the same size, the change in primary activity of the
enterprise may be caused by small changes in relative size between the two kind-of-activity
units.

The effects on the two-digit-level of institutional statistics are shown in terms of absolute
numbers on the vertical axis of Figure 5.1, using the newer number of employees (from the
1995 frame). There are 27 domains of estimation. Six of these domains are unaffected. Two
of them are affected by more than 5 %. A more detailed level is, of course, more sensitive.

Legend: A = 1 obs, B = 2 obs, etc.
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             square root of the increase of the variance

    NOTE: 6 obs had missing values.

Figure 5.1 Comparison of absolute bias due to the old SIC code in the frame and the square
root of the increase of the variance when updating the sample only.
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The horizontal axis of Figure 5.1 shows the increase in the square root of the variance in
using the SIC code of the sample instead of the SIC code of the frame. The sample size has
been derived by a simple Neyman allocation in the 1994 frame with the precision criterion
1% for the number of employees. The details are left out, as the aim is just a simple
illustration.

The line � xy = � in Figure 5.1 corresponds to the two mean squared errors being equal.
Points above that line (8 in number) correspond to industries that get a smaller mean squared
error if the bias is eliminated by updating the SIC code for the sample. For points below the
line (13 in number) the increase in variance when there are contributions not only from the
�tailor-made� strata is so large that the resulting mean squared error is higher than the
original one.
            Legend: A = 1 obs, B = 2 obs, etc.
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        �                                                       B    A         A
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        �                                       A                 A AA  AB A A B
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    NOTE: 2844 obs hidden.  471 obs out of range.

Figure 5.2 Number of employees in 1995 versus that in 1994, according to frames.
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Now to size and change in size, first illustrated in a simple plot, Figure 5.2. The figure is
restricted to the number of employees being at most equal to 200, that is it shows the sampled
part of the population. A greater spread of a survey variable within strata can be expected
when the stratification is based on the size of the 1994 frame than would have been the case
with the size of the 1995 frame. The plot indicates that some units will have much higher or
much lower values than the stratification indicates. The accuracy of the estimates will be
lower than they would have been with a more up-to-date size.

A related illustration is a cross-classification of the size groups in the two frames. The resulting
table (not included here) shows that somewhat more than 10% of the enterprises move upwards
or downwards by one or possibly two size classes. The years 1994 and 1995 were such that the
movements upwards dominated over those downwards. To remain in the same size class is,
of course, by far the most frequent case, seen in somewhat less than 90 % of the enterprises.

5.7.3 Differences for the population as a whole; Sweden
The data files used to study differences for the population as a whole are those mentioned in
the previous section. The BR covering 1995 is in this context considered as the final result.
The number of employees is a convenient measure of the effects. There are two
disadvantages, however: there is no contribution from enterprises with no employees and
there is a �full� contribution from enterprises which were active for only part of the year.

A count of the number of employees in small enterprises (less than 10 employees) in the BR
covering 1995 shows that 7.4 % of the total number of employees is there, making 55
thousand employees below the cut-off. There are 679 thousand employees above the cut-off.
According to the two frames, the numbers are 639 and 657 thousand employees, respectively,
the differences being due to both differences in units and differences in reference times.

The over- and under-coverage of each of the two frames are shown in Table 5.3 on the first
row (bold italics) and the first column (bold), respectively, in terms of number of enterprises.
The group �below� includes both small and non-active enterprises. It should be noted that the
figures given are mainly the result of a �blind� match-merging. Enterprises that belong to the
totally enumerated group on one occasion and the below group on another are likely to have
gone through some re-organisation, taken into account by the survey.

Looking at the annual survey, where the BR covering a calendar year is used to produce the
statistics, the percentages of additions relative to the 1995 frame are of the same overall
order. There are some differences in procedures. The under-coverage found in that survey is
checked to avoid double counting. On the other hand, enterprises may falsely be dropped at
an early stage as over-coverage and then �return� as under-coverage. A set of enterprises of
ancillary character is �picked up� from the Financial Accounts Survey.

Out of the 567 enterprises that were in the BR covering 1995 but not in the 1995 frame, 2
were well above the cut-off but in other industries, 209 were not active, and 358 were below
the cut-off (62 of these without employees).

Consider now the sampled part only, but in more detail. First in Table 5.4, over-coverage is
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______________________________________________________________________________________________________________________________________________

groups in the groups in the frame 1994  groups in the frame 1995  
BR cov. 1995 below sampled tot.enum. below sampled tot.enum.
______________________________________________________________________________________________________________________________________________

below - 522 13 - 176 0
sampled 1 276 5 251 6 550 5 980 3
tot.enum. 20 37 461 17 11 490
______________________________________________________________________________________________________________________________________________

Table 5.3 Over- and under-coverage of the frames 1994 and 1995

shown with number of units and the number of employees in thousands as measured by the
frame and by the BR covering 1995. Then the under-coverage is shown with number of units,
number of employees according to the BR covering 1995, and in relative terms summarised
for three variables: number of employees, salaries and wages, and turnover from VAT. The
figures here refer to the whole of Divisions 10-37. The relative effect on an industry level
may, of course, be different, larger or smaller.

  over -coverage              under -coverage
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

 units empl. 1000�s  units empl. 1000�s three variables
___________________________________________________________________________________________________________________________________________________________________

1994 frame 522 ent.  10    → 2    1 276 ent.      → 25  around 3.0 to 3.7 %
1995 frame 176 ent.    1.9 → 1.5    550 ent.      → 12  around 0.8 to 1.7 %
___________________________________________________________________________________________________________________________________________________________________

Table 5.4 Over- and under-coverage of the sampled part, frames 1994 and 1995.

5.8 A few summarising conclusions
The BR and the frame derived from it provide a fundamental basis to the statistics. The frame
population should be defined with regard to the target population, and the units of the BR
should correspond to the statistical units. This is in line with the EU regulations.

Obviously, correct delineation and classification of units are important for the domains of
estimation. Size information is often used to improve accuracy; deficiencies in size
information will make the estimation procedure less efficient and cause troubles with outliers
etc. The distinction between frame errors and other non-sampling errors is not always clear-
cut as measurement errors may be related to unclearly or erroneously specified units, and
nonresponse and over-coverage are not always easy to distinguish.

It is not only the frame � the BR at the time when the frame is constructed � which is
important, but also to what extent the estimation procedure takes later information into
account. This is so both for units that represent only themselves and units that represent
others as well. It is normally the case that
•  the inclusion of new information for the sampled part of the population implies a higher

variance in comparison with the ideal situation with a perfect frame, but
•  to disregard the information normally implies a bias.

When assessing the quality of the statistics, the resulting accuracy is the main aim. Time
delays for new units and updates are indicators, but indicators only (Section 5.4.6).
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6 Measurement errors
Chris Skinner, University of Southampton

6.1 Nature of measurement error
6.1.1 True values
Measurement error is defined relative to the value of a given variable (that is a question)
reported by a given respondent. The basic assumption is that there exists a true value of this
variable for this unit, so that there is no ambiguity in the definition of the variable. Given this
assumption, the measurement error is defined as the difference between the reported value
and the true value. This is not an operational definition, of course. Even if it is accepted that
there can be no ambiguity in the definition of the true value, there may be no operational way
for an agency to obtain the true value with certainty. Instead, various indirect methods may
be used to detect measurement errors as described in this chapter.

6.1.2 Sources of measurement error
In this report measurement errors will be equated with �response errors�, that is errors arising
because the respondent fails for some reason to provide the true value desired. Errors on the
part of the data collection agency, for example falsely transcribing values from questionnaires
or misrecording values reported by telephone, will be treated as processing errors (see chapter
7). Errors in auxiliary variables recorded on a business register will, furthermore, be treated
as frame errors (see chapter 5). These errors may be attributable simply to out-of-date
information on register variables but may also arise for similar reasons to response errors,
that is because a business fails for some reason to provide the true value of the variable
required.

Response errors may arise from three sources.

True value unknown or difficult to obtain

Sometimes the business may keep information according to different definitions, for example
many businesses maintain accounts according to different financial years and it may be
difficult to report values with respect to a different time period, for example a calendar year,
requested by the agency. In such circumstances the business may report the value of the
variable according to the closest definition available, for example the business�s financial
year.

Sometimes the business may not keep the information required, for example both the �value�
and �quantity� of gas or electricity purchased, as asked in ONS�s Annual Business Inquiry.
Alternatively, the business may be unwilling to go to the effort required to retrieve the
information. In such cases the value may be guessed or the question left blank. The
occurrence of such measurement errors may therefore be indicated by high rates of item
nonresponse on a question.

Such errors may have a particular effect on �other� categories. For example, the ONS�s ABI
requires that expenditures in different areas should sum to the total expenditure reported. One
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of the last expenditure questions is for �other services purchased�. It is possible that this is
used as a �balancing box�, according to which businesses simply work out what expenditure
for the year has not already been accounted for.

Misunderstanding of question or other slips

Instructions on questionnaires may be misunderstood or simply not read. A common example
of an error is the reporting of a value in the wrong units. For example, a question may ask for
a value to be reported in units of thousands of pounds. A true value of £2,488,500 should
therefore be reported as 2,489. A business may, however, erroneously report the figure as
2,488,500. Some forms include boxes within which digits should be recorded for scanning
and businesses may complete these wrongly, for example writing �NIL� through the boxes.
The questions themselves may also be fundamentally misunderstood. For example, a
construction firm might record the value of �retail turnover� on the ABI as the firm�s
expenditure on construction of retail outlets, whereas the true value should be zero.

Errors in information used by the respondent

Finally, it is possible that the information used by the respondent, for example from a
business information system, is itself subject to error.

6.1.3 Types and models of measurement error
Four kinds of measurement error may be distinguished.

Continuous variables: major occasional errors

Examples of major occasional errors are the occasional reporting of values in the wrong units
(for example in single currency units rather than 1000 currency units) or the occasional
recording of expenditure under the wrong heading (so that expenditure under one heading is
greatly reduced and expenditure under another heading is greatly increased). These errors
will often be identifiable under close inspection as outliers (Lee, 1995). These are outliers
which arise from error rather than outliers which are unusual but correct. If possible they
should be detected and treated as part of the editing process (see section 6.3.3).

A stochastic model for such error in a measured variable Y would be that Y equals the true
value with probability 1-ε and is drawn from a very different distribution with probability ε,
where ε is a small number, for example 0.01.

Continuous variables: misreporting of zeros

A specific instance of major error is the misreporting of zeros. One example is the setting
above where expenditure is recorded under the wrong heading so that expenditure under the
correct heading may be erroneously zero whereas expenditure under another heading may be
erroneously non-zero. Such errors may cancel out under aggregation of headings.

Other erroneous reportings of zero may arise when information is unavailable or difficult to
obtain, a question is left blank and then imputed as zero. In this case, measurement error is
closely related to item nonresponse (see Case Study 1 in Section 6.3.1).
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Continuous variables: other error

Guessing of values and errors due to minor differences in reference periods might be
expected not to lead to major errors but rather to errors which might be represented by the
�classical error model�

Y y e= + (6.1)

where Y is the reported value, y the true value and e is the measurement error drawn from a
continuous probability distribution. Sometimes the distribution of the errors might reasonably
be supposed to be centred about zero, for example under honest guessing by an experienced
reporter, so that the measurement error may be viewed as approximately unbiased.
Sometimes, bias may be expected.

Categorical variables: misclassification

Measurement error in categorical variables involves misclassification. The basic model in this
case involves a misclassification matrix with elements ijq , the probability of classifying

category i as category j. The diagonal elements of this matrix should be close to one and the
off-diagonal elements small.

6.2 The contribution of measurement error to total survey error
6.2.1 Total survey error
Let Yk  be the reported value for the k th  sample unit and let yk  be the corresponding true
value, assumed to be well-defined. Then Y yk k−  is the measurement error for sample unit k
and the contribution of measurement error for all sample units to a weighted estimate

�s kkYw  is given by� −
s kkk yYw )( . This contribution to total survey error reflects not only

measurement error but also processing, coding and imputation errors.

In order to assess the magnitude of the contribution of � −
s kkk yYw )( to total survey error

(see Section 1.2.1), it is necessary to conceptualise the distribution of this term and to
estimate the characteristics of this distribution. The distribution of Y yk k−  usually involves
the specification of a measurement error model as in (6.1). The measurement error
distribution in such models might be conceived of in terms of hypothetical repeated
measurements (Groves, 1989, p.15). For example, a respondent might provide different
guessed values if asked (hypothetically) the same question repeatedly, or different individuals
might complete a form differently under (hypothetical) repeated mailings to a firm. The
distribution might also be conceived of in terms of the distribution of errors across
businesses. For example, an error arising because a respondent refers to the business�s
financial year rather than a calendar year may not change under repeated questioning, but it
may be possible to interpret the distribution of errors e in the model in (6.1) as reflecting the
distribution of financial years (in their impact on the survey variable) across businesses.
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Given a measurement error model, the distribution of the total survey error can be conceived
of as reflecting the joint distribution arising from measurement error, sampling and
nonresponse. If E denotes expectation with respect to the joint distribution, the bias and
variance arising from measurement error (and associated processing, coding and imputation
errors) may be expressed as

( )� −= )(EBias kkks yYw (6.2)

( )2)(EVariance � −= kkks yYw (6.3)

The assessment of these is considered in Section 6.4 below. For the purpose of quality
measurement, the primary interest will be in total survey error and an overall measure of
quality is

[ ]2Eerrorsurvey   totalsquaredMean � �−=
kPkks YYw  .

6.2.2 Bias
The bias in (6.2) may arise from all kinds of measurement error. For example, a systematic
tendency to underreport certain miscellaneous costs may lead to downward bias in the
estimation of total miscellaneous costs. A tendency to report according to an earlier financial
year rather than a requested calendar year may lead to downward bias for variables which
exhibit upward trends over the time period concerned.

6.2.3 Variance inflation
The variance inflating impact of measurement error is likely to be most important for the
largest businesses in the completely enumerated strata. Such businesses do not contribute at
all to the sampling variance, but random errors in their reported values may have a significant
impact on the total variance of the survey estimates. This is considered further in Section
6.4.3.

6.2.4 Distortion of estimates by gross errors
Usually, it is assumed that the total survey error and its components are normally distributed
so that the distribution can be summarised by bias and variance. An exception may arise with
gross errors which are not detected or treated. Gross errors for individual businesses may
seriously distort estimates, especially estimates for domains based on small numbers of
observations, one (or more) of which is subject to gross error.

6.3 Detecting measurement error
6.3.1 Comparison at aggregate level with external data sources
Survey estimates may be compared with aggregate figures from another source, such as
another survey, an administrative source or trade organisation data. Such a comparison may
reveal bias from measurement error, although it may be difficult to disentangle measurement
error bias from nonresponse bias and it may be difficult to determine to what extent the
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difference between estimates is attributable to error in the survey of interest or error in the
other data source.

Case Study 1. Comparison of mail survey with interview survey

In the 1980s Statistics Sweden conducted an annual survey on forestry (logging) among
private owners (as opposed to large corporations, the government or the Church). The private
owners make up about 50% of all forestry in Sweden. This survey was done by a
conventional mail questionnaire design and involved a sample of 7,000 such owners (owning
less than 1,000 hectares each). The aim was to estimate at the national level, among other
quantities, the total volumes (in million cubic meters) logged by final felling (that is a whole
area is cut down), thinning (selected trees only) and miscellaneous felling (in ditches, under
power lines etc). Because of concerns about quality, it was decided in 1988 to divide the
survey into two parts on an experimental basis: a mail questionnaire was distributed to about
4,500 owners while about 2,500 owners were included in an interview survey, about 100
local forestry experts performing the interviews. The results are given in the following table.

π-weighted estimate of
proportion of owners doing

activity

Estimated volume (million
cubic meters)

Mail Interview Mail Interview

Final felling: 20% 21% 17.6 19.0

Thinning: 32% 39% 9.7 11.3

Miscellaneous: 18% 38% 1.9 3.7

Total logging: 29.2 34.0

The estimated volume for the mail survey tends to be less than for the interview survey,
especially for the miscellaneous category. This may be explained by the much greater
numbers of zeros (owners not undertaking the activity) in the mail survey, especially for the
miscellaneous category. Many of these zeros represent either measurement error (the failure
to report actual activity) or item nonresponse (a blank return where an actual return may be
difficult). Final felling is easy to identify and quantify (for example lots of paperwork is
involved to get a permit), while thinning and particularly miscellaneous logging are harder to
identify, quantify and remember. It was concluded that the quality of the results from the mail
questionnaire was unacceptable and the survey was changed to an interviewer mode from
1989.

6.3.2 Comparison at unit level with external data sources
A more useful comparison is possible if the respondent records can be matched to records
from another source such as a tax register, containing related variables. Such comparisons



11

might only be made with a subset of sample records, for example the responses of just the
businesses in the completely enumerated stratum might be compared with information in
publicly available annual reports. Gross errors might be detected in values which do not
follow the normal relationship with variables in the external source. Differences in definitions
between the two sources, in particular differences in reference periods, will often complicate
such comparisons, however. It may also be that the external source, for example an audited
set of company accounts, only becomes available after the survey estimates have been
published, so that measurement error estimates can only be made retrospectively.

Case Study 2. Comparison of questionnaire responses with values on VAT register

The survey on �domestic trade in the service sector� at Statistics Sweden aims to estimate
quarterly turnover by industry (4 digit NACE) in the service sector. A probability sample of
legal units is drawn from the Business Register (BR) and a questionnaire is mailed to these
units.

In 1997 a study was made to find out whether the mail questionnaire could be replaced by
data taken directly from the VAT register. Such a shift would reduce costs considerably, for
Statistics Sweden as well as for respondents, and at the same time make it possible to shift
from a sample of about 4,500 to a total enumeration of about 110,000 enterprises.

Two estimates of turnover by 4-digit NACE were compared. The first was a π-weighted
estimate from the original survey observations. The second was a modified estimate, with the
questionnaire observations replaced by the corresponding VAT observations (except in the
take-all strata).

Differences between the estimates were reasonably small in most NACE groups compared
with the random variation in the survey. However, in some NACE groups the differences
were much larger than one would expect from the random variation. For 114 legal units the
π-weighted difference between questionnaire and VAT data exceeded 50 million SEK. About
one third (37) of these were selected for a telephone interview to find out the reasons for the
discrepancies. For practical reasons the interviews had to be done during the holiday season
in the summer, and only 21 interviews were completed. Nevertheless, a lot was learned from
these interviews:
1) In 10 cases (legal units) the large discrepancies were due to the choice of unit. These

legal units turned out to be part of multi-legal unit enterprises. The turnover in the
sample cases may be reported to the VAT register from another legal unit within the
same multi-unit enterprise, and this VAT-reporting unit may even be an out-of-scope
unit, for instance a manufacturing unit. In some cases the selected unit reported zero
turnover while the corresponding VAT turnover was substantial. In some cases it was
agreed (with the respondent) that the questionnaire turnover was indeed the correct
one while the VAT turned out to be the correct figure in other cases.

2) In 3 cases the respondents had by mistake given the wrong numbers (turnover) on the
questionnaire. This had been corrected during the discussion, making questionnaire-
and VAT data coincide.
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3) Two cases were due to data entry errors made by Statistics Sweden but not detected
by editing.

4) Two cases were due to errors in NACE classification in the BR. The respondents had
reported �Manufacturing� instead of the service sector code found in the BR. These
units had been classified as over-coverage in the survey and given value of turnover
equal to zero.

5) One case, a wholesale trade agent (NACE = 51.1) had included as turnover the whole
traded turnover instead of only its own turnover as requested in the questionnaire.

6) Two cases were traced to misunderstanding of the questionnaire.
7) One case was due to reference period problems. This enterprise was involved in a 6

month long project. The VAT payments were divided into six monthly equal sums
while actual payment took place on one or two occasions. It so happened that the
�questionnaire-turnover� was attributed to another quarter than the one in the study
while the VAT data seemed to be very consistent from month to month.

It is clear that such comparisons with external sources can reveal many sources of error in
addition to measurement error. In particular the most striking additional type of error in this
study consists of frame errors arising from problems in delineating units. Such comparisons
may also suggest methods for improving quality. This study suggests, for example, that VAT
data may be useful for editing. A large difference between questionnaire responses and VAT
turnover would be a good reason for a telephone contact.

6.3.3 Internal comparison and editing
A simpler approach is to examine the internal consistency of the values reported in the survey
as part of the usual editing process (Hidiroglou & Berthelot, 1986; Pierzchala 1990;
Granquist and Kovar, 1997). Thus, one may check accounting identities, for example where
components sum to a total, and inequalities, for example that some variables are positive.
Comparisons may be made with values reported in previous surveys by the same respondent.
For example, a variable with month to month variation normally not in excess of 5%, which
suddenly changes by 1000% is a likely case of gross measurement error. See chapter 7, on
processing errors, for further discussion.

6.3.4 Follow-up
When edit constraints are failed, there are generally two options. First, the reported values
may be modified so that they do obey the constraints, for example following the procedure of
Fellegi and Holt (1976). Second, the respondent may be followed up in order to clarify the
reason for the failed edit constraint and hence to establish, if necessary, a value with reduced
measurement error. Such follow-up may be expected to provide more information about the
nature and size of the measurement error. It may be selective, that is only values considered
likely to have a non-negligible effect on the statistical estimates might be followed up.

Follow-up can range from a simple telephone call to check a single value through to a more
detailed reinterview, aimed at establishing the sources of information used as well as the
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respondents� understanding of questions and instructions. Dippo, Chun & Sander (1995,
p.295) refer to this as a response analysis survey. Such a survey may reveal measurement
errors directly, for example through misunderstandings displayed, or may suggest subgroups
for which the quality of the data may be worst. For example, respondents might be asked
whether their responses were based on memory or involved reference to appropriate
information sources. The proportion of respondents using memory might be taken as an
indicator of poor data quality and might be compared between different subgroups of
businesses.

Reinterviews appear to be relatively uncommon in European business surveys. An illustration
of response variability is provided by a study of Friberg (1992) in which reinterviews arose
by accident! He reports on a Statistics Sweden survey on environmental investments and
costs in Sweden. A reminder was distributed at some point to those enterprises that had not
yet responded. Five enterprises among those receiving the reminder had in fact sent in their
questionnaires just one of two days before. It so happened in those five cases that a different
person at the enterprise than the one who had already responded (and then possibly gone on
holiday - this happened in the summer) filled in the questionnaire. This made it possible for
Statistics Sweden to compare the two versions from each of the five enterprises. Very large
differences were found between the responses of the pairs of respondents from each of the
five enterprises. This seems to reflect the large degree of error in measuring a variable such
as environmental investment, which is difficult to define and quantify.

6.3.5 Embedded experiments and observational data
Randomised experimental designs may, in principle, be used to detect measurement error bias
by comparing alternative measuring instruments (Biemer & Fecso, 1995, p.268). For
example, different form designs or different modes (for example mail versus telephone)
might be assigned randomly between different respondents. See Case Study 1 in Section 6.3.1
for an example.

Randomised assignment may often be difficult to implement in practice. For example,
although an agency may request that a form be answered by a particular category of staff, it
may be difficult in practice to enforce this. It might therefore be difficult to implement a
randomised experiment comparing the effect of using, for example, management versus
clerical staff as respondents. It may, however, be possible to record observational data on the
category of staff responding in an ongoing survey. The fact that the allocation of staff is not
experimentally assigned makes the interpretation of differences in the survey outcomes
between different categories of staff more difficult, because of potential confounding with
other variables, but not impossible (Biemer & Fecso, 1995, p. 269).

6.4 Quality measurement
6.4.1 Quality indicators
There are several ways that problems in the quality of responses to a particular question may
be revealed:
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a) high rates of failure of different edit constraints involving the variable;
b) high rates of item nonresponse may indicate difficulties in answering the question and

potential measurement error;
c) unexplained large variation between survey occasions;
d) spontaneous reports on difficulties from respondents;
e) a response analysis survey (Dippo et al., 1995) may reveal misunderstandings or the

frequent use of memory in answering a question;
f) subject matter understanding of the nature of the question, for example investments

are harder to quantify than the number of people employed.

There are also several indicators for problems with the whole questionnaire:
a) response burden in terms of time and effort;
b) number of people involved in responding to the survey;
c) change of person responsible for filling in the questionnaire;
d) proportion of late/delayed responses.

Quality indicators derived from such sources may be useful for monitoring quality and for
comparing quality between questions and between surveys. They may suggest possible
directions of bias but are unlikely to provide much help in the assessment of the magnitude of
the bias or variance of total survey error.

6.4.2 Assessing the bias impact of measurement error
Where specific sources of measurement error are concerned, bias may be assessed by
modelling the mechanism leading to error. For example, the effect of businesses using their
own financial year rather than the requested calendar year might be adjusted for by applying
a trend model within industrial categories to the sample businesses which do not use the
calendar year. Or the impact of businesses allocating activity to erroneous headings might be
assessed by estimating the probability of misclassification between headings.

Sometimes it may be possible to conduct experiments (see section 6.3.5) to assess the bias
impact of alternative measuring instruments, for example different form designs or mail
surveys versus telephone surveys. Differences between measuring instruments only reflect
different biases, however, and do not necessarily provide accurate estimates of absolute
biases.

Another approach to bias assessment is through comparison with external sources (see
section 6.3.1). Again, it may not necessarily be possible to decide which source is least biased
and, moreover, measurement error biases will generally be confounded with other sources of
bias, such as nonresponse.

The ideal way to assess bias is to conduct reinterviews with the sample to establish the true
values. Such an exercise faces, of course, many practical obstacles (Biemer & Fecso, 1995,
p.270).
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6.4.3 Assessing the variance impact of measurement error
Variance estimators designed to estimate the sampling variance (see chapter 2) may also be
expected to capture an important component of the variance of total survey error attributable
to measurement error. Consider, for example, the classical error model in (6.1), where the
reported value Y is determined from the true value y by Y y e= +  where e is the
measurement error. Consider a single stratum h, within which the true values and errors are
independently distributed with common variances 2

yhσ  and 2
ehσ  respectively. Let hY be the

mean of the measured variable Y for the nh sample units in the stratum and let µh be the mean
of the true values y for Nh population units in the stratum. Thus hY  is the survey estimator of

µh. Assuming simple random sampling within the stratum, the variance of the total survey
error hhY µ−  across both the sampling and measurement error distributions is obtained as
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The estimator is therefore biased downwards, failing to capture the component heh N2σ
arising from measurement error, but the bias will be small if Nh is large. A conservative
approach is to remove finite population corrections from the variance estimator (that is
replace ( )hh Nn 11 −  by hn1 ). This is likely to be too conservative, however, especially for
completely enumerated strata. To obtain an improved variance estimator it is necessary to
estimate the variance 2

ehσ  of the measurement error. This might be attempted via a
reinterview survey (Biemer & Fecso, 1995, p.265). If not, some kind of sensitivity analysis is
likely to be necessary.

The contribution heh n2σ  of the measurement error to the variance above assumes
independent measurement errors. If measurement errors for different businesses are
positively correlated then this will tend to inflate the variance. It is important therefore that
the variance estimator is based on reporting units between which independent reporting is a
reasonable assumption. If, for example, a single respondent provides responses for several
enterprises, the measurement error could be correlated between these responses and so the set
of enterprises should be treated as a single reporting unit for the purpose of variance
estimation.
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7 Processing errors
Pam Davies, Office for National Statistics

7.1 Introduction to processing error
Once survey data have been collected from respondents, they pass through a range of
processes before the final estimates are produced. These post-collection operations can have
effects on the quality of the survey estimates. Errors introduced at this stage are called
processing error. Processing error can be divided into two categories: systems error and data
handling error.

The topic of processing error is just one component of non-sampling error. Non-sampling
errors, including processing errors, affect not only data from sample surveys but also
administrative and census data. Processing errors, along with other nonsampling errors, may
lead to biases and increases in the variance.

This chapter concentrates on describing the various components of processing error in the
context of business surveys. Some suggestions are made for reducing the effect of processing
errors on data quality. The report is illustrated by examples, from the UK and Sweden, of
research to measure and minimise processing error.

7.2 Systems error
Systems errors are errors in the specification or implementation of systems used to carry out
surveys and process results. One source of systems error is automated data capture. Systems
errors typically affect either all or particular classes of estimates.

The impact of systems errors on data quality is influenced by when the errors are discovered.
The impact of the errors on data quality needs to be evaluated and compared with the cost of
correcting the error, both in terms of human resources and a possible delay in the release of
the data, before making a decision whether to correct the error.

Systems errors which are discovered before the beginning of data collection are more easily
corrected than errors which are identified in the course of the survey. With the use of
computer assisted data collection, sometimes program errors are not detected until after data
collection has started.

Systems errors later in data processing sometimes are not detected until later on, or, at worst,
until after results are published, leading to the need to publish corrections. Clearly such errors
are potentially very serious.

7.2.1 Measuring systems error
In order to measure the effect of a systems error, the parts of the system that are incorrect
need to be corrected. The estimates need to be produced on both the incorrect and correct
systems, and the difference in the results from the two systems needs to be compared.
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7.2.2 Systems error: two examples

7.2.2.1 Sampling in the ONS
From about 1991 to 1994, probability proportional to size (PPS) sampling was used in some
business surveys run by the UK Central Statistical Office (CSO), notably in the quarterly
capital expenditure and quarterly stockbuilding inquiries. The system of sample selection was
implemented on CSO�s business register system, and was specified so that a random number
was generated, and each business was represented by a part of the random number range
proportional to its size, and was selected if the generated number fell into its interval. The
coding in the program did not, however, follow this procedure exactly, and in 1994 it was
discovered that the selection probabilities were not as intended. The suggested solution was
to work out what selection probabilities were implied by the selection procedure, and to use
those to produce an unbiassed (but possibly rather variable) set of survey estimates.

The result of this episode was a general distrust of PPS sampling for business surveys, and,
although a corrected selection algorithm is available, the method has been mothballed in ONS
(the successor to CSO) since then.

7.2.2.2 Variable formats in computer programs
When a computer program is being written, variables may be allocated certain fixed formats,
and say for a particular variable the format is defined to be an integer with two digits. At the
time a value above 99 is considered impossible. In time, values above 99 become possible
and occur, but nobody amends the format. The system chops values to store them within the
stated format, and does so without warning, for example 123 simply becomes 23. The
statistics then do not move as expected. After a while somebody realises the cause!

7.2.3 Minimising systems error
Systems errors are minimised by the use of quality assurance and testing procedures as the
system is written. Where appropriate, the use of harmonised methods across surveys enables
the same well-developed and tested program code to be used for processing data in all the
surveys. This reduces the scope for programmer error by reducing the amount of code to be
written, and frees up resources for developing and testing other parts of the system.

7.3 Data handling errors
Potential sources of data handling errors range from processes used to capture and clean the
data to techniques used for the final production of estimates and the analysis of the data. The
main sources of data handling errors are:
•  data transmission: this covers errors arising in the transmission of information from the

field, where data are collected, to the office where the data are subjected to further
processing;

•  data capture: �the phase of the survey where information recorded on a questionnaire is
converted to a format which can be interpreted by a computer�;
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•  coding: �the process of classifying open-ended responses into predetermined categories�
(Kasprzyk & Kalton, 1998);

•  data editing: �a procedure for identifying errors created through data collection or data
entry using established edit rules� (Kasprzyk & Kalton, 1998). Data editing also refers to
the automatic correction of certain errors where the error is (apparently) identifiable or
where the cost of checking it manually exceeds the benefit over automatic correction;

•  any process that is applied to the data, from the identification of outliers to the seasonal
adjustment procedure, can introduce processing error. This processing error is not caused
by the method itself, but by the incorrect application of the process.

This report discusses errors introduced at the data transmission, capture, coding and editing
phases of the survey.

7.4 Data transmission
For most business surveys, data transmission from the field is via postal questionnaire. In this
case, transmission errors are unlikely to cause a significant problem because the data should
arrive intact. In some instances, data may be faxed or given over the telephone and in these
cases the scope for error increases. Faxed information may be illegible, and information
given over the telephone may be misunderstood, or recorded wrongly by the survey workers.
In both these cases, if there is any doubt, the recorded value should be checked with the
respondent before it is captured.

A relatively new development, at least for ONS business surveys, is the use of touch-tone,
rather than mailing, for data transmission. Clearly there is scope for respondents to either fail
to operate the system correctly, or to press an incorrect button. To minimise the risk of errors,
the system should be designed so that respondents are required to confirm their return. Gross
errors are detected in the editing phase, but smaller errors may otherwise pass undetected.

7.5 Data capture
A variety of methods may be used to �capture� data. These include:
•  keying responses from pencil and paper questionnaires;
•  using scanning to capture images followed by automated data recognition to translate

those images into data records;
•  keying by interviewers of responses during computer assisted interviews;
and these are discussed in turn below.

7.5.1 Data keying from pencil and paper questionnaires
The traditional method of data capture for business surveys is the keying of responses from
pencil and paper questionnaires onto computer by a centrally located data entry team. This is
a very labour intensive task, which has now been replaced on many surveys by more modern
technologies. Some modes of data collection such as computer assisted personal interviewing
(CAPI) and computer-assisted telephone interviewing (CATI) enter the data onto computer in
the course of the interview.
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Data keying is used on many postal surveys where pencil and paper questionnaires are the
simplest way to collect information. ONS is investigating the potential of other methods of
data capture including scanning and automated data recognition to reduce the number of
surveys where data are captured in this way.

7.5.1.1 Measuring error occurring during data keying
The accuracy of data keying can be measured by either comparing a batch of entered data
with the original questionnaires or more commonly by re-entering the batch and comparing
the two sets of data. Lyberg & Kasprzyk (1997) give a range of examples with error rates
varying from 0.1% to 1.6%. Any new methods of data capture must have error rates at least
as good as these to maintain the quality of survey data.

7.5.1.2 Minimising error occurring during data keying
Methods of minimising errors during data keying include:
•  checking regular batches of questionnaires for keying errors;
•  in-built edits in computer assisted transmission can identify keying errors;
•  checking all data entry work of new staff until they reach an acceptable level of accuracy.

7.5.2 Data capture using scanning and automated data recognition
The potential cost savings offered by the use of scanning and automated data recognition over
traditional data keying has led to increasing interest in this technology. In ONS scanning is
being used for some business surveys. For example, the last Census of Employment carried
out in the UK used scanning equipment to capture all the data resulting in quicker processing
and a lower cost for a very large survey. Other organisations who have investigated the use of
scanning and automated data recognition for data capture include Statistics Sweden (Blom &
Friberg, 1995), and Statistics Canada (Vezina, 1996).

The stages in the data capture process are:

•  Scanning

The questionnaires are separated into single sheets and fed into the scanner which stores the
image of each page as a TIF file. The preparation of questionnaires for the scanner can be
fairly labour intensive (Elder & McAleese 1996) since any staples need to be removed and
the questionnaire correctly aligned. The storage of images of questionnaires has the
additional advantages of providing rapid access to questionnaires if any queries arise and
reducing the need for storage of large volumes of paper questionnaires.

•  Form Out

In many data recognition systems the image of the original printed questionnaire is removed
electronically from the image of the data filled in by the respondent. This reduces the
computer memory needed to store the image of the data and clarifies the image for automated
data recognition.
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•  Automated data recognition

Different methods are used to extract the data from the image depending on the type of
information being captured. These include:

� Bar code recognition (BCR). Used to read bar codes, for example serial numbers on
paper questionnaires. Very accurate.

� Optical Mark Recognition (OMR). Used to read responses in tick boxes. Over 99% of
items are (presumably correctly) recognised by the system.

� Optical Character Recognition (OCR). Used to read machine-printed text. Over 99%
of items are (presumably correctly) recognised by the system.

� Intelligent Character Recognition (ICR). Used to read hand-written characters. For
hand written numerical information 65%-90% of question responses were recognised.
This figure is lower for hand written text information; as a result ICR is rarely used
for collecting such information.

The recognition figures quoted above are from Statistics Sweden�s experience of automated
data recognition as reported in Blom & Friberg (1995). It must be emphasised that
technology is developing quickly in this area so that the accuracy of automated data
recognition systems can be expected to improve.

7.5.2.1 Measuring error associated with scanning and automated data recognition
Automated data recognition may introduce errors into data when characters are incorrectly
recognised; for example the numbers 3 and 8 may be confused, as may the numbers 1 and 7.
If the system is more likely to confuse a 3 for an 8 than vice versa, and similarly for the
numbers 1 and 7, then these errors could cause an upward bias in the survey estimates. Some
of these errors may be detected at the editing stage but some inaccuracies may slip through.

The accuracy of automated data recognition may be compared with keyed data entry by
processing a batch of forms in both ways and comparing the resulting data. Elder &
McAleese (1996) report the results of such a comparison where they found that for some
questionnaires the accuracy achieved by the automated recognition system was at least as
high as that achieved by the keyed data entry process.

7.5.2.2 Minimising error associated with scanning and automated data recognition
The most effective way to ensure high quality data capture using automated data recognition
is to design forms that are easily scanned and interpreted by the data recognition process.
Vezina (1996) provides a useful discussion of aspects of form design that influence data
quality. These include:
•  the characteristics of the paper � it needs to feed easily into the scanner;
•  the colour of the ink � scanners pick up some colours better than others and this can be

used to enhance the images of the data;
•  page identifiers;
•  registration points � marks on the form which enable the system to align the scanned

image with what it�s expecting;
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•  definition of zones of data to be captured � this is particularly important for parts of the
form where the respondent is asked to write in numbers or letters. The provision of boxes
encourages the respondent to print characters in capitals that are easier for the system to
recognise than manuscript;

and to these we could add one which Vezina does not mention:
•  instructions asking the contributor to provide data in the required format.

7.6 Coding error
The aim of coding is to transform open-ended, textual information into categories that can be
used in data analysis. In the business survey field, the commonly used coding classification is
NACE Rev. 1, but in the UK this is replaced with the comparable Standard Industrial
Classification 1992 (CSO, 1992).

A major use of coding in business surveys is on the business register. In the UK, businesses
provide a description of their activity, which needs to be coded according to the Standard
Industrial Classification. In some business surveys open-ended descriptions, for example of
commodities, are required that need to be coded according to a product classification.

The accuracy of coding is heavily dependent on the skills of coders, so there is the potential
for introducing both bias and variance during the coding process.

Coding has two stages:
•  the development of a classification or coding frame. This coding frame is known as a

nomenclature or dictionary and is accompanied by a set of coding instructions.
Nomenclatures need to be frequently revised so that they represent the full range of
possible categories;

•  written or verbal responses to survey questions are coded into categories. This coding
may be:
� strictly manual where the human coder looks up the codes in the dictionary;
� computer assisted where responses are available in electronic form or typed into a

computer and some purpose-written software suggests a range of possible codes. The
human coder either selects one of these codes or edits the verbal description and asks
the computer to suggest further possible codes;

� completely automated. In completely automated coding the survey responses are
available in electronic form or entered into a computer and the computer software
allocates the code.

7.6.1 Measuring coding error
The impact of different coders on data quality can be assessed in terms of consistency (or
reliability) and accuracy compared to a standard.
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7.6.1.1 Consistency
A consistent coding system will give the same code for items in the same category. Computer
automated systems are by definition completely consistent since given the same description
of a category they will allocate the same code.

Different human coders implement coding rules differently, whether consciously or
subconsciously, so they may allocate different codes to the same job description.

The consistency of coding systems can be measured by asking a set of different coders to
code a common list of job descriptions and calculating the proportion of all paired
comparisons of codes where the coders agree (Kalton & Stowell, 1979).

7.6.1.2 Accuracy
Although automated systems are completely consistent they have another less desirable
feature: they may not allocate the best code to a description, that is, the code may not be an
accurate one. Automated coding systems rely on the matching of text strings; if the matching
is not exact then the assignment of codes may not be accurate. The accuracy of codes can be
measured by comparing codes allocated by standard coders with those allocated by an expert
coder, who is presumed to be infallible.

7.6.1.3 The impact of coder error on the variance of survey estimates
In manual coding and computer assisted coding different coders may allocate different codes
to the same description. In particular each individual coder may unconsciously over-allocate
businesses to some codes and under-allocate them to others. This is known as correlated
coder error. The errors in the codes allocated by a particular coder may lead to bias in the
estimate of the proportion of businesses in a given industry group for industries coded by that
coder. However since for many surveys coding is shared over a number of coders, if the
errors made by coders are different the impact of these individual biases on the final survey
estimates may cancel out. In this case although the final survey estimates may not be biased
the variance of the estimates will be increased. The overall bias is reduced as the number of
different coders increases, so in some surveys the code list is provided with or as part of the
questionnaire, so that each respondent codes their own answer. This minimises correlated
coder error at the expense of a potential increase in measurement error (see chapter 6).

7.6.1.4 The risk of coder error introducing bias in survey estimates
Bias will be introduced into survey estimates if at least some coders systematically assign
incorrect codes to certain occupations. One scenario where this may occur is in computer
assisted coding where the computer suggests a preferred code which the coder may accept or
reject. If there is a tendency for coders to accept the suggested code even when it is incorrect
then the coding error may introduce bias into the survey estimates (Bushnell 1996).

7.6.2 Minimising coding error
The impact of coder error on data quality can be minimised by:
•  the effective training of coders in using the coding system;
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•  well designed, up-to-date coding systems;
•  in manual and computer-assisted coding systems, coders need to be supervised and the

quality of their coding checked regularly. In some cases coders may be unsure which
code to allocate and these queries will need to be referred to supervisors and in some
cases researchers for reconciliation;

•  some surveys (or more localised experiments) code information more than once using
different coders and compare the resulting classifications to help resolve cases where
there is some doubt as to the true code.

Useful references on coder error include Lyberg & Kasprzyk (1997).

7.7 Data editing
Granquist (1984) described editing as having three goals:
•  to provide information about data quality;
•  to provide information to help bring about future improvements in the survey process; and
•  to clean up possibly erroneous data.

Checks used to identify suspicious data items are called edit rules. These include:
•  range or validity checks � is the data item in the valid range for the data?
•  consistency checks � is the data item consistent with other data provided by the

respondent either in that interview/questionnaire or on a previous occasion ?
•  routing checks � has the respondent answered the correct questions? This forms a large

part of editing checks for pencil and paper questionnaires.

Computer programs are used to implement these edit rules either on-line during the data entry
process (integrated editing) or in a batch process which produces a list of suspect data items
for manual review.

Suspicious data items can be classified into fatal edits or query edits. Fatal edits identify
clearly erroneous data whereas query edits identify data that are implausible.

In addition to different types of edit rules there is a variety of different approaches to editing:
•  editing can compare different items of data for a given individual (is this item consistent

with the other items?) or compare the same item for different individuals (is this data item
much higher than the others?);

•  editing can be conducted on aggregates (do the summary statistics or estimates for this
batch of data look suspicious?) or on individual data. Suspicious batches of data can then
be subdivided and the aggregate editing process repeated until the error(s) are narrowed
down to individual data ;

•  editing can be manual, by inspection of paper forms before or during data entry, or
automated.

For general discussions on editing see Granquist (1995), Lyberg & Kasprzyk (1997), and
Granquist & Kovar (1997).
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7.7.1 Measuring the impact of editing on data quality
Different organisations, and indeed individuals within organisations, have different editing
policies. There is consensus on the importance of correcting fatal errors where data are
clearly erroneous. However some argue that surveys, particularly business surveys, are over-
edited, and that much of the editing conducted to resolve query edits has little impact on the
quality of estimates and therefore should be reduced. This would have a large impact on the
cost of running surveys: editing can absorb as much as 20-40% of total survey budgets
(Granquist & Kovar 1997). If the resources devoted to editing were reduced this would free
staff to concentrate on minimising other sources of survey error which might have a greater
potential impact on data quality.

Others argue that since it is impossible to pre-specify all the uses to which data will be put,
the potential impact of inconsistencies in the data on estimates cannot be assessed. Data
should therefore be edited until they are internally consistent, particularly if one output of a
survey is a data set to be stored at an external archive that may be used by secondary analysts.

7.7.2 Minimising errors introduced by editing
Editing can introduce bias into survey estimates if it is based on pre-conceived ideas of what
the data ought to look like which turn out in practice to be untrue. Editing may also
artificially reduce the variance of survey estimates if real extreme values are incorrectly
adjusted towards the mean of the distribution. This can result in over-optimistic claims about
the precision of survey estimates.

Strategies to minimise errors introduced by editing include:
•  involving subject matter specialists in the editing process so that edits are appropriate for

the data;
•  using standardised editing code for questions that are used on a range of surveys;
•  testing program code used in editing by examining what happens to businesses with

particular combinations of data values;
•  feeding back information about data quality to the survey, questionnaire and edit design

stages so that possible amendments to questionnaires, field procedures and edit rules that
would improve data quality can be discussed.

7.8 An example of error at the publication stage
Production of many different official statistics, and in particular monthly statistics, is often
subject to tight time constraints. All stages of the production process are then carried out with no
time to spare. One of the steps to be taken quickly is moving a table into the press release. In
comparison with the previous table a new month is added, and previous months may be revised.

In Sweden recently, a new month was added to a table in a press release and the revision for
the previous month was overlooked. Several earlier months were shown in bold as revisions.
Hence, the earlier figure for the previous month may be read as confirmed, and it is less
accurate than it should be. The lesson is that the less manual typing of figures the better;
tables should be moved as a whole, or an automatic procedure for generating them from the
final data should be used.
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8 Nonresponse errors
Chris Skinner, University of Southampton

8.1 Introduction
Nonresponse arises when a sampled unit fails to provide complete responses to all questions
asked in the survey. Errors arising from nonresponse may be considered as an extension of
errors arising from voluntary sampling, as discussed in Section 4.2, since the failure to
volunteer information may be viewed as a form of nonresponse. Nonresponse errors are
treated here as distinct from frame errors, as discussed in Chapter 5. In particular, sampled
units which fail to respond but are outside the target population (ineligible) are treated as
frame errors. In addition, noncoverage (that is units in the target population but outside the
sampled survey population) is treated as a frame error.

8.2 Types of nonresponse
8.2.1 Patterns of missing data
Unit nonresponse arises when a unit fails to provide any data for a given round of a survey.
There are two broad reasons for such nonresponse:
(i) noncontact � the form may not reach an appropriate respondent for various reasons,

for example change of address, failure of the postal system, failure to forward from
within the business;

(ii) refusal � the form does reach an appropriate respondent but the respondent does not
return the form.

Unit nonresponders may be classified into two types according to the information available
about the unit to the agency:
units which have never previously responded (these will consist primarily of smaller units

which are sampled afresh at each survey occasion, or those newly recruited to the
sample in rotating schemes) � for such units the only information available may be
that recorded on the frame;

units which have previously responded (wave nonresponse) � these units will usually consist
either of completely enumerated units which are sampled on every occasion or else
larger units which are sampled over several occasions in a rotation design � patterns
of nonresponse over the rounds of the survey might be denoted XXOXOOXX, for
example, where X denotes response and O nonresponse and the most recent round of
the survey is on the right.

Item nonresponse arises when a form is returned from the unit but responses to some
questions are missing. Such missing data may arise, for example, because questions were
overlooked or because the information required to answer the question was not available to
the respondent. A particular problem in business surveys is the separation of item
nonresponse from zeros. Respondents will often leave blank answers to questions about
amounts, for example the value of production in a certain category, when the answer is zero.
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8.2.2 Missing data mechanisms
In order to assess the errors which may arise from nonresponse it is necessary to establish a
statistical framework within which the mechanism of nonresponse may be considered.
Formally, nonresponse may be represented by 0-1 response indicator variables of the form

�
�
�

=
se)(nonrespon missing is  valueif 0

(response) recorded is  valueif 1
R

Unit nonresponse may be represented by a series of indicator variables Rk, defined for each
unit k in the sample. This definition may be extended in various ways. To allow for repeated
rounds of a survey, one may define variables Rtk for occasions t and units k. Item nonresponse
may be represented by a series of response indicators, one for each variable for which
missing values may occur. There is a number of alternative statistical frameworks within
which the nonresponse mechanism may be represented. See Lessler & Kalsbeek (1992,
Chapter 7) for a literature review.

The deterministic approach assumes that response indicator variables Rk are defined for all
units k in the population and that their values are fixed. Thus, in the case of unit nonresponse,
it is supposed that the population is divided into two �strata�: the respondents who always
respond and the nonrespondents who never respond. The nature of the errors arising from
nonresponse will depend on how well the estimation methods used to handle nonresponse
compensate for differences between these two strata.

The stochastic approach treats the response indicator variables Rk as outcomes of random
variables. A number of different stochastic frameworks is possible. In the case of unit
nonresponse, one approach is to treat the set of respondents (those sample units for which Rk

= 1) as a random subsample of the selected sample obtained through a process analogous to
two-phase sampling (Särndal & Swensson, 1987). The nature of errors arising from
nonresponse then depends on assumptions about how the subsampling occurs.

In the remainder of this report a stochastic approach is adopted, corresponding to modern
statistical modelling. Both the response indicators Rk and the survey variables yk are
conceived of as outcomes of random variables and assumptions about the missing data
mechanism are represented through assumptions about the joint distribution of the Rk and the
yk. This approach is particularly flexible for handling different kinds of nonresponse, for
example both unit nonresponse and item nonresponse, and for extending to an integrated
framework which allows for both nonresponse and measurement errors.

The above framework is very general and in order to make useful progress in assessing
nonresponse errors or in adjusting for nonresponse it is necessary to make more specific
assumptions about the nature of the missing data mechanisms. Three terms will be useful for
describing such mechanisms.

Missingness is said to occur completely at random if Rk is stochastically independent of the
relevant survey variables. For example, if unit nonresponse in a survey of production is being
considered, this condition would imply that businesses with low levels of production would
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be as likely to respond as businesses with high levels of production. This condition is a very
strong one and may arise only rarely in practice.

 Missingness is said to occur at random given an auxiliary variable (or variables) xk if Rk is
conditionally independent of relevant survey variables given the values of xk. Suppose, for
example, that xk is a measure of size, such as employment or turnover, available on the frame.
In a survey of production, nonresponse would occur at random given the size variable if
nonresponse is unrelated to production amongst firms of any given size. The distribution of
nonresponse could vary, however, between firms of different sizes. This assumption is
generally less stringent than the assumption that data are missing completely at random. It is
also an assumption which underlies many adjustment methods by judicious choice of
measured auxiliary variables.

A missing data mechanism which does not occur at random given available auxiliary
variables is said to be informative or non-ignorable in relation to the relevant survey
variables. Consider, for example, item nonresponse on a complex variable, for which the
higher the value of the variable, the more work will tend to be required of a business of a
given size to retrieve the information. In such circumstances, it may be that even after
controlling for measurable factors, such as size of the business, the rate of item nonresponse
tends to increase as the value of the variable increases. Item nonresponse on this variable
would therefore be informative in relation to this variable.

8.3 Problems caused by nonresponse
8.3.1 A basic setting
The problems caused by nonresponse will clearly depend on the way nonresponse is treated.
For convenience of exposition, a simple business survey setting is considered where stratified
simple random sampling is employed and where, in the absence of nonresponse, the
population total t  of a survey variable y is estimated by the expansion estimator

y N  = t hh

H

h=
�

1

� .

Here, hy  is the sample mean in stratum h, Nh is the number of businesses on the frame in
stratum h and H is the number of strata. Perhaps the simplest way of treating both unit
nonresponse and item nonresponse is to employ the same estimator with hy  replaced by the
mean across all responding units in stratum h which provide responses to this variable. The
latter mean is denoted rhy , where the subscript r indicates that this estimator is based upon
respondents data. The estimator of the total is then

y N  = t rhh

H
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8.3.2 Bias
Within the setting in Section 8.3.1, the expectation of rt�  may be expressed as

( ) µN  = t h,R=h

H

h=
r 1

1

�E �

where µh,R=1  is the mean of the survey variable in stratum h amongst those who respond

(R=1), and this expression may be compared with the expectation of t�  in the absence of
nonresponse.

( ) µN  = t hh

H

h=
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1
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where µh  is the mean of the survey variable in stratum h. The difference between these two
expectations determines the bias arising from nonresponse.

( ) ( ).�bias 1
1

µµN  = t hh,R=h
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Writing µh,R=0  as the mean of the survey variable in stratum h amongst those who do not

respond and hR  as the rate of response in stratum h we may write

( ) 0,1, 1 == −+= RhhRhhh RR µµµ

and thus an alternative expression for the bias is
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Thus no bias arises if either there is no nonresponse ( 1=hR ) or if the respondents and
nonrespondents share the same mean value of the survey variable within strata, which occurs
when missingness is random within strata, that is when nonresponse is independent of the
survey variable within strata. In general, however, this condition will not hold and
nonresponse will lead to biased estimation of totals as well as of other population parameters.

8.3.3 Variance inflation
Within the setting again of Section 8.3.1, the variance of rt�  will depend again on
assumptions about the missing data mechanism. One simple assumption, which illustrates the
variance impact of nonresponse, is that the respondents within stratum h form a simple
random subsample of size hm  amongst the hn  units of the selected sample. In this case the
variances before and after nonresponse respectively are
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where 2
hS  is the population variance in stratum h. Assuming an approximately uniform

response rate across strata and ignoring the finite population corrections, the variance will be
inflated by a factor roughly equal to the reciprocal of the response rate. Nonresponse in those
strata with a high sampling fraction and especially in completely enumerated strata will tend
to inflate the variance further.

8.3.4 Effects of confusing units outside the population with nonresponse
It will often be difficult to distinguish unit nonresponse from a unit which is outside the target
population, for example because it has ceased to be active. If such a unit is treated as
nonresponse then bias will usually arise. When estimating totals of variables such as
production, a value of zero should be used whereas the treatment of nonresponse described in
section 8.3.1 will effectively take the value as the stratum mean, biasing the estimate
upwards. On the other hand, if a unit in the target population fails to respond and is wrongly
treated as outside the target population then this will tend to lead to downward bias.

8.3.5 Effects of nonresponse on coherence
Many variables appearing in business surveys are subject to arithmetic constraints. For
example, questions might be asked on capital expenditure under three headings as well as on
total capital expenditure. There may be interest not only in the population totals A, B and C
of the three specific types of capital expenditure but also in D = A+B+C, the total capital
expenditure overall. However, item nonresponse may occur on different businesses, for
different variables and so, if nonresponse is treated variable by variable as in 8.3.1, it is

possible that the resulting estimates D� and C� ,B� ,A�  are not coherent, that is .C�+B�+A�D� ≠
Many agencies may view such incoherence as undesirable, in particular because it may confuse
users. Imputation provides one approach to dealing with this problem (see Section 8.6).

8.4 Quality measurement
8.4.1 Response rates
There are many response rates which may be calculated. Unit response rates may be
calculated by size stratum and by industry stratum and may be weighted together across
strata. Cumulative unit response rates may be calculated according to how many reminders
have been issued. Unit nonresponse rates may be disaggregated by reason for nonresponse,
noncontact, refusal etc. Item response rates may also be calculated for each survey variable.

The basic definition of a response rate is
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units sample eligible ofnumber 
units responding ofnumber 

where an �eligible� sample unit is one which is in the target population. The numerator is
usually readily available. There may, however, be difficulties in determining the denominator
because it may be difficult to decide whether sample units which do not respond are eligible.
Some estimation of this number will generally be necessary, based for example on past
estimates of �death rates� of businesses.

Response rates have different uses, upon which the choice of rate will depend. One use is to
monitor problems in data collection. For this purpose, it may be useful, for example, to record
cumulative response rates over time following the initial issue of forms. Such evidence may
be relevant, for example, to decisions about the timing and number of reminders.

The principal concern here is with the use of response rates for quality measurement. A basic
problem is that the response rate is not directly related to the principal problem caused by
nonresponse bias. It is, in principle, possible for nonresponse rates to be low and bias to be
high and vice versa. Nevertheless, equation (8.1) does demonstrate an indirect relation
between response rates and bias. If the response rates hR  within strata are high then the
nonrespondents need to be much more different from the respondents to achieve the same
level of bias as when the response rates hR  are much lower. High response rates might
therefore be viewed as a form of protection against bias.

Comparing unit response rates between industry and size strata may be informative for
quality control of data collection but these rates need summarising if an overall indicator of
quality is to be determined. The way in which these rates should be summarised depends on
the impact of nonresponse. A simple assumption is to suppose that the component
( )µµ h,R=h,R= 01 −  of bias in (8.1) is proportional to the mean hx  of a given auxiliary variable,

such as employment, within stratum h. If it is also assumed for simplicity that the mean of the
survey variable is proportional to hx  within strata we may approximate the relative bias by
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where hhxh xNt =  is the stratum total of the auxiliary variable. Under these assumptions it

seems appropriate to weight the stratum response rates hR  by the stratum totals xht  if an
overall measure of quality related to nonresponse bias is required. The weighted rate
therefore takes the form
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where hR  is the response rate in stratum h and xht  is the stratum total of an auxiliary variable
judged to be proportional to the principal survey variables of interest. For example, if the
auxiliary variable x is employment then this measure may be interpreted as the expected
proportion of total employment in businesses which respond.

In order to reduce nonresponse bias it is common practice to devote greater resources to
response chasing with the larger businesses. For example, in the Annual Business Inquiry,
businesses of 200+ employment are targeted heavily. As a result the response rate hR  is
higher in the larger size strata and the weighted response rate will be greater than an
unweighted rate.

The sample version of formula (8.3) can be expressed as
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Rw
rate response weighted (8.4)

where the sum is over sample units and the weight kw  for a sampled business in stratum h is

hhhxh xwnt = , where hn  is the sample size in stratum h and hhh nNw =  is the expansion

weight. Generalising the formula hh xw , we may take

kk
kwk
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Such a weighted response rate reflects the relative importance of different sample units
through both their weight in estimation and their size, assumed roughly proportional to the
survey variable.

8.4.2 Measures based on follow-up data
Response rates are, however, unsatisfactory as measures of quality. Even if a lower response
rate indicates the possibility of greater bias, response rates provide no information on how
large that bias may be.

One approach to estimating nonresponse bias is to follow up nonrespondents (either unit or
item nonrespondents) and collect the survey information from these businesses.

Two sources of bias can be addressed in this way. The most important source arises simply
from the values missing due to nonresponse. These are collected in the follow-up survey. A
second source arises because some assumed nonresponding units may in fact be ineligible
and vice versa. Follow-up enables these two possibilities to be distinguished. Of course,
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complete response in the follow-up will rarely be achieved in practice and so the estimates of
bias arising from follow-up data will themselves be subject to some error.

Most business surveys are subject to pressures for the early release of results. Sometimes this
means that preliminary estimates are determined after an initial time period and final
estimates are obtained after a longer period including perhaps further reminders. An estimate
of the bias in the preliminary estimates is obtained simply from a difference between these
estimates and the final estimates. This idea may be extended by collecting further data
beyond the period upon which the final estimates are based. In this way the bias in the final
estimates arising from nonresponse can be estimated.

In addition to extending the period available for data collection, other more intensive methods
of follow-up can be used, in particular with different modes of data collection, such as the
telephone and personal interview. Recognising the fact that fully successful follow-up is not
only impractical but costly, selective follow-up strategies may be considered, focussed
towards larger units which may be expected to make a greater contribution to the bias.

8.4.3 Comparison with external data sources and benchmarks
An alternative approach to estimating nonresponse bias is to make comparisons with external
sources, such as other surveys, administrative sources or trade organisation data. National
accounts sources may also provide benchmarks for comparison.

Two kinds of comparison are possible. First, comparison between overall estimates may be
made. In this case differences between estimates may reflect not only nonresponse bias but
also other sources of bias such as measurement error, and it may be difficult to disentangle
these different sources. Moreover, differences between estimates may reflect bias in either the
estimate of interest or in the comparative source and again it may sometimes be difficult to
separate these effects. See the chapter on measurement errors (chapter 6) for an example of a
comparison between a mail survey and an interviewer survey, where different rates of
nonresponse arise.

A second kind of comparison may be undertaken when the survey respondents (and ideally
nonrespondents) may be matched to records in the external source. The most obvious
example is where the external source is the business register from which the sample was
drawn. In this case comparisons may be made between respondents and other units in the
external source with respect to variables available in that source. Another example is the
comparison of survey responses with audited accounts, although these may only become
available some time after the survey. Such comparisons may still be useful for assessing
nonresponse bias even if the variables in the external source are subject to measurement
error, so long as they are sufficiently correlated with the survey variables of interest.

8.4.4 Comparison of alternative adjusted point estimates
In sections 8.5 and 8.6 we consider weighting and imputation methods aimed at adjusting for
nonresponse bias. These adjustment methods are based upon strong assumptions, in particular
that nonresponse occurs at random given values of certain auxiliary variables (see section
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8.2.2 for the definition of �missing at random�). Departures from these assumptions may be
expected to lead to biases in the adjusted estimators. Some assessment of bias may be made
by comparing estimators based upon different assumptions, specifically using different
choices of auxiliary variables.

In addition, the possibility of informative (non-ignorable) nonresponse (see section 8.2.2)
may be considered. Alternative plausible models for informative nonresponse mechanisms
might be specified and then the impact on estimation considered. Ways in which this might
be done are discussed further in the chapter on model assumption errors (chapter 9). It may
be possible to develop special estimation procedures under the specified informative
nonresponse mechanisms as Copas & Li (1997) have done for certain modelling purposes.
Alternatively, simulation-based procedures might be employed. Perhaps the most
straightforward approach is to take a complete set of records from the sample data and treat
this as if it is an �artificial sample�. Next, missing values may be created in this artificial
sample according to assumed nonresponse mechanisms (which may themselves have been
arrived at by fitting models to the original data subject to nonresponse). Estimates may be
computed from the new data according to the standard procedures employed in the survey
and these estimates may be compared with estimates obtained from the full artificial sample.
The process of creating missing values should preferably be repeated and the bias and
variance of the estimator under the specified nonresponse mechanism estimated as in any
simulation study.

8.5 Weighting adjustment
8.5.1 The basic method

The population total of a survey variable ky  is estimated by � kk yw , where the sum is

across respondents. The basic idea is that each responding unit �represents� kw  population

units. The weight may be expressed as nrkskk www = , where skw  is the sampling weight and

nrkw  the nonresponse weight. Various methods may be used to construct the weights. In
practice a single set of weights will usually be used for all survey variables. This is desirable
not only for simplicity of computation but also to ensure that arithmetic relationships between
variables (for example total capital expenditure is the sum of the components of capital
expenditure) are preserved in the estimates. For this reason weighting, is the standard
procedure used to adjust for unit nonresponse (which applies to all variables in a uniform
way) but is usually unsuitable for item nonresponse, since different weights will be necessary
for variables for which values are missing for different units.

8.5.2 Use of auxiliary information
In order to reduce nonresponse bias it is necessary to use auxiliary information about units
which are not respondents. Two broad kinds of information may be used. First, certain
information may be available on nonrespondents in the sample but not for other population
units. One example arises in a monthly business survey when the sample consists of the same
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businesses each month. In this case information may be available on sample businesses in
February, say, which may be used to weight for nonresponse in March. Such weighting is
called sample-based weighting. Quantitative information on nonrespondents, such as reported
values from the previous month in a monthly survey, is more likely to be used for imputation
than for weighting. Categorical information, such as an industrial classification, might be
used to define response homogeneity groups within which the nonresponse weights may be
determined by the inverse response rates.

The second broad kind of information is that available on the whole population, most
obviously information recorded on the business register. Weighting methods based on such
information are called population-based weighting. The following two sections concern
different methods of such population-based weighting.

8.5.3 Poststratification
This method is applicable when a classification of business is available which was not used
for sampling. The classification partitions businesses into �poststrata� g, where the number of
businesses gN  within poststratum g is known. An example arises when the classification of

businesses by industry or size is updated and considered to be more accurate than the original
classification used for sampling (Hidiroglou et al., 1995). The poststratified estimator of a
total takes the weighted form � knrksk yww  in section 8.5.1, where the nonresponse weight

for all units in poststratum g is ggnrk NNw �= , and gN�  is obtained by summing the sample

weights skw  across responding units in poststratum g.

8.5.4 Regression estimation and calibration
Poststratification is a special case of regression estimation which itself is a special case of
calibration estimation (Deville & Särndal, 1992; Lundström, 1997). Methods of ratio
estimation used widely for business surveys are also special cases.

The simplest approach to handling unit nonresponse in these methods is to treat the
respondents as the achieved sample with inclusion probabilities proportional to the sample
inclusion probabilities. If the regression relationship between the survey variable and the
auxiliary variables is the same for respondents and nonrespondents, the corresponding
regression (or calibration) estimator will remove bias due to nonresponse (Hidiroglou et al.,
1995, p.491). This is essentially the missing at random condition referred to earlier. Under
departures from this assumption, regression estimation may still be useful for reducing
nonresponse bias. A more complex approach involves first adjusting the sample inclusion
probabilities by estimated nonresponse probabilities. Bethlehem (1988) argues that this
adjustment may be expected to reduce bias.

8.5.5 Weighting and nonresponse errors
Weighting may be expected to affect both the bias and the variance arising from nonresponse.
The aim is to remove nonresponse bias although, in practice, this is unlikely to be fully
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achieved. A comparison of alternative weighted estimators provides some idea of how bias
may vary according to different assumptions. These assumptions will be of the form �missing
at random given measured auxiliary variables�. These auxiliary variables might, for example,
be those used to define response homogeneity groups in the sample, or to define poststrata for
population weighting. A comparison of weighted estimators therefore represents a sensitivity
analysis with respect to a limited set of assumptions.

Weighting will also generally affect the variance of the total survey errors in two ways. First,
poststratification and more generally calibration weighting can act to reduce the variance if
the auxiliary variables used help to predict the survey variables within strata. Second,
variability in the weights can inflate the variance and this variance inflation tends to increase
as the amount of auxiliary information increases (Nascimento Silva & Skinner, 1997).

8.5.6 Variance estimation
There exists a number of variance estimators in the presence of nonresponse. The simplest is
to treat the nonresponse weights as fixed quantities for which variation between weights
inflates the variance. This approach fails to allow for the reduction of variance achieved by
population weighting. This variance reduction is allowed for by standard variance estimators
for calibration estimation (for example Deville & Särndal, 1992). More complications arise if
sample-based weighting is also involved. In this case, more complicated variance estimators
are required, which include components both at the sample level and at the respondent level
(Särndal & Swensson, 1987; Lundström, 1997). All of these estimators effectively make a
missing at random assumption and thus do not allow for the possibility of informative
nonresponse. See the chapter on model assumption errors (section 9.7) for further discussion
of this case.

8.6 Imputation
8.6.1 Uses
Imputation is used generally for item nonresponse and, in particular, for allocating activity
between the components, for example local units, of an enterprise when only aggregate
values are reported. Imputation may also be used for unit nonresponse, especially for
businesses in the completely enumerated stratum where previously reported values may be
powerful predictors of missing values.

8.6.2 Deductive imputation and editing
The simplest form of imputation involves the use of logical relationships between variables
and is usually performed as part of the editing process (Hidiroglou & Berthelot, 1986). For
example if the total of non-negative variables is recorded as zero, then the values of these
variables can be imputed as zero.

8.6.3 Last value imputation
For frequent (for example monthly) surveys a very simple imputation method is to use the
most recently reported values.
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8.6.4 Ratio and regression imputation
A simple modification of last value imputation is to scale this value with a ratio of estimates
based on the current and previous values. Thus, if tky  is the reported value of unit k at month

t then kty 1+ , the value missing at month t + 1, might be imputed by

tk
tr

rt
kt y

y
yy 1

1� +
+ =  .

Here the means rty 1+  and try  of reported values at months t + 1 and t respectively might be
obtained from businesses in a similar industrial classification and size. Extreme values might
be trimmed when calculating these means, to avoid outliers having excessive influence. This
approach is particularly suited to variables which do not vary greatly over time.

More generally, a linear regression model �= ppxy β might be fitted to the survey variable

y with missing values, with the covariates px  including previous values of the survey

variable as well other variables, for example those on the business register. The imputed
value may then be taken as the usual predictor � ppx β� , where pβ�  is the least-squares

estimator of pβ . Business surveys tend to be well suited to such methods since strong

correlations between variables are common.

8.6.5 Donor methods
Ratio and regression methods make efficient use of auxiliary information but are not suited to
every application. They are difficult to apply to missing values in categorical variables and,
since they are usually applied variable by variable, they may not preserve relationships
between variables. In such circumstances, donor methods such as hot deck imputation may be
useful. A donor unit is selected which is as similar as possible to the unit with missing values
and the values from the donor are used to impute one or more missing values. Similarity may
be measured for example according to size and industrial classification of the unit (Kovar &
Whitridge, 1995).

8.6.6 Stochastic methods
A further problem with ratio and regression methods is that they tend to reduce the variation
in the variables imputed. Often only national totals are of interest and this tendency will not
be of concern. However, if distributional quantities are of interest, bias may arise. For
example, if the proportion of businesses performing poorly according to some criterion is of
interest, and the imputed values tend towards the centre of the performance distribution, this
proportion may be underestimated. This problem may be addressed through the use of
stochastic methods of imputation (Kovar & Whitridge, 1995). For example, the regression
imputation � ppx β� in section 8.6.4. might be replaced by the stochastic regression
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imputation ex pp +� β� , where e is a random residual, obtained by drawing a residual at

random from those arising in the regression analysis used to obtain the pβ� .

8.6.7 Imputation and nonresponse errors
Like weighting, imputation may be expected to affect both the bias and variance arising from
nonresponse.

Regarding bias, there are two broad considerations. The first one is the most obvious and
applies equally to weighting. The success of imputation in removing bias for the estimation
of characteristics of a given survey variable will depend on how well the imputation model
captures the distribution of the missing value. Comparing the results of different imputation
methods will provide some evidence on the size of such bias. A second, more subtle
consideration is that imputation can introduce bias in estimates which depend on more than
one variable if these variables are not fully controlled for in the imputation. Consider, for
example, a variable which takes the following values for a business

y
December 1000 Reported

January 1050 Nonresponse (1000 imputed)

February 1100 Nonresponse (1000 imputed)

March 1150 Reported
Suppose that both the January and February values are missing and are each imputed by the
last value 1000 (see section 8.6.3). Suppose that an estimate is required for the number of
businesses which have changed y by over 100 from February to March. The above business
will be erroneously classified in this category and imputation may lead to an upward bias in
the estimation of this number. This could, in principle, have been avoided if the March figure
had been used also to impute the February figure but, in practice, such �revisions� are often
viewed as undesirable.

Imputation may also be expected to have an impact on the variance of the estimator. In
general, we may expect the variance to become impsamp VV + , where sampV  is the sampling

variance which would have arisen in the absence of nonresponse and impV  is the additional

variance arising from imputation. The size of this term will depend on the form of
imputation. The term impV  will tend to be smaller for methods of ratio or regression

imputation which are based on models with high predictive power. The term impV  will tend to

be larger for methods which have less predictive power, for example last value imputation,
and for stochastic methods. Kovar & Whitridge (1995) suggest that imputation can inflate the
variance by 2 to 10 percent in the case of a 5 percent nonresponse rate or by 10 to 50 percent
in the case of 30 percent nonresponse.
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8.6.8 Variance estimation
An important problem for quality measurement is that the variance impact of imputation is
much harder to estimate than that of weighting. The simplest approach is to treat imputed
values as real values and to use the usual estimators of sampling variance. Unfortunately, this
will usually underestimate the variance because no account is taken of impV , the additional

uncertainty arising from the fact that the imputed values will, in practice, not equal the true
values. The degree of underestimation may be severe in business surveys, in particular
because the usual estimators of sampling variance take no account of imputation error among
large businesses in the completely enumerated strata.

Consider, for example, the use of a separate ratio estimator. The conventional variance
estimator, treating the imputed values as real, takes the form

( ) hh
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by analogy with expression (2), where hm  is the number of units in stratum h for which data

(including imputed values) are available, hN  is the corresponding population size and 2
hs  is

the sample variance of the residuals (treating the imputed values as real). Assuming ratio
imputation is employed using the same auxiliary variable as in the ratio estimator, the actual
variance should be:
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hm  is the number of observations in stratum h excluding imputed values and 2
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variance of the residuals in the absence of item nonresponse. Assuming ratio imputation as
above, each of the residuals in 2

hS  corresponding to an imputed value will be zero and
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The amount of underestimation will tend to be large if either the sampling fraction hh Nm  is

large, especially for completely enumerated strata with 1=hh Nm , or if the fraction of

imputed values ( )hh mm*1−  is large. A simple adjusted variance estimator takes the form
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and involves applying a correction to the standard variance estimator within each stratum.
This estimator assumes that the same auxiliary variable is used for imputation as for
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estimation. This will often not be the case. An alternative approach to adjustment is to replace
the imputed values by adjusted imputed values for the purpose of variance estimation.
Suppose, for example, that imputed values are of the form kk xy β�* = , where kx  is a previous

value recorded for business k and β�  is a ratio. Then, for the purpose of variance estimation
*
ky  might be replaced by kkk yy ε+= *** , where kε is a randomly generated value from a

normal distribution with mean zero and variance 2
kσ . The problem then is to choose the 2

kσ

in such a way that the standard variance estimator (treating the **
ky  as real values) is

approximately unbiased for the total variance impsamp VV + . One approach is discussed by Rao

(1996) in the context of jackknife variance estimation.

Särndal (1992) describes an approach which involves estimating the components sampV  and

impV  separately. A further approach is multiple imputation which involves creating multiple

datasets with imputed values and comparing the estimates obtained from each (Rubin 1996,
Fay 1996). None of these methods seem to have yet found their way into business survey
practice in Europe, however, and the development and implementation of practical variance
estimation methods remains an outstanding research problem.
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9 Model Assumption Errors
David Draper & Russell Bowater4, University of Bath

9.1 Introduction
The original goal of design-based analysis methods in survey sampling was �the development
of a sampling theory that is model-free� (Cochran 1977). Even within classical design-based
methods, however, the incorporation of auxiliary information through such techniques as
ratio and regression estimation is essentially (if perhaps somewhat covertly) model-based.
Today overtly model-based methods are commonly employed in business statistics, in the
calculation of index formulae, in the use of benchmarking and seasonal adjustment (where
model-based outlier detection and correction are crucial), and in estimation when no data for
a sub-population are available (for example, enterprises that fall below a size threshold, as in
cut-off sampling, or small-area estimation from aggregate data). Models are thus ubiquitous
in the analysis of business survey data (see, for example, Särndal et al. 1992), and the
assumptions they make must be critically reviewed with an eye to quantifying model
assumption errors.

We have already encountered the use of models in several previous chapters; in particular, in
section 2.3.2 we examined the idea of treating the population from which the sample at hand
was drawn as itself a sample from a superpopulation specified by a model. An example of
this idea that is relevant to model assumption errors came up in the discussion of quota
sampling in section 4.3: if the population values jy  in the cells of the quota-sampling grid

are assumed to be random variables with ( ) hjy µξ =E , and ( ) 2V hjy σξ = , where h indexes the

cell in the grid in which jy  is observed, then model-unbiased estimates both of the

population total t ( t� , say) and the variance of t�  are available and coincide with the usual
design-unbiased estimates from stratified sampling. However, this is equivalent to the
modelling assumption that the observed jy  values in the quota sample are stochastically

indistinguishable from what one would obtain with simple random sampling (without
replacement) from the cells in the grid, and there is no way to completely verify this
assumption from the data. Errors in this model assumption could lead to a bias in the estimate
of t whose magnitude and even direction are hard to quantify.

In the following sections we examine in turn the five leading areas in which model
assumption errors appear crucial in business surveys: index formulae, benchmarking,
seasonal adjustment, cut-off sampling, and coping with non-ignorable nonresponse. In the
final section we offer some recommendations on best practice in the reporting of possible
model assumption errors in business surveys.

                                                          
4 We are grateful to Ray Chambers (University of Southampton), Eva Elvers (Statistics Sweden) and Paul Smith
(UK Office for National Statistics) for comments and references, and to Paul Smith for some suggested text
fragments. Membership on this list does not imply agreement with the ideas expressed here, nor are any of these
people responsible for any errors or omissions that may be present.
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9.2 Index numbers
As noted by Jazairi (1982), an index number is a measure of the magnitude of a variable at
one point relative to its value at another point. The variable in question is often either the
price or the (sales) quantity (or volume) of a commodity. The �points� in question may be
different times, or locations, or groups of households; we will focus here on time, measured
in months. In the simplest form of this idea there are only two points in time being compared;
one, say t (often the earlier time-point), is selected as the reference or base month, and the
other, say t ′ , is the current month.

Consider a set or market basket, C, of commodities mcc ,,1 �  observed at n times, and let itp

and itq  be the price and volume, respectively, of commodity ic  at time t. The money value of

ic at time t is by definition simply the product ititit qpv ≡ . The ratio itti pp ′  of the price of

commodity ic  at time t ′  to its price at time t is the price ratio; the corresponding fraction

itti qq ′  is the volume ratio. In attempting to measure how much the price of the market
basket C has changed over time, an old (18th century) idea was simply to form the average
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1  of the price ratios; in the 19th century the German economists Laspèyres and

Paasche introduced a refinement of this idea which is still used today. The Laspèyres price
and volume indices, respectively, are ratios of weighted sums of the form
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for example, the Laspèyres price index represents the ratio of the cost of the base month
market basket at the current month prices to its cost at the prices of the base month. Similarly
the Paasche price and volume indices, respectively, are
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thus the Paasche indices are similar to those of Laspèyres except that in Laspèyres� weighted
sums the weights are measured in the base month and Paasche's weights are those in the
current month. With any given market basket, and base and current months, the Laspèyres
and Paasche price indices will typically not agree (essentially for the same reason that the
relative change of a quantity tq  from time t to t ′ , ( )( )ttt qqq −′ , does not coincide with the

relative change from t ′  to t, ( )( )ttt qqq ′′ − ); the Fisher ideal index, the geometric mean of
the Laspèyres and Paasche formulae, is frequently used as a compromise. There are many
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variations on the idea illustrated here; Jazairi (1982) lists no less than 14 types of alternative
index numbers.

A simple example of the role of model assumptions in the creation of index numbers arises
from rewriting the Laspèyres price index as
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thereby expressing this index as a weighted average of price ratios, using the values at time t
as the weights. To produce ttLP ′  for time t ′ , price ratios and values for time t are needed; in
practice the values (often estimated from national accounts) might, for example, refer to the
previous year and the price ratios might compare the current month with the previous
December. At the time when the index is to be produced, reliable values for time t are often
not yet available. It is then necessary to make an approximation, for example, to take values
referring to an earlier year forward on the basis of some assumptions on growth rates. Any
such assumptions will be model-based, either implicitly or explicitly, and the possibility of
errors in the model assumptions ideally needs to be explored.

An example of an explicitly model-based approach to the construction of price and volume
indices is given by the derivation of best linear indices. Theil (1960), the originator of this
method, assumes that the prices of the m commodities move proportionately, apart from
random fluctuations. As noted by Fisk (1977), one way to express this assumption is through
the model
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in which typically � tititi vpw ′′′ =  is the average money value recorded as spent by a sample

group of households on commodity i in time period t ′ , and itti pp ′  is the price ratio for
commodity i obtained from an independent source, usually a survey of prices in retail
outlets.� Here tte ′  is treated as a stochastic error term assumed to have mean zero, although
Fisk notes that �in practice non-sampling errors may prove more important than sampling
errors and tte ′  may contain a bias component which is not necessarily constant for all pairs

( )tt ′, .� To construct the price and volume indices for m commodities over n time periods one
may form the mn ×  price and quantity matrices P and Q, define the money value matrix

TPQM = , and obtain the best linear price and volume indices p and q by unweighted least
squares, as the vectors that minimise the sum of squares of the elements of the residual matrix

TpqMR −= . In Section 9.8 we discuss how to assess the effects of errors in the
assumptions underlying models such as (9.4).
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9.3 Benchmarking
A good definition of this topic is given by Cholette & Dagum (1994):

�Benchmarking situations arise whenever two (or more) sources of data are available for
the same target variable with different frequencies, for example, monthly versus
annually, or monthly versus quarterly. Generally, the two sources of data do not agree;
for example, the annual sums of monthly measurements of a variable are not equal to the
corresponding annual measurements. Furthermore, one source of data, typically the less
frequent, is more reliable than the other, because it originates from a census, exhaustive
administration records, or a larger sample. The more reliable measurements are
considered as benchmarks. Traditionally, benchmarking has consisted of adjusting the
less reliable series to make it consistent with the benchmarks. Benchmarking, however,
can be defined more broadly as the process of optimally combining two sources of
measurements, in order to achieve improved estimates of the series under investigation.
Under such a definition, bench-marks are treated as auxiliary observations.

A typical example of benchmarking is the following. In Statistics Canada, the monthly
estimates of wages and salaries originate from the Survey of Employment, Payrolls, and
Hours, whereas the annual benchmark measurements of the same variables originate
from exhaustive administrative records, namely the income tax forms filed by Canadians
and compiled by Revenue Canada. Benchmarking adjusts the monthly data so that they
conform to the benchmarks and preserve the original month-to-month movement as
much as possible.�

Continuing the context of the last paragraph in this quote, in this section we take the less-
frequent series − the benchmarks − to be annual and the more frequent series to be monthly,
and we use wages and salaries as the outcome variable of interest.

For most of the past 25 years, most statistical agencies worldwide have performed
benchmarking using one variation or another of a method proposed by Denton (1971). In this
method, which was not originally based on a statistical model for the two time series, the
monthly series is required to exactly match the benchmarks, which are regarded as binding,
but as much as possible of the month-to-month movement of the original less-reliable series
is preserved. More recently, explicitly model-based methods have emerged − for example,
those of Cholette & Dagum (1994, hereafter CD) and Durbin & Quenneville (1997),
following on from work of Hillmer & Trabelsi (1987) − which attempt to generalize the
Denton approach to increase the realism of the benchmarking.

CD observe that survey errors (of the type likely to affect the monthly data) are often
heteroskedastic and autocorrelated, and the survey may be biased due to factors such as non-
ignorable nonresponse (see section 9.7) and frame deterioration over time. They propose an
improvement to the Denton method based on a regression model that takes account of these
factors. Their model is

.,,1,
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(9.5)
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Here { }Tttt ≤≤1,�  is the series of monthly measurements, decomposed into the sum of (i) a

bias term a; (ii) the underlying �true� (unobserved) values of the wages and salaries series tθ ;

and (iii) survey errors te , assumed to satisfy ( ) ( ) 0EE == −kttt eee  for all t and k.

{ }Mmzm ≤≤1,  is the series of annual benchmarks, potentially subject to the errors mw

which satisfy ( ) ( ) 0EE == −kmmm www  for all m and k (the te  and mw  are taken to be

mutually independent). If the benchmarks are thought not to be subject to error then the mw

may all be taken to be zero; in this case the mz  series is binding.

Model (9.5) may be written in the familiar regression form

( ) ( ) Vuu0uuXβz ==+= TE,E, , (9.6)

where the β vector includes both a and the vector θ of true values. Autocorrelated errors te  in

the monthly series can be accommodated in this method by assuming that the te  follow a
stationary ARMA(p, q) model and computing the (estimated) covariance matrix V in (9.6) in
terms of the estimated parameters of the ARMA model. Weighted least squares, taking the

resulting matrix V�  as known, then produces the usual estimate ( ) zVXXVXβ 1T11T ��� −−−= ,

from which complicated matrix expressions for a�  and θ�  (which we omit) may be deduced.
Heteroscedasticity in the te  may also be handled by writing *

ttt eke = , where the tk , the
standard deviations of the monthly series errors, are allowed to vary over time, and letting the

*
te  (not the te ) follow an ARMA model. CD show that Denton-type methods for

benchmarking are a special case of this regression framework, and they also demonstrate that
their approach is more efficient than Denton adjustment under a variety of time series models
for the te .

Durbin & Quenneville (1997, hereafter DQ) take a different approach to the construction of
optimal benchmarking estimates, based on state-space structural time series models. Their
approach assumes an additive error structure for the annual series, but can handle either
additive or multiplicative behaviour of the monthly series. In the case of additive monthly
errors, for example, DQ assume that the monthly series tt�  follows the model

,,,1,� Ttukt tttt �=+=η (9.7)

where the tη  are underlying true values, the tk  are standard deviations of the survey errors,

and the tu  are taken to be realisations of a unit-variance stationary ARMA(p,q) model. p, q,

and the tk  are assumed known from substantive knowledge of the survey. They further

assume that the annual benchmarks ( )T
1 ,, Mzz �=z  are related to ( )T

1 ,, Tηη �=η  through
the regression model

( ),,~, eN Σ0eeLηz += (9.8)
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where the matrices L and eΣ  are again assumed known. As with the approach of Cholette &
Dagum (1994), when the error vector e is assumed to be zero the benchmarks are binding.
The state-space character of DQ's model enters through the assumption that

( ),,0~, 2

1
εσεεδγµη Nw t

k

j
tjtjtttt �

=

+++= (9.9)

where tµ  accounts for any trend that may be present, tγ  models the seasonal component (if

any), and �
=

k

j
jtjt w

1

δ  is the trading-day adjustment. Many models are available for the trend

and seasonal components (for example, Harvey 1989); DQ use
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The first of these equations yields a constant linear trend if 02 =ζσ  but otherwise adapts to a

time-varying slope; the second forces a constant seasonal pattern if 02 =ωσ  but permits this
pattern to vary over time otherwise. DQ's model is completed with the assumption that the
coefficients in the trading-day adjustment follow the relation

( );,0~, 2
1, ςσςςδδ Njtjttjjt += − (9.11)

here once again, constant coefficients are obtained by setting 02 =ςσ , but time-varying

coefficients may be accommodated otherwise. All of the error series − tε , tζ , tω  and tς  −

are assumed to be jointly independent of each other and of tu . DQ use standard Kalman
filtering and smoothing (KFS) methods (see, for example, Harvey 1989) to fit this model.

It is clear from equations (9.5-9.11) that benchmarking methods in current use or recently
proposed are based on models with strong structural and distributional assumptions. Effects
of errors in modelling assumptions like those in benchmarking are discussed in section 9.8.

9.4 Seasonal adjustment
Many business time series exhibit seasonal variation, typically annual in pattern when the
series is observed monthly. Harvey (1989) defines seasonal trend as �that part of the series
which, when extrapolated, repeats itself over any one-year time period and averages out to
zero over such a time period.� Since such trend �contains no information on the general
direction of the series, either in the long run or the short run,� seasonality is usually dealt with
by estimating it, subtracting out the estimate, and studying the properties of the resulting
seasonally-adjusted series. Simple ad hoc estimates can readily be conceived − for example,
as Chatfield (1996) notes, �For series showing little trend, it is usually adequate to estimate
the seasonal effect for a particular period (for example, January) by finding the average of
each January observation [in the observed time series] minus the corresponding yearly
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average� when the seasonal component is thought to be at least roughly additive in character
− but in practice more complicated model-based methods are typically employed.

For example, the UK Office for National Statistics (ONS) uses the computer program X11-
ARIMA for almost all of its seasonal adjustment. X11-ARIMA involves the choice of an
appropriate autoregressive integrated moving average (ARIMA) model (for example, Box,
Jenkins & Reinsel 1994) for forecasting observations at both ends of a finite series, and this
augmented series is then passed through a series of Henderson filters (for example, Kenny &
Durbin 1982) involved in (a) outlier detection and removal/down-weighting, (b) choice of an
appropriate filter for seasonal adjustment (generally based on the irregular-to-cyclic (IC)
ratio) and (c) the adjustment itself. (Henderson filters are smoothing techniques based on
moving averages which �aim to follow a cubic polynomial trend without distortion�
(Chatfield 1996)).

Researchers at the US Census Bureau (Findley et al. 1998) have recently released X12-
ARIMA, a superset of X11-ARIMA based on regARIMA modeling and intended to improve on
the older software in a number of ways. As noted by these authors,

 �The basic seasonal-adjustment procedure of X11-ARIMA and [its predecessor] X-11
decomposes a monthly or quarterly time series into a product of (estimates of) three
components: a trend component, a seasonal component, and a residual component called
the irregular component. Such a multiplicative decomposition is usually appropriate for
series of positive values (sales, shipments, exports, etc) in which the size of the seasonal
component increases with the level of the series, a characteristic of most seasonal
macroeconomic time series. Under the multiplicative decomposition, the seasonally
adjusted series is obtained by dividing the original series by the estimated seasonal
component. ...

Given a time series tY  to be modeled, it is often necessary to take a nonlinear

transformation of the series, ( )ttt Yfy = , to obtain a series that can be adequately fit by

a regARIMA model. For example, if tY  is a positive-valued series with seasonal

movements proportional to the level of the series, one would usually take logarithms or,
more generally, [work with]

tt
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y logloglog −=��
�

�
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�
= , (9.12)

where td  is some appropriate sequence of divisors. ...

Let B denote the backshift operator, 1−= tt yBy . X12-ARIMA can estimate regARIMA

models of order ( )( )sQDPqdp ,,,,  for ty . These are models of the form
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s

Qq

r

i
itit

Dsds
pp aBBxyBBBB Θ=�

�

�
�
�

� −−−Φ �
=

θβφ
1

11 , (9.13)

where s is the length of the seasonal period [(typically s = 12)].�
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Here ta  is a white-noise IID series with mean 0 and standard deviation aσ , the itx  are r time

series thought to be predictive of ty , and ( )zpφ , ( )zPΦ , ( )zqθ  and ( )zQΘ  are polynomials of

degree p, P, q, and Q, respectively. In the usual way with ARIMA models, p and P are the
orders of the autoregressive parts of the non-seasonal and seasonal models, q and Q are the
orders of the moving average parts, and d and D are the numbers of times the non-seasonal
and seasonal parts of the series need to be differenced to achieve stationarity. The same
definitions apply to X11-ARIMA.

The default ARIMA model used by the ONS is ( )( )121,1,01,1,0  (the first model tested by X11-
ARIMA, and accepted in the majority of cases, although other models are used too). A
different default model, ( )( )121,1,01,2,0  is used in trend estimation. The selection of a
Henderson filter for the main seasonal adjustment part is automatic based on the IC ratio,
with choice between a 13-term and 23-term moving average for monthly series. There are
several levels of adjustment for more or less severe outlier removal, in each case with the
most atypical observations completely replaced by an estimate consistent with the model, and
with the weight of other outliers reduced in the seasonal adjustment. The analyst can choose
certain data points to be marked manually as outliers, but this is more often done through
prior adjustments in which the reason for an unusual observation is noted (for example, a
strike action). These prior adjustments can be temporary (unusual residuals that feed through
to seasonally adjusted series) or permanent (adjusted data also used in outputs).

The principal assumptions which affect the ONS seasonal adjustment method and hence the
final data can thus be summarised as follows:
(i) use of X11-ARIMA over any other seasonal adjustment software, with implicit

reliance on Henderson filters in all cases (rather than, say, Kalman filters (for
example, Abraham & Ledolter 1983; see below) or straightforward Box-Jenkins-style
ARIMA modelling);

(ii) choice of level of outlier detection/treatment;
(iii) use and extent of permanent/temporary prior adjustments; and
(iv) the details of the ARIMA model used for forecasting beyond the ends of the finite

input series.

The effects of errors in modelling assumptions such as these will be considered in section 9.8.
The problem is particularly difficult because seasonal adjustment is an attempt to estimate a
counter-factual outcome � namely, what values the time series undergoing seasonal
adjustment would have exhibited had there been no seasonal effect � so that no �gold
standard� (true) values are available for comparison.

A leading alternative to the X11(X12)-ARIMA approach to seasonal adjustment is found in the
programs TRAMO and SEATS developed by Gomez & Maravall (1994a, b) at the Bank of
Spain and now in widespread use throughout Europe. TRAMO (Time series Regression with
ARIMA noise, Missing Observations, and Outliers) is a regARIMA model-based method
which estimates missing data, identifies and downweights four kinds of outliers, and copes
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with special circumstances such as holiday and calendar effects. TRAMO can be used as a
pre-processor to SEATS (Signal Extraction in ARIMA Time Series), which uses minimum
mean-squared error methods to decompose the series into trend, seasonality, cycle, and
irregular components. Findley et al. (1998) observe that the TRAMO-SEATS procedure �is
equivalent to the modified Kalman-filter of Kohn & Ansley (1986), which extends the
approach proposed by Jones (1980) to the case of models with differencing and missing data
in the first sDd +  time points.� These authors found in a comparison of X12-ARIMA and
TRAMO-SEATS on data in which observations had been deliberately set aside and marked
missing that �the estimates of the missing values from both procedures were always close to
each other, and were also usually quite close to the value of the deleted datum (< 2% error).�
Maravall (1998), in his discussion of the Findley et al. paper, asserts that TRAMO-SEATS is
superior to X12-ARIMA in some respects, but Findley et al. demonstrate in their rejoinder that
the two approaches often produce similar results (see Eurostat 1998b for additional
comparisons).

9.5 Cut-off sampling
Continuing the discussion of cut-off sampling in chapter 4, consider a population of N
companies and let jx  be register employment at some fixed time point of interest, sorted

from largest to smallest, with jy  the corresponding turnover values. The total turnover

�
=

=
N

j
jy yt

1

 is to be estimated. Let �
=

=
N

j
jx xt

1

.

In cut-off sampling xt  will be known, but only (at most) the first k of the jy  will be

observed, where (in one leading application of the method) k is the smallest integer such that

( ) x

k

j
jxk txt ε−≥=�

=

1
1

(9.14)

for some 10 << ε  (typically on the order of 0.05-0.2). With this approach complete
enumeration of all of the { }kjy j ≤,  may be undertaken, or a sample may be chosen; we

focus here on the former case.

Having identified k, it is useful to define �
=

=
k

j
jyk yt

1

 and to decompose yt  into the sum

*
ykyk tt + , where �

+=

=
N

kj
jyk yt

1

* . In section 4.5.1 we examined the approach to estimating yt

based on ignoring *
ykt  (in effect, estimating it by 0); here we consider the effects of model

assumption errors on attempts to estimate *
ykt .

Perhaps the simplest estimate is obtained by defining �
+=

=
N

kj
jxk xt

1

*  and making the

(unverifiable) assumption that
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If (9.15) were true then yt  could be estimated by
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which is recognisable as a simple ratio estimator.

For example, in one of the simulated populations based on the 1996 ABI (Annual Business
Inquiry) data described in Section 4.5, there were N = 2,453 companies in the population,
with total register employment across all N companies of 013,169=xt  and true total turnover

196,739,21=yt . Using an ε value of 0.2 (cutting off 20% of the employees, so to speak)

yields k = 699 companies in the sample; for these companies 241,135
1

==�
=

k

j
jxk xt  and

196,884,18
1

==�
=

k

j
jyk yt . In this case, ignoring *

ykt  altogether would yield an estimate of

yky tt =� , which is biased low by ( ) %1.13196,739,21196,884,18196,739,21 =− . If instead

assumption (9.15) were made, the resulting ratio estimate would be

( ) 904,599,23013,169
241,135
196,884,18� ==

ratioyt , which is biased high by 8.6%.

In this example the ratio estimator achieved a bias reduction of ( ) %351.136.81.13 =− , but
larger improvements are possible. To see why requires motivating ratio estimation from a
model-based perspective and looking for model assumption errors. It can be shown (see
Cochran 1977 or Särndal et al. 1992) that if the N population values ( )jj yx ,  are themselves

assumed to be a random sample from a superpopulation in which

,jjj exy += β (9.17)

where the je  are independent of the jx  and satisfy ( ) ( ) jjj xee 2V,0E σ== , then ( )
ratioyt�  is

best linear unbiased for yt  with any sample, random or not, selected solely according to the

values of the jx . Thus, in this particular sense, the �model underlying� ( )
ratioyt�  (or, at least, a

leading situation in which ( )
ratioyt�  would be expected to perform well) is a linear regression

through the origin of the jy  on the jx , in which the variance of jy  is proportional to jx .
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Figure 9.1 Scatterplot (left panel) and residual plot (right panel) from fitting model (9.17) to
the ABI simulated population.

Standard statistical/econometric model-checking methods such as scatterplots and residual
plots are helpful in evaluating the fit of model (9.17). The left panel of Figure 9.1 is a
scatterplot of returned turnover against register employment for the 699 sampled companies

in the ABI example above, with the fitted line j
xk

yk
j x

t
t

y =�  from the ratio estimation model

superimposed. It is evident from the sharply non-elliptical shape of these plots that least
squares − even weighted least squares − is not making the best use of the bivariate data
( )jj yx , , and it is also clear that the estimated slope is quite possibly being driven by a small

number of points with large register employment values. A standard remedy for this is to trim
a small fraction, say 100γ %, of points with the largest jx  before estimating the slope, where

γ is perhaps in the range 0.01−0.10. Denote the resulting population total estimate by ( )trim

ratioyt� .

Another standard approach to estimating *
ykt  arises from relaxing the assumption of a zero

intercept in fitting a linear model to the ( )jj yx ,  pairs. Figure 9.1 does appear to indicate

some sort of heteroskedasticity (that is, ( )jyV  is not constant with varying jx ), but the
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strong clustering of the points near the origin makes it difficult to see what form the variance
function should take. Assuming constant variance as a starting point amounts to fitting the
model

( ) ( ) 2
10 V,0E σββ ==++= jjjjj eeexy (9.18)

by ordinary (unweighted) least squares (OLS), leading to the following estimate of total
turnover:

( ) ( )�
+=

++=
N

kj
jykregy xtt

1
10 .��� ββ (9.19)

As with ratio estimation, it is sensible to trim the 100γ % of points with the largest jx  before

estimating the slope, yielding the estimator ( )trim

regyt� . With or without trimming, regression

(rather than ratio) estimation may be a poor choice in cut-off sampling, leading to even more
biased estimates than those produced by the untrimmed ratio method: with the example data
given above, for instance, ( ) ( )1.125,7.2805�,�

10 =ββ , leading to ( ) 374,031,28�
reg

=yt , which

is biased high by 28.9%. What is worse, this method does not even guarantee positive
predicted turnover values (attempting to respond to any heteroscedasticity that may be
present, by using weighted least squares with a free intercept parameter and with jy  on the

raw scale, may also fall victim to negative total turnover estimates).

The natural data-analytic solution to these problems is to find a scale for the ( )jj yx ,  values

on which OLS performs well (and on which the estimated total turnover cannot be negative).
The vigorous bunching up of the points in the lower left corner of the scatterplot suggests a
logarithmic transformation for both variables. So let ( )jj yy log=′  and ( )jj xx log=′ , and

regress jy ′  on jx′  using OLS, obtaining intercept and slope values (on the log scale) 0
�β ′  and

1
�β ′ , respectively. Then solving the equation

( ) ( ) ( )jjj xyy log��log�log 10 ββ ′+′=≅
∧

(9.20)

for jy�  yields a log-log regression estimate of total turnover:

( ) ( ) .�
1

��

log
10�

+=

′′+=
N

kj
jykregy xett ββ (9.21)

(This estimate is biased due to the nonlinear nature of the log transformation and could
potentially benefit from bias adjustment, but the bias is small in this example, as Table 9.1
will demonstrate.)

Figure 9.2 parallels Figure 9.1, this time on the log-log scale. With this transformation
the point-cloud is nicely elliptical (except for the left-truncation caused by cutting off the
smallest companies), and OLS should perform efficiently. With the example data given here,
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Figure 9.2 Scatterplot (left panel) and residual plot (right panel) from fitting a linear model on
the log-log scale to the ABI simulated population.

the results are ( ) ( )18.1,53.3�,�
10 =′′ ββ  and ( ) ( ) 766,885,20� =

logregyt , which differs from the true

population value by only 3.9% on the low side. On the log-log scale register employment and
returned turnover have a sample correlation of +0.84 (the corresponding figure on the raw-raw
scale is +0.56), and regression estimation on this scale can make effective use of this relationship.
There is no need to trim any points with this approach, because the log transformation has
removed the high-leverage nature of the companies with large register employment.

Table 9.1 presents the results of a simulation comparing the three total turnover estimators
( )

ratioyt� , ( ) ( )rawregyt�  and ( ) ( )logregyt� . As in Section 4.5 we repeatedly (100 times) (a) drew a

sample of size 2,453 (the ABI extract sample size in 1995) with replacement from the ABI
data but with unequal selection probabilities determined by the sampling weights, to create a
pseudo-population reflecting the actual distribution of UK companies, and (b) used the
register employment variable in this population to cut off the lower 100ε% of the companies
(by cumulative employee numbers); but this time we (c) estimated the total returned turnover
with each of the three estimators studied here, varying the trimming fraction γ in the case of
the first two estimators from 0.01 to 0.10.
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Mean relative bias (%) Optimal trim fraction

ε

Ratio Ratio
trimmed

Regression
raw

Regression
raw

trimmed

Regression
log

Ratio Regression
raw

0.20 +9.1 +3.7 +32.7 -5.0 -2.8 0.10 0.10

0.15 +6.8 +0.2 +17.6 -7.2 -2.3 0.07 0.08

0.10 +4.4 +1.3 +8.0 -5.8 -1.6 0.03 0.06

0.05 +2.1 -1.4 +2.6 -3.0 -0.9 0.02 0.04

Table 9.1 Simulation results with the 1996 ABI data. The mean value of the true population
total turnover across the 100 simulated replications was 26,650,310.

From the table it is evident that
•  with this type of population the untrimmed ratio estimator is biased high by an

unacceptably large margin for all but the smallest values of ε − in fact, comparing these
results with those in Table 4.9, ratio estimation without trimming is almost as bad as
ignoring the cut-off units altogether. However, after trimming, the ratio estimation
approach performs very well, with relative errors of less than 0-4%;

•  untrimmed regression estimation on the raw scale is even worse than untrimmed ratio
estimation, overstating the true population total by up to 33% as a function of cut-off
fraction. Trimming helps, but not enough to make the method viable with ABI-type data;
and

•  regression estimation on the log-log scale (without any need to search for an optimal
trimming fraction) performs very well, yielding discrepancies between estimated and true
totals on the order of only 1-3% of the truth.

This example has illustrated the value of both (a) standard statistical model-checking methods
such as the examination of residuals and (b) sensitivity analysis, exploring a variety of
models (in this case, (9.17), (9.18), and the log-log model leading to (9.21)) to observe the
effects of model assumptions on the quantities of direct interest.

9.6 Small domains of estimation
Most of the discussion in this report has so far focused on the estimation of a total or mean
for the entire population of interest (an exception is section 3.1). In many business surveys,
however, there is also interest in estimating the total or mean in subsets, or domains, of the
population. Sometimes these domains are defined by variables along which stratification has
taken place in the survey design. In such cases it is often possible to over-sample rare
subgroups (or small domains) to obtain accurate domain-specific estimates, without
sacrificing much accuracy in the overall population estimates (see, for example, Cochran
1977). In other cases, however, the domains are too numerous for this strategy to work
effectively. A classic example occurs when a survey is carried out fairly sparsely over a wide
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geographic region, but it is still desired to make estimates at the level of small areas within
the region. Because of the frequency with which this example arises in practice, small-
domain estimation is often referred to as small-area estimation, even when the domains are
not defined geographically. In describing here the major modelling issues that arise in small-
area estimation we follow closely the notation and spirit of Chambers (1997); other useful
references on the subject include Ghosh & Rao (1994) and Draper et al. (1993).

Consider a continuous survey variable y defined on a population U with known overall size
N. A sample s of size n units is drawn randomly from U, with the main target being the
population total t or mean y  of y. Let r stand for the unsampled units in the population, and
let U be divided into small areas Aa ,,1 �= , with known sizes aN . After the sample is

drawn one can divide it up into area-specific subsamples, of sizes an , and a secondary goal is

the estimation of the area totals at  or means ay . In many cases this cannot be done without
the aid of a model that suggests how information should be combined across the areas, to
improve the estimation within a given area (another name for this idea is borrowing strength
from all the areas to estimate at  and ay  for each area a).

Given a vector of p covariates x which are related to y and available on each unit in U, a
typical model-based approach to small-area estimation would assume a linear model of the
form

( ) ( ) Ve0eeXβy 2V,E, σ==+= . (9.22)

Here y is the vector of length N containing all the population values of y, X is the N × p
matrix of population covariate values, β is a p-vector of regression coefficients, e is an
unobservable vector of errors, and the covariance matrix V of e is assumed known (and often
diagonal). Under (9.22) a model-unbiased estimate of the population mean y  is

,�1� T �
�

�
�
�

� += ��
r

j
s

jy
N

y βx (9.23)

where

( ) ssssss yVXXVXβ 1T11T� −−−=

and the subscript s in the equation below (9.23) refers to the sub-vectors and sub-matrices

consisting only of the sampled units. This is a typical prediction-style estimator of y�  (see
Chapter 2): the sampled values of y in the population are used directly in the estimation of the
total, and the unsampled values of y are predicted by the model.

Probably the most widely used method for estimating the means ay  of the small areas in the
context of a model such as the one above is synthetic estimation. The key assumption in this
approach is that the same linear model (9.22) holds in each small area, that is, the relationship
between y and x is constant across domains. Under this assumption it is sensible to estimate β
from the entire sample, but then mimic the first line of (9.23) in each area separately:
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,�1� T
�
�
�

�
�
�
�

�
+= ��

aa r
j

s
j

a
a y

N
y βx (9.24)

where as  and ar  are the sampled and unsampled units in area a. However, the homogeneity
assumption underlying (9.24) may well not be true. Making this assumption creates an
estimate of ay  with relatively low variance (because the estimate of β borrows strength
across the whole sample) but potentially large bias in any given area (if the constant-β
assumption is far from true).

One way to avoid the area-level bias potentially inherent in (9.24) is to estimate the
relationship between y and x separately in each domain, by fitting the model

( ) ( ) .V,E, 2T
aaaaaaaa Ve0eeβxy σ==+= (9.25)

The direct estimate of ay  suggested by this model is then

�
�
�

�
�
�
�

�
+= ��

aa r
aj

s
j

a
a y

N
y βx �1� T  (9.26)

where

( )
aaaaaa ssssssa yVXXVXβ 1T11T� −−−=

that is, simply estimate separate regressions in each area. This estimator is model-unbiased in
each domain but will typically have large variance, since the domain-level sample sizes are
usually small.

Thus each of the synthetic and direct estimates has potential flaws, in the directions of large
bias and large variance, respectively, which suggests searching for a compromise estimator.
The standard choice is based on an expansion of model (9.22),

( ) ,T
j

a
ajj eajIy +∈+= � αβx (9.27)

in which ( )pI  is 1 if proposition p is true and 0 otherwise, and the (unobservable) aα  are
referred to as area effects (model (9.22) just corresponds to the special case that all of the
area effects are zero). If the aα  are regarded as IID random variables with mean 0 and

variance 2
ασ , the resulting specification is a random-effects model; if the aα  are simply

parameters (representing area-specific deviations from a common intercept) summing to 0
across the domains, the result is a fixed-effects model. Under either specification the
compromise estimator takes the form

( )�
�

�
�
�

�
++= ��

aa r
aaj

s
j

a
a y

N
y α��1� Tβx , (9.28)
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in which estimates of aβ and the aα  are obtainable from standard multi-level modelling software
such as MLwiN (Goldstein et al. 1997). Choosing between fixed- and random-effects
formulations depends on the number of small areas and the relative magnitude of the within- and
between-area variation in outcomes of interest: for example, with a large number of domains and
a fairly large degree of between-area homogeneity, a random-effects model would be indicated.

When the domains are in fact geographic areas and there is reason to believe that adjacent
areas should exhibit similar responses, variations on (9.27) based on spatial smoothing are
possible; see Cowling et al. (1996). Other refinements of the methods described here include
empirical Bayes smoothing of direct estimates (see, for example, Draper et al. 1993) and
small-area estimation of counts rather than continuous outcomes, based on SPREE estimates
(for example, Purcell & Kish 1980).

As an example of these ideas in action, the UK Office for National Statistics (ONS) has in the
past used a version of direct estimation in the Annual Business Inquiry (ABI; see Section 9.5
for analysis of some ABI data). The basic idea was that a ratio-type estimator (based on
regression through the origin) was fitted for each survey variable with a different parameter
in each stratum, and then − based on auxiliary data from the register − a complete �survey�
record was made for each non-sampled business in the population to supplement the sample
responses (this is an application of equation (9.26)). This allowed cross-tabulation of results
for very small domains in more or less any conceivable combination, but did not make any
comment about the quality of the data. In effect an estimate for a region (not part of the
survey stratification) was made up of an estimate of each cell in the region by stratum cross-
tabulation, with the appropriate direct estimators added to give an overall estimate. This relies
heavily on the assumption that the strata define all the variability in the data, and that the
samples are representative.

In current practice at ONS, most small-area estimates are for domains which coincide with
strata, and hence are not subject to the uncertainty arising from having to estimate the domain
size. Two surveys (one extant and monthly, the other planned and annual) make domain-type
estimates for regions from data which are not stratified by region, and then constrain these
estimated totals (a) to reproduce known auxiliary variable totals and (b) to sum to the same
overall estimate for the UK (a kind of benchmarking; see section 9.3). Some ONS surveys
(normally in which the sample size per stratum is small) use combined ratio estimation,
which is based on the assumption of a constant ratio (or regression slope) over the size strata;
this is similar to the synthetic estimation method (9.24) above. ONS does not at present use
multi-level models, of the type leading to estimators such as (9.28), in business surveys, but
plans to explore their use in the future.

The effects of model assumption errors similar to those in small-area estimation will be
explored in Section 9.8.
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9.7 Non-ignorable nonresponse
In chapter 8 we discussed the effects of nonresponse errors on business surveys. Three types
of data missingness at the unit level were defined in that chapter: letting kR  be 1 if sample
unit k responds and 0 if not,
•  missingness completely at random occurs when kR  is stochastically independent of the

outcome(s);
•  missingness at random given an auxiliary variable kX  occurs if kR  is conditionally

independent of ky  given kx ; and

•  informative or non-ignorable missingness occurs when kR  and ky  remain dependent

even after conditioning on (adjusting for) all available auxiliary variables kx .

The two versions of missingness at random in this list are referred to as ignorable
nonresponse, because in those cases no bias in estimating aspects of the population
distribution of y is induced by the missingness (although, as chapter 8 points out, missingness
at random will inflate observed sampling variances, because the obtained sample size is
smaller than the planned sample size). The main problem created by non-ignorable
nonresponse (NINR) is that, when it occurs, estimates based only on the respondents will be
biased. In the setting of stratified random sampling examined in section 8.3, for example,
equation (1) of that section summarized the bias in estimating the population total t of y as

( ) ( )( ),1�bias
1

0,1,�
=

== −−=
H

h
RhRhhhr RNt µµ (9.29)

where �
=

=
H

h
rhhr yNt

1

�  is the estimate of t based only on the responding units and in which

1, =Rhµ  and 0, =Rhµ  are the means in stratum h for the respondents and nonrespondents,

respectively. NINR implies that these two means are not equal, and the greater the disparity
between them, the larger the overall bias in (9.29). Thus with NINR it is not necessarily

adequate simply to act as if the respondent data set, of total sample size �
=

=
H

h
rhr nn

1

, is

equivalent to what one would have obtained with an intended sample of size rn  that had no
missingness.

There is an operational problem with this conclusion, though: how can one judge whether the
missingness is ignorable, when by definition the ky  values are not observed for the units with

0=kR ? One approach to answering this question in longitudinal surveys is to consult the
frame for variables that are good proxies for y, for example, y in period t may be strongly
correlated with y in period (t−1), and 1−ty  may well be available for many of the units for

which R = 0 at time t; or one may be able to compare sample respondents and nonrespondents
at time t with respect to their values on auxiliary variables x, which have in the past been
strongly correlated with y, at time (t−1).
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An even greater difficulty is what to do about NINR when it is suspected. Assuming NINR,
the only way forward is evidently through the specification of a model which predicts what
the observed y values would have been for the units for which 0=kR . There appears to have
been little or no systematic attempt in the literature to tailor the construction of such models
to the business statistics framework (for example, the UK Office for National Statistics makes
no use of NINR models in the analysis of any of its business survey results at present).
Attempts have been made in other settings, however, and in the rest of this section we review
two leading methods that appear of potential relevance to business statistics.

9.7.1 Selection models for continuous outcomes
Copas & Li (1997) analyse data from a local skills audit conducted as a sample survey in
Coventry, UK, in 1988. In one analysis of n = 1435 adults known to be in full-time
employment (and assumed to be randomly sampled from the population of such adults in
Coventry), the outcome of interest y was income (pounds per week), with gender and age as
the principal auxiliary (x) variables. There was no missingness on the x-values, but 8% of the
adults refused to provide income information, yielding a complete-cases sample size of 1323.
A response rate of 92% may seem admirably high, but there was good reason to believe that
the probability of nonresponse was a function of income.

Copas & Li used selection models, an approach dating back to the 1970s in the econometric
literature (see, for example, Heckman 1979), to quantify the possible effects of NINR in this
problem. Along with the observed y and x values, where x is in general a vector, the basic
idea of these models is to posit the existence of an unobserved, or latent, variable z which
represents the propensity to respond in the survey, and to relate ( )zy ,,x  by the pair of
regression equations

k
T
kk

kkk

z
ey

ε
σ

+=

+=

γx
βxT

, (9.30)

in which the pair ( )kke ε,  is taken to be bivariate normal with ( ) ( ) 0EE == kke ε ,

( ) ( ) 1VV == kke ε , and ( ) ρε =kke ,corr . The first equation in (9.30) might be termed the
observation equation, the second the selection equation, and application to missing data in
surveys arises by assuming that y is only observed if the latent variable z is positive. The
correlation between the error terms in the two equations captures the premise that (i) ke  is a

kind of place-holder for a set of unobserved auxiliary variables yx  that would help to predict

y if they had been observed, (ii) kε  similarly �contains� another set of unobserved auxiliary

variables zx  that would help to explain the propensity to respond if they had been measured,

and (iii) the two sets of variables in yx  and zx  are likely to overlap, inducing a correlation

between ke  and kε . If 0=ρ  there is no information in the selection equation for predicting

y, which implies ignorable nonresponse, but if 0≠ρ  then y is subject to NINR.
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Copas & Li fit model (9.30) by profile maximum likelihood (see Draper & Cheal 1998 for a
Bayesian analysis) and examine the sensitivity of results to the possibility of NINR by
calculating estimates of the population mean for y, and standard errors of those estimates, as a
function of ρ. They note that �For a well-designed and well-executed survey such as [the
Coventry skills audit] it is implausible that ρ  would be very large. With an overall

[nonresponse] rate of 8%, a fairly extreme possibility might be that the probability of missing
data at the lower quartile of [the distribution of] y is 4% whereas at the upper quartile it is
12% (three times as large).� This gives a plausible range for ρ between −0.40 and 0.40,
leading to bias-adjusted population mean estimates in the range (138, 148) pounds per week
as compared with the unadjusted estimate y  of 142. Thus with a nonresponse rate of only
8%, the bias correction to adjust for NINR in this example is only about 3−4% of the
unadjusted estimate, but this is of the same order of magnitude as the standard error of y, so
that (since it is not clear whether the bias is positive or negative) �the extra uncertainty
[attached to y  arising from the possibility of NINR] could be thought of as doubling the
[variance] of estimation.�

This provides a concrete summary of the possible effects of NINR and (ideally) what to do
about these effects: when unit-level nonresponse occurs in a survey, if both the direction and
the magnitude of biases introduced by the nonresponse can be quantified, based on
reasonable modelling and past experience, then bias adjustment should be undertaken; and if
the direction and magnitude are hard to pin down, then the standard uncertainty bands based
only on the observed data should widen to acknowledge the possibility of non-ignorable
nonresponse.

9.7.2 Pattern-mixture models for categorical outcomes
Forster & Smith (1998) examine data from the 1992 British general election panel survey to
quantify the effects of possible NINR on estimates of voting intention y (which was
categorical at four levels). In their random sample of 1242 individuals the available auxiliary
variables were gender and social class (categorical at five levels), which were known for all
sampled people, but 375 (30%) of the sampled individuals refused to make their voting
intention known. Denoting the vector of auxiliary variables by x and the response indicator
by R, the problem (as above) is to construct joint probability models for ( )Ry ,,x  that will
permit imputation of what the observed voting intentions would have been for those people
for whom R = 0. Maximum likelihood estimation of voting intent based solely on the
observed y-values in the survey yielded (Conservative, Labour, Liberal Democrat, Other) =
(C, L, LD, O) = (45.6%, 34.3%, 17.2%, 3.0%).

Using the notation of conditional independence developed by Dawid (1979), the assumption
of missingness completely at random corresponds to { }yR ,x⊥  (that is, R is independent of
(x, y)), whereas missingness at random given x is expressed as x|yR⊥ . All other models
assume NINR in one form or another. Different modelling strategies correspond to different
factorisations of the joint distribution ( )x,, Ryp , for example, the factorisation
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( ) ( ) ( ) ( )RypRppRyp ,||,, xxxx =  reduces, under the assumption of missingness at random,
to the model

( ) ( ) ( ) ( )xxxx ||,, ypRppRyp = (9.31)

for the fully observed data, which is in the class of decomposable graphical log-linear
models (see for example, Dawid & Lauritzen 1993). This model, approached in a Bayesian
way but with prior distributions on the parameters with little information content, yielded
with the above survey results − as it must − results in close agreement with the maximum
likelihood estimates: (C, L, LD, O) = (44.8%, 35.0%, 17.1%, 3.1%), with 95% uncertainty
bands [(41.3, 48.3), (31.6, 38.5), (14.5, 19.7), (2.0, 4.5) ].

In their central NINR modelling Forster & Smith employ the factorisation

( ) ( ) ( )xxx ,|,,, RypRpRyp = , (9.32)

a pattern-mixture specification (for example, Glynn et al. 1986). Forster & Smith's main
approach is as follows:

�As we are only considering non-response on y, ( )x,Rn  [the cross-tabulation of R

against x] and ( )1,, =Ryn x  are fully observed. Hence, we have all the information

required for inference about ( )x,Rp  and ( )1|, =Ryp x . However, y is completely

missing when R = 0 and so ... any inference for ( )x,yp  requires some kind of prior

information concerning ( )0|, =Ryp x . This prior distribution ought perhaps to be
referred to as the subjective distribution, as it remains unaltered in the light of the
observed data. ... An intuitively attractive and computationally straightforward approach
is to consider the parameters ( )x,Rp , ( )1,| =′= Rxyp x  and txx ,,1, �=′′θ

[where t is the number of distinct values taken by x]. The parameters x′θ  represent the

extent of prior belief in non-ignorability. If 0=′xθ  then this corresponds to ignorability

of nonresponse for stratum x′ , and if all 0=′xθ then x|Ry⊥  and non-response is

[missing at random given x]. ... Hence, the x′θ  are easy to interpret and prior information

regarding ignorability may be straightforwardly incorporated into the model via a prior
distribution. ... We choose to use multivariate normal distributions for x′θ , with mean

x′µ  and variance 2
x′σ  determined by the prior belief concerning the extent and structure

of non-ignorability.�

The parameters x′θ  in this formulation play the role of the correlation parameter ρ in the
Copas & Li approach in section 9.7.1.

There was evidence from the literature that nonrespondents to polls in British general
elections prior to 1992 were more heavily pro-Conservative than respondents. Using a
reasonable prior specification based on this evidence, Forster & Smith obtained adjusted
estimates of (C, L, LD, O) = (47.6, 33.0, 16.5, 2.9), with 95% intervals [(42.1, 53.0), (28.7,
37.6), (13.6, 19.7), (1.9, 4.2)]. In comparison with the results above based only on the
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respondents, the bias adjustments were on the order of 2-3 percentage points for the two
largest political parties, increasing the estimated lead of the Conservatives over Labour by 5
percentage points (a large difference in practical terms), and the 95% uncertainty bands were
on average 34% wider after the possibility of NINR was accounted for.

Forster & Smith also provide a useful formula for sample size calculations at design time to
anticipate possible NINR: in their framework, �the effect of allowing for non-ignorability is
to reduce the effective observed sample size ( )xXRn == ,1  in stratum x to

( )
( ) ( ) ( )[ ]

s
xnxRnxRn

xRn

x
22 ,0,1

1

,1
′=′==′==

+

′==
xxx

x
σ

, (9.33)

[where s is the number of observed levels of y]. The proportions of respondents and
nonrespondents in each stratum will not be known in advance and a prior estimate will be
required,� as will a prior specification of x′σ , the amount of uncertainty about how strong the

NINR will be in stratum x′ . These things may not be easy to specify at design time, but that
is typical of survey design, and in any case (9.33) can serve as the basis of a sensitivity
analysis.

Effects of errors in modelling assumptions similar to those arising from attempts to cope with
non-ignorable nonresponse will be considered in the next and final section of this chapter.

9.8 Conclusions
We have seen in the previous sections that models are ubiquitous in the analysis of business
surveys. Since a statistical model is nothing more (or less) than a collection of assumptions
about the relationship between observed and unobserved data, and since by their nature some
of these assumptions are not known to be valid with certainty, assessing the impact of errors
in modelling assumptions is evidently crucial to the success of business surveys that employ
them. Three examples of this arising from Sections 9.3, 9.6 and 9.7 are as follows.
•  On the topic of models for benchmarking, Cholette & Dagum (1994) admit that �In real

cases, the gain in efficiency from the regression method [for benchmarking which they
advocate] will depend on how well the ARMA models [for the monthly series to be
benchmarked] are identified and estimated.�

•  In small-area estimation Chambers (1997) concludes that �At the time of writing a
general consensus on an appropriate �robust� methodology for measuring the �overall
reliability� of small-area estimates has not been reached,� which is one way of saying that
model assumption errors in small-area estimation may well dominate other sources of
error.

•  With regard to non-ignorable nonresponse, Forster & Smith (1998) report on the results
of a follow-up survey of the 1242 original participants in the 1992 British general election
panel survey: �21 individuals did not respond and 86 claimed not to have voted. Of the
remaining 1135, 44.1% [reported voting] Conservative, 32.2% Labour, 21.0% Liberal
Democrat, and 2.8% other. Of these, 317 were nonrespondents to the original survey, for
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whom the corresponding proportions were 41.0%, 25.6%, 30.0%, and 3.5%.� Thus in the
end the original nonrespondents reported voting in a way that was wholly unanticipated −
far more strongly for the Liberal Democrats (LDs) than any experts would have predicted
− yielding an overall percentage for the LDs that fell outside the 95% interval from the
pattern mixture modelling (even with its much wider uncertainty bands). This highlights
the fact that even when reasonable modelling assumptions are employed based on expert
knowledge, occurrences outside the realm of plausible prior expectation can be left
unanticipated by the modelling.

It would appear that best practice in dealing with model assumption errors in business
statistics matches the situation in statistical modelling quite generally, in that two main tools
are available:
•  The sensible use of model diagnostics (see, for example, Cook & Weisberg 1982); and
•  A willingness to employ sensitivity analysis (see, for example, Skene et al. 1986): varying

the modelling assumptions across plausible ranges to discover their effects on the
estimates of the quantities of principal interest. This will often involve simulation studies
(see, for example, Hammersley & Handscomb 1979). In the class of linear models, for
example, a suggestive (but not exhaustive) list of categories of modelling assumptions
worth exploring might include the following:

� Transformation of outcome y and one or more predictors x;
� Choice of the functional form by which y and the x�s are related;
� Assumptions about the variance structure and distribution of the error terms in the

model;
� Choice of predictor variables from among a potentially large set of x�s; and
� Choice of outlier treatment method.

Both of these approaches, including a number of the model assumption categories listed here,
were illustrated in Section 9.5 on cut-off sampling. Figure 9.1 gives a scatterplot of returned
turnover against register employment in a simulated population based on the 1995 UK ABI
survey, and a residual plot obtained from fitting a regression through the origin with both
variables on the raw scale. Both plots show (a) a number of high-leverage points (Weisberg
1985) − companies exerting a large influence on the estimated slope, which can dramatically
shift the ratio estimator based on the regression model (9.17) − and (b) a strong bunching up
of points near the origin, which implies that the weighted least squares method used to
estimate the slope may not be making the most efficient use of the data.

Each of these problems suggests alternative modelling assumptions. Difficulty (a) is a
robustness problem (Huber 1981), perhaps most simply solved by means of trimmed
regression: set aside a small proportion of the companies with the highest register
employment, and fit model (9.17) to the remaining data. Difficulty (b) suggests a data-
analytic solution (see, for example, Mosteller & Tukey 1977) based on variable
transformation: instead of regressing y on x, regress ( )ylog  on ( )x+1log . This line of
reasoning yields three main cut-off estimators, based on three different models: (i) regression
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through the origin on the raw scale, employing all of the data; (ii) regression through the
origin on the raw scale, trimming the high-leverage companies; and (iii) ordinary least-
squares regression using all of the data on the log-log scale.

Evaluating the quality of these estimators is an exercise in sensitivity analysis based on
simulation: one may (A) repeatedly generate simulated populations similar to the reality in
which the chosen cut-off estimator will be employed, computing the true population total
turnover in each simulation repetition; (B) compute each of the three cut-off estimates for
each simulated population; and (C) evaluate the estimation methods in terms of such
summaries as relative bias and/or root mean squared error. The results, in Table 9.1, show
clearly that − for populations like the ABI data − trimmed ratio estimation on the raw scale
and regression estimation on the log-log scale perform well. This does not prove that these
methods would work equally well on other populations; simulation-based sensitivity analysis
of this type must be employed on a wide variety of population types to draw such a
conclusion, and an interaction between population type and estimation method may well be
found: method (ii) works best with population type I, method (iii) works best with type II,
and so on.

There is another variety of sensitivity analysis worth mentioning as well: examining the
effects of model assumptions on a single (real) sample rather than across a number of
simulated populations and samples. In this approach one makes a list { }kAA ,,1 �  of
modelling assumptions that all seem to be plausible for the given sample, based on expert
judgement and model diagnostics, and then one computes the corresponding conclusions
{ }kCC ,,1 �  resulting from the set of assumptions. The results of this type of sensitivity
analysis may be summarised either qualitatively or quantitatively, as follows.
•  Qualitative summary. The idea is simply to see if �all reasonable roads lead to Rome,�

that is, to see if across the span of plausible { }kAA ,,1 �  the resulting { }kCC ,,1 �  largely
agree with regard to the quantities of principal interest. If they do, then confidence
increases that model assumption errors do not play a large part in the threats to the
survey's validity. If they do not, then this approach is more problematic; one is left with a
qualitative summary of the form

�, then  if , sconclusion then  sassumption If 2211 CACA (9.34)
which may well not be satisfactory as a basis for decision-making based on the survey.

•  Quantitative summary. To go beyond (9.34) one must be willing to place weights on the
relative plausibility (that is, probabilities) of the assumptions iA , to produce a composite
summary that reflects both within-model and between-model uncertainty. There is now a
well-developed Bayesian approach to doing this (for example, Draper 1995): with y as an
outcome to be predicted, model iξ  (based on assumptions iA ) given probability ip  and

leading to predictive distribution for y with mean and standard deviation (SD) iµ�  and iσ� ,
respectively,
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Thus the overall predictive uncertainty about y decomposes into the sum of {the
uncertainty conditional on a given set of modelling assumptions} and {the uncertainty
about the modelling assumptions themselves}. There may be substantive and technical
difficulties in implementing this approach in practice, however, and it has not yet been
attempted with business survey data; this type of model uncertainty audit is in the
category of possible future best practice in business surveys.

We conclude this section, and the chapter, by summarizing the above discussion.

Recommendation: Best-practice reporting in business surveys involving model-based
methods should

•  Use a blend of model diagnostics, simulation studies, and qualitative sensitivity analyses
to make consumers of the survey aware of (a) the plausibility of the principal assumptions
made by the models employed and (b) the effects of varying these assumptions, across
reasonable alternative specifications, on the summary estimates of principal interest.
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Part 3: Other Aspects of Quality
10 Comparability and coherence

Eva Elvers5, Statistics Sweden
10.1 Introduction
Coherence relates to sets of statistics and takes into account how well the statistics can be
used together. Statistics are estimates of finite population parameters (FPPs), as described in
previous chapters and in the next section. The target is rarely achieved for many reasons. The
smaller the discrepancy between the value of a statistic and its target, the more accurate is the
statistic.

A statistic can be considered as consisting of the sum of the FPP and an estimation error.
There are two principal error parts, systematic errors (that may lead to a bias) and random
errors. The producer normally aims at the bias being nil or negligible, and also at random
errors being small (close to zero in absolute or relative terms). One way of describing the
inaccuracy is through the root mean square error, another is an uncertainty interval. The
interval could be symmetric around the point-estimate.

The user has a set of FPPs in mind that he/she wishes to study. Then there may be statistics
published that suit these wishes � �off-the-shelf� � but often it is necessary to use several sets
of statistics. Such a usage may include combination of several FPPs into new ones. The user
needs to know if there are statistics with target FPPs that are equal � or at least close � to
his/her �ideal�.

Coherence is a more general concept than comparability. Questions on coherence arise for
example when production statistics and foreign trade statistics are used together, or
production statistics and employment statistics, or annual statistics and short-term statistics.

In quality reports to Eurostat, comparability and coherence are two quality components. Since
these components have much in common � the former being a special case of the latter � they
are here described and discussed in a single chapter. Obviously, comparability between
Member States (MSs) is important to Eurostat, and also comparability between countries in
general. Comparability over time is another comparability aspect. At present Eurostat does
usually not include comparisons between non-geographical domains in the comparability
component.

Coherence aspects are discussed below first with emphasis on the user in Section 10.2 and
then with emphasis on the producer in Section 10.3. The structure is largely the same in both
cases, using six sub-headings, mainly as below
1. definitions in theory
2. definitions in practice
3. accuracy and consistent estimates
                                                          
5 Several persons have contributed with comments and examples, especially Ole Black and Mark Williams at
ONS
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4. comparability over time
5. international comparability
6. concluding comments

The examples all refer to business statistics, but the theory is general for official statistics.
Section 10.4 is more illustrative, based on some national situations. Summaries and
conclusions are given along with the text, largely in Sections 10.2.6 and 10.3.6.

10.2 Coherence � emphasising the user perspective
10.2.1 Definitions in theory
As stated previously, statistics are estimates of finite population parameters (FPPs).
Ingredients in such a parameter are
•  statistical measure (total, mean, median, etc);
•  variable (production, number of hours worked, etc);
•  unit (enterprise, kind-of-activity-unit, etc);
•  domain (sub-population, for example defined by a standard classification like NACE Rev. 1);
•  reference times; both units and variable values relate to specific times.

The reference times are mostly time intervals, like a calendar year, a quarter, or a month.
(However, some variables may refer to a point in time, for example the starting point of the
period.) Usually reference times agree for all variables and units in a FPP. This means for
example for monthly statistics that the delineation of units should refer to the current month.
It follows from the above that units, classifications, other auxiliary variables, and reference
times are essential to consider whenever using statistics.

In a joint use of several sets of statistics, the user wishes to keep some of the ingredients of
the FPPs constant and vary one or more of the others. Some typical examples, with emphasis
on what is varied:
− comparison over time: reference times, for example every month from a given one

onwards;
− comparison of countries: domains are Member States or other countries;
− comparison between non-geographical groups: domains like industries are varied;
− new statistics using several surveys: combining statistics from different business surveys

(production & employment, annual & short-term) for further analysis of industries for
example.

A simple example of a complex setting is: first taking ratios between production and number
of hours worked using two surveys and then comparing those relative quantities over
different aspects of space: geographical areas, industries, size groups etc. To this end, the
surveys should be equal in their units, domains, and reference times. The domains are defined
by for example an industrial classification that needs to be the same for all surveys.

When a user is judging coherence, definitions of the target finite population parameters
(regarding units, population and domain delineation, variables, and reference times) play a
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primary role. Accuracy is important, but it plays a secondary and different role. The more
accurate the statistics, the smaller the disturbances; the study is more easily performed, and
the conclusions drawn are usually stronger.

10.2.2 Definitions in practice
As described in the previous section, joint use of sets of statistics builds on some ingredients
of the target statistics being the same. The difficulties meeting the user often depend strongly
on the �distance� between the statistics used jointly. It may not be trivial even within a single
survey, since definitions can vary (for example for production and employment, reference
times could be a period for one and a point in time for the other). Normally, however, the
problems increase considerably when using several surveys.

Even if definitions are the same in principle � as far as the user can see � they may differ in
practice. One survey may have the reference time of the domains equal to that of the variable
and the other use that of the frame (which the quality reports should show). A further
example is the enterprise unit; it has to be defined and applied in the same way in both
surveys. In a comparison between MSs, the enterprise definition may vary a lot, in spite of
there being a Regulation on statistical units.

In practice there is an influence from the methodology used for example in data collection
and estimation. Hence, the user needs information also on such influential factors.

10.2.3 Accuracy and consistent estimates
Accuracy has, of course, to be considered when studying for example how the ratio between
production and hours worked varies over industries, so that differences that can be due only
to �noise� are not stated to be significant. The user needs a measure of the overall accuracy in
the joint use. This means an assessment of inaccuracy from all sources, not only due to taking
a sample. It is important that the measure is realistic.

If there is a relationship between the FPPs involved, many users find it convenient if the
estimates also fulfil this relationship. Two simple examples:
(i) The number of employees in two different surveys (on employment and production)

with definitions such that the FPPs are equal.
(ii) Monthly and annual production statistics with definitions such that the sum over the

twelve calendar months equals the annual value.

The expression consistent estimates will be used here to emphasise that the estimation
procedures have forced the estimates to have the same relationship as the FPPs, see Section
10.3.3 for some detail. Obviously, statistics can be coherent without giving consistent
estimates. This is normally the case with preliminary and definitive statistics. Note that the
concept of consistent estimates is different from consistency in asymptotic theory.

If a user has two statistics that he/she believes estimate the same FPP and these estimates
differ more than expected, from the inaccuracy measures given, the user should suspect
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deficiencies in coherence. A simple example is as follows. Without going into technical
details, assume that uncertainty intervals are given.
1) The figures are 750 ± 25 and 705 ± 10

These are not coherent from what can be seen.
This signals that there are differences in definitions that have not been stated or the
user has not observed. Another possibility is that one or two of the intervals is too
short.

2) The figures are 700 ± 25 and 705 ± 10
These are coherent from what can be seen.
It would be more convenient for the user to have a single figure (consistent estimates),
say 704 ±  9

The discussion in this section has emphasised the random part of the estimation error. There
may also be systematic errors to take into account when using statistics. Such errors could be
caused for example by the data collection. The distinction between definitions and systematic
deviations is not always clear-cut, though, since definitions in practice are influenced by
many factors in, for example, data collection and estimation.

10.2.4 Comparability over time
Comparisons over time are frequent. There are often two conflicting user interests as to the
statistics to be produced:
− stability of definitions to compare the present with the previous for a special issue;
− the current state should be well described.

The first one works in the direction of comparability, whereas the second one goes in the
opposite direction. This may be a cause of tension in statistical systems. When a change is
made, special actions are often taken to improve the comparability, for example by producing
statistics in both ways on one occasion or even re-estimating a part of the old series in terms
of the new definitions.

There may be different opinions as to whether it is more important to estimate the level or the
change accurately � different statistics may have different priorities. Short-term statistics
often emphasise changes. To make that possible, comparability is needed over the time
period that the changes refer to. Users of annual statistics may find the level to be more
important. The National Accounts need to describe both level and change.

A further aspect of comparability over time is that certain users (for example using economic
statistics indicating short term changes) are anxious to be able to separate for example
♦  trend and
♦  regular seasonal variations.

Technical means for this purpose are seasonal adjustments and calendar adjustments. To
include such parameters is an enrichment of the statistics.
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10.2.5 International comparability
A particular, important aspect is comparability between Member States, other countries and
geographical areas in general. This involves not only different producers of the statistics but
also further differences due to inherent dissimilarities between countries: labour market rules,
economic practices, tax rules, etc.

Attempts to reduce differences � to increase comparability for the benefit of the user � by
using similar concepts and definitions have been going on internationally for a long time;
they are time-consuming tasks. There are many activities for harmonisation in business
statistics in Eurostat and other international authorities, see Section 10.3.

10.2.6 Some user-based conclusions
In summary, comparability and coherence within and between sets of statistics require some
definitions to be the same, for example units, variables, or reference times, depending on the
particular joint use. The user needs information on differences and their consequences from
the producer. The quality report for a certain set of statistics should provide such information
with regard to comparability over time and coherence with other sets of statistics. It is not
possible to include all other sets but experience should be used to list uses that are frequent
and where users are likely to need help.

Comparability and coherence in general depend on definitions. Accuracy plays a different
role. There is, however, not always a clear-cut distinction. Definitions may seem clear and
unambiguous in theory but still vary in practical work. There may be a tendency not to
include such deviations when measuring accuracy, although that should be done. If, for
example, there is an undeclared systematic deviation in one survey but not another, there will
be deficiencies in coherence between the two sets of statistics.

As a consequence of the above, comparability and coherence depend on the �distance�
between producers; the deficiencies mostly increase in the following order: parts of a single
survey, different surveys at the same agency, different organisations in the same country,
statistical offices in different countries.

It is important for the user to have accuracy measures when using statistics together. It is
convenient if the joint use has been foreseen and prepared, for example so that estimates are
consistent. Explanatory comments in cases of differences are helpful, for instance when there
are substantial revisions.

10.3 Producer aspects on coherence, including comparability
10.3.1 Definitions in theory
The means of the producer to achieve coherence are several. To use the same definitions is,
of course, one of them � to be consistent within the authority and with international
standards.
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There are many harmonisation activities internationally, and different activities have gone on
for a long time in different fora. There is, for example, much effort at the EU level,
performed by Eurostat and other authorities.

There are statistical standard classifications, like NACE for activities. There are also
classifications for products. Furthermore, there are regulations on Business Registers (BRs),
and on statistics, like Structural Business Statistics (SBS) and Short-Term Statistics (STS).
There is a Regulation on statistical units for the observation and analysis of the production
system in the Community. Unit delineation and the BR together form an important part of the
basis of the statistics. The National Accounts are �at the top�, building on a lot of other
statistics and being one reason for coherence among them.

Even if there is a considerable set of definitions that have been agreed upon, this does not
mean that there is full harmonisation. Interpretations and practices may still differ between
countries.

10.3.2 Definitions in practice
There are many aspects to consider in the definition of a variable, both to achieve coherence
between surveys and with international guidelines, and to make the measurement and data
collection procedures easy and accurate. Respondents mostly provide information from their
accounting systems, which advocates a choice of definitions in agreement with accounting
systems in general use. Business organisation has to be considered carefully when defining
and delineating both units and variables. An example here is how to handle production by
bought-in employment.

Ideally there should be co-ordination activities between statistical surveys, for example in
questionnaires, instructions to respondents, and data editing. This may be more
straightforward within a National Statistical Institute (NSI) than between organisations.

The activities within an NSI may include the basics: units, delineation of population and
domains, variables, statistical measures, and reference times, and also procedures like data
collection and estimation. Using the same BR as a frame, constructing the frame at the same
time, updating the units in the same way at the same time (with regard to business structure,
classifications etc), addressing questionnaires to the same unit, etc are further actions
influencing coherence and accuracy.

There may also be activities between organisations and different countries. Foreign trade
statistics is a clear-cut example where investigations are possible through so-called mirror
statistics; the exports of country A to country B should equal the imports of country B from
country A. There are differences to be studied, largely due to inaccuracy, for example
measurement errors, but also due to differences in definitions between countries.

Overall, there are several principles which can be used to achieve comparability and
coherence in general, both within and between nations, more or less far-reaching. The
European Statistical System goes for the subsidiarity approach, where each Member State
may implement surveys in its own way, together with quality assessments. This is preferred
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to attempts to harmonise production and to documentation of differences, often leading to
tables with lots of footnotes.

10.3.3 Accuracy and consistent estimates
As stated in Section 10.2.3, it is important for the user to have appropriate accuracy measures
in his/her joint use of statistics. The accuracy may be difficult to quantify. There could for
instance be measurement errors for units sampled with probability one (that do not contribute
to the sampling errors). If such a unit has different respondents in different surveys, and one
of the respondents only includes one of several branches, this is a measurement error with
severe consequences, if undetected. The ratio between production and hours worked by
industry may be affected if the missing part is large, and there is clearly a risk of the accuracy
measure not including this error fully. Hence, there may be a false conclusion. It may be
regarded as due to a non-sampling error; it could also be viewed as an underestimation of
inaccuracy.

The example may seem exaggerated, but such things happen. The following overall, and
vague, statement seems reasonable (and in line with the previous sections): the further apart
the surveys are, the greater the risk of differences between them � differences that affect the
accuracy, often in a way that is not easy to assess. The joint use of statistics with inaccuracy
of different character is more difficult than to use statistics from the same survey where the
errors are �related�, perhaps because there are systematic deviations that cancel at least partly
in comparative studies or because the random errors are correlated.

In line with the above, including the example in Section 10.2.3, consider statistics as
consisting of the target parameter and an estimation error, and assume the simple case with a
symmetric uncertainty interval around the point estimate. The shorter the length of the
interval, the more accurate the statistics, and the stronger the statistical inference in the joint
use of statistics, for example comparisons. As just discussed above, there is a risk of
producing too short an interval, not taking all the error sources into account. The coherence
concept is tied to the target. In joint use of statistics, certain parts of the targets involved need
to be equal, as Section 10.2.1 illustrates.

Consider the ratio between total production and total number of hours worked with both
statistics based on a sample survey. If they emanate from the same survey, they are based on
observations on the same set of units. So, if a sample happens to contain mostly small units,
this is so for both numerator and denominator. The ratio does not vary so much around the
population value as it would with two different samples. A smaller variation is obtained not
only with respect to the sampling error, but it can be expected to hold for several further error
sources, for example measurement errors.

Hence, comparability and coherence aspects in general make it desirable to co-ordinate the
production of statistics that are used jointly. The estimation procedure may be co-ordinated
between surveys. This can be done at different stages, with different strengths, and with
different aims.
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The aim could be to give the user as simple and coherent a message as possible, that is to
have a high degree of co-ordination of the output from different surveys. This is different
from handling each survey on its own and from using auxiliary information with the single
aim of improving accuracy.

10.3.3.1 Some comments on methodology, especially benchmarking
One method of co-ordinating statistical output is so-called benchmarking, where one set of
estimates is forced to agree with another. This is a special case of consistent estimates
introduced in Section 10.2.3. Typically, short-term statistics could be benchmarked on annual
statistics, if the former (after aggregation to the calendar year) are an indicator of the latter.
One reason could be to simplify for the user by unifying the two time series (ensuring that the
monthly series has the same annual sum as the annual series), another to improve the
accuracy of the short-term statistics. For this to be meaningful, the two sets of statistics
should have the same target parameters for the calendar year.

The use of procedures to make estimates consistent may influence not only one but both sets
of statistics. The implementation of benchmarking of, say, short-term statistics on annual
statistics, involves comparisons. These may consider not only the macro level, but also the
micro level. The evaluations performed may imply further edits for both short-term and
annual statistics.

In cases like benchmarking short-term statistics on annual statistics, the former have been
published when the latter appear. That means a revision, may be one or two years after the
first publication (longer for January than for December), or even more. Many users will react
badly to revisions in their time series. Advantages and disadvantages have to be balanced.

There are several methods for benchmarking, based on different approaches to the two time
series as to what is fixed and what is random variation, see for example Cholette & Dagum
(1994) with emphasis on survey errors, Durbin & Quenneville (1997) with emphasis on
stochastic time series models (and also references therein), and the very recent Dagum,
Cholette & Chen (1998).

There is a recent suggestion on co-ordination at the estimation stage by Renssen &
Nieuwenbroek (1997), who call their procedure aligning estimates. Surveys with variables in
common � variables that are observed in these surveys and have unknown population totals �
are pooled and the common variables are used as regressors (in addition to variables with
known totals). Then the estimate obtained is used as auxiliary information in the individual
surveys. The procedure is interesting from both coherence and accuracy points of view.

Furthermore, statistics may be related, although without clear connections in terms of, for
example, units. Labour market statistics based on business surveys and on household surveys
provide an example, see also Section 10.4.
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10.3.4 Comparability over time
There is usually interest both in recent statistics and in long time series. Accuracy of changes
is often at least as important as accuracy of levels.

Stability of definitions is important, but changes in structure should also be taken into
account. For example, the use of chain-linked indices has increased, and an index with a fixed
base is recommended to be rebased fairly frequently, at least every fifth year. It may be
necessary to change variables to be in line with accounting practices if these change. New
administrative rules may influence the BR in a way that carries over to the statistics.
Comparability over time should be taken into account when choosing variables: current
prices are often complemented with constant price or volume measures.

The methodology used has an influence on comparability, and there has to be a compromise
between introducing for example improved estimation methods and keeping the old way with
regard to time series. There is often a �jump� in a time series when a change is made. Hence,
care is needed when introducing changes in methods. It may be wise to have a �double-run�
period, that is to run the two methods in parallel to measure the effects and possibly link the
two time series. As a minimum, explanations should be provided to the users.

When comparing short-term statistics, calendar and seasonal adjustments are important tools,
with regard to corresponding periods in different years and adjacent periods. There are
different methods of adjustment, building on different assumptions, like additive or
multiplicative components. The appropriateness of a method is not necessarily the same in all
countries. Still, for comparability reasons there should be some harmonisation of the
adjustments of time series.

10.3.5 International comparability
As already indicated above in Section 10.3.1, there are many international harmonisation
activities to improve comparability between countries.

Standard classifications is a typical example, with for example NACE Rev. 1 for
classification of economic activities. There is a Regulation on Structural Business Statistics
that includes definitions of variables. A Regulation on Short-Term Statistics has become law
during 1998. There is a Regulation on statistical units � like enterprise, kind-of-activity unit
and local unit � and also one on Business Registers. These regulations aim at increasing the
comparability through making basic definitions equal � and also the applications similar by
providing not only theory but also manuals with examples.

However, the subsidiarity approach means that each Member State may implement surveys in
its own way, even when there is a regulation such as those mentioned. Similarly, regulations
on for example statistical units may be interpreted and applied somewhat differently between
MSs due to different traditions, prerequisites, etc. There are inherent cultural differences, like
the number of working hours per full-time and part-time employee, the distribution of
working hours over the year and over the week, taxation rules etc. The variable investments
in fixed assets provides an example where the precise definition of the variable may vary
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between countries, at least before regulations have come into use. In such a case, it may be
possible to make some kind of estimate as to the effect of a different national definition in
comparison with the European concept. That is an attempt to overcome the lack in
comparability, but to measure the difference is a difficult task.

Among examples of methods in the direction of comparability, standardisation of death rates
in population demography is an old and illustrative one. Depoutot & Arondel (1997) discuss
business statistics, and they advocate econometric models. Dalén (1998) presents sources of
non-comparability in a general approach to the case of consumer price indices, and he
presents empirical analyses of the effects of different conceptual and technical differences
based on Swedish and Finnish data.

10.3.6 Some producer-based concluding comments
The discussions above and below show national and international actions to improve
coherence including comparability, but also examples where deficiencies still remain. Many
classification systems and regulations work in the direction of coherence between statistics
from different surveys. Still, there are several classification systems. This means for instance
that statistics on production of commodities and foreign trade statistics are difficult to use
together when the former is based on PRODCOM and the latter on CN8. This influences for
example the Producer Price Index (through the weights used for price indices for the
domestic market, export etc) and the National Accounts.

The SBS and STS Regulations have much in common. There may still be deficiencies in
coherence between annual and short-term statistics. One reason for differences is that these
statistics partly build on different units, enterprise for annual statistics and kind-of-activity
unit for short-term. Moreover, the latter uses kind-of-activity unit for example for
manufacturing but, at least at present, enterprise for certain industries, for example services.
The population is not clearly expressed for the STS, and the mixture of units seems to involve
different practices, leading to further coherence and comparability deficiencies, with
manufacturing kind-of-activity units within non-manufacturing enterprises and vice versa.

Another reason for differences between the two sets of statistics is different time schemes of
production for the statistics for a given reference year. The annual statistics are collected after
the year, while the short-term statistics are collected during the year. The population being
surveyed changes during the year; births and deaths, mergers and break-ups etc. Such
changes are better known when producing the annual than the short-term statistics.

Hence, even if the target populations are the same, the frames and the knowledge available
may be different for the two surveys. That may imply differences � perhaps above all for the
accuracy � that the producer should inform the users about. Alternatively, the producer may
either revise the short-term statistics or refrain from using new population information for the
annual statistics. This is an example of different practices in different Member States. See
also Chapter 5.
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The National Accounts build first on the short-term statistics. Later, when the annual statistic
are available, both annual and short-term statistics are integrated into the accounts. The
annual and the quarterly accounts are to be consistent, and so are the different accounts, like
production and use. The National Accounts are to cover the whole economy. The integration
may imply coherence deficiencies with both the annual and the short-term statistics, and,
above all, inconsistent estimates.

A further example where coherence is interesting is between official short-term statistics and
related statistics from other, possibly private, institutes; the latter may be qualitative, a
barometer survey or business tendency survey.

As stated, it is important for the user to know if definitions are equal, or � if they are not �
what the differences are. The differences should preferably be expressed in terms of effects
on the statistics. The more accurate the statistics, the better in the joint use. Accurate statistics
cannot, however, overcome different definitions. The user may find it convenient if
estimation procedures are such that consistent estimates are obtained. The producer should
consider these aspects when producing and presenting the statistics.

10.4 Some illustrations of coherence and co-ordination
As stated several times above, definitions are fundamental for coherence, including
comparability. Accuracy is important, but in a different dimension. The more accurate the
statistics, the stronger the inferences which can be made in the joint use. Random variation
(for example due to sampling) is often easier to measure and take into account than
systematic deviation (for example due to nonresponse) that is feared to be there, although
difficult to quantify. If there are systematic deviations, it is easier to make comparisons if the
deviations have a pattern that is stable.

In general, the closer the surveys, the less the problems with deficiencies in coherence. It is,
however, neither possible nor desirable to have just one or a few surveys. There is a balance
between �directed� surveys with few variables on the one hand and surveys with a broad
scope and many variables on the other. The former way may allow comparatively small
samples, but it may be convenient to include some variable � like the number of employees �
in each survey. That means that the same variable value is reported many times. This
increases the response burden. The system chosen should include willingness to respond and
try to keep response burden low and spread out.

Co-ordination activities are important when several surveys are equal or at least similar.
Germany is a notable example. Many surveys are performed on a sub-national level � in 16
�Bundesländer� (regions) � and it is important to co-ordinate these surveys to obtain statistics
not only for each �Bundesland� but also on the federal level. There have to be compromises
since optimal solutions are different depending on the level. For example, a good sample
allocation for Germany may be quite different to that of individual �Bundesländer�. There is
much to co-ordinate: variables, instructions, questionnaires, editing etc. Spain provides a
similar example; 50 Provinces perform the initial data collection and editing.
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There are related coherence problems in most countries. A survey may comprise all
industries, or it may be more convenient to perform surveys for manufacturing and service
industries separately. Annual and short-term surveys may be more or less co-ordinated as to
variables. Often the annual survey is more detailed. A variable like turnover, or salaries and
wages, may be included in both cases. There is an argument that for units in both samples it is
unnecessary to ask for the sum of twelve values already collected, even if some of these are
imputed. On the other hand, if monthly and annual data are collected, the annual survey will
have problems with inconsistency if there has been some missing period, but if imputation is
reasonable this inconsistency may be small. Moreover, a major aim of short-term surveys is
to produce estimates quickly. If respondents do not have final results available for the month,
they may be encouraged to provide estimates (their informed judgement being better than
imputing for nonresponse). The source of the data for short-period and structural surveys may
be different. The former may emanate from management or operational accounts. The latter
are likely to be produced from the final audited accounts for the year and may include some
adjustments which are made at the end of the year. On balance most countries see strong
arguments for separate annual and short-period data collection.

Several countries now have one BR that is used as frame for all, or at least most, surveys. If
all surveys use that also for updates, that will make the joint use of the statistics easier.

Several countries have introduced co-ordination of the sampling. There may be one or more
aims: positive co-ordination to improve accuracy over time or between surveys and negative
co-ordination (rotation is a possibility) mainly to spread the response burden.

There is a tension between annual statistics being as accurate as possible and being coherent
with short-term statistics. Until recently in the UK coherence was the main driving force with
annual panels selected to be consistent with short-term statistics. However, the emphasis has
now switched to accuracy with the aim that the structural surveys should use the most up to
date information available on units and classification. This change in policy means estimates
closer to the target but larger revisions when benchmarking short-term statistics on annual
statistics. Such a practice has a longer history of use in Sweden.

There may be co-ordination between surveys to ensure that the final statistics agree. There
are different techniques depending on information and �closeness� of surveys. In Sweden, for
example, the short-term index of production for the manufacturing industries is benchmarked
on the annual index in spite of there being some differences in definitions; the short-term
index being regarded as an indicator of the annual index, see the Swedish Model Quality
Reports for descriptions and figures6. In the UK the short-term production index is not
currently benchmarked to the annual surveys (but benchmarking is undertaken elsewhere).
However, the UK strategy for the longer term is to move to chain linking supported by annual
input-output tables. A consequence is that the value added from the annual surveys will
replace estimates of gross output used in the short term. In this approximation a necessary
assumption is that the ratio of gross to net output is constant over time. That hypothesis is

                                                          
6 This benchmarking has been debated in Statistics Sweden, and in late 1998 it was decided to discontinue.
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likely to become stretched, particularly at lower levels of the SIC, the further one moves from
the base year.

In many cases, different definitions may be found impossible to overcome and important to
use for each of the single surveys. There may for example be different sets of employment
statistics and of statistics on salaries and wages, coming from labour force surveys and
business surveys, and from business surveys and administrative data tied to employers�
declarations. A UK experience is that one way of helping users to understand the differences
between the labour force and the employment surveys is to emphasise the differences
between people and jobs, see Pease (1997). Making this distinction clear has helped to
prevent users from focusing on the differences between the estimates which, when sampling
errors are taken into account, are relatively small. Similarly, considerable resources have
been used in the Netherlands on statistical integration for the labour market, with statistics
based on establishment surveys, household surveys, and central registers, Leunis & Altena
(1996).

The co-ordination may be on the macro level, as just mentioned, and/or on the micro level.
There may for example be an exchange of figures for individual units between surveys
perhaps to ensure that an enterprise that is complex and/or re-organising is fully included or
as a part of the editing system. There are such practices in Germany and Denmark. Similarly,
staff in the UK generally work on more than one inquiry. In the production sector the same
data collector will work on Stocks, Capital Expenditure, Monthly Turnover and the Annual
Structural Surveys. Thus comparisons of data at contributor level can easily be made and
actions taken to reconcile differences.

Member States often make changes to their inquiry systems to improve the methodology and
achieve greater consistency with other surveys, classifications or European regulations.
Although these developments may increase coherence between surveys and countries, they
introduce discontinuities when the changes are made � distorting the comparability over time.
Specific examples of changes that influence definitions and/or accuracy include:

(a) changes of administrative rules or data, for example data used for updates, regional
boundary changes

(b) construction of a new register or frame
(c) new sampling design
(d) changes in estimation methodology
(e) new outlier treatment
(f) move to NACE Rev. 1
(g) move to ESA (European System of Accounts)

In order to calculate a link between the two time series, it is necessary to have statistics on
both the old and the new basis. There is analytical work and often extra data collection.
Nonetheless, the work is vital since the link factors are often large even for changes which
may seem to be slight. For example in the UK changes in estimation methods have at times
altered industry totals at class level by over ten per cent. The links may be calculated for a
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month, a quarter, or a number of periods. Where links are large and could vary from period to
period it may be best to look at some average link over a period of time to ensure stability.
Any cases where the factor is surprisingly large or small should be followed up. Links can be
applied to either the old or the new series.
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Part 4: Conclusions and References

11 Concluding remarks
Paul Smith, Office for National Statistics

11.1 Methodology for quality assessment
This volume contains a lot of information on the theory and methods behind the assessment
of quality in business surveys, covering a huge range of techniques. In many survey situations
it will be practical only to use a small number of these to assess the quality of the survey
results, because of the limitations of time, money and available information. A natural choice
is to aim for a balance between those methods which are easy to apply and evaluation of the
quality components which are the most important ones.

Some accuracy measures have a long tradition, for example the sampling error when the
sample design is probability-based. Often these measures are those most amenable to
theoretical treatment. Software for assessing the sampling errors is reviewed in Volume II,
and the properties of sampling errors are also investigated there.

Non-sampling errors and non-probability sampling schemes are accessible to investigation by
three main general methods:
•  indicators;
•  follow-up studies; and
•  sensitivity analysis.
Indicators are statistics, normally available as by-products of the survey processing, which
are thought to be (strongly) correlated with the quality of the estimates, but which do not
directly measure that quality. They are the easiest statistics on quality to calculate, and they
predominate in the model quality reports (volume III), although the precise details differ
according to what needs to be estimated. Both follow-up studies and sensitivity analysis are
limited by the data which are available (or obtainable); follow-up studies are typically high-
cost (for NSIs and contributors) but aim to get closer to the true value than the original survey
did, usually for a subset of the original observations. Sensitivity analyses rely on the data
already available (both survey and auxiliary data) to suggest plausible models, and indicate
how the estimates change with different models (or different assumptions). In a small number
of cases NSIs obtain �follow-up� data as part of the survey process, and need only insert
some extra storage or undertake some additional work to use it � in particular processing
error and coding error (where all the original responses are available (if they are stored) and
can be re-evaluated) and nonresponse error (where the change of response with time gives
some idea of the characteristics of nonrespondents). In general however, follow-up studies
are detailed and very expensive, and are undertaken rarely and on a small scale.

Sensitivity analysis is cheaper as it uses only the data already collected and requires only the
reprocessing of this data under different scenarios. It gives an indication of how the estimate
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is affected by certain models and assumptions, but does not say how close these estimates are
to the true value, although there is an implicit assumption that if all the scenarios investigated
have similar outcomes, then these outcomes will be close to the true value.

Deducing which components of total survey error (see section 1.2.1) have the biggest
contribution is much more problematic, since in different surveys the answer may well be
different, and there is only a small number of studies which investigates several errors in a
single survey in a comparative way. It is perceived wisdom that �non-sampling errors may
outweigh sampling errors substantially�, but there is little evidence of the relative importance
of errors in practice. Much of the methodology behind survey estimation involves on the one
hand removing bias as much as possible and accepting an increase in variance (for example
in compensating for nonresponse, chapter 8), and on the other hand introducing bias in a
structured way to reduce the variability of survey estimates (for example through
poststratification or outlier adjustment), so it is measurement of these biases and variances
which will lead to the total survey error.

11.2 Recommendations for quality assessment
Clearly it is inappropriate to undertake an in-depth study of all the biases and variance
components of a survey on every occasion that it is run. However, it is also clear that this sort
of study is the only way in which a complete evaluation of the survey quality can be made.
This leads us to suggest a three-pronged approach to evaluating quality:
(a) Indicators should be included as part of survey processing systems, and should be

produced each time the survey is run. They not only indicate the quality, but also
show where survey processes are failing. These should include for instance weighted
and unweighted response rates, rate of identification of misclassifications and dead
units, and data edit failure rates.

(b) Quality measures should be produced periodically (at least annually) where they are
clearly defined. These should include sampling errors.

(c) There should be a rolling programme of evaluation of the overall quality of the
survey, covering some topics each year. This would involve the use of follow-up
interviews and other detailed studies, in order to estimate the true total survey error.
The exact list of components to be included would need to be decided; ideally all
components would be measured. Some of the burden of measurement could be moved
away from the survey by, for example, undertaking an evaluation of the frame quality,
as the frame is used for many surveys.

In addition to these three, a useful qualitative measure of survey quality is to have the
methods fully documented, and to have the quality assessment practices written down, much
as in the Model Quality Reports. The act of producing these reports will force the methods of
the survey to be considered critically, and this will influence the quality.

The Model Quality Reports (volume III) include both simple indicators and more ambitious
measures like sensitivity analyses, but not in-depth studies. The Implementation Reports and
the Guidelines on implementation (volume IV) include discussions of balancing issues.
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