3: Bayesian Qualitative/Quantitative Inference

David Draper

Department of Applied Mathematics and Statistics
University of California, Santa Cruz

Short Course (Day 4)
University of Reading (UK)

© David Draper (all rights reserved)
Bayesian Qual/Quant Inference

Recall from our earlier discussion that if I judge binary \((y_1, \ldots, y_n)\) to be part of infinitely exchangeable sequence, to be coherent my joint predictive distribution \(p(y_1, \ldots, y_n)\) must have simple hierarchical form

\[
\theta \sim p(\theta) \\
(y_i|\theta) \overset{\text{IID}}{\sim} \text{Bernoulli}(\theta),
\]

where \(\theta = P(y_i = 1) = \text{limiting value of mean of } y_i \text{ in infinite sequence.}\)

Writing \(s = (s_1, s_2)\) where \(s_1\) and \(s_2\) are the numbers of 0s and 1s, respectively in \((y_1, \ldots, y_n)\), this is equivalent to the model

\[
\theta_2 \sim p(\theta_2) \\
(s_2|\theta_2) \sim \text{Binomial}(n, \theta_2),
\]

where (in a slight change of notation) \(\theta_2 = P(y_i = 1); \text{ i.e., in this simplest case the form of the likelihood function (Binomial}(n, \theta_2)) \text{ is determined by coherence.}\)

The likelihood function for \(\theta_2\) in this model is

\[
l(\theta_2|y) = c \theta_2^{s_2}(1 - \theta_2)^{n-s_2} = c \theta_1^{s_1}\theta_2^{s_2},
\]

from which it’s evident that the conjugate prior for the Bernoulli/Binomial likelihood (the choice of prior having the property that the posterior for \(\theta_2\) has the same mathematical form as the prior) is the family of Beta\((\alpha_1, \alpha_2)\) densities

\[
p(\theta_2) = c \theta_2^{\alpha_2-1}(1 - \theta_2)^{\alpha_1-1} = c \theta_1^{\alpha_1-1}\theta_2^{\alpha_2-1}.
\]

for some \(\alpha_1 > 0, \alpha_2 > 0.\)
Bayesian Qual/Quant Inference

With this prior the **conjugate updating rule** is evidently

\[
\begin{align*}
\theta_2 &\sim \text{Beta}(\alpha_1, \alpha_2) \\
(s_2|\theta_2) &\sim \text{Binomial}(n, \theta_2)
\end{align*}
\]

\[\rightarrow (\theta_2|y) \sim \text{Beta}(\alpha_1 + s_1, \alpha_2 + s_2),\]

(4)

where \(s_1\) (\(s_2\)) is the **number of 0s (1s)** in the data set \(y = (y_1, \ldots, y_n)\).

Moreover, given that the **likelihood** represents a (sample) **data set** with \(s_1\) 0s and \(s_2\) 1s and a **data sample size** of \(n = (s_1 + s_2)\), it’s clear that

(a) the **Beta**(\(\alpha_1, \alpha_2\)) prior acts like a (prior) **data set** with \(\alpha_1\) 0s and \(\alpha_2\) 1s and a **prior sample size** of \((\alpha_1 + \alpha_2)\), and

(b) to achieve a relatively **diffuse** (low-information-content) prior for \(\theta_2\) (if that’s what **context** suggests I should aim for) I should try to specify \(\alpha_1\) and \(\alpha_2\) **not far from 0**.

Easy **generalization** of all of this: suppose the \(y_i\) take on \(l \geq 2\) distinct values \(v = (v_1, \ldots, v_l)\), and let \(s = (s_1, \ldots, s_l)\) be the **vector of counts** \((s_1 = \#(y_i = v_1)\) and so on).

If I judge the \(y_i\) to be part of an **infinitely exchangeable sequence**, then to be **coherent** my joint predictive distribution \(p(y_1, \ldots, y_n)\) must have the **hierarchical** form

\[
\begin{align*}
\theta &\sim p(\theta) \\
(s|\theta) &\sim \text{Multinomial}(n, \theta),
\end{align*}
\]

(5)

where \(\theta = (\theta_1, \ldots, \theta_l)\) and \(\theta_j\) is the **limiting relative frequency** of \(v_j\) values in the infinite sequence.
Bayesian Qual/Quant Inference

The likelihood for (vector) θ in this case has the form

$$l(\theta|y) = c \prod_{j=1}^{l} \theta_j^{s_j}, \quad (6)$$

from which it's evident that the conjugate prior for the Multinomial likelihood is of the form

$$p(\theta) = c \prod_{j=1}^{l} \theta_j^{\alpha_j-1}, \quad (7)$$

for some $\alpha = (\alpha_1, \ldots, \alpha_l)$ with $\alpha_j > 0$ for $j = 1, \ldots, l$; this is the Dirichlet(α) distribution, a multivariate generalization of the Beta family.

Here the conjugate updating rule is

$$\begin{cases}
\theta \sim \text{Dirichlet}(\alpha) \\
(s|\theta) \sim \text{Multinomial}(n, \theta)
\end{cases} \rightarrow (\theta|y) \sim \text{Dirichlet}(\alpha + s), \quad (8)$$

where $s = (s_1, \ldots, s_l)$ and s_j is the number of v_j values $(j = 1, \ldots, l)$ in the data set $y = (y_1, \ldots, y_n)$.

Furthermore, by direct analogy with the $l = 2$ case,

(a) the Dirichlet(α) prior acts like a (prior) data set with α_j v_j values $(j = 1, \ldots, l)$ and a prior sample size of $\sum_{j=1}^{l} \alpha_j$, and

(b) to achieve a relatively diffuse (low-information-content) prior for θ (if that's what context suggests I should aim for) I should try to choose all of the α_j not far from 0.
Bayesian Qual/Quant Inference

To summarize:

(A) if the data vector $y = (y_1, \ldots, y_n)$ takes on l distinct values $v = (v_1, \ldots, v_l)$ (real numbers or not) and I judge (my uncertainty about) the infinite sequence (y_1, y_2, \ldots) to be exchangeable, then (by a representation theorem of de Finetti) coherence compels me (i) to think about the quantities $\theta = (\theta_1, \ldots, \theta_l)$, where θ_j is the limiting relative frequency of the v_j values in the infinite sequence, and (ii) to adopt the Multinomial model

$$\theta \sim p(\theta)$$

$$p(y_i|\theta) = c \prod_{j=1}^l \theta_j^{s_j},$$

where s_j is the number of y_i values equal to v_j;

(B) if context suggests a diffuse prior for θ a convenient (conjugate) choice is Dirichlet(α) with $\alpha = (\alpha_1, \ldots, \alpha_l)$ and all of the α_j positive but close to 0; and

(C) with a Dirichlet(α) prior for θ the posterior is Dirichlet(α'), where $s = (s_1, \ldots, s_l)$ and $\alpha' = (\alpha + s)$.

Note, remarkably, that the v_j values themselves make no appearance in the model; this modeling approach is natural with categorical outcomes but can also be used when the v_j are real numbers.

For example, for real-valued y_i, if (as in the IHGA case study in Part 1) interest focuses on the (underlying population) mean in the infinite sequence (y_1, y_2, \ldots), this is $\mu_y = \sum_{j=1}^l \theta_j v_j$, which is just a linear function of the θ_j with known coefficients v_j.
Bayesian Qual/Quant Inference

This fact makes it possible to draw an analogy with the distribution-free methods that are at the heart of frequentist non-parametric inference: when your outcome variable takes on a finite number of real values \(v_j \), exchangeability compels a Multinomial likelihood on the underlying frequencies with which the \(v_j \) occur; you are not required to build a parametric model (e.g., normal, lognormal, ...) on the \(y_i \) values themselves.

In this sense, therefore, model (14)—particularly with the conjugate Dirichlet prior—can serve as a kind of low-technology Bayesian non-parametric modeling: this is the basis of the Bayesian bootstrap (Rubin 1981).

Moreover, if you’re in a hurry and you’re already familiar with WinBUGS you can readily carry out inference about quantities like \(\mu_y \) above in that environment, but there’s no need to do MCMC here: ordinary Monte Carlo (MC) sampling from the Dirichlet(\(\alpha' \)) posterior distribution is perfectly straightforward, e.g., in \(\mathbb{R} \), based on the following fact:

To generate a random draw \(\theta = (\theta_1, \ldots, \theta_l) \) from the Dirichlet(\(\alpha' \)) distribution, with \(\alpha' = (\alpha_1', \ldots, \alpha_l') \), independently draw

\[
g_j \overset{\text{iid}}{\sim} \Gamma(\alpha_j', \beta), \quad j = 1, \ldots, l
\]

(10)

(where \(\Gamma(a, b) \) is the Gamma distribution with parameters \(a \) and \(b \)) and compute

\[
\theta_j = \frac{g_j}{\sum_{m=1}^{l} g_j}.
\]

(11)

Any \(\beta > 0 \) will do in this calculation; \(\beta = 1 \) is a good choice that leads to fast random number generation.
Bayesian Qual/Quant Inference

The downloadable version of R doesn’t have a built-in function for making Dirichlet draws, but it’s easy to write one:

```r
dirichlet = function( n.sim, alpha ) {
    l = length( alpha )
    theta = matrix( 0, n.sim, l )
    for ( j in 1:l ) {
        theta[, j] = rgamma( n.sim, alpha[j], 1 )
    }
    theta = theta / apply( theta, 1, sum )
    return( theta )
}
```

The Dirichlet(\(\alpha\)) distribution has the following moments: if \(\theta \sim \text{Dirichlet}(\alpha)\) then

\[
E(\theta_j) = \frac{\alpha_j}{\alpha_0}, \quad V(\theta_j) = \frac{\alpha_j(\alpha_0 - \alpha_j)}{\alpha_0^2(\alpha_0 + 1)}, \quad C(\theta_j, \theta_j') = -\frac{\alpha_j\alpha_j'}{\alpha_0^2(\alpha_0 + 1)},
\]

where \(\alpha_0 = \sum_{j=1}^{l} \alpha_j\) (note the negative correlation between components of \(\theta\)).

This can be used to test the function above:
Bayesian Qual/Quant Inference

> alpha = c(5.0, 1.0, 2.0)

> alpha.0 = sum(alpha)

> test = rdirichlet(100000, alpha) # 15 seconds at 550 Unix MHz

> apply(test, 2, mean)

[1] 0.6258544 0.1247550 0.2493905

> alpha / alpha.0

[1] 0.625 0.125 0.250

> apply(test, 2, var)

[1] 0.02603293 0.01216358 0.02071587

> alpha * (alpha.0 - alpha) / (alpha.0^2 * (alpha.0 + 1))

[1] 0.02604167 0.01215278 0.02083333

> cov(test)

 [,1] [,2] [,3]
[1,] 0.02603293 -0.00874032 -0.01729261
[2,] -0.00874032 0.01216358 -0.00342326
[3,] -0.01729261 -0.00342326 0.02071587

> - outer(alpha, alpha, "*") / (alpha.0^2 * (alpha.0 + 1))

 [,1] [,2] [,3]
[1,] -0.04340278 -0.00868056 -0.01736111
[2,] -0.00868056 -0.00173611 -0.00347222 # ignore diagonals
[3,] -0.01736111 -0.00347222 -0.00694444
Bayesian Qual/Quant Inference

Example: re-analysis of IHGA data from Part 1; recall policy and clinical interest focused on $\eta = \frac{\mu_E}{\mu_C}$.

<table>
<thead>
<tr>
<th>Group</th>
<th>Number of Hospitalizations</th>
<th>n</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>138 77 46 12 8 4 0 2</td>
<td>287</td>
<td>0.944</td>
<td>1.24</td>
</tr>
<tr>
<td>Experimental</td>
<td>147 83 37 13 3 1 1 0</td>
<td>285</td>
<td>0.768</td>
<td>1.01</td>
</tr>
</tbody>
</table>

In this two-independent-samples setting I can apply de Finetti’s representation theorem twice, in parallel, on the C and E data.

I don’t know much about the underlying frequencies of 0,1,...,7 hospitalizations under C and E external to the data, so I’ll use a Dirichlet($\epsilon, \ldots, \epsilon$) prior for both θ_C and θ_E with $\epsilon = 0.001$, leading to a Dirichlet($138.001, \ldots, 2.001$) posterior for θ_C and a Dirichlet($147.001, \ldots, 0.001$) posterior for θ_E (other small positive choices of ϵ yield similar results).

> alpha.C = c(138.001, 77.001, 46.001, 12.001, 8.001, 4.001, 0.001, 2.001)

> alpha.E = c(147.001, 83.001, 37.001, 13.001, 3.001, 1.001, 1.001, 0.001)

> theta.C = rdirichlet(100000, alpha.C) # 17 sec at 550 Unix MHz
> theta.E = rdirichlet(100000, alpha.E) # also 17 sec

> print(post.mean.theta.C = apply(theta.C, 2, mean))

[1] 4.808015e-01 2.683458e-01 1.603179e-01 4.176976e-02 2.784911e-02

> print(post.SD.theta.C <- apply(theta.C, 2, sd))

[1] 0.0294142963 0.0261001259 0.0117925465 0.0096747630
[6] 0.0001017203 0.0048757485
Bayesian Qual/Quant Inference

> print(post.mean.theta.E <- apply(theta.E, 2, mean))

[1] 5.156872e-01 2.913022e-01 1.298337e-01 4.560130e-02 1.054681e-02

> print(post.SD.theta.E <- apply(theta.E, 2, sd))

[1] 0.029593047 0.026915644 0.019859213 0.012302252 0.006027157
[6] 0.003501568 0.003487824 0.000111565

> mean.effect.C <- theta.C %*% (0:7)
> mean.effect.E <- theta.E %*% (0:7)
> mult.effect <- mean.effect.E / effect.C
> print(post.mean.mult.effect <- mean(mult.effect))

[1] 0.8189195

> print(post.SD.mult.effect <- sd(mult.effect))

[1] 0.08998323

> quantile(mult.effect, probs = c(0.0, 0.025, 0.5, 0.975, 1.0))

 0% 2.5% 50% 97.5% 100%
0.5037150 0.6571343 0.8138080 1.0093222 1.3868332

> postscript("mult.effect.ps")

> plot(density(mult.effect, n = 2048), type = 'l', cex.lab = 1.25,
 xlab = 'Multiplicative Treatment Effect', cex.axis = 1.25,
 main = 'Posterior Distribution for Multiplicative Treatment Effect',
 cex.main = 1.25)

> dev.off()
In this example the low-tech BNP, Dirichlet-Multinomial, exchangeability-plus-diffuse-prior-information model has reproduced the parametric REPR results almost exactly and without a complicated search through model space for a “good” model.

NB This approach is an application of the Bayesian bootstrap (Rubin 1981), which (for complete validity) includes the assumption that the observed y_i values form a complete set of \{all possible values the outcome y could take on\).
Bayesian Qual/Quant Inference

This is clearly not true in the IHGA case study, and yet in that case the Bayesian qualitative/quantitative inferential approach did a terrific job of reproducing what we will later see is an excellent parametric model for the IHGA data, without any parametric modeling assumptions.