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4.1 Formulating hierarchical models

for quantitative outcomes from

scientific context

Meta-analysis of effects of aspirin on heart

attacks. Table 2.1 (Draper et al., 1993a) gives the number

of patients and mortality rate from all causes, for six

randomized controlled experiments comparing the use of

aspirin and placebo by patients following a heart attack.

Table 2.1 . Aspirin meta-analysis data.

Aspirin Placebo
# of Mortality # of Mortality

Study (i) Patients Rate (%) Patients Rate (%)
UK-1 615 7.97 624 10.74
CDPA 758 5.80 771 8.30
GAMS 317 8.52 309 10.36
UK-2 832 12.26 850 14.82
PARIS 810 10.49 406 12.81
AMIS 2267 10.85 2257 9.70
Total 5599 9.88 5217 10.73

Comparison

yi = Diff
√

Vi = SE

Study (i) (%) of Diff (%) Z
‡
i

p
§
i

UK-1 2.77 1.65 1.68 .047
CDPA 2.50 1.31 1.91 .028
GAMS 1.84 2.34 0.79 .216
UK-2 2.56 1.67 1.54 .062
PARIS 2.31 1.98 1.17 .129
AMIS –1.15 0.90 –1.27 .898
Total 0.86 0.59 1.47 .072

‡Zi denotes the ratio of the difference in mortality rates over its standard
error, assuming a binomial distribution. §pi is the one-sided
p value associated with Zi, using the normal approximation.
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Meta-Analysis

The first five trials are reasonably consistent in showing a
(weighted average) mortality decline for aspirin patients of

2.3 percentage points, a 20% drop from the (weighted
average) placebo mortality of 11.5% (this difference is

highly clinically significant). However, the sixth and largest
trial, AMIS, went the other way: an increase of 1.2

percentage points in aspirin mortality (a 12% rise from the
placebo baseline of 9.7%).

Some relevant questions (Draper, 1995): Q1 Why did

AMIS get such different results? Q2 What should be done

next to reduce the uncertainty about Q1? Q3 If I were a

doctor treating a patient like those eligible for the trials in
Table 2.1, what therapy should I employ while answers to Q1

and Q2 are sought? One possible paraphrase of Q3: Q4

How should the information from these six experiments be
combined to produce a more informative summary than

those obtained from each experiment by itself?

The discipline of meta-analysis is devoted to answering

questions like Q4. One leading school of frequentist
meta-analysis (e.g., Hedges and Olkin, 1985) looks for

methods for combining the Z and p values in Table 2.1, an
approach that often leads only to an overall p value. A more
satisfying form of meta-analysis (which has both frequentist
and Bayesian versions) builds a hierarchical model (HM)

that indicates how to combine information from the
mortality differences in the Table. A Gaussian meta-analysis

model for the aspirin data, for example (Draper et al.,
1993a), might look like

(θ, σ2) ∼ p(θ, σ2) (prior)

(θi|θ, σ2)
IID∼ N

(
θ, σ2

)
(underlying effects) (1)

(yi|θi)
indep∼ N(θi, Vi) (data) .
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A Gaussian HM

The bottom level of (10), the data level of the HM, says
that—because of relevant differences in patient cohorts and

treatment protocols—each study has its own underlying
treatment effect θi, and the observed mortality differences yi

are like random draws from a normal distribution with mean
θi and variance Vi (the normality is reasonable because of the
CLT, given the large numbers of patients). In meta-analyses
of data like those in Table 2.1 the Vi are typically taken to
be known (again because the patient sample sizes are so
big), Vi = SE2

i , where SEi is the standard error of the
mortality difference for study i in Table 2.1.

The middle level of the HM is where I would bring in the

study-level covariates , if I have any, to try to explain why

the studies differ in their underlying effects. Here there are
no study-level covariates, so the middle level of (10) is
equivalent to a Gaussian regression with no predictor

variables. Why the “error” distribution should be Gaussian at
this level of the HM is not clear—it’s a conventional choice,
not a choice that is automatically scientifically reasonable (in

fact I will challenge it later). σ2 in this model represents
study-level heterogeneity.

The top level of (10) is where the prior distribution on the
regression parameters from the middle level is specified.

Here, with only an intercept term in the regression model, a
popular conventional choice is a normal/scaled-inverse-χ2

prior (more about this later; see Gelman et al. 2003).

Fixed effects and random effects. If σ2 were known
somehow to be 0, all of the θi would have to be equal

deterministically to a common value θ, yielding a simpler

model: (yi|θ) indep∼ N(θ, Vi), θ ∼ p(θ). Meta-analysts call this a
fixed-effects model, and refer to model (10) as a

random-effects model. When σ2 is not assumed to be 0,
with this terminology the θi are called random effects.

4



4.2 Approximate Fitting of Gaussian

Hierarchical Models: Maximum Likeli-

hood and Empirical Bayes

Fitting HM (10). Some algebra based on model (10) yields
that the conditional distributions of the study-level effects θi

given the data and the parameters (θ, σ2),
have a simple and revealing form:

(θi|yi, θ, σ2)
indep∼ N(θ∗i , Vi(1 − Bi)) (2)

with θ∗i = (1 − Bi) yi + Bi θ and Bi =
Vi

Vi + σ2
. (3)

In other words, the conditional mean of the effect for study i

given yi, θ, and σ2 is a weighted average of the sample

mean for that study, yi, and the overall mean θ.

The weights are given by the so-called shrinkage factors Bi

(e.g., Draper et al., 1993a), which in turn depend on how the
variability Vi within study i compares to the between-study
variability σ2: the more accurately yi estimates θi, the more
weight the “local” estimate yi gets in the weighted average.

The term shrinkage refers to the fact that, with this
approach, unusually high or low individual studies are drawn

back or “shrunken” toward the overall mean in the
calculation (1 − Bi) yi + Bi θ. Note that θ∗i uses data from all
the studies to estimate the effect for study i—this is referred

to as borrowing strength in the estimation process.

Closed-form expressions for p(θ|y) and p(θi|y) with
y = (y1, . . . , yk), k = 6 are not available even with a

normal/scaled-inverse-χ2 prior for (θ, σ2); a full Bayesian
analysis of these data is most readily accomplished with
Markov chain Monte Carlo methods, to which we will

soon turn.
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Maximum Likelihood
and Empirical Bayes

In the meantime maximum likelihood calculations provide
some idea of what to expect: the likelihood function based

on model (10) is

l(θ, σ2|y) = c

k∏

i=1

1√
Vi + σ2

exp

[
−1

2

k∑

i=1

(yi − θ)2

Vi + σ2

]
. (4)

The maximum likelihood estimates (MLEs) (θ̂, σ̂2) then turn
out to be the iterative solutions to the following equations:

θ̂ =

∑k
i=1 Ŵi yi∑k

i=1 Ŵi

and σ̂2 =

∑k
i=1 Ŵ 2

i

[
(yi − θ̂)2 − Vi

]
∑k

i=1 Ŵ 2
i

, (5)

where Ŵi =
1

Vi + σ̂2
. (6)

Start with σ̂2 = 0 and iterate (14–15) to convergence (if σ̂2

converges to a negative value, σ̂2 = 0 is the MLE). The
MLEs of the θi are then given by

θ̂i = (1 − B̂i) yi + B̂i θ where B̂i =
Vi

Vi + σ̂2
. (7)

These are called empirical Bayes (EB) estimates of the

study-level effects, because it turns out that this analysis
approximates a fully Bayesian solution by (in effect) using
the data to estimate the prior specifications for θ and σ2.

Large-sample (mainly meaning large k) approximations to
the (frequentist) distributions of the MLEs are given by

θ̂ ∼ N


θ,

[
k∑

i=1

1

Vi + σ̂2

]−1

 and θ̂i ∼ N

(
θi, Vi(1 − B̂i)

)
. (8)

6



MLEB (continued)

NB The variances in (17) do not account fully for the
uncertainty in σ2 and therefore underestimate the actual
sampling variances for small k (adjustments are available;

see, e.g., Morris (1983, 1988)).

MLEB estimation can be implemented simply in about 15
lines of S+ or R code (Table 2.2).

Table 2.2 . S+ or R program to perform MLEB calculations.

mleb <- function( y, V, m ) {

sigma.2 <- 0.0
for ( i in 1:m ) {

W <- 1.0 / ( V + sigma.2 )
theta <- sum( W * y ) / sum( W )

sigma.2 <- sum( W^2 * ( ( y - theta )^2 - V ) ) / sum( W^2 )
B <- V / ( V + sigma.2 )
effects <- ( 1 - B ) * y + B * theta
se.theta <- 1.0 / sqrt( sum( 1.0 / ( V + sigma.2 ) ) )
se.effects <- sqrt( V * ( 1.0 - B ) )

print( c( i, theta, se.theta, sigma.2 ) )
print( cbind( W, ( W / sum( W ) ), B, y, effects, se.effects ) )

}
}

With the aspirin data it takes 18 iterations (less than 0.1
second on a 400MHz UltraSPARC Unix machine) to get 4-digit
convergence to the summaries in Table 2.3 and the following

estimates (standard errors in parentheses):

θ̂ = 1.45 (0.809), σ̂ = 1.24.

Table 2.3 . Maximum likelihood empirical Bayes
meta-analysis of the aspirin data.

study(i) Ŵi normalized Ŵi B̂i yi θ̂i ŜE(θ̂i)
1 0.235 0.154 0.640 2.77 1.92 0.990
2 0.308 0.202 0.529 2.50 1.94 0.899
3 0.143 0.0934 0.782 1.84 1.53 1.09
4 0.232 0.151 0.646 2.56 1.84 0.994
5 0.183 0.120 0.719 2.31 1.69 1.05
6 0.427 0.280 0.346 −1.15 −0.252 0.728
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Aspirin Meta-Analysis: Conclusions

Note that (1) AMIS gets much less weight (normalized Ŵi)
than would have been expected given its small Vi; (2) the
shrinkage factors (B̂i) are considerable, with AMIS shrunk

almost all the way into positive territory (see Figure 2.1); (3)
there is considerable study-level heterogeneity (σ̂

.
= 1.24

percentage points of mortality); and (4) the standard errors
of the effects are by and large smaller than the

√
Vi (from

the borrowing of strength) but are still considerable.

Estimated Effects
-1 0 1 2 3

raw estimates (y)

shrunken estimates (theta.hat)

Figure 2.1. Shrinkage plot for the aspirin MLEB meta-analysis.

The 95% interval estimate of θ, the overall underlying effect
of aspirin on mortality, from this approach comes out

θ̂ ± 1.96 · ŜE(θ̂)
.
= (−0.140,3.03),

which if interpreted Bayesianly gives

P(aspirin reduces mortality|data)
.
= 1 − Φ

(
0−1.45
0.809

)
= 0.96 ,

where Φ is the standard normal CDF. Thus although the
interval includes 0, so that in a frequentist sense the effect is
not statistically significant, in fact from a Bayesian point

of view the evidence is running strongly in favor of
aspirin’s usefulness.
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WinBUGS Analysis of Aspirin Data

Aspirin meta-analysis revisited. I create three

files for WinBUGS: a model file, a data file, and an

initial values file (I’m using the most recent

release, 1.4.1, of WinBUGS).

The (first) model file for the aspirin data:

{

mu ~ dnorm( 0.0, 1.0E-6 )
tau.theta ~ dgamma( 1.0E-3, 1.0E-3 )

for ( i in 1:k ) {

theta[ i ] ~ dnorm( mu, tau.theta )
y[ i ] ~ dnorm( theta[ i ], tau.y[ i ] )

}

sigma.theta <- 1.0 / sqrt( tau.theta )

}
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WinBUGS Analysis of Aspirin Data

Here µ plays the role of θ in model (10) above to avoid using
the name theta twice for two different purposes in the

WinBUGS program.

In specifying a normal distribution WinBUGS works not with a
standard deviation (SD) or a variance but with a

precision—the reciprocal of the variance—so that the
N(µ, σ2) distribution is specified by dnorm( mu, tau )

with τ = 1
σ2 .

Then the SD has to be computed as a derived quantity
(σ = 1√

τ
) which is written above as

sigma.theta <- 1.0 / sqrt( tau.theta )

If—before the aspirin experiments were performed—I’m
relatively ignorant about the quantities θ (µ) and σ in model
(10), or equivalently µ and τ = 1

σ2 , I can build a diffuse or
flat prior for both quantities that expresses this relative

ignorance.

Since µ lives on (−∞,∞) a convenient choice for a flat prior
for it is a normal distribution with mean (say) 0 and very

small precision: mu ∼ dnorm( 0.0, 1.0E-6 )

For tau.theta, which lives on (0,∞), I want something that’s
flat throughout (almost) all of that range; a convenient

choice (to get an initial idea of where the posterior
distribution for sigma.theta is concentrated) is a gamma

distribution with small positive values of both of its
parameters.

This is the Γ(ε, ε) distribution for some small ε > 0 like

0.001: tau.theta ∼ dgamma( 1.0E-3, 1.0E-3 )
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WinBUGS Aspirin Analysis (continued)
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Figure 3.1. The Γ(0.001,0.001) distribution.

The data file in the aspirin meta-analysis is

list( k = 6, y = c( 2.77, 2.50, 1.84, 2.56, 2.31, -1.15 ),
tau.y = c( 0.3673, 0.5827, 0.1826, 0.3586, 0.2551, 1.235 ) )

Here, e.g., tau.y[ 1 ] = 1
1.652

.
= 0.3673, where 1.65 is the

standard error of the difference y[ 1 ] for experiment 1 in
Table 2.1 on p. 20.

Finally, the initial values file in the aspirin meta-analysis is

list( mu = 0.0, tau.theta = 1.0 )

In a simple example like this there’s no harm in starting the
Markov chain off in a generic location: since µ and τθ live on

(−∞,∞) and (0,∞), convenient generic choices for their
starting values are 0 and 1, respectively (more care may be

required in models with more complex
random-effects structure).
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WinBUGS Aspirin Analysis (continued)

I (1) get a Specification Tool from the Model menu, (2) click
on the model window and click check model, (3) click on the
data window and click load data and compile, (4) click on

the initial values window and click load inits, and (5) click
gen inits (because the random effects θi were uninitialized in
the inits file); I’m now ready to do some MCMC sampling.

I (6) get an Update Tool from the Model menu, and click
update to perform a burn-in of 1,000 iterations (the

default), which takes 0s at 1.6 Pentium GHz; (7) I then get
a Sample Monitoring Tool from the Inference menu, and type

sigma.theta and click set.
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WinBUGS Aspirin Analysis (continued)

(8) I type 50000 in the updates window in the Update Tool and
click update to get a monitoring run of 50,000 iterations

(this took 15s).

Then (9) selecting sigma.theta in the node window, all 10
buttons from clear through autoC are active, and I click on
history (to get a Time Series window), density (to get a
Kernel density window), autoC to get an Autocorrelation
function window, and stats (to get a Node statistics

window), yielding the screen above.

The output of an MCMC sampler, when considered as a
time series, often exhibits positive autocorrelation; in fact

it often looks like a realization of an autoregressive ARp

model of order p = 1 (θt = α + βθt−1 + et) with positive
first-order autocorrelation ρ.
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WinBUGS Aspirin Analysis (continued)

This does not affect the validity of Monte Carlo inferences
about the unknowns (e.g., the mean of any stationary
stochastic process is a consistent estimator of the

underlying process mean), but it does affect the efficiency
of these inferences: for example, the Monte Carlo variance of

the sample mean θ̄ based on M draws from an AR1 time
series is

V
(
θ̄
)
=

σ2
θ

M

(
1 + ρ

1 − ρ

)
, (9)

and the sample size inflation factor 1+ρ

1−ρ
→ ∞ as ρ → +1.

An MCMC sampler which produces output for any given
unknown θ with ρ near 0 (if ρ = 0 the output is white noise,
i.e., equivalent to IID draws from the posterior) is said to be

mixing well in that unknown.

The time series trace for σθ above is only mixing moderately
well: the autocorrelation function has the familiar ski-slope
shape of an AR1 series with ρ

.
= 0.7 (the height of the bar

at lag 1).

The marginal posterior distribution for σθ (from the Kernel
density window) looks heavily skewed to the right, which

makes sense for a scale parameter.

The posterior mean and SD of σθ (using the Γ(ε, ε) prior
for τθ) are estimated to be 1.14 and 1.00, respectively; the

Monte Carlo standard error of the posterior mean
estimate is 0.021 (so that with 50,000 monitoring iterations
I don’t yet have 3 significant figures of accuracy for the
posterior mean); the posterior median is estimated to be
0.96; and a 95% central interval for σθ with this prior is

estimated to run from 0.042 to 3.57.
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WinBUGS Aspirin Analysis (continued)

The main thing to notice, however, is that the range of
plausible values for sigma.theta in its posterior is

approximately from 0 to 16.

It has recently been shown that the simplest diffuse prior
on σθ that has good calibration properties (i.e., such that

95% nominal Bayesian interval estimates for all of the
parameters in model (10) do in fact have actual coverage

close to 95%) is

σθ ∼ U(0, c), (10)

where c is chosen to be (roughly) the smallest value that
doesn’t truncate the likelihood function for σθ; here it’s

evident that c
.
= 16 will work well.
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WinBUGS Aspirin Analysis (continued)

So I estimate a second model placing a Uniform(0, c) prior
on σθ (this model also requires a new initial values file that

initializes sigma.theta instead of tau.theta).

This time in the Sample Monitor Tool I set all of the
interesting quantities: mu, sigma.theta, theta, and

positive.effect, and I use the same MCMC strategy as
before (a burn-in of 1,000 followed by a monitoring run

of 50,000).
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WinBUGS Aspirin Analysis (continued)

With the Uniform(0, c) prior on σθ the posterior mean of σθ is
now sharply higher than before (2.02 versus the 1.14 value
I got with the initial Γ(ε, ε) prior (this sort of discrepancy

will only arise when the number of studies k is small; when it
does arise I trust the results from the Uniform(0, c) prior).

Note that the posterior mean of σθ is also quite a bit bigger
than the value (1.24) obtained from MLEB back on page

25—this is a reflection of the tendency of MLEB to
understate the between-study heterogeneity in model

(10) with small k.
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WinBUGS Aspirin Analysis (continued)

On pp. 25–26 above we saw that the MLEB estimate of µ
was 1.45 with an approximate standard error of 0.809, and

an approximate 95% confidence interval for µ ran from
−0.14 to +3.03.

The corresponding Bayesian results are: posterior mean
1.52, posterior SD 1.21, 95% interval (–0.72, 4.06).

As is often true, the simple MLEB approximations leading to
these estimates have underestimated the actual

uncertainty about µ: the Bayesian 95% interval with the
Uniform prior is 50% wider.

It’s easy to monitor the posterior probability that aspirin
is beneficial, with the built-in step function applied to mu:

P(µ > 0|data, diffuse prior information)
.
= 0.93, i.e.,

posterior betting odds of about 12.5 to 1 that aspirin
reduces mortality.
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WinBUGS Aspirin Analysis (continued)

The marginal density plots of the θi values show interesting
departures from normality, and the Bayesian estimates (a)
exhibit rather less shrinkage and (b) have 27–43% larger

uncertainty estimates.

Table 3.1 . MLEB and Bayesian (posterior mean) estimates of the θi.

Maximum Likelihood Bayesian Posterior

study(i) θ̂i ŜE(θ̂i) mean SD
1 1.92 0.990 2.11 1.33
2 1.94 0.899 2.06 1.14
3 1.53 1.09 1.59 1.56
4 1.84 0.994 1.99 1.33
5 1.69 1.05 1.82 1.46
6 −0.252 0.728 −0.44 0.95
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Hierarchical Model Expansion
Looking at the shrinkage plot on p. 26 or the raw data
values themselves, it’s evident that a Gaussian model for
the θi may not be appropriate: study 6 is so different than
the other 5 that a heavier-tailed distribution may be a

better choice.

This suggests expanding the HM (10), by embedding it in a
richer model class of which it’s a special case (this is the

main Bayesian approach in practice to dealing with
model inadequacies).

A natural choice would be a t model for the θi with
unknown degrees of freedom ν:

(θ, σ2, ν) ∼ p(θ, σ2, ν) (prior)

(θi|θ, σ2, ν)
IID∼ t

(
θ, σ2, ν

)
(underlying effects) (11)

(yi|θi)
indep∼ N(θi, Vi) (data) .

Here η ∼ t
(
θ, σ2, ν

)
just means that

(
η−θ

σ

)
follows a standard

t distribution with ν degrees of freedom. This is amazingly
easy to implement in WinBUGS (it is considerably more

difficult to carry out an analogous ML analysis).
The new model file is

{

mu ~ dnorm( 0.0, 1.0E-6 )
sigma.theta ~ dunif( 0.0, 16.0 )
nu ~ dunif( 3.0, 30.0 )

for ( i in 1:k ) {

theta[ i ] ~ dt( mu, tau.theta, nu )
y[ i ] ~ dnorm( theta[ i ], tau.y[ i ] )

}

tau.theta <- 1.0 / pow( sigma.theta, 2 )

}
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Model Expansion (continued)

To express comparative prior ignorance about ν I use a
uniform prior on the interval from 2.0 to 30.0 (below ν = 2
the t distribution has infinite variance, and above about 30

it starts to be indistinguishable in practice from
the Gaussian).

A burn-in of 1,000 and a monitoring run of 100,000
iterations takes about twice as long as with 50,000

iterations in the Gaussian model (i.e., about the same
speed per iteration) and yields the

posterior summaries above.

It’s clear that there’s little information in the likelihood
function about ν: the prior and posterior for this parameter

virtually coincide.

The results for µ and the θi are almost unchanged; this
would not necessarily be the case if study 6 had been

more extreme.
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5.3 Hierarchical Model
Selection: A Case Study

Case Study: In-home geriatric assessment

(IHGA). In an experiment conducted in the 1980s

(Hendriksen et al. 1984), 572 elderly people living

in a number of villages in Denmark were

randomized, 287 to a control (C) group (who

received standard care) and 285 to an

experimental (E) group (who received standard

care plus IHGA: a kind of preventive medicine in

which each person’s medical and social needs were

assessed and acted upon individually).

One important outcome was the number of

hospitalizations during the two-year life

of the study (Table 6.1).

Table 6.1. Distribution of number of hospitalizations in the
IHGA study over a two-year period.

Number of Hospitalizations
Group 0 1 2 3 4 5 6 7 n Mean SD

Control 138 77 46 12 8 4 0 2 287 0.944 1.24
Experimental 147 83 37 13 3 1 1 0 285 0.768 1.01

Evidently IHGA lowered the mean hospitalization

rate (for these elderly Danish people, at least) by

(0.944 − 0.768) = 0.176, which is about a

100
(
0.768−0.944

0.944

)
= 19% reduction from the

control level, a difference that’s

large in clinical terms.
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Modeling the IHGA Data

An off-the-shelf analysis of this experiment might

pretend (Model 0) that the data are Gaussian,
(
Ci|µC, σ2

C

)
IID∼ N

(
µC, σ2

C

)
, i = 1, . . . , nC,

(
Ej|µE, σ2

E

)
IID∼ N

(
µE, σ2

E

)
, j = 1, . . . , nE, (12)

and use the ordinary frequentist

two-independent-samples “z-machinery”:
rosalind 15> R

R : Copyright 2001, The R Development Core Team
Version 1.2.1 (2001-01-15)

> C <- c( rep( 0, 138 ), rep( 1, 77 ), rep( 2, 46 ),
rep( 3, 12 ), rep( 4, 8 ), rep( 5, 4 ), rep( 7, 2 ) )

> print( n.C <- length( C ) )

[1] 287 # sample size in the control group

> mean( C )

[1] 0.9442509 # control group mean

> sqrt( var( C ) )

[1] 1.239089 # control group
# standard deviation (SD)

> table( C )

0 1 2 3 4 5 7 # control group
138 77 46 12 8 4 2 # frequency distribution
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Analysis of Model 0

> E <- c( rep( 0, 147 ), rep( 1, 83 ), rep( 2, 37 ),
rep( 3, 13 ),rep( 4, 3 ), rep( 5, 1 ), rep( 6, 1 ) )

> print( n.E <- length( E ) )

[1] 285 # sample size in the
# experimental group

> mean( E )

[1] 0.7684211 # experimental group mean

> sqrt( var( E ) )

[1] 1.008268 # experimental group SD

> table( E )

0 1 2 3 4 5 6 # experimental group
147 83 37 13 3 1 1 # frequency distribution

> print( effect <- mean( E ) - mean( C ) )

[1] -0.1758298 # mean difference ( E - C )

> effect / mean( C )

[1] -0.1862109 # relative difference ( E - C ) / C

> SE.effect <- sqrt( var( C ) / n.C + var( E ) / n.E )

[1] 0.09442807 # standard error of the difference

> print( CI <- c( effect - 1.96 * SE.effect,
effect + 1.96 * SE.effect ) )

[1] -0.3609 0.009249 # the 95% confidence interval from
# model 0 runs from -.36 to +.01
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Deficiencies of Model 0

The frequentist analysis of Model 0 is equivalent

to a Bayesian analysis of the same model with

diffuse priors on the control and experimental

group means and SDs (µC, σC, µE, σE), and is

summarized in Table 6.2.

Table 6.2. Summary of analysis of Model 0.

Posterior
Mean SD 95% Interval

Treatment effect
(µE − µC)

−0.176 0.0944 (−0.361,0.009)

However, both distributions have long right-hand

tails; in fact they look rather Poisson.
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Figure 6.1. Histograms of control and experimental numbers
of hospitalizations.
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5.4 Poisson Fixed-Effects Modeling

R code to make the histograms:

> x11( ) # to open a
# graphics window

> par( mfrow = c( 1, 2 ) ) # to plot two histograms

> hist( C, nclass = 8, probability = T,
xlab = ’Days Hospitalized’, ylab = ’Density’,
xlim = c( 0, 7 ), ylim = c( 0, 0.8 ) )

> text( 4, 0.4, ’Control’ )

> hist( E, nclass = 8, probability = T,
xlab = ’Days Hospitalized’, ylab = ’Density’,
xlim = c( 0, 7 ), ylim = c( 0, 0.8 ) )

> text( 4, 0.4, ’Experimental’ )

So I created a classicBUGS file called poisson1.bug

that looked like this:

model poisson1;

const

n.C = 287, n.E = 285;

var

lambda.C, lambda.E, C[ n.C ], E[ n.E ], effect;

data C in "poisson-C.dat", E in "poisson-E.dat";

inits in "poisson1.in";
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Initial Poisson Modeling (continued)

{

lambda.C ~ dgamma( 0.001, 0.001 );
lambda.E ~ dgamma( 0.001, 0.001 );

for ( i in 1:n.C ) {

C[ i ] ~ dpois( lambda.C );

}

for ( j in 1:n.E ) {

E[ j ] ~ dpois( lambda.E );

}

effect <- lambda.E - lambda.C;

}

poisson1.in initializes both λC and λE to 1.0; the

Γ(0.001,0.001) priors for λC and λE are chosen (as

usual to create diffuseness) to be flat in the region

in which the likelihood is appreciable:

> sqrt( var( C ) / n.C )

[1] 0.07314114

> sqrt( var( E ) / n.E )

[1] 0.05972466

> c( mean( C ) - 3.0 * sqrt( var( C ) / n.C ),
mean( C ) + 3.0 * sqrt( var( C ) / n.C ) )
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Initial Poisson Modeling (continued)

[1] 0.7248275 1.1636743

> c( mean( E ) - 3.0 * sqrt( var( E ) / n.E ),
mean( E ) + 3.0 * sqrt( var( E ) / n.E ) )

[1] 0.5892471 0.9475950

> lambda.grid <- seq( 0.01, 2.0, 0.01 )

> plot( lambda.grid, 0.001 * dgamma( lambda.grid, 0.001 ),
type = ’l’, xlab = ’Lambda’, ylab = ’Density’ )

The likelihood under the Gaussian model is

concentrated for λC from about 0.7 to 1.2, and

that for λE from about 0.6 to 1; you can see from

the plot that across those ranges the

Γ(0.001, 0.001) prior is essentially constant.
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Figure 6.2. The Γ(0.001,0.001) distribution in the region in
which the likelihoods for λC and λE are appreciable.
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WinBUGS Implementation

The screendump above presents part of the

results of fitting the 2-independent-samples

Poisson model at the top of page 7 in WinBUGS.

A burn-in of 2,000 was almost instantaneous at

2.0 PC GHz and revealed good mixing for the

three main quantities of interest.
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WinBUGS Implementation (continued)

A monitoring run of 8,000 reveals that the effect

parameter in the 2-independent-samples

Poisson model is behaving like white noise, so

that already with only 8,000 iterations the

posterior mean has a Monte Carlo standard error

of less than 0.001.
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Initial Poisson Modeling (continued)

Thus a burn-in of 2,000 and a monitoring run of

8,000 yields good MCMC diagnostics and

permits a comparison between model 0 (Gaussian)

and model 1 (Poisson), as in Table 6.3.

Table 6.3. Comparison of inferential conclusions
from models 0 and 1.

λC Posterior Posterior Central 95%

Model Mean SD Interval
Gaussian 0.944 0.0731 (0.801,1.09)
Poisson 0.943 0.0577 (0.832,1.06)

λE Posterior Posterior Central 95%

Model Mean SD Interval
Gaussian 0.768 0.0597 (0.651,0.885)
Poisson 0.769 0.0521 (0.671,0.875)

∆ = λE − λC Posterior Posterior Central 95%

Model Mean SD Interval
Gaussian -0.176 0.0944 (−0.361,0.009)
Poisson -0.174 0.0774 (−0.325,−0.024)

The two models produce almost identical point

estimates, but the Poisson model leads to

sharper inferences (e.g., the posterior SD for the

treatment effect ∆ = λE − λC is 22% larger in

model 0 than in model 1).
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5.5 Additive and
Multiplicative Treatment Effects

This is the same point we noticed with the NB10

data—when a location parameter is the only thing

at issue, the Gaussian is a conservative modeling

choice (intuitively, the Poisson gains its “extra

accuracy” from the variance and the mean being

equal, which permits second-moment information

to help in estimating the λ values along with the

usual first-moment information).

Both the Gaussian and Poisson models so far

implicitly assume that the treatment effect

is additive:

E
st
= C + effect, (13)

where
st
= means is stochastically equal to; in other

words, apart from random variation the effect of

the IHGA is to add or subtract a constant to or

from each person’s underlying rate of

hospitalization.

However, since the outcome variable is

non-negative, it is plausible that a better model

for the data is

E
st
= (1 + effect)C. (14)
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Additive vs. Multiplicative Effect

Here the treatment effect is multiplicative—in

other words, apart from random variation the

effect of the IHGA is to multiply each person’s

underlying rate of hospitalization by a constant

above or below 1.

A qqplot of the control and experimental outcome

values can in some cases be helpful in choosing

between additive and multiplicative models:

> CEqq <- qqplot( C, E, plot = F )

> table( CEqq$y, CEqq$x )

Interpolated C values
0 0.965 1 1.5 2 2.82 3 3.91 4 4.96 5 6.99 7

0 137 1 9 0 0 0 0 0 0 0 0 0 0
1 0 0 66 1 16 0 0 0 0 0 0 0 0
2 0 0 0 0 29 1 7 0 0 0 0 0 0

E 3 0 0 0 0 0 0 4 1 7 1 0 0 0
4 0 0 0 0 0 0 0 0 0 0 3 0 0
5 0 0 0 0 0 0 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0 0 0 0 0 0 1

> symbols( c( 0, 0.964798, 1, 1, 1.5, 2, 2, 2.823944, 3, 3,
3.908447, 4, 4.964813, 5, 6.985962, 7 ), c( rep( 0, 3 ),
rep( 1, 3 ), rep( 2, 3 ), rep( 3, 4 ), 4, 5, 6 ),
circles = c( 137, 1, 9, 66, 1, 16, 29, 1, 7, 4, 1, 7, 1,
3, 1, 1 ), xlab = ’C’, ylab = ’E’ )
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Additive vs. Multiplicative Effect

> abline( 0, 1 ) # E = C (no effect)

> abline( 0, 0.793, lty = 2 ) # E = 0.816 C
# (multiplicative)

> abline( -0.174, 1, lty = 3 ) # E = C - 0.174 (additive)

C

E

0 2 4 6

0
2

4
6

Figure 6.3. QQplot of E versus C values, with the radii of
the plotted circles proportional to the number of observations

at the indicated point. The solid line corresponds to no
treatment effect, the small dotted line to the best-fitting

multiplicative model (E
st
= 0.816C), and the large dotted line

to the best-fitting additive model (E
st
= C − 0.174).

Here, because the Poisson model has only one

parameter for both location and scale, the

multiplicative and additive formulations fit equally

well, but the multiplicative model generalizes

more readily (see below).
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A Multiplicative Poisson Model

A simple way to write the multiplicative model is

to re-express the data in the form of a regression

of the outcome y on a dummy variable x which is

1 if the person was in the experimental group and

0 if he/she was in the control group:

i 1 2 · · · 287 288 289 · · · 572
xi 0 0 · · · 0 1 1 · · · 1
yi 1 0 · · · 2 0 3 · · · 1

Then for i = 1, . . . , n = 572 the

multiplicative model can be written

(yi |λi)
indep∼ Poisson(λi)

log(λi) = γ0 + γ1xi (15)

(γ0, γ1) ∼ diffuse

In this model the control people have

log(λi) = γ0 + γ1(0) = γ0, i.e., λC = eγ0, (16)

and the experimental people have

log(λi) = γ0 + γ1(1) = γ0 + γ1, i.e.,

λE = eγ0+γ1 = eγ0eγ1 = λCeγ1. (17)

Now you may remember from basic Taylor series

that for γ1 not too far from 0

eγ1
.
= 1 + γ1, (18)
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A Multiplicative Poisson Model

so that finally (for γ1 fairly near 0)

λE
.
= (1 + γ1)λC, (19)

which is a way of expressing equation (3) in
Poisson language.

Fitting this model in classicBUGS is easy:

model poisson2;

const

n = 572;

var

gamma.0, gamma.1, lambda[ n ], x[ n ], y[ n ], lambda.C,
lambda.E, mult.effect;

data x in "poisson-x.dat", y in "poisson-y.dat";
inits in "poisson2.in";

{
gamma.0 ~ dnorm( 0.0, 1.0E-4 ); # flat priors for
gamma.1 ~ dnorm( 0.0, 1.0E-4 ); # gamma.0 and gamma.1

for ( i in 1:n ) {

log( lambda[ i ] ) <- gamma.0 + gamma.1 * x[ i ];
y[ i ] ~ dpois( lambda[ i ] );

}

lambda.C <- exp( gamma.0 );
lambda.E <- exp( gamma.0 + gamma.1 );
mult.effect <- exp( gamma.1 );

}
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WinBUGS Implementation (continued)

The multiplicative Poisson model (4) takes

longer to run—2,000 burn-in iterations now take

about 4 seconds at 2.0 PC GHz—but still

exhibits fairly good mixing, as we’ll see below.

37



WinBUGS Implementation (continued)

A total of 10,000 iterations (the chain started

essentially in equilibrium, so the burn-in can be

absorbed into the monitoring run) reveals that the

multiplicative effect parameter eγ1 in model (4)

behaves like an AR1 series with ρ̂1
.
= 0.5, but the

Monte Carlo standard error for the posterior mean

is still only about 0.001 with a run of this length.
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Additive versus Multiplicative Fit

A burn-in of 2,000 and a monitoring run of 8,000

again yields good MCMC diagnostics and

permits a comparison between the additive and

multiplicative Poisson models, as in Table 6.4.

Table 6.4. Comparison of inferential conclusions
from the additive and multiplicative Poisson models.

λC Posterior Posterior Central 95%

Model Mean SD Interval
additive 0.943 0.0577 (0.832,1.06)

multiplicative 0.945 0.0574 (0.837,1.06)

λE Posterior Posterior Central 95%

Model Mean SD Interval
additive 0.769 0.0521 (0.671,0.875)

multiplicative 0.768 0.0518 (0.671,0.872)

effect Posterior Posterior Central 95%
Model Mean SD Interval
additive -0.174 0.0774 (−0.325,−0.024)

multiplicative -0.184 0.0743 (−0.324,−0.033)

With this model it is as if the experimental

people’s average underlying rates of hospitalization

have been multiplied by 0.82,

give or take about 0.07.

The additive and multiplicative effects are similar

here, because both are not too far from zero.
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Extra-Poisson Variability

However, none of this has verified that the

Poisson model is reasonable for these data—the

histograms show that the Gaussian model is clearly

unreasonable, but the diagnostic plots in WinBUGS

and CODA only check on the adequacy of the

MCMC sampling, not the model.

In fact we had a good clue that the data are not

Poisson back on page 2: as noted in part 2, the

Poisson(λ) distribution has mean λ and also

variance λ—in other words, the

variance-to-mean-ratio (VTMR) for the Poisson

is 1. But

> var( C ) / mean( C )
[1] 1.62599
> var( E ) / mean( E )
[1] 1.322979

i.e., the data exhibit extra-Poisson variability

(VTMR > 1).

This actually makes good sense if you think

about it, as follows.

The Poisson model assumes that everybody in the

control group has the same underlying rate λC

of hospitalization, and similarly everybody in the

experimental group has the same rate λE.
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Unobserved Predictor Variables

In reality it’s far more reasonable to think that

each person has his/her own underlying rate of

hospitalization that depends on baseline health

status, age, and various other things.

Now Hendriksen forgot to measure (or at least

to report on) these other variables (he may have

hoped that the randomization would balance them

between C and E)—the only predictor we have is

x, the experimental status dummy variable—so

the best we can do is to lump all of these other

unobserved predictor variables together into a

kind of “error” term e.

This amounts to expanding the second Poisson

model (4) above: for i = 1, . . . , n = 572

the new model is

(yi |λi)
indep∼ Poisson(λi)

log(λi) = γ0 + γ1xi + ei (20)

ei
IID∼ N

(
0, σ2

e

)

(
γ0, γ1, σ2

e

)
∼ diffuse.
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5.6 Random-
Effects Poisson Regression

The Gaussian choice for the error distribution is

conventional, not dictated by the science of the

problem (although if there were a lot of

unobserved predictors hidden inside the ei their

weighted sum would be close to normal by the

Central Limit Theorem).

Model (9) is an expansion of the earlier model (4)

because you can obtain model (4) from (9) by

setting σ2
e = 0, whereas with (9) we’re letting σ2

e

vary and learning about it from the data.

The addition of the random effects ei to the

model is one way to address the extra-Poisson

variability: this model would be called a lognormal

mixture of Poisson distributions (or a random

effects Poisson regression (REPR) model)

because it’s as if each person’s λ is drawn from a

lognormal distribution and then his/her number of

hospitalizations y is drawn from a Poisson

distribution with his/her λ, and this mixing process

will make the variance of y

bigger than its mean.
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WinBUGS Implementation

The new WinBUGS model is

{

gamma.0 ~ dnorm( 0.0, 1.0E-4 )
gamma.1 ~ dnorm( 0.0, 1.0E-4 )
tau.e ~ dgamma( 0.001, 0.001 )

for ( i in 1:n ) {

e[ i ] ~ dnorm( 0.0, tau.e )
log( lambda[ i ] ) <- gamma.0 + gamma.1 * x[ i ] +
e[ i ]

y[ i ] ~ dpois( lambda[ i ] )

}

lambda.C <- exp( gamma.0 )
lambda.E <- exp( gamma.0 + gamma.1 )
mult.effect <- exp( gamma.1 )
sigma.e <- 1.0 / sqrt( tau.e )

}

I again use a diffuse Γ (ε, ε) prior (with ε = 0.001)

for the precision τe of the random effects.
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WinBUGS Implementation (continued)

With a model like that in equation (9), there are n random
effects ei that need to be sampled as nodes in the graph (the
ei play the role of auxiliary variables in the MCMC) along
with the fixed effects (γ0, γ1) and the variance parameter σ2

e .

In earlier releases of the software, at least, this made it more
crucial to give WinBUGS good starting values.

Here WinBUGS release 1.3 has figured out that random draws

like 1.66 · 10−316 result from the generic (and quite poor)
initial values (γ0, γ1, τe) = (0.0,0.0,1.0) and has refused to

continue sampling.
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Sensitivity to Initial Values

Warning WinBUGS can fail, particularly in

random-effects models, when you give it initial

values that are not very close to the final posterior

means; an example in release 1.3 is the REPR

model (9) on the IHGA data with the “generic”

starting values (γ0, γ1, τe) = (0.0,0.0,1.0).

When this problem arises there are two ways out in

WinBUGS: trial and error, or a calculation

(see below).

NB MLwiN does not have this problem—it gets its starting
values from maximum likelihood (the mode of the

likelihood function is often a decent approximation to the
mean or mode of the posterior).

Technical note. To get a decent starting value for τe in
model (9) you can calculate as follows: renaming the

random effects ηi to avoid confusion with the number e,
(1) V (yi) = V [E(yi |ηi)] + E[V (yi |ηi)], where

(2) (yi |ηi) ∼ Poisson
(
eγ0+γ1xi+ηi

)
, so

E(yi |ηi) = V (yi |ηi) = eγ0+γ1xi+ηi. Then (3)

V [E(yi |ηi)] = V
(
eγ0+γ1xi+ηi

)
= e2(γ0+γ1xi)V (eηi) and

E[V (yi |ηi)] = E
(
eγ0+γ1xi+ηi

)
= eγ0+γ1xiE(eηi). Now (4) eηi is

lognormal with mean 0 and variance σ2
e on the log scale, so

E(eηi) = e
1

2
σ2

e and V (eηi) = eσ2
e

(
eσ2

e − 1
)
, yielding finally

V (yi) = e2(γ0+γ1xi)+
1

2
σ2

e + eγ0+γ1xi+σ2
e

(
eσ2

e − 1
)
. (5) Plugging in

xi = 0 for the C group, whose sample variance is 1.54, and
using the value γ0 = −0.29 from runs with previous models,

gives an equation for σ2
e that can be solved numerically,

yielding σ2
e

.
= 0.5 and τe

.
= 2.
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WinBUGS Implementation (continued)

Interestingly, WinBUGS release 1.4 is able to sample

successfully with the generic starting values

(γ0, γ1, τe) = (0.0,0.0,1.0), although of course a

longer burn-in period would be needed when

they’re used; you have to try truly absurd initial

values to get it to fall over, and when it does so

the error message (“Rejection1”) in the lower left

corner is more discreet.
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WinBUGS Implementation (continued)

With a better set of initial
values—(γ0, γ1, τe) = (−0.058,−0.21,2.0), obtained from (a)

the earlier Poisson models (in the case of the regression
parameters γj) and (b) either a calculation like the one on

the bottom of page 25 or trial and error—WinBUGS is able to
make progress, although this model takes a fairly long time
to fit in release 1.4: a burn-in of 1,000 takes 5.5 seconds at
2.0 PC GHz (for some reason the code runs about twice as

fast in release 1.3).

A monitoring run of 5,000 iterations reveals that the random
effects make everything mix more slowly: λC (this page)
and λE and the multiplicative effect (next page) all behave

like AR1 series with ρ̂1
.
= 0.7, 0.5, and 0.6, respectively.
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WinBUGS Implementation (continued)
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WinBUGS Implementation (continued)

Learning about σe in this model is slow: its autocorrelation
function is that of an AR1 with a high value of ρ̂1 (equation

(55) on page 75 of part 3 gives ρ̂1
.
= 0.92).

The MCSE of the posterior mean for σe based on 5,000
draws is 0.005182—to get this down to (say) 0.001 I need
to increase the length of the monitoring run by a factor of(

0.005182
0.001

)2 .
= 26.9, meaning a total run of about

(26.9)(5,000)
.
= 134,000 iterations (this takes about 15
minutes at 2.0 PC GHz).
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WinBUGS Implementation (continued)

There is clear evidence that σe is far from 0—its

posterior mean and SD are estimated as 0.675

(with an MCSE of about 0.001 after 134,000

iterations) and 0.074, respectively—meaning that

the model expansion from (4) to (9) was

amply justified.
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REPR Model Results

(Another way to achieve the goal of describing the

extra-Poisson variability would be to fit different

negative binomial distributions to the observed

counts in the C and E groups—the negative

binomial is a gamma mixture of Poissons, and

the gamma and lognormal distributions often fit

long-tailed data about equally well, so you would

not be surprised to find that the two approaches

give similar results.)

Table 6.5. Comparison of inferential conclusions about the
multiplicative effect parameter eγ1 from the fixed- and

random-effects Poisson regression models.

Posterior Posterior Central 95%
Model Mean SD Interval
FEPR 0.816 0.0735 (0.683,0.969)
REPR 0.830 0.0921 (0.665,1.02)

Table 6.5 compares the REPR model inferential results with
those from model (4), which could also be called a
fixed-effects Poisson regression (FEPR) model.

The “error” SD σe has posterior mean 0.68, give or take
about 0.07 (on the log(λ) scale), corresponding to

substantial extra-Poisson variability, which translates into
increased uncertainty about the multiplicative effect

parameter eγ1.

I’ll argue later that the REPR model fits the data well, so
the conclusion I’d publish from these data is that IHGA

reduces the average number of hospitalizations per two years

by about 100 (1 − 0.083)% = 17% give or take about 9%

(ironically this conclusion is similar to that from the Gaussian
model, but this is coincidence).
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Two More Items on MCMC Accuracy

(1) A stringent but potentially useful diagnostic for
deciding how long the monitoring run should be for a given

component θ′ of the parameter vector θ, if the output of
your MCMC sampler for θ′ behaves like an AR1 series with
first-order autocorrelation ρ1, can be derived as follows.

Suppose, after a burn-in that’s long enough to reach
stationarity, you’ve done a preliminary monitoring run,

obtaining mean θ̄′, SD σ̂θ′, and first-order autocorrelation ρ̂1

as estimates of the corresponding summaries for θ′.

Writing θ′ = a · 10b for 1 ≤ a < 10, if you want at least k
significant figures (sigfigs) of accuracy for the posterior
mean summary for θ′ with Monte Carlo probability of at

least 100(1 − α), you can check that you’ll need

2Φ−1
(
1 − α

2

)
ŜE

(
θ̄′

)
≤ 10b−k+1; (21)

then substituting in the relevant expression from equation
(51) in part 3,

ŜE
(
θ̄′

)
=

σ̂θ′
√

m

√
1 + ρ̂1

1 − ρ̂1
, (22)

and solving (12) for m yields

m ≥ 4
[
Φ−1

(
1 − α

2

)]2
(

σ̂θ′

10b−k+1

)2 (
1 + ρ̂1

1 − ρ̂1

)
. (23)

This is referred to in the MLwiN documentation as the
Brooks-Draper diagnostic (Brooks and Draper 2004).

Comments. (a) This diagnostic is sensitive to the scale
chosen by the user for reporting results, as far as choosing

the target number of sigfigs is concerned.
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MCMC Accuracy (continued)

Example. In my initial monitoring run of 5,000 iterations in the NB10
case study, the posterior mean of µ, on the micrograms below 10g scale,
was θ̄′ = 404.3 (to 4 sigfigs); the other relevant quantities for µ were as

follows: posterior SD σ̂θ′
.
= 0.464 and first-order autocorrelation

ρ̂1
.
= 0.294 (NB the MCSE for µ is already down to 0.009 with 5,000

iterations, so I already have a bit more than 4 sigfigs of accuracy).

Suppose (just for the sake of illustration; it’s hard to imagine setting an
accuracy goal this stringent in practice) that I want to ensure 5 sigfigs
with at least 95% Monte Carlo probability for the posterior mean—write
θ̄′ = 4.043 · 102, so that b = 2, take α = 0.05 and substitute into (14)

to yield

m ≥ 4(1.96)2

(
0.464

102−5+1

)2 (
1 + 0.294

1 − 0.294

)
.
= 60,600. (24)

Now, if you instead subtracted 404 from all of the data values (on the
micrograms below 10g scale) and made a similar MCMC run, everything
would be the same as above except that your current posterior mean for

µ would be 0.3 to 1 sigfig, and (with the same MCSE of 0.009) you
would regard yourself as already having a bit more than 1 sigfig of

accuracy from the initial monitoring run of 5,000.

Then to apply (14) to get 2 sigfigs of accuracy you would write
θ̄′ = 3.0 · 10−1 and obtain

m ≥ 4(1.96)2

(
0.464

10(−1)−2+1

)2 (
1 + 0.294

1 − 0.294

)
.
= 60,600. (25)

These two sets of results from (14) are consistent—by subtracting 404
from all of the data values you (at least temporarily) threw away 3

sigfigs—but you can see that care needs to be taken in thinking about
how much accuracy you want, and this question is closely tied to the

scale of measurement.

(b) Note from (14) that every time you want to add 1 new
sigfig of accuracy in the posterior mean the required length

of monitoring run goes up multiplicatively
by (101)2 = 100.

53



MCMC Accuracy (continued)

(2) I’ve concentrated so far on the MCMC accuracy of the
posterior mean—what about other posterior summaries like

the SD?

Suppose as above that you’re interested in a given
component θ′ of the parameter vector θ, and that the output
of your MCMC sampler for θ′ behaves like an AR1 series with
first-order autocorrelation ρ1; and suppose as above that
after a burn-in that’s long enough to reach stationarity,
you’ve done a preliminary monitoring run, obtaining mean
θ̄′, SD σ̂θ′, and first-order autocorrelation ρ̂1 as estimates

of the corresponding summaries for θ′.

Then it can be shown, in an expression analogous to (13),
that if the marginal posterior for θ′ is

approximately Gaussian

ŜE(σ̂θ′) =
σ̂θ′√
2m

√
1 + ρ̂2

1

1 − ρ̂2
1

. (26)

Note that with a parameter with MCMC output that’s
approximately AR1 and roughly Gaussian this implies that

ŜE
(
θ̄′

)

ŜE(σ̂θ′)

.
=

√
2(1 + ρ̂1)

2

1 + ρ̂2
1

, (27)

which goes from
√

2 to 2 as ρ̂1 ranges from 0 to +1, i.e., the
mean is harder to pin down than the SD with Gaussian

data (a reflection of how light the tails are).
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