
Combining Initial Segments of Lists

Manfred K. Warmuth?1, Wouter M. Koolen??23, and David P. Helmbold1

1 Department of Computer Science, UC Santa Cruz manfred@cse.ucsc.edu
2 Department of Computer Science, Royal Holloway, University of London

3 Centrum Wiskunde en Informatica, Amsterdam wmkoolen@cwi.nl

Abstract. We propose a new way to build a combined list from K base
lists, each containing N items. A combined list consists of top segments of
various sizes from each base list so that the total size of all top segments
equals N . A sequence of item requests is processed and the goal is to
minimize the total number of misses. That is, we seek to build a combined
list that contains all the frequently requested items. We first consider the
special case of disjoint base lists. There, we design an efficient algorithm
that computes the best combined list for a given sequence of requests.
In addition, we develop a randomized online algorithm whose expected
number of misses is close to that of the best combined list chosen in
hindsight. We prove lower bounds that show that the expected number
of misses of our randomized algorithm is close to the optimum. In the
presence of duplicate items, we show that computing the best combined
list is NP-hard. We show that our algorithms still apply to a linearized
notion of loss in this case. We expect that this new way of aggregating
lists will find many ranking applications.

1 Introduction
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Fig. 1: We depict one
combined list formed by
taking the tops from
K = 4 lists. Note that all
lists have size N = 5 and
the combined list has the
same size. The list shown
is c = (1, 0, 3, 1).

We propose a new approach for aggregating ranked lists.
Assume we have K lists of N items each, as illustrated
in Figure 1. Our comparator is the best combined list of
size N that is composed of the tops of the K lists. A
combined list might take the top 20% of list 1, the top
0% of list 2, the top 60% of list 3, and so forth. Note that
the contents of the base lists might change over time and
there are exponentially many (roughlyNK) combined lists
altogether.

We seek efficient online algorithms that construct such
combined lists on the fly. In each trial the following hap-
pens: First, the current contents of all base lists are pro-
vided to the algorithm. Then the algorithm assembles (ei-
ther deterministically or randomly) its combined list. Af-
ter that some item is requested. If it is not in the chosen combined list, then the
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algorithm incurs a miss (one unit of loss). Some or all of the base lists might
also miss the requested item and might update themselves accordingly for the
next trial.

The goal of the algorithm is to endure small additional loss (regret) over
the best combined list chosen in hindsight once the entire request sequence and
the time-varying contents of the base lists are known. We seek efficient online
algorithms that implicitly maintain some information about all roughly NK

combined lists and can efficiently choose or sample a combined list from this
information. As we shall see, probabilistic algorithms will have the advantage.

We claim that this setup has many applications. For example we can use our
method to combine the listings produced by different search engines. Here a first
goal is to combine the tops of the base lists for the purpose of maximizing hits.
However in the case of search engines, we are also concerned with accumulating
hits at the top of our chosen combined list and this aspect is not yet modeled
by our approach. We briefly discuss such extensions in the conclusion Section 7.

Another important application is caching. In this case each list is the ranked
list of items selected by a different caching strategy. We assume that all items
have the same size and exactly N fit into the fast memory. The algorithm can
simulateK caching strategies as “virtual caches” and then combines these virtual
caches to form one “real cache”. The virtual caches only record a few bytes of
meta-data about each item in their cache: ID, link to the data, and calculated
priority. Object data is only kept for the N items of the real combined cache. The
memory cost for maintaining the virtual caches is negligible. The real combined
cache can be updated as the virtual caching strategies change their item lists
and the algorithm observes the performance of its combined cache.

Previous work Methods for building a real cache by combining a number of
virtually maintained caching strategies using exponential weights were explored
in [GWBA02]. The employed heuristics performed well experimentally. However
no performance bounds were proven. The idea for building a real cache by com-
bining the tops of two virtual lists was first developed in [MM03, MM04]. In this
case the first list contained the most recently requested items and the second
contained those that were requested more than once. The goal for building a
combined list was to optimally balance recency and frequency information. A
deterministic heuristic was developed for adjusting the top portion taken from
each list. In this paper we prove a lower bound for any deterministic algorithm
that shows that any such algorithm can be forced to have loss at least KB
where B is the loss of the optimal combined list chosen in hindsight. We also
give a randomized online algorithm whose expected loss is at most B plus an
additional sublinear regret and show that the regret of this algorithm is optimal
within a factor of min(

√
K,
√

ln(N/K)).
This paper was motivated by our previous work on combining caching heuris-

tics [GWBA02]. In general, there are always two approaches to a rich problem
setting. Either we can restrict the setting enough so that theoretical bounds are
obtainable, or we can explore heuristics without provable guarantees that per-
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form well in practice. Ideally the two approaches will meet eventually. In this
paper we focus on algorithms for which we can prove regret bounds and we
believe we made significant progress towards addressing practically interesting
problems.

Aggregating experts One of the main metaphors of online learning has been
the aggregation of many simple “experts” [LW94, Vov98, FS97]. In our applica-
tion, each combined list serves as an expert. The online algorithm maintains its
uncertainty over all experts as a mixture distribution and predicts based on this
mixture. In more detail, the probability of a combined list c is proportional to
βM(c), where M(c) is the number of misses of list c and the update factor β lies
in [0, 1).

There are exponentially many mixture weights (one per expert). However,
as we shall see later, we still manage to obtain very efficient algorithms by
manipulating the weights implicitly. We first discuss how to obtain a combined
list from a mixture. One could consider thresholding the mean, using the median
(this is new but only works for 2 lists) or sampling.

The weighted average (mean) does not correspond to a combined list
A deterministic algorithm would naturally predict with the weighted majority
(mean) of the mixture. That is, an item is in the chosen combined list if the
total weight of all combined lists in the mixture that contain this item is at least
50%. Unfortunately, the weighted majority does not always correspond to a list
of size N : For N = 4 and K = 3, consider the case displayed in Figure 2, where
we mix the 3 combined lists that contain the top halves of 2 out of the 3 list; if
the mixture is uniform on these 3 combined lists, then all items in the top halves
of each of the 3 lists have total weight 2/3, which is 6 elements altogether and
this is more than N = 4.
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Fig. 2: Counterexample against obtaining a combined list by mean thresholding. Consider the com-
bined lists (a), (b) and (c), which each use 4 items with weight 1. The uniform mixture over (a), (b)
and (c) (displayed as (d)), sports 6 elements with weight 2/3 each. By including the items whose
mean weight exceeds some threshold, we end up with either 0 or 6 elements, but not the desired 4.

Deterministic algorithm for the case of two lists based on the median
In the case of K = 2 (i.e. two lists of size N), there are N + 1 combined lists
c0, . . . , cN , where ci = (i,N−i) contains the i top elements from the first list and
the N − i top elements from the second list. These combined lists are displayed
in Figure 3.
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c0 = (0, 5) c1 = (1, 4) c2 = (2, 3) c3 = (3, 2) c4 = (4, 1) c5 = (5, 0)

Fig. 3: The 6 combined lists of size N = 5 from K = 2 base lists

For K = 2 disjoint lists there is a simple algorithm producing a single com-
bined list of the right size N based on the median that circumvents the problem
with the mean discussed in the previous section. It maintains the same expo-
nential weight discussed before but chooses a combined list ci s.t. the total
weights of the lists c0, . . . , ci−1 and the lists ci+1, . . . , cN are both at most half.
In other words the algorithm picks the combined list from 〈c0, c1, . . . , cN 〉 with
the median weight and we call this deterministic algorithm the Weighted Me-
dian algorithm. Whenever a miss occurs, then at least half of the total weight is
multiplied by β: If the item was on the first list and was missed by the median
list ci, then at least c0, . . . , ci are multiplied by β, which contain at least half of
the total weight. Similarly, if the item was on the second list and missed by ci,
then at least ci, . . . , cN are multiplied by β, which is again at least half of the
total. The case when the item did not appear on either base list is trivial.

Since at least half of the total weight is multiplied by β, an analysis paralleling
the analysis of the deterministic Weighted Majority algorithm [LW94] gives the
following loss bound after tuning β based on N and the budget B, i.e. the loss
of the best combined list in hindsight:

2B +O
(√

B ln(N + 1) + ln(N + 1)
)
.

There are two problems with this deterministic algorithm: It has the factor 2
in front of the budget and we don’t know how to generalize it to more than 2
lists. This is not surprising because we show in this paper that any deterministic
algorithm can be forced to incur loss KB, where B is the loss of the best. Never-
theless, algorithms based on this approach perform well experimentally [Sca07]
and beat the previous deterministic heuristics developed in [MM03, MM04].

Probabilistic algorithms based on sampling Our approach is to apply the
Hedge algorithm [FS97] to the exponentially many combined lists. It uses the
same exponential weights that are proportional to βM(c) for list c but now we
simply pick a combined list at random according to the mixture coefficients on all
the combined lists. This ensures that the randomly chosen combined list is of the
right size and hence circumvents the fact that the mixture does not represent a
single combined list. The expected loss of the mixture is the mixture of the losses
of the individual combined lists. When β is properly tuned as a function of the
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budget B and the number of combined lists, then the probabilistic algorithms
achieve expected loss B + O(

√
BK lnN). Note that now the factor in front of

the budget B is one (whereas any deterministic algorithm can be forced have
loss at least KB, see Section 5). The caveat of the probabilistic algorithms is
that the list they predict with may change significantly between trials and in
applications where there is a cost for changing the prediction, such algorithms
are not useful. We discuss this issue again in the conclusion Section 7.

Hedge vs Follow the Perturbed Leader The two main flavors of efficient
online algorithms for dealing with a linear loss are Hedge [FS97] and Follow the
Perturbed Leader [KV05]. Hedge based algorithms usually have slightly better
loss bounds, whereas FPL-type algorithms typically have computational advan-
tages. In this paper, completely contrary to those general rules, we present a
Hedge-based algorithm that is fundamentally faster for our problem than the
best-known FPL algorithm. The reason for this anomaly is that the computa-
tions for Hedge can be accelerated using the Fast Fourier Transform, whereas
only a slower acceleration is known for finding the best combined list.

Outline of the paper After setting the stage formally in Section 2, we begin by
sketching the batch algorithm in Section 3. We then give our main randomized al-
gorithm in Section 4 whose (expected) regret can be bounded by O(

√
BK logN),

where B is the loss budget of the best combined list. It simulates the Hedge al-
gorithm on the exponentially many combined lists. We first assume that all base
lists are disjoint, i.e. the requested item appears on at most one base list. This
assumption lets us express the 0-1 loss/miss of a combined list as a sum over the
initial segments of the base lists. The straightforward implementation requires
O(KN2) time per trial. However we found a way to speed up the algorithm
using Fast Fourier Transform for an improved time of O(KN lnN) per trial.

A number of lower bounds are given in Section 5. Any deterministic algorithm
can be made to suffer loss at least KB, i.e. such algorithms cannot achieve
sublinear regret. We also prove that any probabilistic algorithm can be forced to
have regret at least Ω(max(

√
B lnN,

√
B K)). Thus when either K is constant

or N = Θ(K), the regret of our probabilistic algorithm is optimal within a
constant factor.

In Section 6 we then address the case where duplicates are allowed between
base lists. In this case we show that the question of whether there is a list with no
misses is NP-hard. We then address the same problem with a surrogate loss. We
“linearize” the loss much in the same way NP-completeness was avoided when
learning disjunctions (by switching from 0-1 loss to attribute loss). In short, if
the requested item occurs 5 times on the lists, then a combined list that hits this
item 2 times now has loss 3. We can show that our algorithm now has a regret
bound of O(

√
BK2 logN) for the linearized loss. Note the additional factor of

K which is due to the fact the range of the loss per trial is now [0,K]. We also
discuss an alternate method for solving the problem with duplicates based on
the online shortest path problem and using Component Hedge [KWK10]. This
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algorithm achieves regret O(
√
BK logN) for the problem with duplicates (i.e.

no additional range factor). However we do not know how to bound the running
time for the iterative projection computation employed by the algorithm. We
conclude with a number of open problems in the final section.

2 Setting
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Fig. 4: Dynamic programming diagram
for K = 4, N = 5. There is a 1–1 corre-
spondence between (0, 0) − (4, 5) paths
in this graph and combined lists. The
marked path corresponds to the com-
bined lists shown in Figure 1. In gen-
eral, combined list c = (c1, . . . , cK) cor-
responds to path (0, 0)−(1, c1)−(2, c1+

c2)− . . .− (k,
Pk

i=1 ci)− . . .− (K, N).

Recall that we have K base lists of N slots
each. Until Section 6 we assume that each item
appears at most once on all list. For k ≤ K, we
identify a (partial) combined list with a vector
of counts c = (c1, . . . , ck), where ci denotes
the number of items taken from the top of
base list i. We denote the set of combined lists
using n elements from k base lists by

Cn,k :=
{
c ∈ {0, . . . , n}k

∣∣ ∑k
i=1 ci = n

}
.

We also think about Cn,k as the set of paths
from (0, 0) to (n, k) through the graph shown
in Figure 4. Representational issues aside, the
number of combined lists is rather large:

ln|CN,K | = ln
(
N +K − 1
K − 1

)
≤ (K − 1) ln

(N +K − 1) e
K − 1

= O

(
K ln

N

K

)
(1)

The right equality holds under our assumption that N ≥ K. To appreciate the
sheer number of lists, consider for example that |C10,20| ≈ 107, while |C100,20| ≈
4.9 · 1021.

Different trials can have different lists and requested items. What is impor-
tant is the list and position containing the requested item. A single trial is sum-
marized by a (N +1)×K dimensional miss matrix M, where for 0 ≤ c ≤ N and
1 ≤ k ≤ K, the entry Mc,k is one if the requested item appears on base list k in a
position strictly greater than c and zero otherwise. The sum M(c) :=

∑k
i=1Mci,i

is zero when combined list c contains the request item, and one when c misses
the requested item on the disjoint lists. We often sum miss matrices over trials:
Mt denotes the miss matrix for trial t and M<t is the cumulative miss matrix
before trial t, i.e. M<t

c,k :=
∑

s<tM
s
c,k. Therefore M<t(c) =

∑k
i=1M

<t
ci,i

is the
total number of misses made by the combined list c in the first t− 1 trials.

We allow items to occur on multiple lists in Section 6. There, when M is
a single trial miss matrix, M(c) can be greater than one. For example, if the
requested item occurs on 5 different base lists and c has it twice then M(c) = 3.
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3 Batch algorithm

Let M =
∑T

t=1 Mt denote the cumulative miss matrix after T trials. The
hindsight-optimal list c∗ and its loss B are given by

c∗ := argmin
c∈CN,K

M(c) B := M(c∗) = min
c∈CN,K

M(c).

Brute-force evaluation of the minimum is intractable, viz (1). But we can exploit
the structure of CN,K and M(c) to compute c∗ and B efficiently. Let Bn,k denote
the loss of the best combined list with n elements from the first k base lists:

Bn,k := min
c∈Cn,k

M(c).

Hence B = BN,K . Now observe that B?,? satisfies the recurrence for 0 ≤ n ≤ N :

Bn,1 = Mn,1 and Bn,k = min
0≤c≤n

Bn−c,k−1 +Mc,k, for 1 < k ≤ K.

By straightforward tabulation, the loss B = BN,K of the best combined list
can be computed in time O(KN2). Interestingly, we can tabulate even faster.
The column B?,k is the infimal convolution4 of B?,k−1 and M?,k. The best-
known algorithm for general infimal convolution is O( N2

ln N ) due to [BCD+06].
In our setting, both B?,k−1 and M?,k are non-increasing. However it is an open
problem whether these special properties lead to an improved time bound. Once
B?,? is known, it is easy to recover the optimal combined list c? in O(NK) time.

The above dynamic programming algorithm immediately leads to an online
algorithm, called Follow the Perturbed Leader (FPL)[KV05], which has small
regret compared to the best list chosen in hindsight. At trial t, FPL adds a
random perturbation matrix to M<t and chooses the best combined list with
respect to that perturbed miss matrix. FPL has slightly weaker regret bounds
[HP05] than Hedge, but is usually faster. Surprisingly we show in the next sec-
tion that for combined list the Hedge algorithm is actually faster: it requires
O(KN lnN) time instead of O(KN2

ln N ) for FPL.

4 The randomized online algorithm based on sampling

In this section we develop an efficient randomized online algorithm and prove
that its loss is not much larger than B, the loss of the best combined list chosen
in hindsight. The algorithm is the well-known Hedge algorithm [FS97] where
the combined list function as the experts. The algorithm (implicitly) maintains
weights proportional to βM(c) for each combined list c. There are two versions
of the Hedge algorithm. The first one predicts with the mixture vector over the
experts and incurs loss equal to dot product between the mixture vector times
the loss vector. Since the mixture vector is exponential in size we have to use
4 Aka (min, +) convolution or min-convolution or inf-convolution or epigraphical sum.
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the second version. Like the Randomized Weighted Majority algorithm [LW94],
this version outputs an expert drawn at random from the mixture. The loss is
the loss of the drawn combined list and the goal is to bound the expected loss
of the algorithm in relation to the loss of the best list chosen in hindsight.

Our contribution lies in the efficient implementation of the sampling version
of the Hedge algorithm for combined lists. Following [TW03], we crucially use
the fact that in our application, the loss M(c) of a combined list c decomposes
into a sum: M(c) =

∑K
k=1Mck,k. Thus the weight of c is proportional to the

product
∏K

k=1 β
Mck,k . This property of the weights allows us to efficiently sample

a combined list according to the mixture prescribed by the exponential weights
of Hedge. The computation is based on dynamic programming, similar to the
batch algorithm, but it is faster: O(KN lnN) instead of O(KN2

ln N ) per trial.
Before showing this speedup, recall that the expected regret of the Hedge

algorithm after tuning the learning rate η [FS97] is bounded by B+
√

2B lnE+
lnE where E is the number of experts with loss range [0, 1] per trial and B is
the loss budget of the best expert. In our application, lnE is O(K ln N

K ) by (1),
giving us the following regret bound for our algorithm:

B +O

(√
BK ln

N

K
+K ln

N

K

)
. (2)

Note that the loss of a combined list lies in {0, 1} since we assumed that the
base lists are disjoint.

We now give the efficient implementation of the sampling. Let M = M<t

denote the cumulative miss matrix before trial t. In trial t, we need to efficiently
sample combined list c ∈ CN,K with probability proportional to

∏K
k=1 β

Mck,k .
We first compute the normalization ZN,K , which is defined for all (partial) com-
bined lists as follows

Zn,k :=
∑

c∈Cn,k

βM(c).

To efficiently compute Z?,?, we again derive a recurrence. For all 0 ≤ n ≤ N ,

Zn,1 = βMn,1 and Zn,k =
N∑

ck=0

Zn−ck,k−1β
Mck,k , for 1 < k ≤ K.

Even more compactly, we have

Z?,k = Z?,k−1 ∗ βM?,k for 1 < k ≤ K

where ∗ denotes real discrete convolution, i.e. (x ∗ y)n =
∑

i xn−iyi. Since
the convolution of two vectors of length N each can be performed in time
O(N lnN) using the Fast Fourier Transform [CT65], we can tabulate Z?,? in
time O(KN lnN).5

5 A similar approach was used in [KM05] to obtain a similar speedup in the completely
different context of computing the stochastic complexity of the Multinomial model.
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Sampling a list from c ∈ Cn,k with probability proportional to βM(c) is
now done as follows: First draw the last element ck = j with probability equal
to Zn−j,k−1β

Mj,k/Zn,k. Then recursively sample the initial part of the list from
Cn−j,k−1. The probability of drawing the full c ∈ CN,K telescopes to βM(c)/ZN,K

as desired. Once we have Z?,? tabulated, the sampling itself takes O(KN) time.
An analogous approach can be used to compute the expected loss of Hedge

if that is of interest, e.g. for external model selection.
We already mentioned in Section 2 that it is possible to identify combined

lists with paths through the specific graph shown in Figure 4. Therefore any
algorithm that has small regret compared the best path chosen in hindsight is
a competitor to our algorithm. The online shortest path problem has received
considerable attention both in the full-information and in the bandit setting
[TW03, KV05, AHR08, CBL09, KWK10]. However, for that problem it is as-
sumed that the adversary can control the loss of each individual edge and as a
result any algorithm requires an update time that is at least on the order of the
number of edges. This is not the case in our setting. We have O(KN2) edges in
our graph, and yet we achieve update time O(KN lnN). How is this possible?
First note that a miss matrix M has only KN parameters. Put another way, the
losses of the edges are partitioned into equivalence classes of size O(N) and all
edges of the same class always have the same loss:

∀0 ≤ n, n′ ≤ N−i, 1 ≤ k < K : (n, k)→ (n+i, k+1) ∼ (n′, k)→ (n′+i, k+1).

This feature of our problem allows us to use convolutions and obtain update
time that is lower than the number of edges in the shortest path formulation.

5 Lower bounds

1 2 3 4
1
2
3
4
5

Fig. 5: For N = 5,
K = 4 the spe-
cial items are put
in the marked posi-
tions. One must be
missed by any com-
bined list of size N .

In the noise-free case (there is a combined list with no misses),
the minimax regret for deterministic algorithms was proven to
be Ω(K lnN) with the first author’s students in a class project
[SS07]. Here we focus on the noisy case. We begin with a simple
adversary argument against any deterministic algorithm and
then turn to lower bounds for randomized algorithms.

We first show a simple lower bound of KB against any
deterministic algorithm, where B > 0 is the number of misses
of the best combined list in hindsight. We assume that B is
known to both the algorithm and adversary and N ≥ K. As
illustrated by Figure 5, the adversary tags the following K
items as “special”: item N −K + 2 from the 1st list and the
top items from the remaining K−1 lists. Any combined list of size N must miss
at least one of these K special items because to contain them all would require a
list of size N−K+2+K−1 = N+1. In each trial the adversary simply hits one
of the special items missed by the combined list produced by the deterministic
algorithm. Since combined lists have size N , at least one special item will be
missed in each trial.
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In T trials, the algorithm incurs T misses, but the number of misses of the
best combined list is at most T

K . The reason is that the best combined list leaves
out the special item with the lowest number of hits and the lowest number is
at most T

K . So if the best has loss B then any deterministic algorithm can be
forced to have loss at least KB, and thus regret at least B(K − 1).

We now build techniques for proving our lower bound against any randomized
algorithm in stages. The basic component of our lower bound constructions will
be the standard 2-expert game. The game is parametrized by a loss budget
B. There are two players, the Algorithm and the Environment, and the game
proceeds in rounds. At the beginning of each round, the Algorithm chooses
its prediction, which is a pair (w1, w2) with w1, w2 ≥ 0 and w1 + w2 = 1.
The Environment then chooses one of two possible outcomes: expert 1 makes a
mistake, or expert 2 makes a mistake. If expert 1 makes a mistake, the Algorithm
incurs loss w1; if expert 2 makes a mistake, the Algorithm incurs loss w2. The
game ends when one expert has made at least B + 1 mistakes. Let g2(B) be the
largest total loss the Environment can force the Algorithm to incur in this game.
It can be shown based on results in [AWY08] that for any integer budget B

g2(B) ≥ B +

√
B

π
.

We now prove a lower bound on the regret in the K = 2 list case of

B +

√
B log2(N + 1)

π

against any randomized algorithm A. We do this by constructing a trial sequence
using the above 2-expert case as a building block on which A incurs at least this
much loss while there is at least one combined list with loss at most B. For the
sake of simplicity of the presentation we assume that N = 2S−1 for some integer
S that divides the budget B.

The game consists of S = log2(N+1) stages, each stage using up a proportion
B/S of the loss budget and causing a loss of at least g2(B/S) to the algorithm.
Therefore, the total loss of the algorithm will be at least the desired result

S

(
B

S
+

√
B

Sπ

)
= B +

√
BS

π
.

We have two lists, each with N elements. During stage 1, we access only
two elements, the middle elements (those in position (N + 1)/2 on the first and
position (N + 1)/2 on the second list). Notice that a deterministic prediction
can include at most one of the middle elements. Intuitively, stage 1 will decide
whether it is better to include the middle element from list 1 or from list 2. This
is done using the 2-expert game in a manner described below.

Suppose we decided to include the middle element from list 1. This means
we have removed from consideration the first half of elements of list 1 (they are
included) and the last half of elements of list 2 (they are not included). During
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stage 2 we similarly decide between the middle element of the second half of
list 1, and the middle element of the first half of list 2. Suppose we now decide
in favor of list 2. This means that we have decided to include at least (N + 1)/2
elements from list 1, at least (N + 1)/4 elements from list 2, and (N − 3)/4
elements are yet to be decided. We continue this process, halving the remaining
range at each stage, until only one good combined list remains. This argument
proves the following lower bound:

Theorem 1. Let N + 1 be a power of 2 and B be a budget that is divisible by
log2(N + 1). Then for any randomized online algorithm A for the K = 2 list
problem there is a sequence of request on which A incurs at least loss

B +

√
B log2(N + 1)

π

but there is at least one combined list with at most B misses.

Note that the lower bound construction uses the same base lists in each trial
and the base lists are disjoint.

It is fairly easy to see that the above Ω(
√
B lnN) expected regret bound

for any randomized algorithm also holds for K > 2 lists. When N ≥ K/2, we
can also prove a second lower bound of Ω(

√
BK) by simulating K/2 many 2-

expert games using pairs of base lists. However the details of this second bound
are complex and omitted due to space constraints. We conjecture that the lower
bound on the expected regret is Ω(

√
BK ln(N/K)), i.e. that the expected regret

bound of the algorithm of Section 4 is optimal within a constant factor.

6 Combining Lists with Duplicates

We now turn to the scenario where the base lists are not disjoint any more, i.e.
items can occur on multiple lists. This minor difference in the setup has major
implications. For one, finding the list that minimizes the number of misses is
NP-hard, even if the base lists contain the same items in every trial. So we
cannot hope for efficient algorithms with low regret unless RP = NP. We sketch
a reduction from Set Cover in Section 6.1 and then work around this hardness
result in Section 6.2 by linearizing the loss.

6.1 NP-hardness by Reduction from Set Cover

An instance of the Set Cover problem consists of a collection C of subsets of some
universe U , and a number m. The question is whether a subcollection D ⊆ C of
size m exists such that the union of the subcollection is U . We transform this
instance into a zero miss combined list existence problem with K = |C| base lists
of size N = m(p + |U |) and a sequence of |U | requests. For each subset S ∈ C,
we introduce a base list that starts with p many padding items, then includes
item ix for each x ∈ S, and ends with padding to length N . By design, N is
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such that a combined list can contain all non-padding items from m base lists.
To ensure that it cannot contain non-padding items from m + 1 base lists, we
must have that (m + 1)(p + 1) > N . The least such p equals m(|U | − 1). The
request sequence hits ix for each x ∈ U .

If an m-cover exists, there is a combined list with zero loss. If not, then
any combined list must miss at least one item. So an m-cover exists iff there
is a combined list without any misses. Also unless RP=P, there cannot exist a
polynomial time randomized algorithm with polynomial expected loss on request
sequences for which there exists a combined list with no misses. (By polynomial
we mean polynomial in N and K.)

If such an algorithm existed and achieved regret p(N, k) then one could
present it with random requests chosen with replacement from the given re-
quest sequence. If there does not exist a combined list with zero misses, then
for such random request the expected loss must be at least 1 over the length
of the request sequence. By presenting the algorithm with polynomially many
random requests, the expected loss is either bounded by p(N, k) or the expected
loss must grow linearly in the number of requests. This clearly can be used to
design a polynomial-time randomized decision procedure for the combined list
problem we just showed to be NP-complete.

6.2 Working around the hardness

When the lists are disjoint then in any trial the miss count M(c) is 0 either 1
for any combined list c and the 0/1 loss is identical to M(c). When items can
appear on multiple list, then M(c) can be larger than 1, whereas the 0/1 loss
is I(d−M(c)), where d is the number of duplicates of the requested item, and
I(h) = 1 if h = 0 and 0 if h ≥ 1. The above reductions show that we cannot hope
for an efficient algorithm with small expected regret measured by the 0/1 loss
when the items can appear on multiple lists. Observe that I(d−M(c)) ≤M(c).
Therefore, in this section we propose to replace the 0/1 loss I(d −M(c)) by
its upper bound M(c). This amounts to linearizing the loss because M(c) =∑K

k=1Mck,k. Note that the 0/1 loss I(d−M(c)) decidedly does not decompose
into a sum over the component of c.

This approach parallels how NP-hardness was avoided when learning disjunc-
tions. There the 0/1 loss was replaced by the attribute loss which decomposes
into a sum of the literals in the disjunction [Lit88]. This linearization of the loss
is extensively discussed in [TW03].

Our efficient implementation of Hedge is based on the decomposition of the
miss count and remains unchanged in the setting when items can appear on
multiple lists. However, M(c) now lies in [0,K] and the straightforward regret
bounds have an additional factor of K due to the extended range. This means
that in the case of combined lists the resulting regret bound has leading term√

2BK ln|CN,K | ≈
√

2BK2 ln(N + 1).

The additional range factor also appears in the regret of the FPL algorithm.
Several method have been developed for eliminating the range factor. First, the
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range factor can be eliminated if the so called unit rule hold for the given loss and
algorithm [KWK10]. However, there are simple counter examples for combined
lists. Second, we can change the algorithm to the Component Hedge algorithm
which has a range factor free regret bound with a leading term of√

4BK ln
(N +K)e

K
.

This algorithm maintains its uncertainty as a usage vector, i.e. an element
of the convex hull of the (N + 1) ×K indicator matrices corresponding to the
combined lists. The weight update involves a relative entropy projection onto
this convex hull, which can be expressed using few linear equality constraints as
a linear image of the flow polytope. This projection can be computed using an
iterative algorithm, but it’s convergence properties have not yet been analyzed
[KWK10].

7 Open problems

In summary, we hope that we opened up a new approach for combining lists
(of the same size N). We invented a new notion of mixture of such base lists
in which the sizes of the top segments that were chosen from each list sum
to N . We developed an efficient algorithm that implicitly maintains a mixture
over exponentially many combined lists and proved regret bounds that are tight
within a factor of min(

√
K,
√

ln(N/K)). Besides proving a tight lower bound for
the K > 2 list case (notoriously hard), our approach leaves many open questions:

– We have ignored the question of how to rank the items within the combined
list. Our notion of loss simply charges one unit depending on whether the
requested item is in the combined list or not. Ideally, the combined list should
be ranked and we would like to develop online algorithms for the case when
the cost is proportional to how close each request is to the top of the list. One
idea is to overlay N algorithms optimized for combined list sizes 1,2,. . .N .
Intuitively the item i on the list would miss the combined lists of size 1,2,. . . ,
i−1 and incur loss proportional to i−1. However this approach will only work
when the the combined lists of size less than i are contained in the list of size
i. So far we were not able to achieve good regret bounds with this approach.

– In caching applications it costs to change the “real cache” because items need
to be reloaded. Our online algorithms currently ignore the reloading costs
and this is particularly egregious for the probabilistic algorithms. The Shrink-
ing Dartboard Algorithm, a method for lazily updating the expert followed
by the Hedge algorithm was developed in [GVW10], and seems quite read-
ily applicable to our setting. The Follow-the-Lazy-Leader algorithm [KV05]
is another method requiring fewer updates. Also some good practical heuris-
tics for reloading were given in [Gra03, GWBA02]. However no performance
guarantees were provided for these heuristics.
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– At this point our algorithm is designed to achieve small regret compared to
the best fixed combined list chosen in hindsight. In the expert setting there
is a long history of algorithms that can handle the case when the best expert
is allowed to shift over time. This is achieved by first doing an exponential
update and then mixing in a bit of either the uniform distribution over all
experts or the average of all past distributions over the experts [HW98, BW02,
GLL05]. In all experimental evaluations that the authors are aware of, it was
crucial to extend the online algorithms to the shifting expert case [HLSS00,
GWBA02]. It is a tedious but straightforward exercise to mix in a bit of the
uniform distribution into the dynamic programming algorithm of Section 4,
thus implementing the Fixed Share algorithm from [HW98]. The method is
again based on recurrences, and maintains all weights implicitly. However, it
adds an O(T 2) factor to the running time of our current algorithm. We don’t
know how to do the fancier method efficiently, which mixes in a bit of the
past average distribution. The reason is that the exponential weight updates
on the NK many combined lists seem to be at loggerheads with mixing in
the past average weight. The resulting update is neither multiplicative nor
additive and makes it difficult to implicitly maintain the weights.
In this respect Component Hedge [KWK10] may have the advantage, as mixing
in the past average usage vector can be done in constant time per component
per trial. However, for this approach to be viable, an efficient implementation
of the required relative entropy projections must be found.

– This paper is theoretical in that we focus on models for which we can prove
regret bounds. However it would be useful to do practical experiments of the
type done in [Gra03, GWBA02]. This would require us to blend the methods
developed here with heuristics for handling for example the reloading issue.
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