
AMS 200, Oct 20, 2014

AMS 200: Working on Linux/Unix Machines

Prof. Dongwook Lee (dlee79@ucsc.edu)

Department of Applied Mathematics and Statistics
University of California, Santa Cruz

1. Remote login via SSH

First of all, you will need to install an SSH (secure shell) client in order to access
one of cluster machines (i.e., computing resources such as grape) remotely.

* If you’re a PC user, you can download PuTTY from
(http://www.chiark.greenend.org.uk/∼sgtatham/putty/download.html).

* If you’re a Mac or Linux user, you can simply use a terminal that is already
available for you. For example, in Mac, go to Applications → Utilities and
open Terminal application. In Linux, Terminal can be found under System
in general.

Next step is to log in yourself to one of the AMS machines. For today, you
are logging in to a cluster named “grape”. To log in to the cluster, you need
to use a command ssh using the terminal we just mentioned. In the command
line, you type in

ssh -X your name@grape.soe.ucsc.edu

with your SOE login password. At the step, you’re logging into a master node or
login node. As you login for the first time to the master node, you are asked to
enter a passphrase. You can enter a very secured if you wish, or you can simply
press enter. This process is to generate, so-called, “SSH keys”, which is a way
to identify trusted computers, i.e., the rest of compute nodes, without having
to enter password every time you run parallel jobs on these compute nodes.
Note that running a parallel job means that you run multiple jobs on multiple
processors, which actually require you to login to the requested compute nodes
with password. This SSH key generation save you from doing this process.

Your login is successful if you see something like the following on your
terminal:

1



2

2. Basic Linux Commands

There are few rules in using command lines in Linux. Several important rules are

* Commands are case-sensitive.

* Make sure you always logout yourself by typing exit when you’re done.

* The Linux command lines enables you to create complex functions by
combining built in command lines together. This capability gives you countless
ways to make your commands work in various different ways.



3

Exercise 1: Please run matlab by typing in a command matlab on a com-
mand prompt.

Exercise 2: Please exit your current session and try to login again without
having -X option. Please run matlab again. Is there any difference from the
case with -X? You can use -Y instead of -X.

Answer to 1 & 2: -X or -Y option enables X11 forwarding in SSH, which
provides you not only a command line interface from the console, but also a
variety of graphical-user-interfaces (GUIs). With the X forwarding option in
login, you can enjoy a full set of interface display functions remotely.

Here you’re introduced to learn very basic Linux command lines. For more
comprehensive studies, you can use to display a manual page using the man
command, or you can come to ask the instructors for more help and resources.

2.1. Managing Files

> ls — lists your files
> ls -l — ls in long format
> ls -a — ls all files
> mv filename1 filename2 — remane filename1 to filemane2
> mv filename1 dirname — move filename1 to a directory called dirname
> cp filename1 filename2 — copy filename1 to filename2
> rm filename — remove a file
> more filename — display the contents of a file as much as will fit on your
screen
> less filename — similar to more with the extended navigation capability
allowing both forward and backward navigations
> wc filename — tells you number of lines, words and characters in a file
> touch filename — creating an empty file (multiple filenames after touch
command will create multiple empty files)

Exercise 3: See if you can find ls -l and ls -a when you execute man
ls.

2.2. Managing Directories

> mkdir dirname — create a new directory called dirname
> cd dirname — change directory, meaning you go to a directory called
dirname
> pwd — tells you where you currently are in the directory tree
> rmdir — an empty directory deletion

Exercise 4: Create a directory called dirA, then under dirA, create an
empty file named filenameNull.

Exercise 5: Delete the file filenameNull. Also delete the directory dirA
using rm command. Hint: Please look up man page of rm and find a useful



4

option for directory deletion.

3. Editors

The following text editors are available on grape. You can choose whichever you
want to use.

(1) vim (or vi):
To start — > vi filename1
To edit — enter “i” and start inserting text until <Esc> hit
To delete single character — x
To delete entire current line — dd
To exit — pressing <Esc> key followed by :x <Return> or :wq <Return>
will quit vi saving the content to filename1, whereas pressing <Esc> key fol-
lowed by :q! <Return> will quit vi without saving the latest change to
filename1

See more basic commands for vi in http://www.cs.colostate.edu/helpdocs/vi.html

(2) emacs:
To start — > emacs -nw filename1
To edit — unlike vi, you can type in any characters in the editor
To save the current buffer– press hold down Control key and type in “x” and
“s”
To save the current buffer with different file name — press hold down Control
key and type in “x” and ”w” and then enter new file name To exit the buffer —
press hold down Control key and type in “x” and “c”

See more basic commands for emacs in http://www.cs.colostate.edu/helpdocs/emacs.html

4. Parallel Computing

Please read the pdf file by Prof. Nic Brummell:

https://ams.soe.ucsc.edu/sites/default/files/AMS cluster grape evennewer 0.pdf

5. Two Examples

In both tests, you demonstrate one of the most basic tasks such as printing
“hello world”.

5.1. Running a short program in R – Statistic Computing

Use your preferred editor to implement the following lines and save it to a file
named “test.R”:



5

print(date())
set.seed(43678)
print("Hello World")
print("Random number from standard normal")
print(rnorm(1, 0,1))

There are two ways to run your R script. If you want to run the program using
an R batch command, type from the Linux shell:

> R CMD BATCH test.R

Or, you can also run it by first start R (by typing “R” at the Linux com-
mand prompt) and once inside the R program, you can execute your source file
with the command:

> source(‘test.R’)

In the first approach, you can see your results written out to a default
output file test.Rout. In the second example, you should be able to see the
output on your screen such as

[1] "Mon Oct 20 00:43:37 2014"
[1] "Hello World"
[1] "Random number from standard normal"
[1] 0.7932329

5.2. Running a short program in Fortran – Scientific Programming
Language

Again, please use your preferred text editor and implement the following short
fortran program:

program hello
real :: n,m
integer :: i,j
i = 10
j = 2014
n=real(i)
m=159.e0
print *,"i+j=",i+j
print *,"n-m=",n-m
print *, "Hello World"
end program hello

You save it to hello.f90. Now you are going to compile it in order to generate
an executable binary. On grape, you can do this using gfortran compiler:



6

> gfortran hellow.f90

After compiling your program, you should be able to see an executable
binary file with a default name, a.out. Run it by entering a command line:

> ./a.out

Exercise 6: What does your result look like from running hello.f90?

Exercise 7: Can you give a different name for the executable instead of the
default a.out?

Exercise 8: Can you extend the previous serial run of test.R (and/or hello.f90)
to a parallel job, say 2 nodes with 8 processors on each node (i.e., a total of 16
parallel tasks)?


