
1

AMS260 Final Term Coding Project - Due 6pm, March 24, 2017

1D Finite Volume Shock Capturing Code for the Euler Equations

In this project we implement a finite volume conservative code to solve the
compressible 1D Euler equations,

Ut +
(
F(U)

)
x

= 0, (1)

where the conservative variables U and the associated flux function F(U) are
given by

U =

 ρ
ρu
E

 , and F =

 ρu
ρu2 + p
u(E + p)

 . (2)

Here, we follow the conventional way to denote flow variables of the Euler equa-
tions. They are the mass density ρ, the x-momentum m = ρu, and the total
energy per unit mass as a sum of the kinetic energy ρu2/2 and the internal
energy ρe,

E = ρ
(u2

2
+ e
)
, (3)

with the specific internal energy e given by a simple ideal gas law equation of
state (EoS),

e = e(ρ, p) =
p

(γ − 1)ρ
. (4)

We assume the ratio of specific heats γ constant and use γ = 1.4 for our project.
You might want to use different values of γ, for instance, γ = 5/3 = 1.666667 to
see what differences you get.

The goals in the project are the following:

1. Complete the first-order Godunov (FOG) template code,

2. Extend the FOG code to the second-order piecewise linear method (PLM),

3. Implement three different slope limiters, minmod, van Leer, and MC for
PLM,

4. Implement three different Riemann solvers of HLL, HLLC and Roe,

5. Run benchmarked problems using FOG and PLM, respectively combined
with HLL, HLLC and Roe solvers (6 cases), and

6. Analyze your results by conducting comparison studies of the six cases
(FOG-HLL, FOG-HLLC, FOG-Roe, PLM-HLL, PLM-HLLC, and PLM-
Roe).



2

You’re given one example problem, Sod’s shock tube, as a template. Using this
template code, you should be able to check and see if all your implementations
(the six combinations) are correctly working on the Sod problem.

Once you see all your implementations are correct on the Sod’s shock tube
problem, you’re going to setup and run three new test problems.

1. Grid Discretization

We adopt our 1D grid as before, following the cell-centered (rather than cell
interface-centered) notation for discrete cells xi and the conventional temporal
discretization tn:

xi = (i− 1

2
)∆x, (5)

tn = n∆t. (6)

Then the cell interface-centered grid points are written using the ‘half-integer’
indices:

xi+ 1
2

= xi +
∆x

2
. (7)

In this project, we take the number of guardcells Nngc = 2 on each side
of the domain, resulting the following grid configuration with Nx numbers of
interior grid resolutions:

• Two first guardcells on the left: xi, 1 ≤ i ≤ 2,

• Interior points: xi, Nngc + 1 ≤ i ≤ Nngc +Nx,

• Two last guardcells on the right: xi, Nngc +Nx + 1 ≤ i ≤ 2Nngc +Nx.

2. Three Test Problems plus one bonus problem

2.1. Example: Sod’s Shock Tube Problem

The Sod problem (Sod 1978) is a one-dimensional flow discontinuity problem
that provides a good test of a compressible code’s ability to capture shocks and
contact discontinuities with a small number of cells and to produce the correct
profile in a rarefaction. It also tests a code’s ability to correctly satisfy the
Rankine-Hugoniot shock jump conditions.

We construct the initial conditions for the Sod problem on the computa-
tional domain [0, 1] by establishing a single jump discontinuity. The fluid is ini-
tially at rest on either side of the interface, and the density and pressure jumps
are chosen so that all three types of nonlinear, hydrodynamic waves (shock,
contact, and rarefaction) develop. To the “left” and “right” of the interface we
have



3

Figure 1. Comparison of numerical and analytical solutions to the Sod
problem using the FLASH code. The simulated result is sampled at t = 0.2.

V(x, 0) =



 ρ
u
p


L

=

 1.0
0.0
1.0

 if x ≤ 0.5,

 ρ
u
p


R

=

 0.125
0.0
0.1

 if x > 0.5.

(8)

The ratio of specific heats γ is chosen to be 1.4 on both sides of the interface.
The outflow boundary condition is used.

2.2. Rarefaction Wave

This problem does not contain any jump discontinuities and is smooth, hence
it is a good test problem for convergence test. The initial condition on the
computational domain [0, 1] is given by:



4

V(x, 0) =



 ρ
u
p


L

=

 1.0
−2.0
0.4

 if x ≤ 0.5,

 ρ
u
p


R

=

 1.0
2.0
0.4

 if x > 0.5.

(9)

The ratio of specific heats γ is chosen to be 1.4 on both sides of the interface.
Please use tmax = 0.15. The outflow boundary condition is applied to this
problem.

2.3. Interacting Blast-Wave: Blast2

This Blast2 problem was originally used by Woodward and Colella (1984) to
compare the performance of several different hydrodynamical methods on prob-
lems involving strong shocks and narrow features. It has no analytical solution
(except at very early times), but since it is one-dimensional, it is easy to pro-
duce a converged solution by running the code with a very large number of cells,
permitting a reference solution to compare with.

Reflecting boundary conditions are used, where the velocity u is negated in
the guard-cell regions in a symmetric way, i.e., assuming Nngc = 2,

ui = −uk−i, i = 1, 2. (10)

on the left boundary with k = 2Nngc + 1. Similarly on the right boundary we
have

ui = −uk−i, i = Nx +Nngc + 1, Nx + 2Nngc (11)

where k = Nngc + 2Nx + 1.
The other primitive variables, density and pressure, are mirrored in the guardcell
regions,

ρi = ρk−i, pi = pk−i, i = 1, 2. (12)

on the left boundary with k = 2Nngc + 1. Similarly on the right boundary we
have

ρi = ρk−i, pi = pk−i, i = Nx +Nngc + 1, Nx + 2Nngc (13)

where k = Nngc + 2Nx + 1.

The initial conditions consist of two parallel, planar flow discontinuities
on the computational domain [0, 1]. The density is unity and the velocity is
initially zero everywhere. The pressure is large at the left and right and small
in the center

pL = 1000, pM = 0.01, pR = 100 . (14)



5

V(x, 0) =



 ρ
u
p


L

=

 1.0
0.0

1000.0

 if x ≤ 0.1,

 ρ
u
p


M

=

 1.0
0.0
0.01

 if 0.1 < x ≤ 0.9,

 ρ
u
p


R

=

 1.0
0.0

100.0

 if x > 0.9.

(15)

Please use γ = 1.4 and the final time tmax = 0.038.

2.4. The Shu-Osher Problem

The problem description is given in Chapter 10 of the lecture note. Please also
see computed results and their comparisons in Fig. 5 therein.

This problem requires to use a special boundary condition that keeps the
values of the primitive variables in the guardcells unchanged from the initial
conditions. That is, using the computational domain of [−4.5, 4.5],

V(x, t) =



 ρ
u
p


L

=

 3.857143
2.629369
10.33333

 if x < −4.0,

 ρ
u
p


R

=

 1 + aρ sin(fρx)
0.0
1.0

 if x > −4.0,

(16)

where aρ is the amplitude and fρ is the frequency of the density perturbations,
for which we take aρ = 0.2 and fρ = 5.0. The ideal equation of state is used with
γ set to 1.4. The location of the initial discontinuity is at xs = −4.0. Please use
the final time tmax = 1.8.

3. Project Tasks

Write a scientific report using LaTeX no more than 15 pages with font size
11. Your report should have three parts: introduction, main code results, and
conclusion. Submit your report and source code to your Git repository. Report
any differences you may observe and explain why.

• Coding:

1. Study the template code.

2. Please complete the FOG code and extend it to implement PLM, and
three Riemann solvers, HLL, HLLC and Roe.



6

3. Implement three different slope limiters: minmod, van Leer’s, and
MC for PLM.

4. Please setup the above four problems: Sod, Rarefaction, Blast2, and
the Shu-Osher problem.

• Code Results: Run the four problems to conduct the following comparison
tests.

1. [FOG vs. PLM] Run the Sod shock tube problem on Nx = 128
using HLLC. Plot primitive variables (density ρ, velocity u, and pres-
sure p) at t = 0.2 for each FOG and PLM+minmod.

2. [Riemann Solvers] Run the rarefaction problem on Nx = 128 using
PLM with minmod. Plot primitive variables (density ρ, velocity u,
and pressure p) at t = 0.15 for each HLL, HLLC, and Roe.

3. [Slope Limiters] Run the Blast2 problem on Nx = 128 PLM with
HLLC. Plot primitive variables (density ρ, velocity u, and pressure
p) at t = 0.038 for each minmod, van Leer’s, and MC slope limiters.
In addition, compare these results with FOG+HLLC.

4. [Grid Resolutions] Run the Shu-Osher problem using PLM+MC+Roe.
on Nx = 32, 64, 128, and 256. Plot primitive variables (density ρ, ve-
locity u, and pressure p) at t = 1.8 for each grid resolution. In
addition, compare these results with FOG+Roe.

5. [CFL] Run the Shu-Osher problem using PLM+minmod+HLLC on
Nx = 128 using CFL = 0.2, 0.4, 0.6, 0.8, 1.0, and 1.4. Plot primitive
variables (density ρ, velocity u, and pressure p) at t = 1.8 for each
CFL number.

6. [Extra Bonus Problem] Extend the 1D Euler code to one of the
following options – Please let me know if you wish to do this optional
problem:

– 1D MHD to solve the 1D Brio-Wu problem (see papers by Brio
and Wu; Roe and Balsara), or

– ADER method for high-order in both space and time (see Chap-
ters 19 and 20 in Toro; and papers by Titarev and Toro)


