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This paper concerns the construction of non-oscillatory schemes of very high
order of accuracy in space and time, to solve non-linear hyperbolic conservation
laws. The schemes result from extending the ADER approach, which is related
to the ENO/WENO methodology. Our schemes are conservative, one-step,
explicit and fully discrete, requiring only the computation of the inter-cell fluxes
to advance the solution by a full time step; the schemes have optimal stability
condition. To compute the intercell flux in one space dimension we solve a
generalised Riemann problem by reducing it to the solution a sequence of m
conventional Riemann problems for the kth spatial derivatives of the solution,
with k=0, 1,..., m−1, where m is arbitrary and is the order of the accuracy of
the resulting scheme. We provide numerical examples using schemes of up to
fifth order of accuracy in both time and space.

KEY WORDS: ADER; essentialy non-oscillatory; Godunov; generalised
Riemann problem.

1. INTRODUCTION

In designing numerical schemes of very high-order of accuracy for solving
hyperbolic conservation laws one faces at least three major difficulties. One
of them concerns the preservation of high accuracy in both space and time
for multidimensional problems containing source terms. Another one con-
cerns conservation; this is mandatory in the presence of shock waves. The
other very important issue relates to the generation of spurious oscillations
in the vicinity of strong gradients; according to Godunov’s theorem [5]
these are unavoidable by linear schemes of accuracy greater than one! Each
one of these difficulties is in itself not easy to resolve; the simultaneous
resolution of all three difficulties above represents a formidable task in the
numerical analysis of hyperbolic conservation laws. At present, there are
various approaches for constructing numerical schemes that attempt to
overcome the above difficulties. State-of-art very high order methods (at



least third order) for hyperbolic conservation laws include the class of
ENO/WENO schemes [1, 6, and 7], Spectral Methods [3], the class of
Compact Difference Methods [12] and Discontinuous Galerkin Finite
Element Methods [4]. These schemes meet the requirement of very high-
order spatial accuracy; matching time accuracy to space accuracy, however,
remains an issue in all of the above approaches. As regards the ENO/
WENO/MPWENO approach, the most accurate scheme reported so far
uses 9th order spatial discretisation with Runge–Kutta methods for time
evolution. To avoid spurious oscillations these Runge Kutta methods must
be TVD. This leads to accuracy barriers: the accuracy of such methods
cannot be higher than fifth. Moreover, fourth and fifth order methods are
quite complicated and have reduced stability range. In most practical
implementations reported, when the solution is not smooth, a third order
TVD Runge–Kutta method has been used, e.g., [1]. Although increased
order of spatial descretisation improves accuracy for some problems such
schemes converge with third order only when the mesh is refined and thus
should be regarded as third order schemes. For some applications, such as
numerical simulation of compressible turbulence and wave propagation
problems involving long-time evolution it would be beneficial to use
schemes which converge with higher order both in time and space.
A recent approach for constructing schemes of very high order of

accuracy is the ADER (Advection-Diffusion-Reaction) approach [10],
which stems from the modified Generalised Riemann Problem (MGRP)
scheme [14] which in turn is a simplification of the GRP scheme [2]. The
approach has so far been applicable only to linear hyperbolic systems with
constant coefficients in one and multiple space dimensions, see also [9].
The schemes are conservative, one-step, explicit and fully discrete, requiring
only the computation of inter-cell fluxes to advance the solution by a full
time step.
In this paper we extend the ADER approach to nonlinear hyperbolic

systems. The designed finite-volume schemes are of arbitrary order of
accuracy in both time and space and with optimal stability condition for
all problems. The first order ADER scheme boils down to the original
Godunov’s scheme [5] and second and higher order schemes can be
regarded as its higher order extensions. Our generalisation has some
similarities with finite-volume ENO schemes [7] but differs in the way time
accuracy is preserved as will be explained below.
The rest of the paper is organized as follows. In Section 2 we describe

the ADER approach for hyperbolic systems. Numerical examples are given
in Section 3 and conclusions are drawn in Section 4.

2. THE NUMERICAL SCHEME

We consider the hyperbolic system in conservation form given by

“tQ+“xF(Q)=0 (1)
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along with initial and boundary conditions. Here Q is the vector of
unknown conservative variables and F(Q) is the physical flux.
Consider now a control volume in x−t space Ii×[tn, tn+1], Ii=[xi−1/2,

xi+1/2], of dimensions Dx=xi+1/2−xi−1/2, Dt=tn+1−tn. Integrating (1) on
Ii×[tn, tn+1]we obtain

Q̄(xi, tn+1)=Q̄(xi, tn)−
Dt
Dx
5F t

n+1

tn
F(Q(xi+1/2 , t) dt−F

tn+1

tn
F(Q(xi−1/2, t)) dt6

(2)

where Q̄(xi, tn) is the sliding average of the solution in cell Ii at time tn. We
approximate (2) by the following conservative scheme:

Qn+1
i =Qn

i −
Dt
Dx
(F̂i+1/2− F̂i−1/2) (3)

where Qn
i is a high-order approximation to the cell average Q̄(xi, tn) and

F̂i+1/2 is the numerical flux. Note that although the scheme describes the
evolution of cell averages the numerical flux involves point-wise values of
the unknown variables.
The ADER approach consists of three steps: (i) reconstruction of

point wise values from cell averages, (ii) solution of the generalised
Riemann problem at the cell interface and (iii) evaluation of the intercell
flux to be used in the conservative scheme (3). The point-wise values of the
solution at t=tn are reconstructed from cell averages via high-order poly-
nomials. Use of a fixed stencil for the reconstruction leads to linear ADER
schemes (a scheme is called linear if it has constant coefficients when
applied to a linear equation with constant coefficients). However, in
accordance with Godunov’s theorem [5], linear schemes of order of
accuracy higher than one will produce spurious oscillations near disconti-
nuities and steep gradients of the solution. To avoid oscillations the adap-
tive WENO reconstruction technique is used leading to nonlinear ADER
schemes. In the rest of the paper we denote mth order ADER schemes as
ADERm. By the order of accuracy we mean the convergence rate of the
scheme when the mesh is refined with a fixed Courant number. ADER3
uses weighted parabolic reconstruction; ADER4 uses weighted cubic
reconstruction and so on.
After the reconstruction step the conservative variables are represented

as vectors pi(x) of polynomials. At each cell interface we have the follow-
ing generalised Riemann problem with the reconstruction polynomials of
(m−1)th order for an mth order scheme:

PDE: “tQ+“xF(Q)=0

IC: Q(x, 0)=˛QL(x)=pi(x), x < xi+1/2
QR(x)=pi+1(x), x > xi+1/2

(4)
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We find an approximate solution for the interface state Q(xi+1/2, y), where
y is local time y=t−tn, using a semi-analytical method by Toro and
Titarev [11, 13]. This generalisation of the Riemann problem is twofold:
(i) the governing equations include non-linear advection as well as reaction
terms and (ii) the initial condition consists of two arbitrary but infinitely
differentiable functions. The generalised Riemann problem with polyno-
mials of m order is then denoted as GRPm. The method gives the solution
at x=xi+1/2 at a time y, assumed to be sufficiently small, in terms of solu-
tions of a sequence of conventional Riemann problems for homogeneous
advection equations.
In short, the approximate solution Q(xi+1/2, y) can be evaluated as

follows. First we write a Taylor expansion of the interface state in time

Q(xi+1/2, y)=Q(xi+1/2, 0+)+C
m−1

k=1
[“ (k)t Q(xi+1/2, 0+)]

yk

k!
(5)

where

“
(k)
t Q(x, t)=

“
k

“tk
Q(x, t), 0+— lim

yQ 0+
y

The leading term Q(xi+1/2, 0+) accounts for the interaction of the bound-
ary extrapolated values QL(xi+1/2) and QR(xi+1/2) and is the Godunov
state of the conventional (piece-wise constant data) GRP0

“tQ+“xF(Q)=0

Q(x, 0)=˛QL(xi+1/2) if x < xi+1/2
QR(xi+1/2) if x > xi+1/2

(6)

A key ingredient is the availability of an exact or approximate Riemann
solver for the conventional Riemann problem GRP0 to provide the first
term in the expansion. Note that since all other terms are higher order
corrections to the Godunov state the scheme is indeed an arbitrary high
order extension of the Godunov scheme.
Next, we replace all time derivatives by space derivatives using the

governing system of equation by means of the Lax–Wendroff procedure
[8]. For example, for the scalar linear equation qt+lqx=0, with constant
l, we have

“
(k)
t q(x, t)=(−l)

k
“
(k)
x q(x, t)

and the expansion becomes

q(xi+1/2, y)=q(xi+1/2, 0+)+C
m−1

k=1
[“ (k)x q(xi+1/2, 0

+)]
(−ly)k

k!
(7)
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The Lax–Wendroff procedure for the Euler equations is described in [7].
One may use some algebraic manipulator for this.
Next, it can be shown [11, 13] that space derivatives Q (k) — “ (k)x Q of

the solution at (x−xi+1/2)/y=0 can be evaluated as the Godunov states of
the the following linearised GRP0:

“tQ (k)+A(Q(xi+1/2, 0+)) “xQ (k)=0

Q (k)(x, 0)=˛“
(k)
x QL(xi+1/2), x < xi+1/2
“
(k)
x QR(xi+1/2), x > xi+1/2

(8)

The initial condition for (8) is found by differentiating the given
WENO reconstruction polynomial with respect to x. In general, optimal
weights for derivatives do not always exist; for example if we use weighted
parabolic reconstruction there are no optimal weights for the first deriva-
tive. Because of this, we use the same weights and smoothness indicators
for the function and for all derivatives. As a result, the ADERm scheme is
of mth order in space (and time) despite the fact that point-wise values of
the solution are reconstructed with (2m−1) order of accuracy.
Note that the coefficient matrix A is the same for all Q (k) and has to be

evaluated only once. Finally, having found all space derivatives we form
the Taylor expansion (5):

Q(xi+1/2, y)=A0+A1y+A2y2+·· ·+Am−1ym−1, 0 [ y [ Dt

which approximates the interface state for 0 [ y [ Dt to mth order of
accuracy. To evaluate the numerical flux we use an appropriate Gaussian
rule:

F̂i+1/2=C
Ka

a=0
F(Q(xi+1/2, ca Dt)) wa (9)

where cj and wj are properly scaled nodes and weights of the rule and Ka is
the number of nodes.
A very important issue is stability of the numerical method just

described. Linear schemes applied to the linear advection equation with con-
stant coefficient have the optimal stability condition CFL [ 1 [10], where
CFL denotes the (maximum) Courant number. Numerical experiments indi-
cate that the approach has the same stability condition for nonlinear scalar
equations and systems as well. When solving nonlinear equations in practice,
however, smaller CFL numbers are used. For the examples presented here we
use CFL=0.95 throughout.

Remark 1. We note that our generalisation of the ADER approach
has some similarities with finite volume ENO schemes developed in [7].
However, the key difference lies in how time accuracy is preserved. In
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the ENO scheme one extrapolates the boundary values of conservative
variables forward in time via the Lax–Wendroff procedure in the nodes of
the Gaussian rule used to integrate the flux in time for tn [ t [ tn+1. Then,
Riemann problems with these values as initial conditions are solved, and
the flux is evaluated at the nodes. These values of the flux are summed with
the Gaussian weights to get the approximate expression for the flux. In
contrast, we build the state expansion in time using the concept of
generalised Riemann problem and then integrate the flux using this expan-
sion. Another major difference is that the ADER approach extends directly
to handle source terms, which, in a very natural way, enter the flux com-
putation via the solution of the inhomogeneous generalised Riemann
problem; see [11] for numerical implementations for the scalar case.

Remark 2. An important issue is efficiency of the schemes. For the
linear equation with constant coefficients ADER schemes are 2–3 times
faster than corresponding ENO/WENO schemes when the same CFL
number is used [10]. For the 1D Euler equations, our provisional results
show that the ADER3 scheme is about 50% faster than WENO5 scheme.
This is due to the fact that in the WENO scheme one has to evaluate char-
acteristic variables and smoothness indicators in each reconstruction step
and then solve the nonlinear Riemann problem at the cell interface; this is
done three times for the third order Runge–Kutta method. In practical
applications finite-difference WENO schemes usually need rather small
CFL numbers (0.2 · · · 0.6). Also, it is worth mentioning that in the mono-
tonicity constraint used in the MPWENO scheme one requires CFL [ 0.2,
although the scheme appears to be non-oscillatory for CFL numbers of
0.4 · · · 0.6, depending on the problem of course. In contrast, ADER
schemes can use CFL numbers close to the optimal for all problems [11].
The range of CFL numbers that a given scheme can use in practical com-
putations must also be a factor in discussing efficiency. In 2D, finite-dif-
ference schemes are in general faster than finite-volume schemes. However,
we expect the difference to be smaller for ADER than for WENO schemes,
because in the former the reconstruction is done only once.

3. NUMERICAL EXAMPLES

Here we study numerically the convergence properties of ADER
schemes and compare them with the state-of-art WENO5 scheme, which
uses a fifth-order accurate weighted parabolic spatial reconstruction and a
third order TVD Runge–Kutta time stepping scheme. WENO5 is fifth
order in space and third order in time and consequently converges with
third-order of accuracy.

Example 1. We solve “tq+“xq=0 with the initial condition q0(x)=
sin4(px) defined on [−1, 1]. Periodic boundary conditions are used. The
error is measured at time t=1. Table I shows convergence rates and errors
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Table I. Linear Advection. IC: q0(x)=sin4(px). Output Time t=1, CFL=0.95,
N Is the Number of Cells

Method N L. error L. order L1 error L1 order

WENO5 20 1.37×10−1 1.32×10−1

40 2.29×10−2 2.58 2.00×10−2 2.72
80 2.50×10−3 3.19 2.39×10−3 3.06
160 2.82×10−4 3.15 2.78×10−4 3.11

ADER3 20 1.97×10−2 1.83×10−2

40 2.65×10−3 2.89 1.38×10−3 3.72
80 3.42×10−4 2.96 1.26×10−4 3.46
160 2.45×10−5 3.80 1.49×10−5 3.08

ADER5 20 2.91×10−3 3.22×10−3

40 1.23×10−4 4.56 5.53×10−5 5.86
80 1.96×10−6 5.97 6.78×10−7 6.35
160 1.18×10−8 7.37 1.28×10−8 5.73

for different schemes. We observe that all ADER schemes reach the
designed order of accuracy. As expected, the error of WENO5 decreases
with third order only, despite the fact that it has fifth order spatial
accuracy. We note that ADER3 is more accurate than WENO5 and
ADER5 achieves substantially better accuracy than both third order
schemes, as expected.

Example 2. We solve the inviscid Burgers’ equation “tq+“x(
1
2 q
2)=0

with the initial condition q0(x)=0.25+0.5 sin(px), defined on [−1, 1].
Periodic boundary conditions are used. The error is measured at the output
time t=0.2. Table II shows the numerical results. We observe that the
ADER schemes reach the designed order of accuracy. Again ADER5 is
much more accurate than both third order schemes; the gap in accuracy
rapidly increases as the mesh is refined.

Table II. Burgers’ Equation, IC: q0(x)=0.25+0.5 sin(px). Output Time t=0.2,
CFL=0.95, N Is Number of Cells

Method N L. error L. order L1 error L1 order

WENO5 20 1.25×10−3 6.58×10−4

40 2.51×10−4 2.31 9.74×10−5 2.76
80 3.12×10−5 3.01 1.23×10−5 2.99
160 3.83×10−6 3.03 1.55×10−6 2.98

ADER3 20 1.02×10−3 6.63×10−4

40 2.65×10−4 1.95 1.16×10−4 2.52
80 3.45×10−5 2.94 1.47×10−5 2.98
160 4.41×10−6 2.97 1.86×10−6 2.98

ADER5 20 1.04×10−4 5.58×10−5

40 6.00×10−6 4.12 2.09×10−6 4.74
80 1.97×10−7 4.93 6.15×10−8 5.09
160 6.05×10−9 5.02 1.88×10−9 5.03
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Fig. 1. Shock-turbulence interaction test problem. Density profile computed by WENO5
with 200 cells and CFL=0.95.

Example 3. Shock turbulence interaction problem [1]. We now
assess the performance of the ADER schemes for the 1D Euler equations
for a c-law gas with c=1.4 in all the results shown here. The initial condi-
tion defined on [−1, 1] is

-1 -0.5 0 0.5 1
1

2

3

4

5

Fig. 2. Shock-turbulence interaction test problem. Density profile computed by ADER3
with 200 cells and CFL=0.95.
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Fig. 3. Shock-turbulence interaction test problem. Density profile computed by ADER4
with 200 cells and CFL=0.95.

(r, u, p)=˛ (3.857143, 2.629369, 10.333333), x < −0.8
(1+0.2 sin 5px, 0.0, 1.), x > −0.8

Output time is t=0.47 and a mesh of 200 cells is used. A reference solution
is computed on a fine mesh with 2000 cells and is shown as a solid line in
the graphs. Figs. 1–3 show density profiles computed by WENO5, ADER3
and ADER4. We observe that ADER3 is much more accurate than
WENO5 whereas ADER4 outperforms both of them and is comparable
with MPWENO (see [1]).

4. CONCLUSIONS

An extension of the ADER approach to nonlinear hyperbolic systems
was presented. It uses the solution technique for the generalised Riemann
problem for non-linear systems with source terms developed by Toro and
Titarev [11, 13]. Unlike the WENO schemes the developed ADER
schemes are of unbounded accuracy in both space and time, and have
optimal stability condition for explicit schemes. The numerical results
indicate that for the 1D problems considered the schemes compare very
favourably with state-of-art WENO schemes. Preliminary results for the
linearised Euler equations in 2D appear to be equal or superior to
ENO/WENO schemes [9]. The extension to nonlinear hyperbolic systems
in 2D is the subject of ongoing research.
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