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NOTES ON THE EIGENSYSTEM OF MAGNETOHYDRODYNAMICS*

P. L. ROEt AND D. S. BALSARAt

Abstract. The eigenstructure of the equations governing one-dimensional ideal magnetohy-
drodynamics is examined, motivated by the wish to exploit it for construction of high-resolution
computational algorithms. The results are given in simple forms that avoid indeterminacy or degen-
eracy whenever possible. The unavoidable indeterminacy near the magnetosonic (or triple umbilic)
state is analysed and shown to cause no difficulty in evaluating a numerical flux function. The struc-
ture of wave paths close to this singularity is obtained, and simple expressions are presented for the
structure coefficients that govern wave steepening.
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1. Introduction. For any system of hyperbolic partial differential equations,
expressed as

(1) Vt + AVx 0,

with A a diagonalisable matrix, the eigensystem of A plays a prominent role. The
eigenvalues of A are the wavespeeds, the right eigenvectors define the paths taken
in phase space by simple waves, and the left eigenvectors define the characteristic
equations.

For the system of compressible magnetohydrodynamics (referred to henceforward
simply as MHD) the eigensystem was given by Jeffrey and Tanuiti [1] and is also
available in many subsequent works. However, the form in which the eigenvectors
were originally given is singular or indeterminate in a number of special cases. Brio
and Wu [2] employed a variety of identities that occur in the algebra to provide
alternative expressions that are well formed except close to the "triple umbilic," where
the fast, slow, and Alfv5h speeds coincide. These revised eigenvectors demonstrated
that the MHD equations are always diagonalisable although not everywhere convex.
Brio and Wu also created from their analysis a computational scheme based on solving
linearized Riemann problems and have been followed in this by Zachary and Colella
[3] and Woodward and Dai [4].

Balsara [5] (see also references therein) has compared the quality of numerical so-
lutions based on a total variation diminishing interpolation of the field variables (see
Harten [6]) with interpolation of the primitive variables and finds that the first proce-
dure is noticeably superior. This stresses again the importance of the eigenstructure
for numerical simulations. Bell, Colella, and Trangenstein [7] propose a Strategy for
computing fluxes due to nonconvex waves by first solving linearised Riemann prob-
lems and then inserting nonlinear structure. An understanding of the degeneracies in
the linear problem is essential to assessing this approach.

In 2 of this note, we further refine the analysis in [2]-[4], leading to additional
simplifications, which permit a clarification of the local eigenstructure close to the
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58 P. L. ROE AND D. S. BALSARA

triple umbilic T. In 3 we ascertain the wave paths near T and relate them to the
general classification of quadratic degeneracies in [8]. We then consider in 4 the
case where a Riemann problem is solved by linearising about a state S close to T
and find that although the jumps across individual waves are then sensitive to the
choice of S, the computed flux is not. Studies of the acceleration of MHD winds

[9]-[13] often deal with states very close to T. The present analysis should increase
confidence in the reliability of linearised Riemann solvers in such situations. In 5,
we give simple expressions for the "structure coefficients" that govern nonlinear wave

steepening. Section 6 contains a remark on the relevance of one-dimensional analysis
to higher-dimensional calculations.

2. Eigenstructure. The governing equations of MHD, written in the form (1),
with the unknowns taken to be the primitive variables

and properties varying only in the z-direction, give rise to a matrix

-vx p 0 0 0

0 vx 0 0 47c

OO xO 4rp

0 0 0 vx 0
0 By-Bx 0
0 B 0 -B 0
0 pa2 0 0 0

where a, the regular acoustic wavespeed, is given by

4rp p

0 0
Bx 04rp
0 0
vz 0
0 vz

for an ideal gas and for other substances in thermodynamic equilibrium by

In what follows, any formula not explicitly containing - refers to the general case.
Because of the one-dimensional assumption, B is a constant.

We define

2 2 b_ b + 2b + + bz,

As is well known, these equations admit seven different types of wave motion
whose speeds are, in increasing order,

1,2,3,4,5,6,7 Vx Cf, Vx bz, Vx c., vx, v + c,, Vx + b, Vx + Cf

The analytically less tractable cases, on which we concentrate here, are those with
speeds , v + cf,,; these are the magnetoacoustic waves. From det(A- hi) 0 it
is found that c}, c arc, respectively, the larger and smaller values of c2 satisfying

(3) 2 2
C
4 (a2 + b2)c2 + a b. O.

From (3) the following useful identities follow at once:

c4f,. a2V cf,,(cf,

D
ow

nl
oa

de
d 

05
/0

3/
13

 to
 1

28
.1

35
.1

00
.1

15
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



MHD EIGENSTRUCTURE 59

-2 -1
b /a
X

FIG. 1. Contours of equal cf (ellipses) and Cs (hyperbolae).

2 is usuallyIt is also useful to note that c} is usually greater than either a2 or b, and c
2 if 2 aless than either. There is, however, the possibility that c} c. b and b+/- 0.

This is the "triple umbilic" case investigated in detail below.
We will later make use of a diagram whose coordinate axes represent (bx/a), (b+/-/a).

The loci of constant cf, c. in such a diagram are shown in Fig. 1. They are, respec-
tively, confocal ellipses and hyperbolae, with foci lying at the triple points T.

The right and left eigenvectors of the fast magnetoacoustic waves can be found
fairly straightforwardly as

b

cf bz

The eigenvectors of the slow magnetoacoustic waves can be obtained by replacing f
with s throughout.

One may verify, using the identities (4), that the product ll .r vanishes if sub-
scripts 1 and 2 refer to any distinct pair chosen from the four magnetoacoustic waves.
When and r refer to the same wave, we find, with c equal to cf or cs,

2

(6) .
This expression is singular or indeterminate in a variety of cases. To obtain orthonor-
mal eigenvectors we need to multiply the right and left eigenvectors by factors U’z

such that

The algebra is simplified by introducing positive parameters af, defined by

(2 2 C} a2Cs 2
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60 P. L. ROE AND D. S. BALSARA

Similar parameters were introduced by Brio and Wu [2] and utilised in [31 and [4].
In fact, a, is defined here identically, but our af has an additional factor a/cf. For
our parameters, there is useful symmetry in the relationships

a + a 1,

and

22 2 2 (t2asc + afcf

ab+/-

Inspection of the eigenvectors below will reveal that the parameters ozf,s are in
many senses a measure of how closely the fast/slow waves approximate the behaviour
of acoustic waves. Thus, if af

_
1, the fast wave is "almost an acoustic wave."

Appropriate normalisation factors turn out to be

kl Ctf,skf cf,s f,s 2a2

The a2 has been placed in k to give r the same dimensions as V. Inserting these
factors into (5) leads, after extensive use of the identities, to

1If 2a2

(9)

t p
+/-CtsCs

+/-aycf/sgnbxr +afCyzsgnbx
af 4a/.v

\ aspa2

Here we follow [2] in writing

b

2a2

bz

These quantities are indeterminate if b+/-
_

0. It is suggested in [2] that the values
they then assume may be given arbitrarily; for example, v 1//. This
preserves the orthonornality of the eigenvectors.

To make this paper self-contained we now list the six cases, indicated in Fig. 2,
that can potentially cause trouble. In four of these the reader can easily verify that
our expressions for the eigenvectors remain well formed and linearly independent.

In the expression for 1, given in [3], the last component should be ’as. Also the normalising
factors R+f,s given there can be simplified considerably.
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MHD EIGENSTRUCTURE 61

II

FIG. 2. The six singular cases of linear MHD.

Case I (bx -0). In this case

2 a2bx
(10) c a2 + bL, c, a2+bL

Case II (b 0 and b 0). This is the hydrodynamic limit; we have

Cs(11) c a2 2 0,
2 0.

The fast waves become regular acoustic waves, and the slow waves combine with the
Alfv6n waves to produce shear waves.

Case III (bl < a- and b 0). In this case

c8 b,(12) cd a2 2

2 0.

Again, the fast waves are regular acoustic waves.
Case IV (lb > a + and b 0). In this case

2 a2

This time, the slow waves are regular acoustic waves.
Case V (lbl a and b 0). This is the magnetosonic case, which is the most

interesting one, in which

(14) c a2 2 a2Cs

but the quantities af, become indeterminate. However, since a + a 1, the
eigenvectors cannot be singular. The forms taken by af, close to the singularity have
not been given previously, but an expansion

b (a + )sgnB, b

can be inserted into their expressions, leading after some algebra to the simple results

(15) f=sin+Sf, ,=cos
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62 P. L. ROE AND D. S. BALSARA

where

tanO
b+/-

It can be shown that

b+/-
4a

Case VI (Ibxl >> a and b+/- >> a). This is the vacuum limit. In this case

c2 b2 0,
2I.

It may be checked that both slow eigenvectors collapse onto the entropy eigenvector.
This means that the eigenvector system is no longer complete and that the MHD
equations are ill posed in a way that cannot be removed by any renormalization.
(The same behaviour occurs of course in the Euler equations.) Therefore, all of the
analysis above has been carried out on the assumption that a is suitably scaled to
serve as a reference quantity.

For completeness, we now list the easily derived eigenvectors for the Alfv(n waves,

(17) ra

0
0

4x/-4-/3zsgnb.

1

0
0

-/3sgnb./4/

\ / \ /

/3ysgnb / 4-)--fi
0

and for the contact, or entropy, wave,

(18) r

/1
0
0
0
0
0

\0/

1

\

3. Wave paths near the triple point. A wave path is a path in phase space
everywhere parallel to the right eigenvector of a given wave family, i.e., dV o( r. It is
the projection into phase space of a simple wave. In the section X b:/a, Y b+/-/a
of phase space the path of a wave is defined by

dY a db+/- b+/- d a(19)
dX a db bd a

Close to the triple point this simplifies to

dY db+/- p dB+/-
dX da (1 + n)a,/- d p
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MHD EIGENSTRUCTURE 63

bp/a ..- ........

0 -4 -2 0 2 4
bx/a

FtG. 3. Wavepaths near the triple point T. Slow waves are shown with dotted curves and fast
waves with continuous curves. The figure is self-similar, and the units are arbitrary.

The last step uses the fact that magnetoacoustic waves are isentropic and introduces

the value of which for an ideal gas is (-y 1)/2. By inserting the appropriate compo-
nents of r we find that for a fast wave, whether of the left- or right-going family,

dY 1 a 1
cot

dX f l + c ctf 1+ 2

Similarly, for either slow wave

dY 1 af 1
tan

dX, l+a 1+ 2

For an ideal gas, these differential equations can be integrated in polar coordinates
centered on the triple point. The general form of the resulting curves is independent

the solution isofT. For- 5

r(O) r(Tr/2) (fast)1/5(1 + cos O)4/5(1 cos0)

1/5(1 cos O)4/5(1 + X cos0)
(slow).

Figure 3 shows these trajectories.
In a general study of 2 x 2 systems of conservation laws with quadratic nonlin-

earity, Schaeffer and Shearer [8] obtain wavepaths with this topology for problems
which they classify as type IV. The 3 3 set of model equations for MHD studied in
[16] can also be shown to yield wave diagrams of the same type, provided that the
parameter c occurring in that model is taken greater than 2.0 (R.-S. Myong, private
communication). For this kind of nonlinearity, the Hugoniot curves were worked out
by Isaacson et al. [17]. It can be shown that the Riemann problem is then well posed
for problems without dissipation if compressive shocks are the only ones admitted.
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64 P. L. ROE AND D. S. BALSARA

These wave diagrams are easily extended to the three-dimensional space bx/a,
by/a, bz/a by rotating them round the bx/a axis. Fast and slow trajectories are con-
tained in a fixed plane through the axis. Alfvdn wave trajectories are arcs of circles
centered on this axis and normal to it.

4. Solution of linearised Riemann problems. Suppose that we are given
Riemann initial data (V Vc, z < 0; V VR, x > 0) and wish to solve for its
evolution by linearising the governing equations around some average state V0. The
solution will be divided into eight uniform regions by seven discontinuities moving
with speeds k(V0). Across the kth wave the change of state is

where lk, r are also evaluated at V0. Finite-volume schemes of the Godunov type
often make use of such a solution to determine the flux passing between two cells,
but if the solution should prove to be very sensitive to the choice of V0, this would
undermine confidence in their use.

Consider therefore a linearised Riemann problem with certain fixed data but
various candidates for V0 all lying close to the triple point T. The jumps across the
Alfvdn and contact discontinuities will not be sensitive to the choice of V0 since these
eigenvectors are well behaved near T. To understand what happens to the other
jumps, observe that the right-going magnetoacoustic waves will produce a pair of
jumps contained in the subspace spanned by r-, r. But reference to (8), (9) shows
that

where ra+ (which produces an acoustic effect) and r+ (which changes the tranverse
velocity and the magnitude of the transverse field) are insensitive to the choice of V0.
Therefore the combined jump across both waves is the projection of VR- Vc into the
stable subspace spanned’by r+, r+, and a similar argument applies to the left-going
pair. Any sensitivity will be the result of how the combined jump gets divided between
r-, r+, but we now show that this will not affect the value of the flux at x 0.

A formula for the flux F* across x 0, when the equations are written in con-
servation form

+ 0,

(21) [fc +F* (UL, U) - E alA R,
k=l

where the wavestrengths ak and speeds / have already been defined and the R
are the right eigenvectors for the conserved variables R Uv r. Here Uv is the
Jacobian matrix that relates changes in the primitive and conserved variables; it is
not sensitive to the choice of V0. The output from this formula is not sensitive to the
choice of V0 if the fast and slow waves both move in the same direction, because if
they share the same sign for A, it is the sum of their contributions that appears. Thus
the critical case is where c < IVxl < cf. Suppose that v > 0 so that we have the
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MHD EIGENSTRUCTURE 65

(a) (b)

FIC. 4. Critical cases for the sensitivity of numerical flux to the choice of mean state: (a)
b+/- 0, bx a, (b) b0.

situation depicted in Fig. 4(a), and consider then the terms arising from the fast and
slow left-going magnctoacoustic waves. We have wavestrengths

a-f ctf - + o, VI VL
a: c,, : --cZZ,;). VI VI

If V0 is chosen randomly within a circle of radius e, centered on T, both a}- and a
may change by order unity. In the formula, however, they are multiplied respectively
by Icf -Vxl and by Ic, v: I. Since the wavespeeds can be shown to satisfy

Cf Q,

both of these factors must be of order e, and the arbitrariness in choosing V0 has only
an (9(e) effect on the value of the computed flux.

In reality, if V0 were very close to T, the spacing between the fast, slow, and
Alfvdn waves would be comparable to the width they acquire from dissipation and
dispersion. Waves having a complicated internal structure then arise, and it is an

open question whether they can be correctly captured by a numerical method that
does not explicitly account for the dissipative mechanisms. We make no attempt to
answer this question here but direct the interested reader to to a sampling of the
recent literature [15]-[17], [18], [19], [20].

If V0 lies very close to the origin (b
_

0), then the slow and Alfvdn wavespeeds are
both very small and we have the situation in Fig. 4(b). The space spanned by these
waves includes the regular Euler eigenvectors describing shear waves. Numerically,
similar considerations will apply. The calculated flux will not be sensitive to the
precise choice of V0, even though the way the shear wave is built from the slow and
Alfvdn waves is sensitive. This provides a justification for assigning arbitrary values
to y, z in this limit.

5. Structure coefficients. Structure coefficients measure the tendency of a sire-
plc wave to spread or steepen. They are defined through [21]

(22) s gradV A r.

A wave for which s 0 is said to be linearly degenerate; it does not change its own
wavespeed. (This is always the case for the Alfvdn and contact waves.) Clearly it is
important to define s through properly normalised eigenvectors.

D
ow

nl
oa

de
d 

05
/0

3/
13

 to
 1

28
.1

35
.1

00
.1

15
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



66 P. L. ROE AND D. S. BALSARA

The magnetoacoustic wavespeeds depend on v;, a, b+/-, and bx.
+ cf as an example, we have

Taking }-

2

-1,
Ov Oa a Ob_L a Obx a

where the last three results come from differentiating (3) and employing the identities.
Then (using as defined in (20))

After inserting the elements of r.}F, considerable simplification ensues. The result can
be expressed for either fast wave as

and for either slow wave as
+/- dA 3

(24) s,s (re + 1)

In the special cases ozf, 1, when the fast or slow wave assumes the guise of a
regular acoustic wave, a classical result is recovered. These results can be confirmed
by comparing them with equivalent but more complicated expressions given in [22].

Although it is clear from the above expressions that the ratios d,kf,s/dvx are
always positive, it does not follow that either Af,s or vx individually behaves mono-

tonically through a simple wave. Indeed, if b_L 0 so that either Of or Cs vanishes,
reference to the eigenvectors shows that dv 0 for that wave. Thus v, and also A,
is stationary with respect to z at such a point, and the wave is neither expansive nor

compressive. This is the "loss of convexity" first observed in [2].
Zachary and Colella [3] employ the structure coefficients (expressions for which

they do not give) to add numerical dissipation in the style of Bell, Colella, and
Trangenstein [7]. However, for the Euler equations, Roe [23] found that such ad-
ditional dissipation was required only at stationary sonic points. Application of this
simplified strategy to the MHD equations appears to be confirmed by numerical ex-

periments reported in [24], but only extensive testing will decide the issue.

6. Remark on multidimensional problems. If the two- or three-dimensional
MHD equations are written in the conservation form that is usual for discontinuity-
capturing calculations, the eigenvectors are not simple extensions of their one-
dimensional versions. Also, the constraint B 0 gets replaced by the more
complicated constraint divB 0. Powell [25] has recently shown that a partially
conservative form of the multidimensional equations, obtained by manoeuvring terms
proportional to div B, retains the one-dimensional eigenstructure, with the addition
of an eighth wave that convects div B as a passive scalar. This observation has
enabled the one-dimensional analysis to be applied almost directly to adaptive-grid
calculations of a cometary atmosphere interacting with the solar wind [26].

7. Conclusions. The eigenvectors of the MHD equations have been given in
forms that are more compact and illuminating than previously. The new expressions
have been used to clarify a singularity in the wave structure, the behaviour of linearised
Riemann problems, and the steepening of simple waves.
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