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AMS260 Homework 3

Theory Problems (MANDATORY)

Problem 1 Consider the Lax-Friedrichs (LF) method for solving the scalar
advection ut + f(u)x = 0 with f(u) = au, where a > 0 or a < 0,
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(a) Show that the LF method is consistent and stable for |Ca| ≤ 1.

(b) Show that the LF method is O(∆t+ ∆x2).

(c) Rewrite the LF method in the conservative form,
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that is to say, please find expressions for f̂ni±1/2 as functions of Un
k and the

original flux f(Un
k ), k = −1, 0, 1.

Problem 2 Consider the Lax-Wendroff (LW) method for solving the scalar
advection ut + aux = 0 with a > 0 and f(u) = au,
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(a) Show that the LW method is consistent and stable if |Ca| ≤ 1.

(b) Show that the LW method is O(∆t2 + ∆x2).

Problem 3 Use the von Neumann analysis of the 1D advection using forward
in time forward in space (FTFS)
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to show that FTFS is unstable if a > 0 and stable if a < 0.

Problem 4 Show that a forward in time centered in space scheme (FTCS) for
1D advection with a > 0
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is unconditionally unstable (i.e., stable for any choices of ∆t > 0).

Problem 5 Show that an implicit scheme of backward in time centered in space
(BTCS)
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is unconditionally stable.

Problem 6 A typical linear advection equation ut + aux = 0 may be written in
the finite difference form
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(a) Use von Neumann stability analysis to obtain three amplification factors for
θ = 0, 1/2 and 1, respectively.

become

A =



1 + ICa sin(k∆x) if θ = 0,

1− 1
2
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1+ 1
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if θ = 1
2 ,

1
1+ICa sin(k∆x) if θ = 1,

(8)

where Ca = a∆t/∆x is a CFL number, k is a wave number and I =
√
−1.

(b) Discuss the stability of the three cases, θ = 0, 1/2 and 1, based on the
amplification factors you have found in (a).

Problem 7 Consider the equation

ut + aux = βu. (9)

(a) Show that the method for this PDE
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)
+ ∆tβUn

i (10)

is first-order accurate for this equation by computing the local truncation error.

(b) Is the method consistent?
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Coding Problems (OPTIONAL)

Use Fortran 90 or C to implement the following schemes. To practice modu-
lar programming in Fortran 90, please follow the link provided separately in
the homework 3 webpage. Please use the sample Matlab code available on the
course Git repository.

Note: Undergrad students have options to use Matlab or Python for the coding
problems. So is for the final coding project.

Problem 8 Implement the LF method in Eqn. (1) to numerically solve the
sinusoidal advection problem

ut + aux = 0, a = 1, (11)

with an IC: u(x, 0) = sin(x), on x ∈ [0, 2π]. Use the periodic boundary condi-
tions (BC). Run your code on two different grid resolutions of N = 32, 128 with
Ca = 0.8. Please show your plots at t = tcycle1 at all two grid resolutions, where
tcycle1 is the time the sinusoidal wave returns to the initial position (Hint: You
can easily find tcycle1 analytically first). Describe your findings and compare the
LF results with the first-order upwind method provided in the Matlab code.

Problem 9 Repeat Problem 8 using the LW method in Eqn. (3).


