AMS260 Homework 3

Theory Problems (MANDATORY)

Problem 1 Consider the Lax-Friedrichs (LF) method for solving the scalar advection $u_{t}+f(u)_{x}=0$ with $f(u)=a u$, where $a>0$ or $a<0$,

$$
\begin{equation*}
U_{i}^{n+1}=\frac{1}{2}\left(U_{i+1}^{n}+U_{i-1}^{n}\right)-\frac{\Delta t}{2 \Delta x}\left(f\left(U_{i+1}^{n}\right)-f\left(U_{i-1}^{n}\right)\right) \tag{1}
\end{equation*}
$$

(a) Show that the LF method is consistent and stable for $\left|C_{a}\right| \leq 1$.
(b) Show that the LF method is $\mathcal{O}\left(\Delta t+\Delta x^{2}\right)$.
(c) Rewrite the LF method in the conservative form,

$$
\begin{equation*}
U_{i}^{n+1}=U_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\hat{f}_{i+1 / 2}^{n}-\hat{f}_{i-1 / 2}^{n}\right) \tag{2}
\end{equation*}
$$

that is to say, please find expressions for $\hat{f}_{i \pm 1 / 2}^{n}$ as functions of U_{k}^{n} and the original flux $f\left(U_{k}^{n}\right), k=-1,0,1$.

Problem 2 Consider the Lax-Wendroff (LW) method for solving the scalar advection $u_{t}+a u_{x}=0$ with $a>0$ and $f(u)=a u$,

$$
\begin{equation*}
U_{i}^{n+1}=U_{i}^{n}-\frac{C_{a}}{2}\left(U_{i+1}^{n}-U_{i-1}^{n}\right)+\frac{C_{a}^{2}}{2}\left(U_{i+1}^{n}-2 U_{i}^{n}+U_{i-1}^{n}\right) \tag{3}
\end{equation*}
$$

(a) Show that the LW method is consistent and stable if $\left|C_{a}\right| \leq 1$.
(b) Show that the LW method is $\mathcal{O}\left(\Delta t^{2}+\Delta x^{2}\right)$.

Problem 3 Use the von Neumann analysis of the 1D advection using forward in time forward in space (FTFS)

$$
\begin{equation*}
U_{j}^{n+1}=U_{j}^{n}-\frac{a \Delta t}{\Delta x}\left(U_{j+1}^{n}-U_{j}^{n}\right) \tag{4}
\end{equation*}
$$

to show that FTFS is unstable if $a>0$ and stable if $a<0$.
Problem 4 Show that a forward in time centered in space scheme (FTCS) for 1D advection with $a>0$

$$
\begin{equation*}
U_{j}^{n+1}=U_{j}^{n}-\frac{a \Delta t}{2 \Delta x}\left(U_{j+1}^{n}-U_{j-1}^{n}\right) \tag{5}
\end{equation*}
$$

is unconditionally unstable (i.e., stable for any choices of $\Delta t>0$).
Problem 5 Show that an implicit scheme of backward in time centered in space (BTCS)

$$
\begin{equation*}
U_{j}^{n+1}=U_{j}^{n}-\frac{a \Delta t}{2 \Delta x}\left(U_{j+1}^{n+1}-U_{j-1}^{n+1}\right) \tag{6}
\end{equation*}
$$

is unconditionally stable.

Problem 6 A typical linear advection equation $u_{t}+a u_{x}=0$ may be written in the finite difference form

$$
\begin{equation*}
\frac{U_{i}^{n+1}-U_{i}^{n}}{\Delta t}=-a\left[\theta \frac{U_{i+1}^{n+1}-U_{i-1}^{n+1}}{2 \Delta x}+(1-\theta) \frac{U_{i+1}^{n}-U_{i-1}^{n}}{2 \Delta x}\right] \tag{7}
\end{equation*}
$$

(a) Use von Neumann stability analysis to obtain three amplification factors for $\theta=0,1 / 2$ and 1 , respectively.
become

$$
A=\left\{\begin{array}{l}
1+I C_{a} \sin (k \Delta x) \text { if } \theta=0 \tag{8}\\
\frac{1-\frac{1}{2} I C_{a} \sin (k \Delta x)}{1+\frac{1}{2} I C_{a} \sin (k \Delta x)} \text { if } \theta=\frac{1}{2}, \\
\frac{1}{1+I C_{a} \sin (k \Delta x)} \text { if } \theta=1
\end{array}\right.
$$

where $C_{a}=a \Delta t / \Delta x$ is a CFL number, k is a wave number and $I=\sqrt{-1}$.
(b) Discuss the stability of the three cases, $\theta=0,1 / 2$ and 1 , based on the amplification factors you have found in (a).

Problem 7 Consider the equation

$$
\begin{equation*}
u_{t}+a u_{x}=\beta u \tag{9}
\end{equation*}
$$

(a) Show that the method for this PDE

$$
\begin{equation*}
U_{i}^{n+1}=U_{i}^{n}-\frac{a \Delta t}{\Delta x}\left(U_{i}^{n}-U_{i-1}^{n}\right)+\Delta t \beta U_{i}^{n} \tag{10}
\end{equation*}
$$

is first-order accurate for this equation by computing the local truncation error.
(b) Is the method consistent?

Coding Problems (OPTIONAL)

Use Fortran 90 or C to implement the following schemes. To practice modular programming in Fortran 90, please follow the link provided separately in the homework 3 webpage. Please use the sample Matlab code available on the course Git repository.

Note: Undergrad students have options to use Matlab or Python for the coding problems. So is for the final coding project.

Problem 8 Implement the LF method in Eqn. (1) to numerically solve the sinusoidal advection problem

$$
\begin{equation*}
u_{t}+a u_{x}=0, \quad a=1 \tag{11}
\end{equation*}
$$

with an IC: $u(x, 0)=\sin (x)$, on $x \in[0,2 \pi]$. Use the periodic boundary conditions (BC). Run your code on two different grid resolutions of $N=32,128$ with $C_{a}=0.8$. Please show your plots at $t=t_{c y c l e 1}$ at all two grid resolutions, where $t_{c y c l e 1}$ is the time the sinusoidal wave returns to the initial position (Hint: You can easily find $t_{\text {cycle } 1}$ analytically first). Describe your findings and compare the LF results with the first-order upwind method provided in the Matlab code.

Problem 9 Repeat Problem 8 using the LW method in Eqn. (3).

