
AMS 260, Computational Fluid Dynamics

Lecture Notes on Computational Fluid Dynamics

Instructor: Prof. Dongwook Lee (dlee79@ucsc.edu)
MWF, 1:20 pm – 2:25 pm at BE 169

Winter, 2017

Figure 1. Some early pioneers of CFD in the era since WWII. Top level:
Jay Boris, Vladimir Kolgan, Bran van Leer, Antony Jameson. Ground level:
Richard Courant, Kurt Friedrichs, Hans Lewy, Robert MacCormack, Philip
Roe, John von Neumann, Stanley Osher, Amir Harten, Peter Lax, Sergei
Godunov. Courtesy of Bram van Leer.

1

Contents

1 Fundamentals of CFD 3

2 Reviews on PDEs 16

3 Scalar Conservation Laws - Theories 25

4 Discrete Numerical Approaches 46

5 Numerical Methods for Linear Conservation Laws 82

6 Computing Discontinuous Solutions of Linear Conservation Laws100

7 Computing Discontinuous Solutions of Non-linear Conservation
Laws 110

8 High-Order Methods for Scalar Conservation Laws 124

9 Finite Volume Methods for the Euler Equations 135

10 Finite Volume Reconstruction Schemes for FOG, PLM, PPM
and WENO 159

11 Multidimensional Euler Equations 181

2

Chapter 1

Fundamentals of CFD

1. What is CFD? Why do we study CFD?

Let’s begin our first class with a couple of interesting scenarios.

Scenario 1: See Fig. 1. Consider you’re a chief scientist in a big aerospace
research lab. You’re given a mission to develop a new aerospace plane that can
reach at hypersonic speed (> Mach 5) within minutes after taking off. Its pow-
erful supersonic combustion ramjets continue to propel the aircraft even faster
to reach to a velocity near 26,000 ft/s (or 7.92 km/s, or Mach 25.4 in air at high
altitudes, or a speed of NY to LA in 10 min), which is simply a low Earth orbital
speed. This is the concept of transatmospheric vehicle the subject of study in
several countries during the 1980s and 1990s. When designing such extreme hy-
personic vehicles, it is very important to understand full three-dimensional flow
filed over the vehicle with great accuracy and reliability. Unfortunately, ground
test facilities – wind tunnels – do not exist in all the flight regimes around such
hypersonic flight. We neither have no wind tunnels that can simultaneously
simulate the higher Mach numbers and high flow field temperatures to be en-
countered by transatmospheric vehicles.

Scenario 2: See Fig. 2. Consider you’re a theoretical astrophysicist who
tries to understand core collapse supernova explosions. The theory tells us that
very massive starts can undergo core collapse when the core fail to sustain against
its own gravity due to unstable behavior of nuclear fusion. We simply cannot
find any ground facilities that allow us to conduct any laboratory experiments
in such highly extreme energetic astrophysical conditions. It is also true that
in many astrophysical circumstances, both temporal and spatial scales are too
huge to be operated in laboratory environments.

Scenario 3: See Fig. 3. Consider you a golf ball manufacturer. Your goal
is to understand flow behaviors over a flying golf ball in order to make a better
golf ball design (and become a millionaire!) Although you’ve already collected
a wide range of the laboratory experimental data on a set of golf ball shapes
(i.e., surface dimple design), you realize that it is very hard to analyze the data
and understand them because the data are all nonlinearly coupled and can’t

3

4

Figure 1. DARPA’s Falcon HTV-2 unmanned aircraft can max out at a
speed of about 16,700 miles per hour – Mach 22, NY to LA in 12 minutes.

be isolated easily. To keep your study in a better organized way, you wish to
perform a set of parameter studies by controlling flow properties one by one so
that you can also make reliable flow prediction for a new golf ball design.

As briefly hinted above, in practice there are various levels of difficulties en-
countered in real experimental setups. When performing the above mentioned
research work, CFD therefore can be the major player that leads you to success
because you obtain mathematical controls in numerical simulations. Let us take
an example how numerical experiment via CFD can elucidate physical aspects
of a real flow field. Consider the subsonic compressible flow over an airfoil. We
are interested in answering the differences between laminar and turbulent flow
over the airfoil for Re = 105. For the computer program (assuming the computer
algorithm is already well established, validated and verified!), this is a straight-
forward matter – it is just a problem of making one run with the turbulence
model switched off (for the laminar setup), another run with the turbulence
model switched on (for the turbulent flow), followed by a comparison study of
the two simulation results. In this way one can mimic Mother Nature with sim-
ple knobs in the computer program – something you cannot achieve quite readily
(if at all) in the wind tunnel. Without doubt, however, in order to achieve such
success using CFD, you’d better to know what you do exactly when it comes to
numerical modeling – the main goal of this course.

We are now ready to define what CFD is. CFD is a scientific tool, similar
to experimental tools, used to gain greater physical insights into problems of
interest. It is a study of the numerical solving of PDEs on a discretized sys-
tem that, given the available computer resources, best approximates the real

5

Figure 2. FLASH simulations of neutrino-driven core-collapse supernova
explosions. Sean Couch (ApJ, 775, 35 (2013)).

geometry and fluid flow phenomena of interests. CFD constitutes a new “third
approach” in studying and developing the whole discipline of fluid dynamics. A
brief history on fluid dynamics says that the foundations for experimental fluid
dynamics began in 17th century in England and France. In the 18th and 19th
centuries in Europe, there was the gradual development of theoretical fluid dy-
namics. These two branches – experiment and theory – of fluid dynamics have
been the mainstreams throughout most of the twentieth century. However, with
the advent of the high speed computer with the development of solid numerical
studies, solving physical models using computer simulations has revolutionized
the way we study and practice fluid dynamics today – the approach of CFD.
As sketched in Fig. 4, CFD plays a truly important role in modern physics as
an equal partner with theory and experiment, in that it helps bringing deeper
physical insights in theory as well as help better desiging experimental setups.

The real-world applications of CFD are to those problems that do not have
known analytical solutions; rather, CFD is a scientific vehicle for solving flow
problems that cannot be solved in any other way. In this reason – the fact
that we use CFD to tackle to solve those unknown systems – we are strongly
encouraged to learn thorough aspects in all three essential areas of study: (i)
numerical theories, (ii) fluid dynamics, and (iii) computer programing skills.

6

Figure 3. Contours of azimuthal velocity over a golf ball: (a) Re = 2.5×104;
(b) Re = 1.1 × 105. C. E. Smith et al. (Int. J. Heat and Fluid Flow, 31,
262-273 (2010)).

2. The Governing Equations

In this chapter, we discuss fundamental principles in fluid dynamics and derive
their governing equations, their physical meaning, and their mathematical forms
particularly appropriate in CFD.

2.1. The fundamental equations of fluid dynamics

In modeling fluid motion, there are always following philosophy we need to con-
sider. First is to choose the appropriate fundamental physical principles from
the law of physics that are:

(a) Mass is conserved,
(b) F = ma (Newton’s second law), and
(c) energy is conserved.

We apply these physical principles to an appropriate flow model of our interest,
and extract the needed mathematical equations which embody such physical
principles. As we are interested in physical behaviors of a continuum fluid (or
gas dynamics) in this course (rather than those of solid body, i.e., fluid mechan-
ics rather than solid mechanics), we can construct one of the four models in
modeling fluid motion:

7

Figure 4. Three healthy cyclic relationship in fluid dynamics.

(F1) finite control volume approach fixed in space,
(F2) finite control volume approach moving with the fluid,
(F3) infinitesimal fluid element fixed in space, and finally,
(F4) infinitesimal fluid element fixed moving along a streamline.

The first two cases based on finite control volume (FCV) are illustrated in Fig.
5, whereas the last two cases of infinitesimal fluid element (IFE) are shown in
Fig. 6. Let’s now consider each of the four different approaches and derive the
related mathematical relations.

Figure 5. Finite control volume approach. Left: (F1) Finite control volume
V fixed in space with the fluid moving through it. Right: (F2) Finite control
volume moving V with the fluid with the same number of fluid particles kept
in the same control volume V.

2.1.1. General Remarks on FCV (F1 & F2):

8

Figure 6. Infinitesimal fluid element approach. Left: (F3) Infinitesimal
fluid element dV fixed in space with the fluid moving through it. Right:
(F4) Infinitesimal fluid element dV moving along a streamline with the local
velocity V equal to the local flow velocity at each point.

• We conceptually define ‘FCV’ a reasonably large closed region of the flow
with a finite volume V and call its surface a ‘control surface’ S.

• FCV can be put in two different cases: (1) fixed in space with the fluid
moving through it – this approach gives rise to the conservative form
of the governing equations in integral form; (2) moving with the fluid
such that the same fluid particles are always inside it – this results in the
nonconservative form of the governing equations integral form.

• With the FCV approach, we limit our attention to just the fluid in the
finite region of the volume itself (that is, we apply the law of physics to
V) instead of looking at the whole flow field at once.

2.1.2. General Remarks on IFE (F3 & F4):

• In this approach we consider an infinitesimally small fluid element in the
flow with a differential volume dV.

• The fluid element is infinitesimal in the same sense as differential calcu-
lus and is large enough to contain a huge number of molecules (i.e., a
continuous medium).

• As in FCV, two approaches are available wherein (3) IFE is fixed in space
with the fluid moving through it – conservative form in differential form of
the governing equations; and (4) moving along a streamline with a velocity
vector V equal to the flow velocity at each point – nonconservative form
of the differential form of the governing equations.

Note: We can possibly think of another approach that is based on the funda-
mental physics applied directly to the atoms and molecules – this is called the
kinetic theory that solves the Boltzmann equations for individual particle using
their distribution functions fα. Notice that this approach has a microscopic view
point in fluid motions, whereas FCV and IFE have a macroscopic view point.

2.2. Two important mathematical relations: D/Dt and ∇ ·V
Before we start deriving the above mentioned mathematical relations, let’s first
take a moment to refresh our physical insights into two important mathematical

9

relations: (i) the substantial derivative D/Dt, and (ii) the divergence of velocity
fields, ∇ ·V.

(i) The substantial derivative D/Dt: Consider adopting the flow model
described in F4, which is shown again in Fig. 7 in two different incidents in space
and time in Cartesian space. Let’s take a velocity vector V = ui + vj + wk,
where each component is a function of both space and time,

u = u(x, y, z, t), (1.1)

v = v(x, y, z, t), (1.2)

w = w(x, y, z, t). (1.3)

We denote the scalar density field by

ρ = ρ(x, y, z, t). (1.4)

The density of the same fluid at the two different locations of space and time

Figure 7. Illustration for the substantial derivative for a fluid element mov-
ing in the flow

can be written as ρ1 = ρ(x1, y1, z1, t1) and ρ2 = ρ(x2, y2, z2, t2), where we can
further expand the density function about point 1 as follows:

ρ2 = ρ1+
(∂ρ
∂x

)
1
(x2−x1)+

(∂ρ
∂y

)
1
(y2−y1)+

(∂ρ
∂z

)
1
(z2−z1)+

(∂ρ
∂t

)
1
(t2−t1)+H.O.T

(1.5)
Dividing by t2 − t1 and ignoring high-order terms (H.O.T), we get

ρ2 − ρ1

t2 − t1
=
(∂ρ
∂x

)
1

x2 − x1

t2 − t1
+
(∂ρ
∂y

)
1

y2 − y1

t2 − t1
+
(∂ρ
∂z

)
1

z2 − z1

t2 − t1
+
(∂ρ
∂t

)
1

(1.6)

10

Take a look at the LHS of Eq. 1.6 and we notice that this is physically the
‘average’ time rate of change in density of the fluid element as it moves from
point 1 to point 2. in the limit of t2 → t1, we get

lim
t2→t1

ρ2 − ρ1

t2 − t1
≡ Dρ

Dt
(1.7)

By definition, the symbol is called the substantial derivative D/Dt and it has
its physical meaning that measures the time rate of change of a given quantity
(density in our current example) of the given fluid element as it moves from one
location to another in both space and time.

Note: Notice that there is a clear difference between D/Dt and ∂/∂t in that
the latter is called the local derivative which represents the time rate of change
at a ‘fixed’ point – our eyes are locked on the stationary point 1; whereas for the
first, our eyes are locked on the fluid element as it moves watching its density
change as it passes through point 1.

Now, taking the limit of Eq. 1.6 as t2 → t1, we can further cast the relation
into

Dρ

Dt
= u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+
∂ρ

∂t
(1.8)

Finally, we can obtain an expression for the substantial derivative in Carte-
sian coordinate system:

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
=

∂

∂t
+ V · ∇, (1.9)

where we have introduced

∇ ≡ i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
. (1.10)

Quick summary:

• D/Dt is called the substantial derivative (or, also called material deriva-
tive),

• ∂/∂t is called the local derivative, and

• V · ∇ is called the convective derivative.

Note: Recall that the substantial derivative is nothing but a total derivative
with respect to time, d/dt. In other words, from differential calculus, we easily
see that

dρ =
∂ρ

∂x
dx+

∂ρ

∂y
dy +

∂ρ

∂z
dz +

∂ρ

∂t
dt, (1.11)

which yields
dρ

dt
= u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+
∂ρ

∂t
(1.12)

11

Example: You are entering an ice cave with a friend of yours. You will experi-
ence a temperature decrease as you walk deeper in to the cave – this is analogous
to the convective derivative. As you keep walking in to the cave, your friend
throws a snowball at you and you feel an additional instantaneous temperature
drop when the snowball hits you – this effect is analogous to the local derivative.
Notice that the substantial derivative is the sum of the two effects.

(ii) The divergence of the velocity fields ∇ · V: Consider a finite
control volume (FCV) moving from one place to another depicted as in Fig. 8.
In this example, the FCV is consist of the same fluid particles when moving,
therefore keeping is mass fixed in time. However, its volume V and its control
surface S can vary with time as it moves to a different location of the flow where
different density occupies. That is, the control volume keeps changing its volume
and shape depending on the characteristic of the flow.

Figure 8. Moving control volume for the physical interpretation the diver-
gence of the velocity fields

Let us now focus on an infinitesimal element of surface dS moving at the
local velocity V along the normal direction n which is perpendicular to dS. The
change in the volume ∆V of the control volume due to the movement of dS over
∆t is available by inspecting the volume of the long, thin cylinder with the base
area of dS and the height V∆t · n. That is,

∆V = V∆t · ndS = V∆t · dS, (1.13)

where ndS = dS. In the limit of dS → 0, the total change in volume of the
whole control volume is ∫ ∫

S
V∆t · dS. (1.14)

After dividing Eq. 1.14 by ∆t and subsequently apply the divergence theorem,
we obtain its physical meaning of ‘the time rate of change of the control volume’,

12

denoted by DV
Dt (note here that we used the substantial derivative notation of V

as we wish to define the time rate of change of the control volume as the volume
moves along with the flow):

DV
Dt

=
1

∆t

∫ ∫

S
V∆t · dS =

∫ ∫

S
V · dS =

∫ ∫ ∫

V
∇ ·VdV. (1.15)

By keeping continuously shrink V to δV in such a way that δV is so small
enough to treat ∇ ·V as constant in δV. Then in the limit of δV → 0, we can
rewrite Eq. 1.15 as

D(δV)

Dt
=

∫ ∫ ∫

δV
∇ ·VdV = ∇ ·VδV, (1.16)

or

∇ ·V =
1

δV
D(δV)

Dt
(1.17)

Quick summary:

• ∇ ·V physically means the time rate of change of the volume of a moving
fluid element per unit volume.

2.3. The Continuity Equation

We are now ready to apply the philosophy discussed in Sec. 2.1. to all four of
the flow models illustrated in Figs. 5 and 6. Let’s begin with the first principle:

(a) Mass is conserved.

We are going to derive the continuity equation in four different ways and see
they are all related mathematically.

(F1) FCV fixed in space:
Let us examine the principle of the mass conservation by considering a small
control volume V surrounded by its control surface S as depicted in the left
panel of Fig. 5. Then the mass conservation law can be stated as:

The net mass flow ‘out’ of V through surface S = The time
rate of ‘decrease’ of mass inside V

In order to obtain a mathematical expression for LHS, we write the mass
flow of a moving fluid with fluid velocity V across any fixed surface. The ele-
mental mass flow across the area dS normal to n becomes

ρV · ndS = ρV · dS (1.18)

Recall that by convention, the direction of the flow is ‘out’ of V because dS
points in a direction ‘out’ of V, hence the mass inside V ‘decreases’ in the above
statement. By taking the surface integral of Eq. 1.18, we obtain the net mass
flow out of the entire control volume V – the expression for LHS:

∫ ∫

S
ρV · dS (1.19)

13

The expression for RHS is the time rate of ‘decrease’ of the total mass∫ ∫ ∫
V ρdV inside V, that is,

− ∂

∂t

∫ ∫ ∫

V
ρdV (1.20)

Equating the two, we finally get a mathematical relation for the mass conserva-
tion:

∂

∂t

∫ ∫ ∫

V
ρdV +

∫ ∫

S
ρV · dS = 0 (1.21)

Note: We emphasize that Eq. 1.21 is an integral form of the continuity equa-
tion. The ‘finite’ aspect of the control volume is why the equation is obtained
directly in integral form. The fact that the control volume was ‘fixed in space’
resulted in the specific integral form given by Eq. 1.21, which is called the con-
servation form.

(F2) FCV moving with the fluid: As seen earlier, we can write another
mathematical expression for the mass conservation law using the substantial
derivative which perfectly describes behavior of the time rate of change of any
property of a fluid element moving with the flow. That is to say, the mass
conservation law is simply put into a form

D

Dt

∫ ∫ ∫

V
ρdV = 0 (1.22)

Note: We remark that Eq. 1.22 is also an integral form of the continuity
equation which is different from the previous result – this is now called the non-
conservation form. Comparing with the previous conservation form, we can see
that the nonconservative form is a result of considering the control volume mov-
ing with the fluid.

(F3) IFE fixed in space: For convenience we adopt an infinitesimal
fluid element fixed in space in a Cartesian coordinate system shown in Fig. 9.
What we want to calculate is the net mass flow through all surrounding six faces
with the elemental areas of dxdy, dydz and dxdz. As illustrated in Fig. 9, we
consider each individual net flow in each coordinate direction. They are
(a) the net outflow in x-direction:

(ρu+
∂ρu

∂x
dx)dydz − (ρu)dydz =

∂ρu

∂x
dxdydz, (1.23)

(b) the net outflow in y-direction:

(ρv +
∂ρv

∂y
dy)dxdz − (ρv)dydz =

∂ρv

∂y
dxdydz, (1.24)

(c) the net outflow in z-direction:

(ρw +
∂ρw

∂z
dz)dxdy − (ρw)dxdy =

∂ρw

∂z
dxdydz. (1.25)

14

Figure 9. Model of the infinitesimal fluid element fixed in space and mass
fluxes through various faces of the element

Hence, the net mass flow out of the element in all directions is given by summing
all of the above relations:

(∂ρu
∂x

+
∂ρv

∂y
+
∂ρw

∂z

)
dxdydz, (1.26)

which should be equal to the time rate of decrease of the total mass ρdxdydz in
the infinitesimal element of volume dxdydz:

−∂ρ
∂t
dxdydz (1.27)

Equating the two we get yet another form describing the mass conservation

∂ρ

∂t
+
(∂ρu
∂x

+
∂ρv

∂y
+
∂ρw

∂z

)
=
∂ρ

∂t
+∇ · (ρV) = 0 (1.28)

Note: We call Eq. 1.28 the differential form of the continuity equation in
conservation form. The ‘infinitesimal’ aspect of the small element lead to the
differential form of the equation, and, as before, the fact that the fluid element
was ‘fixed in space’ resulted in the conservation form.

(F4) IFE moving with the fluid: We remind ourselves that although
the mass of an IFE is conserved when it moves with the fluid, its elemental
volume δV varies. Since the mass in the IFE is invariant, invoking the physical
meaning of the substantial derivative and using the chain rule, we have

0 =
DρδV
Dt

= δVDρ
Dt

+ ρ
DδV
Dt

(1.29)

15

Combining the definition of the divergence of the velocity fields in Eq. 1.17,
this can be rewritten as

Dρ

Dt
+ ρ∇ ·V = 0 (1.30)

Note: We call Eq. 1.30 the differential form of the continuity equation in non-
conservation form. The ‘infinitesimal’ aspect of the small element lead to the
differential form of the equation, while the fact that the fluid element was ‘mov-
ing with the fluid’ resulted in the nonconservation form as in (F2).

Homework 1. Often times, the condition for incompressible flows is given by
∇ ·V = 0. Why?

Homework 2. Derive the integral form of the momentum equation in con-
servation form

∂

∂t

∫ ∫ ∫

V
ρVdV +

∫ ∫

S
(ρV · dS)V =

∫ ∫ ∫

V
ρfdV −

∫ ∫

S
pdS (1.31)

using the Newton’s second law applied to a fluid flow. Ignore any viscous effect
(Hint: F = d

dt(mV)).

Homework 3. Derive the integral form of the energy equation in conserva-
tion form using the energy conservation law for adiabatic inviscid flows:

∂

∂t

∫ ∫ ∫

V
ρ(e+

V 2

2
)dV+

∫ ∫

S
ρ(e+

V 2

2
)V·dS =

∫ ∫ ∫

V
ρf ·VdV−

∫ ∫

S
pV·dS

(1.32)

Homework 4. Show that all four approaches discussed in (F1)-(F4) for the
continuity equation are in fact all the same. That is, one of them can be ob-
tained from any of the others. (Hint: You can show that there are equivalent
relationships in circle: (F1) ⇒ (F2) ⇒ (F4) ⇒ (F3) ⇒ (F1))

Chapter 2

Reviews on PDEs

1. Properties of PDEs

In this chapter, we study the key defining properties of partial differential equa-
tions (PDEs). First of all, there are more than one ‘independent’ variables
t, x, y, z, Associated to these is so called a ‘dependent’ variable u (of course
there could be more than one dependent variables) which is a function of those
independent variables,

u = u(x, y, z, t, ...) (2.1)

We now provide a bunch of basic definitions and examples on PDEs.

Definition: A PDE is a relation between the independent variables and the
dependent variable u via the partial derivatives of u.

Definition: The order of PDE is the highest derivative that appears.

Example: F (x, y, u, ux, uy) = 0 is the most general form of first-order PDE in
two independent variables x and y.

Example: F (t, x, y, u, ut, uxx, uxy, uyy) = 0 is the most general form of second-
order PDE in three independent variables t, x and y.

Example: ut − uxx = 0 is a second-order PDE in two independent variables t
and x.

Example: uxxxx+(uy)
3 = 0 is a fourth-order PDE in two independent variables

x and y.

Definition: L is called a linear operator if L(u+v) = Lu+Lv for any functions
u and v.

Definition: A PDE Lu = 0 is called a linear PDE if L is a linear derivative
operator.

16

17

Definition: A PDE Lu = g is called an inhomogeneous linear PDE if L is a
linear derivative operator and if g 6= 0 is a given function of the independent
variables. If g = 0, it is called a homogeneous linear PDE.

Example: The following PDEs are homogeneous linear:
ux + uy = 0 (transport); ux + yuy = 0 (transport); uxx + uyy = 0 (Laplace’s
equation)

Example: The following PDEs are homogeneous nonlinear:
ux + uuy = 0 (shock wave); utt + uxx + u3 = 0 (wave with interaction);
ut + uux + uxxx = 0 (dispersive wave);

Example: The following PDEs are inhomogeneous linear:
cos(xy2)ux − y2uy = tan(x2 + y2)

2. Well-posedness of PDEs

When solving PDEs, one often encounters a problem that has more than one
solution (non-uniqueness) if few auxiliary conditions are imposed. Then the
problem is called underdetermined. On the other hand, if too many conditions
are given, there may be no solution at all (non-existence) and in this case, the
problem is overdetermined.

The well-posedness property of PDEs is therefore required in order for us to
enable to solve the given PDE system successfully. Well-posed PDEs of proper
initial and boundary conditions follows the following fundamental properties:

1. Existence: There exists at least one solution u(x, t) satisfying all these
conditions,

2. Uniqueness: There is at most one solution,

3. Stability: The unique solution u(x, t) depends in a stable manner on the
data of the problem. This means that if the data are changed a little, the
corresponding solution changes only a little as well.

3. Classifications of Second-order PDEs

PDEs arise in a number of physical phenomena to describe their natures. Some
of the most popular types of such problems include fluid flows, heat transfer,
solid mechanics and biological processes. These types of equations often fall
into one of three types, (i) hyperbolic PDEs that are associated with advection,
(ii) parabolic PDEs that are most commonly associated with diffusion, and (iii)
elliptic PDEs that most commonly describe steady states of either parabolic or
hyperbolic problems.

In reality, not many problems fall simply into one of these three types,
rather most of them involve combined types, e.g., advection-diffusion problems.

18

Mathematically, however, we can rather easily determine the type of a general
second-order PDEs, which we are going to briefly discuss here.

In general, let’s consider the PDE of form with nonzero constants a11, a12,
and a22:

a11uxx + 2a12uxy + a22uyy + a1ux + a2uy + a0u = 0, (2.2)

which is a second-order linear equation in two independent variables x and y
with six constant coefficients.

Theorem: By a linear transformation of the independent variables, the equa-
tion can be reduced to one of three forms:

1. Elliptic PDE: if a2
12 < a11a22, it is reducible to

uxx + uyy + L.O.T = 0 (2.3)

where L.O.T denotes all the lower order terms (first or zeroth order terms).

2. Hyperbolic PDE: if a2
12 > a11a22, it is reducible to

uxx − uyy + L.O.T = 0 (2.4)

3. Parabolic PDE: if a2
12 = a11a22 (the condition for parabolic is in between

those of elliptic and hyperbolic), it is reducible to

uxx + L.O.T = 0 (2.5)

Remark: Notice the similarity between the above classification and the one in
analytic geometry. We know from analytic geometry that, given (again assuming
nonzero constants a11, a12, and a22)

a11x
2 + 2a12xy + a22y

2 + a1x+ a2y + a0 = 0, (2.6)

Then Eq. 2.6 becomes

1. Ellipsoid if a2
12 < a11a22

2. Hyperbola if a2
12 > a11a22

3. Parabola if a2
12 = a11a22.

Note again that parabola is in between ellipsoid and hyperbola. See Fig. 1 for
an illustration.

Example: uxx − 5uxy = 0 is hyperbolic; 4uxx − 12uxy + 9uyy + uy = 0 is
parabolic; 4uxx + 6uxy + 9uyy = 0 is elliptic.

19

Figure 1. Three major types of conic section from analytic geometry –
Image source: Wikipedia

Example: The wave equation is one of the most famous examples in hyperbolic
PDEs. We write the wave equation as

utt = c2uxx for −∞ < x <∞, c 6= 0. (2.7)

Factoring the derivative operator, we get

(∂
∂t
− c ∂

∂x

)(∂
∂t

+ c
∂

∂x

)
u = 0 (2.8)

Considering the characteristic coordinates ξ = x+ ct and η = x− ct, we obtain

0 =
(∂
∂t
− c ∂

∂x

)(∂
∂t

+ c
∂

∂x

)
u =

(
− 2c

∂

∂ξ

)(
2c

∂

∂η

)
u (2.9)

Hence, we conclude that the general solution must have a form u(x, t) = f(x+
ct)+g(x−ct), the sum of two functions, one (g) is a wave of any shape traveling
to the the right at speed c, and the other (f) with another arbitrary shape travel-
ing to the the left at speed c. We call the two families of lines, x±ct = constant,
the characteristic lines of the wave equation.

Example: One very simple and famous example in the parabolic PDEs is so
called the diffusion equation

ut = kuxx, with k constant and (x, t) ∈ D × T (2.10)

One of the important properties in the diffusion equations is to have the maxi-
mum principle. Recall that the maximum principle says if u(x, t) is the solution
of Eq. 2.10 on D×T = [xmin, xmax]× [T0, T1] in space-time, then the maximum
value of u(x, t) is assumed only on the initial and domain boundary of D × T .
That is, the maximum value only occurs either initially at t = T0 or on the sides

20

x = xmin or x = xmax.

Remark: The fundamental properties of the two types of PDEs can be briefly
compared in the following table. The physical meanings in Table 1 are also
illustrated in Fig. 2 and Fig. 3.

Table 1. Comparison of Waves and Diffusions: Fundamental properties of
the wave and diffusion equations are summarized.

Property Waves Diffusions

(1) speed of propagation finite (≤ c) ∞
(2) singularities for t > 0? transported along charac-

teristics (with speed = c)
lost immediately

(3) well-posed for t > 0? yes yes (at least for bounded
solutions)

(4) well-posed for t < 0? yes no
(5) maximum principle? no yes
(6) behavior as t→∞ energy is constant so does

not decay (i.e., simple ad-
vection without diffusion)

decays to zero

(7) information transported lost gradually

4. Finite difference scheme for 1D advection

Consider a simple advection equation with constant speed c > 0:

ut + cux = 0, with u(x, 0) = sin(x), x ∈ [0, 2π] (2.11)

with a periodic boundary condition. In order to discretize the system, we first
subdivide both spatial and temporal domains as

xi = i∆x and tn = n∆t, (2.12)

where i and n are integers. ∆x > 0 and ∆t > 0 are respectively, a spatial grid
spacing and a time step. Let us denote our discrete data at each (xi, t

n):

uni = u(xi, t
n) (2.13)

The forward difference scheme writes

ux(x, t) =
u(x+ ∆x, t)− u(x, t)

∆x
+O(∆x), (2.14)

ut(x, t) =
u(x, t+ ∆t)− u(x, t)

∆t
+O(∆t). (2.15)

21

Figure 2. Domain and boundaries for the solution of hyperbolic PDEs in
2D. Note that any information or disturbance introduced at p is going to
affect only the region called the ‘region of influence’ but nowhere. Such infor-
mation is propagated with the finite advection speed along the characteristic
surface which forms the conic region of influence. On the other hand, if the
characteristic surface can be extended backward in time to the place where
the initial data is imposed. This also forms another conic section on the lower
part of the figure which is called the ‘domain of dependence’.

Dropping the truncation error terms O(∆x) and O(∆t) yields a simple first-order
difference scheme that approximates the advection PDE. As a result, we arrive
at a first-order accurate discrete difference equation from an analytic differential
equation:

un+1
i − uni

∆t
+ c

uni+1 − uni
∆x

= 0, (2.16)

which gives a temporal update scheme of un+1
i in terms of the known data at

t = tn:

un+1
i = uni − c

∆t

∆x

(
uni+1 − uni

)
(2.17)

On the other hand, if we use a backward difference scheme for ux

ux(x, t) =
u(x, t)− u(x−∆x, t)

∆x
+O(∆x), (2.18)

we arrive at another first-order difference equation

un+1
i = uni − c

∆t

∆x

(
uni − uni−1

)
. (2.19)

22

Figure 3. Domain and boundaries for the solution of parabolic PDEs in 2D.
Note that from a given point p in the mid plane, there is only one physically
meaningful direction that is positive in t. Therefore, any information at p
influences the entire region onward from p, called the ’region of influence’.
Such information can only marches forward in time under the assumption
that all boundary conditions around the surface and the initial condition are
known.

Let us choose ∆t small enough that

|c|∆t ≤ ∆x (2.20)

Homework 1. Write a simple MATLAB program (or use any other scientific
language) in order to numerically solve Eq. 2.17 and Eq. 2.19. Please make
sure your code satisfies the condition in Eq. 2.20. Choose t = tmax in such
that the initial sinusoidal wave makes two complete cycles over the domain (we
conveniently assume the cgs unit system – e.g., cm in length, sec in time, gram
in mass.).
(a) Use the grid sizes of 16, 32, 64, 128 and 256 and compare your results.
(b) First solve for c > 0. Which scheme is better between Eq. 2.17 and Eq.
2.19?
(c) What happens if c < 0?
(d) What happens if your ∆t fails to satisfy Eq. 2.20 for your choices of c and
∆x?
(e) Plot your numerical solutions at t = tcycle1 and t = tcycle2 on a grid size of
32 using c > 0 and the scheme in Eq. 2.19. What do you observe?

23

5. Numerical Solutions of 1D Diffusion

Consider a temporal evolution of solving the classical homogeneous heat equation
(or diffusion equation) of the form

ut = κuxx (2.21)

with κ > 0 (Note if κ < 0 then Eq. 2.21 would be a “backward heat equation”,
which is an ill-posed problem. See Table 1). Along with this equation, let us
impose an initial condition at t = 0,

u(x, 0) = f(x) (2.22)

and also the Dirichlet boundary condition on a bounded domain 0 ≤ x ≤ 1

u(0, t) = g0(t) and u(1, t) = g1(t), for t > 0. (2.23)

Use the discretization technique we used in the previous example of the 1D
advection finite difference scheme in order to discretize your temporal and spa-
tial domains (i.e., Eq. 2.12 and Eq. 2.13). As before, we choose the forward
difference scheme for temporal discretization as in Eq. 2.15. For a spatial
discretization, we adopt the standard second-order central difference difference
scheme,

uxx(x, t) =
u(x+ ∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
+O(∆x2), (2.24)

which gives a final discrete form of our explicit finite difference scheme for the
heat equation:

un+1
i = uni + κ

∆t

∆x2

(
uni+1 − 2uni + uni−1

)
(2.25)

Similar to the 1D advection case, we choose ∆t satisfying

κ∆t ≤ ∆x2

2
(2.26)

Homework 2. Write a simple MATLAB program (or use any other scientific
language) in order to numerically solve Eq. 2.21. The boundary condition is
given so as to hold the temperature u to be zero at x = 0 and 100◦ F at x = 1
for t ≥ 0 (i.e., g0 = 0◦F and g1 = 100◦F.). Your numerical scheme solves three
different temporal evolutions for three materials:

(i) iron with κ = 0.230cm2/sec,
(ii) aluminum κ = 0.975cm2/sec, and
(iii) copper with κ = 1.156cm2/sec.

Choose t = tmax in each so that each material reaches to a steady state solution.
Your initial condition in all three cases is to describe a same initial temperature
profile

f(x) = 0◦F for 0 ≤ x < 1; f(x) = 100◦F for x = 1 (2.27)

(a) Use the grid sizes of 16, 32, 64, 128 and 256 and compare your results. What

24

can you say about the grid resolution study in the diffusion equation as com-
pared to the case of the advection equation?
(b) What happens if your ∆t fails to satisfy Eq. 2.26 for each κ?
(c) What are your values of tmax for three different materials?

Chapter 3

Scalar Conservation Laws -
Theories

In many practical applications of CFD, one mostly tackles physical phenomena
described by ‘systems’ of (nonlinear) equations such as the Euler or Navier-
Stokes equations. Solving such systems is more complicated than solving a
scalar equation (linear or nonlinear) in both mathematical and computational
aspects.

However, we often gain rich insights in our understandings of the more
complicated systems from studying the simpler systems first. In this chapter,
we seek for a good understanding of the linear and nonlinear scalar advection
equations, whereby it will enlighten us in achieving our bigger goals in studying
the systems of (nonlinear) conservation laws later.

1. Linear scalar equations

We consider two types of linear scalar advection equations, one with a constant
velocity a, and the other with a variable velocity a(t), where x = x(t). Let’s
first take a look at the 1D linear scalar advection equation for t ≥ 0 written as

ut + aux = 0 (3.1)

with a constant advection velocity a, and together with initial conditions on R,

u(x, 0) = u0(x). (3.2)

As shown in the previous chapter, we know the solution is given by

u(x, t) = u0(x− at) (3.3)

for t ≥ 0. Recall that x − at = x0 is called the characteristic line with a given
constant x0 and with the propagation velocity a. Depending on the sign of a,
the initial data u0(x) is advected (or transported) – hence the name ‘advection
equation’ – to the right (if a > 0) or left (if a < 0). Note that there are infinitely
many characteristic lines emanating from the initial condition in the x-t plane
as there are infinite choices of x0 ∈ R. See Fig. 1.

25

26

Figure 1. Characteristic curves and the advection of the solution. All in-
formation is simply advected to the later time solution u(x, t) along the char-
acteristic curves in the x-t plane without any shape changes from the initial
condition u0(x).

In general, the characteristics are curves (or simply ‘the characteristics’) in
the x-t plane satisfying the ODEs

x′(t) = a and x(0) = x0. (3.4)

One very important property on the characteristics is that the solution
u(x, t) of the constant velocity a remains as constant along the characteristics.
To see this,

d

dt
u(x(t), t) =

∂

∂t
u(x(t), t) +

∂

∂x
u(x(t), t)x′(t) = ut + aux = 0, (3.5)

confirming the claim.
In the more general case of the scalar equation with the variable velocity

a(x(t)), we consider

ut +
(
a(x(t))u

)
x

= 0. (3.6)

In this case, the characteristics are no longer straight lines satisfying

x′(t) = a(x(t)) and x(0) = x0, (3.7)

and the solution u(x, t) is no longer constant along the characteristics. This can
be easily verified if we rewrite Eq. 3.6 as

ut + a(x(t))ux = −a′(x(t))u, (3.8)

therefore we obtain
d

dt
u(x(t), t) = −a′(x(t))u 6= 0. (3.9)

In both cases of the constant and variable velocities, the solution can be easily
determined by solving sets of ODEs.

27

Remark: In words, the characteristic curves track the motion of material par-
ticles.

Remark: We can see that if u0(x) ∈ Ck(R) then u(x, t) ∈ Ck(R)× (0,∞).

Remark: So far, we have assumed differentiability of u(x, t) in manipulating
the above relations. Note that this assumption makes it possible to seeks for a
classical solution u(x, t) of the differential equations.

1.1. Domain of dependence & Range of influence

We now make an important observation in solutions to the linear advection
equations:

The solution u(x, t) at any point (x̄, t̄) depends only on the
initial data u0 only at a single point, namely x̄0 such that (x̄, t̄)
lies on the characteristic through x̄0.

This means that the solution u(x̄, t̄) will remain unchanged no matter how
we change the initial data at any points other then x̄0. We now define two
related regions, the first is called the domain of dependence, and the second is
called the range of influence.

Definition: The set D̄(x̄, t̄) = {x̄ − λmt̄ : m = 1, 2, ..., p} is called the domain
of dependence of the point (x̄, t̄), where p is the total number of characteristic
velocities (or the number of equations of hyperbolic PDE systems). See Fig. 2
for an illustration.

Remark: For convenience, let us assume λ1 ≤ ... ≤ λm ≤ ... ≤ λp. Note that
p = 1 for scalar hyperbolic equations, whereas p > 1 for systems of hyperbolic
equations. For instance, p = 3 for the systems of 1D Euler equations (1 conti-
nuity equations, 1 momentum equation, and 1 energy equation).

Note: What are the values of p for the systems of 2D Euler and 3D Euler
equations?

Definition: The region R = {x : λ1t ≤ x − x0 ≤ λpt} is called the range of
influence of the point x0. See Fig. 3 for an illustration.

Note: One can always find a bounded set D = {x : |x − x̄| ≤ λpt̄} such that
D̄(x̄, t̄) ⊂ D. The existence of D̄ and R are the consequence of the fact that
hyperbolic equations have finite propagation speed; information can travel with
speed at most

maxm{|λm| : m = 1, ..., p}

.

28

Figure 2. The domain of dependence of the point (x̄, t̄) for a typical hyper-
bolic system of three equations with λ1 < 0 < λ2 < λ3. Note that one can
always find a bounded domain D such that D̄ ⊂ D because of the fact that
the propagation velocities (or characteristic velocities) of hyperbolic PDEs are
always finite.

1.2. Non-smooth data

Consider for a moment what happens if u0(x) has a singularity at some point
x0 (i.e., a discontinuity in u0 or some derivatives). In this case, the resulting
u(x, t) will have a singularity of the same order along the characteristic curve
though x0. This is a fundamental property of linear hyperbolic equations in
which singularities are simply advected only along characteristics (Also see Fig.
2). This is because the solution, u(x, t) = u0(x−at), along a characteristic curve
x − at = x0, only depends on the one and only value u0(x0), thus allowing a
non-smooth“solution” to the PDE even if u0(x) is not smooth.

Such non-smooth solution, although it is no longer a classical solution of
the differential equation everywhere, does satisfy the integral form of the con-
servation law, which continues to make sense for non-smooth u as long as u is
an integrable function.

29

Figure 3. The range of influence R = {x : λ1t ≤ x − x0 ≤ λ3t} of the
point x0 of the same problem in Fig. 2. Notice that the conic region R is a
symmetric image of D with respect to (x̄, t̄), shifted to t = 0 axis.

Therefore, it may sound like a perfect idea to accept this concept – i.e.,
integrating along characteristics regardless of the regularity of u0(x) – in order
to achieve a generalized solution u(x, t). Unfortunately, we can no longer simply
integrate along characteristics when solving the nonlinear equations (yes, the
linear case is relatively too easy!) because the nonlinear characteristic curves
often converge (collide) each other to form a shock, losing their characteristic
information for good. The nonlinear equations also can develop singularities
even from a smooth initial data u0(x).

One working idea that can be generalized to both linear and nonlinear
equations, is to leave the initial data alone but modify the PDE by adding a small
diffusive term εuxx and take the limit of the diffusive term as ε→ 0. The solution
obtained this way is called the vanishing viscosity solution. Mathematically, one
writes an advection-diffusion equation

ut + aux = εuxx (3.10)

as an approximation to the advection equation for very small ε > 0. Notice that
we can always find the solution uε ∈ C∞(R) × R+ to Eq. 3.10 even if u0(x) is
not smooth, because Eq. 3.10 is a parabolic equation (why? See Homework 1).
We can therefore obtain a generalized solution u(x, t) by

lim
ε→0

uε(x, t) = u(x, t). (3.11)

Homework 1 Use a change of variables to follow the characteristics (i.e., ξ =
x+ at and τ = t) and set

vε(x, t) = uε(x+ at, t) (3.12)

30

(a) Assuming uε is a solution to Eq. 3.10, first show that vε satisfies the heat
equation

vεt(x, t) = εvεxx(x, t). (3.13)

Note that we have converted the advection-diffusion equation Eq. 3.10 to the
pure diffusion equation Eq. 3.13. Now, using the well-known solution to the
diffusion equation to solve for vε(x, t) (see Hint 1),
(b) Show that we have (this should be very trivial)

uε(x, t) = vε(x− at, t). (3.14)

(c) And moreover, show that (use Hint 2)

lim
ε→0

uε(x, t) = lim
ε→0

uε(x, t) = u0(x− at). (3.15)

Hint 1: For the diffusion equation Eq. 3.13, we can always find the classical
solution of the PDE using Green’s functions:

vε(x, t) =
1√
4πεt

∫

R
e−

(x−y)2

4εt vε(y, 0)dy, (3.16)

where vε(y, 0) = uε(y, 0) = uε0(y).
Hint 2: Let g(x) be a bounded function and is continuous at x = 0. Let

γr(x) =

√
r

π
e−rx

2
. (3.17)

Then

lim
r→∞

∫

R
γr(x− y)g(x)dx = g(y). (3.18)

Note that γr(x) is Gaussian and has the following properties:
(a) γr(x) ≥ 0,
(b) limr→∞ γr(x) = 0, if x 6= 0; limr→∞ γr(x) = 0, if x = 0,

(c)
∫
R γr(x)dx =

√
r
π

∫
R e
−rx2

dx = 1√
π

∫
R e
−y2

dy = 1.

2. Nonlinear scalar equations

We now move on to consider the nonlinear scalar equation

ut +
(
f(u)

)
x

= 0 (3.19)

where f(u) is a nonlinear function of u and is called the flux function. There are
two types of flux functions that give rise to different solution behaviors, especially
involving solution structures containing shocks and/or rarefaction waves:

1. f(u) is a convex function – i.e., f ′′(u) > 0, ∀u (or, equally well, f is concave
with f ′′(u) < 0, ∀u): e.g., the Burger’s equation, the Euler equations, the
Navier-Stokes equations.

31

2. f(u) is a non-convex function: e.g., the Buckley-Leverett equation, mag-
netohydrodynamics (MHD) equations.

Remark: Later, we will see that the “convexity” assumption in the nonlinear
scalar equation corresponds to a “genuinely nonlinearity” assumption for sys-
tems of equations.

Definition: If we rewrite Eq. 3.19 in nonconservation form, we get ut +
f ′(u)fx(u) = 0. The derivative of the flux function

λ(u) = f ′(u) =
df

du
(3.20)

is called the characteristic speed.

Remark:

1. In the system case,

0 = Ut + F(U)x = Ut +
∂F

∂U

∂U

∂x
, (3.21)

the characteristic speed corresponds to the eigenvalues of the Jacobian
matrix ∂F

∂U .

2. For the linear scalar advection case, we already saw that df
du = a.

By far the most famous and popular example in the nonlinear scalar equa-
tions is Burgers’ equation, in which the flux function is given as

f(u) =
u2

2
, (3.22)

hence resulting in the equation in the nonconservation form as

ut + uux = 0. (3.23)

We now take a look at the its mathematical properties from two different
perspectives: (i) for small t, and (ii) for large t.

2.1. Burgers’ equation for small ts

Let’s first assume that the initial data u0(x) is smooth and no singularity is
observed for 0 < t ≤ ts. In this case, we can conveniently follow characteristics

x′(t) = u(x(t), t) (3.24)

along which the solution u(x, t) is constant, since

d

dt
u(x(t), t) =

∂

∂t
u(x(t), t) +

∂

∂x
u(x(t), t)x′(t) = ut + uux = 0. (3.25)

32

Figure 4. Characteristics and solution for Burgers’ equation for small t = ts.

This also tells us that the slope x′(t) is constant, and so the characteristics are
straight lines, determined by the initial data. See Fig. 4.

Therefore, if the initial data u0 = u(ξ, 0) is smooth, and if ts is chosen small
enough so that the characteristics do not cross each others, we can solve the
equation

x = ξ + u(ξ, 0)ts (3.26)

for ξ, and thus we obtain a well-defined solution

u(x, ts) = u(x− u(ξ, 0)ts, 0). (3.27)

2.2. Burgers’ equation for large tb: Shock formation

For large t = tb at or after which the characteristics cross, Eq. 3.26 may not
have a unique solution. This indeed will occur if u′0(ξ) < 0 at any point ξ –
that is, if u0(ξ) is a monotone decreasing function of ξ then the characteristics
x(t) = ξ(t) + u0(ξ(t))t eventually cross at some finite time t = tb at which the
wave will break and develop into a shock. When this first happens at t = tb, the
function u(x, t) has an infinite slope, beyond which there is no classical solution
of the PDE, and the (weak) solution becomes discontinuous. See Fig. 5.

Homework 2 Given a smooth initial data u0(ξ) for Burgers’ equation with its
slope u′0(ξ) < 0 at some point ξ0. Show that the wave break time tb is written
as

tb =
−1

u′0(ξ0)
. (3.28)

33

Figure 5. Characteristics and solution for Burgers’ equation for large t = tb.
The characteristics cross and a shock is formed as a result.

Recall that in the case of the linear scalar advection, in which the charac-
teristic speed is constant, df/du = a, the solution is simply a translated form of
the initial data with speed a without any distortion (see Fig. 1). In the nonlin-
ear case the characteristic speed is a function of the solution u(x, t) itself – e.g.,
df/du = u for Burgers’ equation, therefore, distortions are inevitably produced.
This is a distinctive feature of nonlinear problem.

To see the wave distortion phenomenon – also referred to as ‘the wave
steepening’ – we refer to the initial condition u0(x) depicted as in Figs. 4
& 5. First, note that the flux function for Burgers’ equation is convex (i.e.,
f ′′(u) = 1 > 0), and therefore, its characteristic speed (i.e., f ′(u) = u) is an
increasing function of u – the characteristic speed of Burgers’ equation is u itself.
The behavior of the characteristic speed therefore depends on the behavior of u.
Specifically, the initial characteristics xm(t) emanating from the initial points
x̄m, m = 1, ..., p have the form (see also Fig. 3)

xm(t) = x̄m + u0(x̄m)t. (3.29)

We see that depending on how u0(x) increases or decreases as a function of x,
the initial characteristic speeds vary, and the characteristic curves can cross. We
can think of two intervals Ie and Ic on the x-axis where distortions are more
evident. See Fig. 6 for an illustration. If we let x̄0 to be a point where u′0(x̄0) = 0
(i.e., x̄0 is a local maximum point of u0), and take

Ie = [x̄+, x̄0], Ic = [x̄0, x̄−], (3.30)

where x̄+ and x̄− are the points where u0 starts to increase and stops to decrease
as x, respectively, as shown in Fig. 6. We say that Ie is an expansive region

34

where the characteristic speed keeps increasing as x increases. On the contrary,
Ic is a compressive region where the characteristic speed decreases with x. It
is easy to see that the characteristics from Ie and Ic will eventually cross each
others, generating a sharp discontinuous profile of u(x, t) for t > tb, although
the initial data u0(x) was smooth to begin with.

Figure 6. Characteristics crossing for Burgers’ equation for large t > tb.

For times t > tb some of the characteristics have crossed. When this hap-
pens, there are points x where there are three characteristics leading back to
t = 0. The solution u at such a time is a triple-valued function as seen in Fig. 7.
Although there exist some cases that this makes sense, such as a breaking ocean
wave modeled by the shallow water equations, in most physical situations, this
doesn’t make sense. For instance, the density of a gas cannot be triple valued
at a given point.

As seen in Homework 1, one way to determine the correct physical be-
havior can be achieved by adopting the vanishing discontinuity approach. There
is yet another approach that results in a differential integral formulation that is
often more convenient to work with. This approach is available by considering
so-called the weak solutions and this is discussed in the next section in more
detail.

2.3. Weak solutions

In order to successfully seek for physically meaningful solutions u(x, t) of PDEs
that are relevant to various physical phenomena, it would be much more desir-
able if we can relax those mathematical constraints on smoothness in u(x, t).

35

Figure 7. Triple-valued solution to Burgers’ equation for large t > tb.

In other words, we wish to come up with a mathematical technique that can
be applied more generally to rewrite a differential equation in a form where less
regularity is required to define a ‘solution’. The weak solution approach is, in
that sense, one such technique we are now considering. The basic idea is to take
the PDE, multiply by a smooth “test function”, integrate one or more times
over some domain, and then use integration by parts to move derivatives off
the function u and onto the smooth test function. The outcome is an equation
involving fewer derivatives on u, and hence requiring less smoothness.

Definition: The function u(x, t) is called a weak solution of the scalar conser-
vation law ut + fx = 0 if it satisfies the following condition for all test functions
φ(x, t) ∈ C1

0 (R× R+):

∫

R+

∫

R
[φtu+ φxf(u)]dxdt = −

∫

R
φ(x, 0)u(x, 0)dx. (3.31)

Note: C1
0 is the space of functions that are continuously differentiable (C1)

with compact support.

Note: f ∈ C0(R) iff f = 0 in outside of some bounded sets and the support of
f lies in a compact set. The support of f , supp(f) = {x ∈ X : f(x) 6= 0}.

36

Remark: One can obtain Eq. 3.31 by multiplying φ to ut + fx = 0 and then
integrate over space and time,

∫

R+

∫

R
[φut + φf(u)x]dxdt = 0. (3.32)

Finally, integrating Eq. 3.32 by part gives the definition of a weak solution
in Eq. 3.31. Notice that nearly all the boundary terms which normally arise
through integration by parts drop out because φ has compact support, hence
becomes zero outside of some bounded region of the x-t plane. The RHS in Eq.
3.31 bears the initial conditions of the PDE which cannot be ignored in the weak
formulation.

Quick summary: A nice feature of Eq. 3.31 is that the derivatives are on the
smooth test function φ, and no longer on u and f(u). This enables Eq. 3.31 to
take some discontinuous u as a solution in this weak sense.

Remark: If u is a weak solution, then u also satisfies the original integral con-
servation law, and vice versa.

Remark: With the help of weak solutions, can we say we are now happy about
solving nonlinear scalar conservation laws? The answer is not really yet, unfor-
tunately. One of the reasons is that weak solutions are often not unique and
therefore, we need some criteria to choose a physically correct weak solution
among choices. To do this, we will consider a condition called the ‘entropy con-
dition’ at the end of this chapter.

2.4. The Riemann problem

The conservation law together with piecewise constant data separated by a single
discontinuity is known as the Riemann problem (RP). There are two physically
admissible types of solutions, (i) shock solution, and (ii) rarefaction solution,
which we will consider here in detail.

Consider the general conservation laws written as

ut + (f(u))x = 0, (3.33)

where f(u) is convex. The RP involves a PDE with piecewise constant initial
data,

u(x, 0) =

{
ul if x < 0
ur if x > 0

(3.34)

and the form of the solution, as will be shown, closely depends on the relation
between ul and ur.

• Case I: ul > ur In this case, there is a unique weak solution

u(x, t) =

{
ul if x < st
ur if x > st

(3.35)

37

where s is a shock speed, the speed at which the discontinuity travels. We
are going to study how to compute a general expression for the shock speed
in the next section. The characteristics in each left and right regions where
u is constant (i.e., either ul or ur) go into the shock as time advances. See
Fig. 8 and Fig. 9.

Note: Since the flux is convex, λ′(u) = f ′′(u) > 0, λ is monotone increas-
ing, hence λ(ul) > λ(ur). We note for the RP with a shock solution, the
characteristic speeds f ′(u) satisfy the following converging characteristic
condition:

f ′(ul) > s > f ′(ur), (3.36)

or equivalently,
λ(ul) > s > λ(ur), (3.37)

where s is a shock speed.

• Case II: ul < ur In this case there are infinitely many weak solutions,
therefore, we need to choose a physically correct weak solution. Our first
attempt is to apply the exact same idea as in Case I in which the disconti-
nuity propagates with speed s. This now allows the characteristics go out
of the shock as illustrated in Fig. 10. This type of weak solution is called
the entropy violating solution and needs be rejected. One crucial reason
for rejecting this solution as a physical solution is because the solution is
not stable to perturbation (also recall the three requirements for well-posed
PDEs we studied in Chapter 2). This means that small perturbations of
the initial data lead to large changes in the solution. For example, if the
data is smeared out little bit, or if a small amount of viscosity is added to
the equation, the solution changes completely.

Another weak solution is the rarefaction wave

u(x, t) =

ul if x < ult
x/t if ult ≤ x ≤ urt
ur if x > urt

(3.38)

This solution is stable to perturbation and is in fact the physically correct
weak solution satisfying the vanishing viscosity approach.

Note: Since the flux is convex, λ′(u) = f ′′(u) > 0, λ is monotone increas-
ing, hence λ(ul) < λ(ur). We note for the RP with a rarefaction solution,
the characteristic speeds f ′(u) satisfy the following diverging characteristic
condition:

f ′(ul) < f ′(ur), (3.39)

or equivalently,
λ(ul) < λ(ur). (3.40)

Remark: Before proceeding to the next section, we briefly study four variants
of the integral form of conservation laws ut + fx = 0. Recalled that we already

38

Figure 8. Weak solution of shock wave to the Riemann problem ul > ur. In
addition, the last figure shows that a shock can be formed despite the initial
condition is not discontinuous – Extracted from the book, “Introduction to
Partial Differential Equations with MATLAB”, by Jeffery M. Cooper.

39

Figure 9. Weak solution of shock wave to the Riemann problem ul > ur.
The characteristic curves are drawn in blue in the x-t plane. The dark orange
shaded plane is the shock plane due to the crossing of the characteristics from
the two discontinuous initial data ul and ur. The shock plane travels with
the shock speed s which will be studied by considering the Rankine-Hugoniot
jump condition in the next section.

have studied this in Chapter 1. This time, we choose a control volume V =
[xL, xR]× [t1, t2] on the x-t plane.

1. Integral form I:

d

dt

∫ xR

xL

u(x, t)dx = f(u(xL, t))− f(u(xR, t)) (3.41)

2. Integral form II: Integrating Integral form I in time gives
∫ xR

xL

u(x, t2)dx−
∫ xR

xL

u(x, t1)dx =

∫ t2

t1

f(u(xL, t))dt−
∫ t2

t1

f(u(xR, t))dt

(3.42)

3. Integral form III: Integrating ut+ fx = 0 in any domain V in the x-t plane
and using Green’s theorem, we obtain

∮

∂V
[udx− f(u)dt] = 0 (3.43)

4. Integral form IV: The last variant is the integral relation that the weak
or generalized solution u satisfies (see also Eq. 3.31) for all test function
φ(x, t) ∈ C1

0 (R× R+):
∫

R+

∫

R
[φtu+ φxf(u)]dxdt = −

∫

R
φ(x, 0)u(x, 0)dx. (3.44)

40

Figure 10. Entropy-violating shock and should be rejected.

2.5. Shock speed: the Rankine-Hugoniot jump condition

The propagating shock solution in Eq. 3.35 is a weak solution only with a proper
value of the shock speed s. In fact, a correct shock speed s can be determined
by considering conservation – called the Rankine-Hugoniot jump condition.

Consider a solution u(x, t) such that u(x, t) and f(u) and their derivatives
are continuous everywhere except on a line S = S(t) on the x-t plane across
which u(x, t) has a jump discontinuity. Choose two fixed points xL and xR such
that xL < S(t) < sR. Adopting Integral form I on the control volume [xL, xR],
we have

f(u(xL, t))− f(u(xR, t)) =
d

dt

∫ S(t)

xL

u(x, t)dx+
d

dt

∫ xR

S(t)
u(x, t)dx, (3.45)

which becomes

f(u(xL, t))−f(u(xR, t)) =
(
u(SL, t)−u(SR, t)

)dS
dt

+

∫ S(t)

xL

ut(x, t)dx+

∫ xR

S(t)
ut(x, t)dx,

(3.46)
where

u(SL, t) = lim
x↑S(t)

u(S(t), t), (3.47)

u(SR, t) = lim
x↓S(t)

u(S(t), t) (3.48)

41

Figure 11. Entropy satisfying weak solution – the rarefaction wave.

Note the two integrals in Eq. 3.46 become

∫ S(t)

xL

ut(x, t)dx = −
∫ S(t)

xL

fx(u(x, t))dx = f(u(xL, t))− f(u(SL, t)), (3.49)

∫ xR

S(t)
ut(x, t)dx = −

∫ xR

S(t)
fx(u(x, t))dx = f(u(SR, t))− f(u(xR, t)). (3.50)

After canceling f(u(xL, t))− f(u(xR, t)) from both sides, we finally obtain

f(u(SL, t))− f(u(SR, t)) =
(
u(SL, t)− u(SR, t)

)
s, (3.51)

where we introduced s = dS/dt the speed of the discontinuity.

Definition: The relation in Eq. 3.51 is called the Rankine-Hugoniot jump
condition (RH condition) and it provides a relation between the shock speed s
and the states ul = u(SL, t) and ur = u(SR, t). We often denote shock speed s
in the RH condition using brackets as follow:

s =
[f]

[u]
≡

limx↓S(t) f(u(x, t), t)− limx↑S(t) f(u(x, t), t)

limx↓S(t) u(x, t)− limx↑S(t) u(x, t)
. (3.52)

Homework 3 Consider Burgers’ equation

ut +
(u2

2

)
x

= 0 (3.53)

42

(a) By multiplying the equation by 2u, show that you can derive a new conser-
vation law for u2. What is the new flux function?
(b) Show that the original Burgers’ equation and the new derived equation have
different weak solutions (Hint: It suffices to show that there exist two different
shock speeds from the two equations for the Riemann problem with ul > ur.).

2.6. Entropy conditions

As demonstrated in Homework 3 above, there are situations in which the weak
solution is not unique. It is therefore natural to ask for an additional condition
to pick out the physically relevant solution. Recall that we’ve already seen there
is an obvious condition for the characteristic speeds in Eq. 3.36. A shock should
have characteristics going into the shock as time evolves. We are now ready to
state it and call it the entropy condition:

Definition: A discontinuity propagating with speed s given by Eq. 3.51 (or
equivalently, Eq. 3.52) – that is, the two data states ul and ur are connected
through a single discontinuity with its speed s – satisfies the entropy condition
if

f ′(ul) > s > f ′(ur), (3.54)

or equivalently,
λ(ul) > s > λ(ur). (3.55)

Remark: On the other hand, if the two data states ul and ur are connected
through a smooth transition – i.e., rarefaction wave – the divergence relation of
the characteristics holds:

f ′(ul) < f ′(ur) (3.56)

or equivalently,
λ(ul) < λ(ur). (3.57)

Example: Let’s consider Burgers’ equation on R with the following initial
conditions:

u(x, 0) =

{
0 if x < 0
1 if x > 0

(3.58)

We can first try to obtain an entropy violating solution, and we know that this
solution needs to be rejected anyway as it is ill-posed. But we are going to find
this solution to practice what we already learned in this chapter. If we apply
the RH condition to this problem – which is wrong to do so – to compute the
shock speed s, we get

s =
f(ur)− f(ul)

ur − ul
=

1

2
. (3.59)

This results in the following entropy violating self-similar solution

u(x, t) =

{
0 if x

t <
1
2

1 if x
t >

1
2

(3.60)

43

which is shown in Fig.12.
Let us try again to get the correct weak solution this time. Consider the

following self-similar solution

u(x, t) =

0 if x
t < 0

x/t if 0 < x
t < 1

1 if x
t > 1.

(3.61)

We can check that the wave diagram for this solution is plotted in Fig. 13. It
is also easy to check if this solution, especially the part in the expansion region,
satisfies the Burgers’ equation. To see this,

∂u

∂t
+ u

∂u

∂x
=

∂

∂t

(x
t

)
+
x

t

∂

∂x

(x
t

)
= − x

t2
+
x

t

1

t
= 0. (3.62)

Figure 12. Wave diagram for the wrong entropy violating weak solution.

Example: Let’s consider Burgers’ equation on R with the following initial
conditions for t ≤ 4/3:

u(x, 0) =

{
1 if |x| < 1/3
0 if |x| > 1/3

(3.63)

We see that the jump at x = −1/3 creates a rarefaction wave solution; the jump
at x = 1/3 crates a shock solution. For t ≤ 4/3 the shock and the rarefaction fan
do not intersect each other and therefore, we can seek for the exact piecewise-
linear solution as follows.
Let us first compute the shock speed using RH with ul = 1 and ur = 0:

s =
f(ur)− f(ul)

ur − ul
=

1

2
, (3.64)

44

Figure 13. Wave diagram for the correct rarefaction wave weak solution.

which gives the characteristic curve (the red thick line in Fig. 14) for shock
x− 1/2t = 1/3.
We also consider the first characteristic curve right next to the rarefaction region
– this is the left most purple line in Fig. 14. Since the characteristic slope is
f ′(u)|u=1 = 1, we obtain the relation x− t = −1/3. From these we easily obtain
the exact weak solution as follows:

u(x, t) =

0 if x < −1
3

x+1/3
t if − 1

3 < x < t− 1
3

1 if t− 1
3 < x < 1

2 t+ 1
3

0 if x > 1
2 t+ 1

3

(3.65)

Note that at t = 4
3 we get 1

2 t + 1
3 = t − 1

3 , and as a result, the shock and the

rarefaction solutions intersect for t > 4
3 .

Homework 4 Solve Burgers’ equation on R for small enough t ≤ tb that allows
the exact piecewise-linear weak solution with the following initial conditions:

u(x, 0) =

{
2 if |x| < 1/2
−1 if |x| > 1/2

(3.66)

Find the time tb when the two waves first intersect. Draw a wave diagram for
the weak solution.

45

Figure 14. Wave diagram of the weak solution for t ≤ 4/3.

Chapter 4

Discrete Numerical
Approaches

We review several key ideas on numerical methods that discretize PDEs and
provide approximated solutions to numerical PDE models derived from the ana-
lytical PDEs. Three major methods are briefly described along with the principal
advantages and drawbacks in each method. Three solution schemes include:

• Finite difference method (FD)

• Finite volume method (FV)

• Finite element method (FE)

Some other approaches also used in many CFD applications include:

• Discontinuous Galerkin (DG) (or, discontinuous FE as compared to the
standard ‘continuous’ FE)

• Spectral element (SE)

In general, a proper choice of numerical approaches strongly depends on
various components of your problem, including especially the following factors:

• Flow regimes – e.g., compressible (FV) vs. incompressible (FD), high Mach
number (FV) vs. low Mach number (low Mach number scheme), turbulent
(subgrid models) vs. laminar (boundary layer), advection dominated (FV,
FD, DG) vs. diffusion dominated (FE)

• Physics of flows – e.g., macroscopic (fluid models: FV, FD, FE) vs. micro-
scopic (kinetic models: PIC – particle-in-cell), hydrodynamcis vs. magne-
tohydrodynamics vs. rad-hydro, single-fluid (sigle bulk velocity) vs. multi-
fluid (multiple bulk velocity), advection dominated (explicit) vs. diffusion
dominated (implicit) vs. combined (explicit & implicit via operator split),
gravitational flow (elliptic solver)

• Geometry of flows – e.g., rectangular domain (FD) vs. engineering flow
(complicated physical boundaries such as bridges, airplane, airfoils, cars,
buildings – mostly FE, but also FV), localized dynamics (AMR – adaptive
mesh refinements; stretched grid) vs. global dynamics (UG – uniform grid)

46

47

• Numerical issues – ease of high-order implementation (FD, FE, DG) vs.
difficulty in high-order implementation (FV), ease of multi-dimensional
extension (FD) vs. difficulty in multi-dimensional extension (FV)

Our primary interest in this course lies in studying the first two methods,
FD and FV. Later, we are going to use FD and FV approaches to solve linear
advection equation and linear hyperbolic systems. Such fundamental ideas of
solving linear hyperbolic PDEs will be extended to the nonlinear cases.

For the rest of the study in this chapter, we are going to refer to a short
article by Joaquim Peiró and Spencer Sherwin which provides a nice overview
and comparison of three discrete finite approaches, FD, FE, and FV:

• “Finite difference, finite element and finite volume methods for partial
differential equations” (enclosed below).

8.2

FINITE DIFFERENCE, FINITE ELEMENT
AND FINITE VOLUME METHODS
FOR PARTIAL DIFFERENTIAL
EQUATIONS

Joaquim Peiró and Spencer Sherwin
Department of Aeronautics, Imperial College, London, UK

There are three important steps in the computational modelling of any
physical process: (i) problem definition, (ii) mathematical model, and
(iii) computer simulation.

The first natural step is to define an idealization of our problem of
interest in terms of a set of relevant quantities which we would like to mea-
sure. In defining this idealization we expect to obtain a well-posed problem,
this is one that has a unique solution for a given set of parameters. It might not
always be possible to guarantee the fidelity of the idealization since, in some
instances, the physical process is not totally understood. An example is the
complex environment within a nuclear reactor where obtaining measurements
is difficult.

The second step of the modeling process is to represent our idealization of
the physical reality by a mathematical model: the governing equations of the
problem. These are available for many physical phenomena. For example, in
fluid dynamics the Navier–Stokes equations are considered to be an accurate
representation of the fluid motion. Analogously, the equations of elasticity in
structural mechanics govern the deformation of a solid object due to applied
external forces. These are complex general equations that are very difficult to
solve both analytically and computationally. Therefore, we need to introduce
simplifying assumptions to reduce the complexity of the mathematical model
and make it amenable to either exact or numerical solution. For example, the
irrotational (without vorticity) flow of an incompressible fluid is accurately
represented by the Navier–Stokes equations but, if the effects of fluid viscos-
ity are small, then Laplace’s equation of potential flow is a far more efficient
description of the problem.

1
S. Yip (ed.),
Handbook of Materials Modeling. Volume I: Methods and Models, 1–32.
c© 2005 Springer. Printed in the Netherlands.

2 J. Peiró and S. Sherwin

After the selection of an appropriate mathematical model, together with
suitable boundary and initial conditions, we can proceed to its solution. In this
chapter we will consider the numerical solution of mathematical problems
which are described by partial differential equations (PDEs). The three classical
choices for the numerical solution of PDEs are the finite difference method
(FDM), the finite element method (FEM) and the finite volume method (FVM).

The FDM is the oldest and is based upon the application of a local Taylor
expansion to approximate the differential equations. The FDM uses a topo-
logically square network of lines to construct the discretization of the PDE.
This is a potential bottleneck of the method when handling complex geome-
tries in multiple dimensions. This issue motivated the use of an integral form
of the PDEs and subsequently the development of the finite element and finite
volume techniques.

To provide a short introduction to these techniques we shall consider each
type of discretization as applied to one-dimensional PDEs. This will not allow
us to illustrate the geometric flexibility of the FEM and the FVM to their full
extent, but we will be able to demonstrate some of the similarities between the
methods and thereby highlight some of the relative advantages and disadvan-
tages of each approach. For a more detailed understanding of the approaches
we refer the reader to the section on suggested reading at the end of the chapter.

The section is structured as follows. We start by introducing the concept of
conservation laws and their differential representation as PDEs and the alter-
native integral forms. We next discusses the classification of partial differential
equations: elliptic, parabolic, and hyperbolic. This classification is important
since the type of PDE dictates the form of boundary and initial conditions
required for the problem to be well-posed. It also, permits in some cases, e.g.,
in hyperbolic equations, to identify suitable schemes to discretise the differen-
tial operators. The three types of discretisation: FDM, FEM and FVM are then
discussed and applied to different types of PDEs. We then end our overview by
discussing the numerical difficulties which can arise in the numerical solution
of the different types of PDEs using the FDM and provides an introduction to
the assessment of the stability of numerical schemes using a Fourier or Von
Neumann analysis.

Finally we note that, given the scientific background of the authors, the
presentation has a bias towards fluid dynamics. However, we stress that the
fundamental concepts presented in this chapter are generally applicable to
continuum mechanics, both solids and fluids.

1. Conservation Laws: Integral and Differential Forms

The governing equations of continuum mechanics representing the kine-
matic and mechanical behaviour of general bodies are commonly referred

Finite methods for partial differential equations 3

to as conservation laws. These are derived by invoking the conservation of
mass and energy and the momentum equation (Newton’s law). Whilst they are
equally applicable to solids and fluids, their differing behaviour is accounted
for through the use of a different constitutive equation.

The general principle behind the derivation of conservation laws is that the
rate of change of u(x, t) within a volume V plus the flux of u through the
boundary A is equal to the rate of production of u denoted by S(u, x, t). This
can be written as

∂

∂t

∫

V

u(x, t) dV +
∫

A

f(u) · n dA −
∫

V

S(u, x, t) dV = 0 (1)

which is referred to as the integral form of the conservation law. For a fixed
(independent of t) volume and, under suitable conditions of smoothness of the
intervening quantities, we can apply Gauss’ theorem

∫

V

∇ · f dV =
∫

A

f · n dA

to obtain
∫

V

(
∂u

∂t
+ ∇ · f (u) − S

)
dV = 0. (2)

For the integral expression to be zero for any volume V , the integrand must be
zero. This results in the strong or differential form of the equation

∂u

∂t
+ ∇ · f (u) − S = 0. (3)

An alternative integral form can be obtained by the method of weighted
residuals. Multiplying Eq. (3) by a weight function w(x) and integrating over
the volume V we obtain

∫

V

(
∂u

∂t
+ ∇ · f (u) − S

)
w(x) dV = 0. (4)

If Eq. (4) is satisfied for any weight function w(x), then Eq. (4) is equivalent
to the differential form (3). The smoothness requirements on f can be relaxed
by applying the Gauss’ theorem to Eq. (4) to obtain

∫

V

[(
∂u

∂t
− S

)
w(x) − f (u) · ∇w(x)

]
dV +

∫

A

f · n w(x) dA = 0.

(5)

This is known as the weak form of the conservation law.

4 J. Peiró and S. Sherwin

Although the above formulation is more commonly used in fluid mechan-
ics, similar formulations are also applied in structural mechanics. For instance,
the well-known principle of virtual work for the static equilibrium of a body
[1], is given by

δW =
∫

V

(∇�+ f) · δ� dV = 0

where δW denotes the virtual work done by an arbitrary virtual velocity δ�,
� is the stress tensor and f denotes the body force. The similarity with the
method of weighted residuals (4) is evident.

2. Model Equations and their Classification

In the following we will restrict ourselves to the analysis of one-dimensional
conservation laws representing the transport of a scalar variable u(x, t) defined
in the domain � = {x, t : 0 ≤ x ≤ 1, 0 ≤ t ≤ T }. The convection–diffusion-
reaction equation is given by

L(u) =
∂u

∂t
+ ∂

∂x

(
au − b

∂u

∂x

)
− r u = s (6)

together with appropriate boundary conditions at x = 0 and 1 to make the prob-
lem well-posed. In the above equation L(u) simply represents a linear differen-
tial operator. This equation can be recast in the form (3) with f (u) = au − ∂u/∂x
and S(u) = s + ru. It is linear if the coefficient a, b, r and s are functions of x
and t , and non-linear if any of them depends on the solution, u.

In what follows, we will use for convenience the convention that the pres-
ence of a subscript x or t under a expression indicates a derivative or partial
derivative with respect to this variable, for example

ux(x) =
du

dx
(x); ut(x, t) =

∂u

∂t
(x, t); uxx(x, t) =

∂2u

∂x2
(x, t).

Using this notation, Eq. (6) is re-written as

ut + (au − bux)x − ru = s.

2.1. Elliptic Equations

The steady-state solution of Eq. (6) when advection and source terms are
neglected, i.e., a=0 and s=0, is a function of x only and satisfies the Helmholtz
equation

(bux)x + ru = 0. (7)

Finite methods for partial differential equations 5

This equation is elliptic and its solution depends on two families of integration
constants that are fixed by prescribing boundary conditions at the ends of the
domain. One can either prescribe Dirichlet boundary conditions at both ends,
e.g., u(0) = α0 and u(1) = α1, or substitute one of them (or both if r =/ 0) by a
Neumann boundary condition, e.g., ux(0) = g. Here α0, α1 and g are known
constant values. We note that if we introduce a perturbation into a Dirichlet
boundary condition, e.g., u(0) = α0 + ε, we will observe an instantaneous
modification to the solution throughout the domain. This is indicative of the
elliptic nature of the problem.

2.2. Parabolic Equations

Taking a = 0, r = 0 and s = 0 in our model, Eq. (6) leads to the heat or
diffusion equation

ut − (b ux)x = 0, (8)

which is parabolic. In addition to appropriate boundary conditions of the form
used for elliptic equations, we also require an initial condition at t = 0 of the
form u(x, 0) = u0(x) where u0 is a given function.

If b is constant, this equation admits solutions of the form u(x, t) = Aeβt

sin kx if β + k2b = 0. A notable feature of the solution is that it decays when
b is positive as the exponent β < 0. The rate of decay is a function of b. The
more diffusive the equation (i.e., larger b) the faster the decay of the solution
is. In general the solution can be made up of many sine waves of different
frequencies, i.e., a Fourier expansion of the form

u(x, t) =
∑

m

Ameβm t sin km x,

where Am and km represent the amplitude and the frequency of a Fourier mode,
respectively. The decay of the solution depends on the Fourier contents of the
initial data since βm = −k2

mb. High frequencies decay at a faster rate than the
low frequencies which physically means that the solution is being smoothed.
This is illustrated in Fig. 1 which shows the time evolution of u(x, t) for
an initial condition u0(x) = 20x for 0 ≤ x ≤ 1/2 and u0(x) = 20(1 − x) for
1/2 ≤ x ≤ 1. The solution shows a rapid smoothing of the slope disconti-
nuity of the initial condition at x = 1/2. The presence of a positive diffusion
(b > 0) physically results in a smoothing of the solution which stabilizes it. On
the other hand, negative diffusion (b < 0) is de-stabilizing but most physical
problems have positive diffusion.

6 J. Peiró and S. Sherwin

11

0.0 0.5 1.0

t � 0

t �2T

t �T

t �3T
t �4T

t �5T

t �6T

x

u(x)
10

9

8

7

6

5

4

3

2

1

0

Figure 1. Rate of decay of the solution to the diffusion equation.

2.3. Hyperbolic Equations

A classic example of hyperbolic equation is the linear advection equation

ut + a ux = 0, (9)

where a represents a constant velocity. The above equation is also clearly
equivalent to Eq. (6) with b = r = s = 0. This hyperbolic equation also re-
quires an initial condition, u(x, 0) = u0(x). The question of what boundary
conditions are appropriate for this equation can be more easily be answered
after considering its solution. It is easy to verify by substitution in (9) that the
solution is given by u(x, t) = u0(x − at). This describes the propagation of
the quantity u(x, t) moving with speed “a” in the x-direction as depicted in
Fig. 2. The solution is constant along the characteristic line x − at = c with
u(x, t) = u0(c).

From the knowledge of the solution, we can appreciate that for a > 0 a
boundary condition should be prescribed at x = 0, (e.g., u(0) = α0) where in-
formation is being fed into the solution domain. The value of the solution at
x = 1 is determined by the initial conditions or the boundary condition at x = 0
and cannot, therefore, be prescribed. This simple argument shows that, in a hy-
perbolic problem, the selection of appropriate conditions at a boundary point
depends on the solution at that point. If the velocity is negative, the previous
treatment of the boundary conditions is reversed.

Finite methods for partial differential equations 7

x

x

t

u (x,0)

u (x,t) Characteristic
x �at � c

Figure 2. Solution of the linear advection equation.

The propagation velocity can also be a function of space, i.e., a = a(x) or
even the same as the quantity being propagated, i.e., a = u(x, t). The choice
a = u(x, t) leads to the non-linear inviscid Burgers’ equation

ut + u ux = 0. (10)

An analogous analysis to that used for the advection equation shows that
u(x, t) is constant if we are moving with a local velocity also given by u(x, t).
This means that some regions of the solution advance faster than other re-
gions leading to the formation of sharp gradients. This is illustrated in Fig. 3.
The initial velocity is represented by a triangular “zig-zag” wave. Peaks and
troughs in the solution will advance, in opposite directions, with maximum
speed. This will eventually lead to an overlap as depicted by the dotted line
in Fig. 3. This results in a non-uniqueness of the solution which is obviously
non-physical and to resolve this problem we must allow for the formation and
propagation of discontinuities when two characteristics intersect (see Ref. [2]
for further details).

3. Numerical Schemes

There are many situations where obtaining an exact solution of a PDE is
not possible and we have to resort to approximations in which the infinite set
of values in the continuous solution is represented by a finite set of values
referred to as the discrete solution.

For simplicity we consider first the case of a function of one variable u(x).
Given a set of points xi ; i = 1, . . . , N in the domain of definition of u(x), as

8 J. Peiró and S. Sherwin

u �0

u>0 t 1

t 2

t 3

t �0

u

x

t

Figure 3. Formation of discontinuities in the Burgers’ equation.

Ωi

x

ui

xi xnx1

ui �1

xi �1xi �1

ui �1

xi � 1
2

xi � 1
2

Figure 4. Discretization of the domain.

shown in Fig. 4, the numerical solution that we are seeking is represented by a
discrete set of function values {u1, . . . , uN } that approximate u at these points,
i.e., ui ≈ u(xi); i = 1, . . . , N .

In what follows, and unless otherwise stated, we will assume that the points
are equally spaced along the domain with a constant distance �x = xi+1 − xi ;
i = 1, . . . , N − 1. This way we will write ui+1 ≈ u(xi+1) = u(xi + �x). This
partition of the domain into smaller subdomains is referred to as a mesh or
grid.

Finite methods for partial differential equations 9

3.1. The Finite Difference Method (FDM)

This method is used to obtain numerical approximations of PDEs written
in the strong form (3). The derivative of u(x) with respect to x can be defined
as

ux |i = ux(xi) = lim
�x→0

u(xi + �x) − u(xi)

�x

= lim
�x→0

u(xi) − u(xi − �x)

�x
(11)

= lim
�x→0

u(xi + �x) − u(xi − �x)

2�x
.

All these expressions are mathematically equivalent, i.e., the approximation
converges to the derivative as �x → 0. If �x is small but finite, the various
terms in Eq. (11) can be used to obtain approximations of the derivate ux of
the form

ux |i ≈ ui+1 − ui

�x
(12)

ux |i ≈ ui − ui−1

�x
(13)

ux |i ≈ ui+1 − ui−1

2�x
. (14)

The expressions (12)–(14) are referred to as forward, backward and centred
finite difference approximations of ux |i , respectively. Obviously these approx-
imations of the derivative are different.

3.1.1. Errors in the FDM

The analysis of these approximations is performed by using Taylor expan-
sions around the point xi . For instance an approximation to ui+1 using n + 1
terms of a Taylor expansion around xi is given by

ui+1 = ui + ux |i �x + uxx |i
�x2

2
+ · · · + dnu

dxn

∣∣∣∣
i

�xn

n!

+ dn+1u

dxn+1
(x∗)

�xn+1

(n + 1)!
. (15)

The underlined term is called the remainder with xi ≤ x∗ ≤ xi+1, and repre-
sents the error in the approximation if only the first n terms in the expansion
are kept. Although the expression (15) is exact, the position x∗ is unknown.

10 J. Peiró and S. Sherwin

To illustrate how this can be used to analyse finite difference approxima-
tions, consider the case of the forward difference approximation (12) and use
the expansion (15) with n = 1 (two terms) to obtain

ui+1 − ui

�x
= ux |i + �x

2
uxx(x∗). (16)

We can now write the approximation of the derivative as

ux |i =
ui+1 − ui

�x
+ εT (17)

where εT is given by

εT = −�x

2
uxx(x∗). (18)

The term εT is referred to as the truncation error and is defined as the
difference between the exact value and its numerical approximation. This term
depends on �x but also on u and its derivatives. For instance, if u(x) is a linear
function then the finite difference approximation is exact and εT = 0 since the
second derivative is zero in (18).

The order of a finite difference approximation is defined as the power p
such that lim�x→0(εT/�x p) = γ =/ 0, where γ is a finite value. This is often
written as εT = O(�x p). For instance, for the forward difference approxima-
tion (12), we have εT = O(�x) and it is said to be first-order accurate (p = 1).

If we apply this method to the backward and centred finite difference
approximations (13) and (14), respectively, we find that, for constant �x , their
errors are

ux |i =
ui − ui−1

�x
+ �x

2
uxx(x∗) ⇒ εT = O(�x) (19)

ux |i =
ui+1 − ui−1

2�x
− �x2

12
uxxx(x) ⇒ εT = O(�x2) (20)

with xi−1 ≤ x∗ ≤ xi and xi−1 ≤ x	 ≤ xi+1 for Eqs. (19) and (20), respectively.
This analysis is confirmed by the numerical results presented in Fig. 5 that

displays, in logarithmic axes, the exact and truncation errors against �x for the
backward and the centred finite differences. Their respective truncation errors
εT are given by (19) and (20) calculated here, for lack of a better value, with
x∗ = x	 = xi . The exact error is calculated as the difference between the exact
value of the derivative and its finite difference approximation.

The slope of the lines are consistent with the order of the truncation error,
i.e., 1:1 for the backward difference and 1:2 for the centred difference. The dis-
crepancies between the exact and the numerical results for the smallest values
of �x are due to the use of finite precision computer arithmetic or round-off
error. This issue and its implications are discussed in more detail in numerical
analysis textbooks as in Ref. [3].

Finite methods for partial differential equations 11

1e � 14

1e � 12

1e � 10

1e � 08

1e � 06

1e � 04

1e � 02

1e � 00

1e � 121e � 101e � 081e � 061e � 041e � 021e � 00

Backward FD Total Error
Backward FD Truncation Error

Centred FD Total Error
Centred FD Truncation Error

ε

∆ x

1

2

1
1

Figure 5. Truncation and rounding errors in the finite difference approximation of derivatives.

3.1.2. Derivation of approximations using Taylor expansions

The procedure described in the previous section can be easily transformed
into a general method for deriving finite difference schemes. In general, we can
obtain approximations to higher order derivatives by selecting an appropriate
number of interpolation points that permits us to eliminate the highest term
of the truncation error from the Taylor expansions. We will illustrate this with
some examples. A more general description of this derivation can be found in
Hirsch (1988).

A second-order accurate finite difference approximation of the derivative
at xi can be derived by considering the values of u at three points: xi−1, xi and
xi+1. The approximation is constructed as a weighted average of these values
{ui−1, ui , ui+1} such as

ux |i ≈ αui+1 + βui + γ ui−1

�x
. (21)

Using Taylor expansions around xi we can write

ui+1 = ui + �x ux |i + �x2

2
uxx |i + �x3

6
uxxx |i + · · · (22)

ui−1 = ui − �x ux |i + �x2

2
uxx |i − �x3

6
uxxx |i + · · · (23)

12 J. Peiró and S. Sherwin

Putting (22), (23) into (21) we get

αui+1 + βui + γ ui−1

�x
= (α + β + γ)

1

�x
ui + (α − γ) ux |i

+ (α + γ)
�x

2
uxx |i + (α − γ)

�x2

6
uxxx |i

+ (α + γ)
�x3

12
uxxxx |i + O(�x4) (24)

We require three independent conditions to calculate the three unknowns α,
β and γ . To determine these we impose that the expression (24) is consistent
with increasing orders of accuracy. If the solution is constant, the left-hand side
of (24) should be zero. This requires the coefficient of (1/�x)ui to be zero and
therefore α+β+γ = 0. If the solution is linear, we must have α−γ =1 to match
ux |i . Finally whilst the first two conditions are necessary for consistency of
the approximation in this case we are free to choose the third condition. We
can therefore select the coefficient of (�x/2) uxx |i to be zero to improve the
accuracy, which means α + γ = 0.

Solving these three equations we find the values α = 1/2, β = 0 and γ =
−(1/2) and recover the second-order accurate centred formula

ux |i =
ui+1 − ui−1

2�x
+ O(�x2).

Other approximations can be obtained by selecting a different set of points,
for instance, we could have also chosen three points on the side of xi , e.g.,
ui , ui−1, ui−2. The corresponding approximation is known as a one-sided for-
mula. This is sometimes useful to impose boundary conditions on ux at the
ends of the mesh.

3.1.3. Higher-order derivatives

In general, we can derive an approximation of the second derivative using
the Taylor expansion

αui+1 + βui + γ ui−1

�x2
= (α + β + γ)

1

�x2
ui + (α − γ)

1

�x
ux |i

+ (α + γ)
1

2
uxx |i + (α − γ)

�x

6
uxxx |i

+ (α + γ)
�x2

12
uxxxx |i + O(�x4). (25)

Finite methods for partial differential equations 13

Using similar arguments to those of the previous section we impose

α + β + γ = 0
α − γ = 0
α + γ = 2

 ⇒ α = γ = 1, β = −2. (26)

The first and second conditions require that there are no u or ux terms on the
right-hand side of Eq. (25) whilst the third conditon ensures that the right-
hand side approximates the left-hand side as �x tens to zero. The solution of
Eq. (26) lead us to the second-order centred approximation

uxx |i =
ui+1 − 2ui + ui−1

�x2
+ O(�x2). (27)

The last term in the Taylor expansion (α − γ)�xuxxx |i/6 has the same coeffi-
cient as the ux terms and cancels out to make the approximation second-order
accurate. This cancellation does not occur if the points in the mesh are not
equally spaced. The derivation of a general three point finite difference ap-
proximation with unevenly spaced points can also be obtained through Taylor
series. We leave this as an exercise for the reader and proceed in the next
section to derive a general form using an alternative method.

3.1.4. Finite differences through polynomial interpolation

In this section we seek to approximate the values of u(x) and its derivatives
by a polynomial P(x) at a given point xi . As way of an example we will
derive similar expressions to the centred differences presented previously by
considering an approximation involving the set of points {xi−1, xi , xi+1} and
the corresponding values {ui−1, ui , ui+1}. The polynomial of minimum degree
that satisfies P(xi−1) = ui−1, P(xi) = ui and P(xi+1) = ui+1 is the quadratic
Lagrange polynomial

P(x) = ui−1
(x − xi)(x − xi+1)

(xi−1 − xi)(xi−1 − xi+1)
+ ui

(x − xi−1)(x − xi+1)

(xi − xi−1)(xi − xi+1)

+ ui+1
(x − xi−1)(x − xi)

(xi+1 − xi−1)(xi+1 − xi)
. (28)

We can now obtain an approximation of the derivative, ux |i ≈ Px(xi) as

Px(xi) = ui−1
(xi − xi+1)

(xi−1 − xi)(xi−1 − xi+1)
+ ui

(xi − xi−1) + (xi − xi+1)

(xi − xi−1)(xi − xi+1)

+ ui+1
(xi − xi−1)

(xi+1 − xi−1)(xi+1 − xi)
. (29)

If we take xi − xi−1 = xi+1 − xi = �x , we recover the second-order accu-
rate finite difference approximation (14) which is consistent with a quadratic

Finite methods for partial differential equations 13

Using similar arguments to those of the previous section we impose

α + β + γ = 0
α − γ = 0
α + γ = 2

 ⇒ α = γ = 1, β = −2. (26)

The first and second conditions require that there are no u or ux terms on the
right-hand side of Eq. (25) whilst the third conditon ensures that the right-
hand side approximates the left-hand side as �x tens to zero. The solution of
Eq. (26) lead us to the second-order centred approximation

uxx |i =
ui+1 − 2ui + ui−1

�x2
+ O(�x2). (27)

The last term in the Taylor expansion (α − γ)�xuxxx |i/6 has the same coeffi-
cient as the ux terms and cancels out to make the approximation second-order
accurate. This cancellation does not occur if the points in the mesh are not
equally spaced. The derivation of a general three point finite difference ap-
proximation with unevenly spaced points can also be obtained through Taylor
series. We leave this as an exercise for the reader and proceed in the next
section to derive a general form using an alternative method.

3.1.4. Finite differences through polynomial interpolation

In this section we seek to approximate the values of u(x) and its derivatives
by a polynomial P(x) at a given point xi . As way of an example we will
derive similar expressions to the centred differences presented previously by
considering an approximation involving the set of points {xi−1, xi , xi+1} and
the corresponding values {ui−1, ui , ui+1}. The polynomial of minimum degree
that satisfies P(xi−1) = ui−1, P(xi) = ui and P(xi+1) = ui+1 is the quadratic
Lagrange polynomial

P(x) = ui−1
(x − xi)(x − xi+1)

(xi−1 − xi)(xi−1 − xi+1)
+ ui

(x − xi−1)(x − xi+1)

(xi − xi−1)(xi − xi+1)

+ ui+1
(x − xi−1)(x − xi)

(xi+1 − xi−1)(xi+1 − xi)
. (28)

We can now obtain an approximation of the derivative, ux |i ≈ Px(xi) as

Px(xi) = ui−1
(xi − xi+1)

(xi−1 − xi)(xi−1 − xi+1)
+ ui

(xi − xi−1) + (xi − xi+1)

(xi − xi−1)(xi − xi+1)

+ ui+1
(xi − xi−1)

(xi+1 − xi−1)(xi+1 − xi)
. (29)

If we take xi − xi−1 = xi+1 − xi = �x , we recover the second-order accu-
rate finite difference approximation (14) which is consistent with a quadratic

14 J. Peiró and S. Sherwin

interpolation. Similarly, for the second derivative we have

Pxx(xi) =
2ui−1

(xi−1 − xi)(xi−1 − xi+1)
+ 2ui

(xi − xi−1)(xi − xi+1)

+ 2ui+1

(xi+1 − xi−1)(xi+1 − xi)
(30)

and, again, this approximation leads to the second-order centred finite differ-
ence (27) for a constant �x .

This result is general and the approximation via finite differences can be
interpreted as a form of Lagrangian polynomial interpolation. The order of the
interpolated polynomial is also the order of accuracy of the finite diference
approximation using the same set of points. This is also consistent with the
interpretation of a Taylor expansion as an interpolating polynomial.

3.1.5. Finite difference solution of PDEs

We consider the FDM approximation to the solution of the elliptic equation
uxx = s(x) in the region � = {x : 0 ≤ x ≤ 1}. Discretizing the region using N
points with constant mesh spacing �x = (1/N − 1) or xi = (i − 1/N − 1), we
consider two cases with different sets of boundary conditions:

1. u(0) = α1 and u(1) = α2, and
2. u(0) = α1 and ux(1) = g.

In both cases we adopt a centred finite approximation in the interior points
of the form

ui+1 − 2ui + ui−1

�x2
= si ; i = 2, . . . , N − 1. (31)

The treatment of the first case is straightforward as the boundary conditions
are easily specified as u1 = α1 and uN = α2. These two conditions together with
the N − 2 equations (31) result in the linear system of N equations with N
unknowns represented by

1 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 0 . . . 0

. . .
. . .

. . .

0 . . . 0 1 −2 1 0
0 . . . 0 1 −2 1
0 . . . 0 1

u1

u2

u3
...

uN−2

uN−1

uN

=

α1

�x2s2

�x2s3
...

�x2sN−2

�x2sN−1

α2

.

14 J. Peiró and S. Sherwin

interpolation. Similarly, for the second derivative we have

Pxx(xi) =
2ui−1

(xi−1 − xi)(xi−1 − xi+1)
+ 2ui

(xi − xi−1)(xi − xi+1)

+ 2ui+1

(xi+1 − xi−1)(xi+1 − xi)
(30)

and, again, this approximation leads to the second-order centred finite differ-
ence (27) for a constant �x .

This result is general and the approximation via finite differences can be
interpreted as a form of Lagrangian polynomial interpolation. The order of the
interpolated polynomial is also the order of accuracy of the finite diference
approximation using the same set of points. This is also consistent with the
interpretation of a Taylor expansion as an interpolating polynomial.

3.1.5. Finite difference solution of PDEs

We consider the FDM approximation to the solution of the elliptic equation
uxx = s(x) in the region � = {x : 0 ≤ x ≤ 1}. Discretizing the region using N
points with constant mesh spacing �x = (1/N − 1) or xi = (i − 1/N − 1), we
consider two cases with different sets of boundary conditions:

1. u(0) = α1 and u(1) = α2, and
2. u(0) = α1 and ux(1) = g.

In both cases we adopt a centred finite approximation in the interior points
of the form

ui+1 − 2ui + ui−1

�x2
= si ; i = 2, . . . , N − 1. (31)

The treatment of the first case is straightforward as the boundary conditions
are easily specified as u1 = α1 and uN = α2. These two conditions together with
the N − 2 equations (31) result in the linear system of N equations with N
unknowns represented by

1 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 0 . . . 0

. . .
. . .

. . .

0 . . . 0 1 −2 1 0
0 . . . 0 1 −2 1
0 . . . 0 1

u1

u2

u3
...

uN−2

uN−1

uN

=

α1

�x2s2

�x2s3
...

�x2sN−2

�x2sN−1

α2

.

Finite methods for partial differential equations 15

This matrix system can be written in abridged form as Au = s. The matrix
A is non-singular and admits a unique solution u. This is the case for most
discretization of well-posed elliptic equations.

In the second case the boundary condition u(0) = α1 is treated in the same
way by setting u1 = α1. The treatment of the Neumann boundary condition
ux(1) = g requires a more careful consideration. One possibility is to use a
one-sided approximation of ux(1) to obtain

ux(1) ≈ uN − uN−1

�x
= g. (32)

This expression is only first-order accurate and thus inconsistent with the
approximation used at the interior points. Given that the PDE is elliptic, this
error could potentially reduce the global accuracy of the solution. The alterna-
tive is to use a second-order centred approximation

ux(1) ≈ uN+1 − uN−1

�x
= g. (33)

Here the value uN+1 is not available since it is not part of our discrete set of
values but we could use the finite difference approximation at xN given by

uN+1 − 2uN + uN−1

�x2
= sN

and include the Neumann boundary condition (33) to obtain

uN − uN−1 =
1

2
(g�x − sN �x2). (34)

It is easy to verify that the introduction of either of the Neumann boundary
conditions (32) or (34) leads to non-symmetric matrices.

3.2. Time Integration

In this section we address the problem of solving time-dependent PDEs
in which the solution is a function of space and time u(x, t). Consider for
instance the heat equation

ut − buxx = s(x) in � = {x, t : 0 ≤ x ≤ 1, 0 ≤ t ≤ T }

with an initial condition u(x, 0) = u0(x) and time-dependent boundary condi-
tions u(0, t) = α1(t) and u(1, t) = α2(t), where α1 and α2 are known

16 J. Peiró and S. Sherwin

functions of t . Assume, as before, a mesh or spatial discretization of the
domain {x1, . . . , xN }.

3.2.1. Method of lines

In this technique we assign to our mesh a set of values that are functions
of time ui (t) = u(xi , t); i = 1, . . . , N . Applying a centred discretization to
the spatial derivative of u leads to a system of ordinary differential equations
(ODEs) in the variable t given by

dui

dt
=

b

x2
{ui−1(t) − 2ui (t) + ui+1(t)} + si ; i = 2, . . . , N − 1

with u1 = α1(t) and uN = α2(t). This can be written as

d

dt

u2

u3
...

uN−2

uN−1

=
b

�x2

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

u2

u3
...

uN−2

uN−1

+

s2 + bα1(t)

�x2

s3
...

sN−2

sN−1 + bα2(t)

�x2

or in matrix form as

du
dt

(t) = A u(t) + s(t). (35)

Equation (35) is referred to as the semi-discrete form or the method of lines.
This system can be solved by any method for the integration of initial-value
problems [3]. The numerical stability of time integration schemes depends on
the eigenvalues of the matrix A which results from the space discretization.
For this example, the eigenvalues vary between 0 and −(4α/�x2) and this
could make the system very stiff, i.e., with large differences in eigenvalues, as
�x → 0.

3.2.2. Finite differences in time

The method of finite differences can be applied to time-dependent prob-
lems by considering an independent discretization of the solution u(x, t) in
space and time. In addition to the spatial discretization {x1, . . . , xN }, the dis-
cretization in time is represented by a sequence of times t0 = 0 < · · · < tn <
· · · < T . For simplicity we will assume constant intervals �x and �t in space
and time, respectively. The discrete solution at a point will be represented by

Finite methods for partial differential equations 17

un
i ≈ u(xi , tn) and the finite difference approximation of the time derivative

follows the procedures previously described. For example, the forward differ-
ence in time is given by

ut(x, tn) ≈ u(x, tn+1) − u(x, tn)

�t

and the backward difference in time is

ut(x, tn+1) ≈ u(x, tn+1) − u(x, tn)

�t

both of which are first-order accurate, i.e., εT = O(�t).
Returning to the heat equation ut − buxx = 0 and using a centred approx-

imation in space, different schemes can be devised depending on the time at
which the equation is discretized. For instance, the use of forward differences
in time leads to

un+1
i − un

i

�t
=

b

�x2

(
un

i−1 − 2un
i + un

i+1

)
. (36)

This scheme is explicit as the values of the solution at time tn+1 are obtained
directly from the corresponding (known) values at time tn . If we use backward
differences in time, the resulting scheme is

un+1
i − un

i

�t
=

b

�x2

(
un+1

i−1 − 2un+1
i + un+1

i+1

)
. (37)

Here to obtain the values at tn+1 we must solve a tri-diagonal system of equa-
tions. This type of schemes are referred to as implicit schemes.

The higher cost of the implicit schemes is compensated by a greater numer-
ical stability with respect to the explicit schemes which are stable in general
only for some combinations of �x and �t .

3.3. Discretizations Based on the Integral Form

The FDM uses the strong or differential form of the governing equations.
In the following, we introduce two alternative methods that use their integral
form counterparts: the finite element and the finite volume methods. The use
of integral formulations is advantageous as it provides a more natural treat-
ment of Neumann boundary conditions as well as that of discontinuous source
terms due to their reduced requirements on the regularity or smoothness of the
solution. Moreover, they are better suited than the FDM to deal with complex
geometries in multi-dimensional problems as the integral formulations do not
rely in any special mesh structure.

18 J. Peiró and S. Sherwin

These methods use the integral form of the equation as the starting point
of the discretization process. For example, if the strong form of the PDE is
L(u) = s, the integral from is given by

1∫

0

L(u)w(x) dx =

1∫

0

sw(x) dx (38)

where the choice of the weight function w(x) defines the type of scheme.

3.3.1. The finite element method (FEM)

Here we discretize the region of interest � = {x : 0 ≤ x ≤ 1} into N − 1
subdomains or elements �i = {x : xi−1 ≤ x ≤ xi } and assume that the approx-
imate solution is represented by

uδ(x, t) =
N∑

i=1

ui (t)Ni(x)

where the set of functions Ni (x) is known as the expansion basis. Its support
is defined as the set of points where Ni (x) =/ 0. If the support of Ni (x) is the
whole interval, the method is called a spectral method. In the following we will
use expansion bases with compact support which are piecewise continuous
polynomials within each element as shown in Fig. 6.

The global shape functions Ni (x) can be split within an element into two
local contributions of the form shown in Fig. 7. These individual functions are
referred to as the shape functions or trial functions.

3.3.2. Galerkin FEM

In the Galerkin FEM method we set the weight function w(x) in Eq. (38)
to be the same as the basis function Ni (x), i.e., w(x) = Ni (x).

Consider again the elliptic equation L(u) = uxx = s(x) in the region � with
boundary conditions u(0) = α and ux(1) = g. Equation (38) becomes

1∫

0

w(x)uxx dx =

1∫

0

w(x)s(x) dx .

At this stage, it is convenient to integrate the left-hand side by parts to get the
weak form

−
1∫

0

wx ux dx + w(1) ux(1) − w(0) ux(0) =

1∫

0

w(x) s(x) dx . (39)

Finite methods for partial differential equations 19

...

x
1

...

Ni (x)

Ωi

x

x

1

x

1

u1

x1

ui

uN

xNxi

ui �1

ui �1

�u1
 x

�ui
 x

�uN
 x

xi �1xi �1

Figure 6. A piecewise linear approximation uδ(x, t) =
∑N

i=1 ui (t)Ni (x).

Ωi

x

1

ui

Ni

xi xi

ui �1

ui

Ni �1

x i �1 x i �1 x i �1

1�� ui � 1 ��

Figure 7. Finite element expansion bases.

This is a common technique in the FEM because it reduces the smoothness
requirements on u and it also makes the matrix of the discretized system sym-
metric. In two and three dimensions we would use Gauss’ divergence theorem
to obtain a similar result.

The application of the boundary conditions in the FEM deserves attention.
The imposition of the Neumann boundary condition ux(1) = g is straightfor-
ward, we simply substitute the value in Eq. (39). This is a very natural way
of imposing Neumann boundary conditions which also leads to symmetric

20 J. Peiró and S. Sherwin

matrices, unlike the FDM. The Dirichlet boundary condition u(0) = α can be
applied by imposing u1 = α and requiring that w(0) = 0. In general, we will
impose that the weight functions w(x) are zero at the Dirichlet boundaries.

Letting u(x) ≈ uδ(x) =
∑N

j=1 u j N j (x) and w(x) = Ni (x) then Eq. (39) be-
comes

−
1∫

0

dNi

dx
(x)

N∑

j=1

u j
dN j

dx
(x) dx =

1∫

0

Ni (x) s(x) dx (40)

for i =2, . . . , N . This represents a linear system of N − 1 equations with N − 1
unknowns: {u2, . . . , uN }. Let us proceed to calculate the integral terms corre-
sponding to the i th equation. We calculate the integrals in Eq. (40) as sums of
integrals over the elements �i . The basis functions have compact support, as
shown in Fig. 6. Their value and their derivatives are different from zero only
on the elements containing the node i , i.e.,

Ni (x) =

x − xi−1

�xi−1
xi−1 < x < xi

xi+1 − x

�xi
xi < x < xi+1

dNi (x)

dx
=

1

�xi−1
xi−1 < x < xi

−1

�xi
xi < x < xi+1

with �xi−1 = xi − xi−1 and �xi = xi+1 − xi . This means that the only integrals
different from zero in (40) are

−
xi∫

xi−1

dNi

dx

(
ui−1

dNi−1

dx
+ ui

dNi

dx

)
−

xi+1∫

xi

dNi

dx

(
ui

dNi

dx
+ ui+1

dNi+1

dx

)
dx

=

xi∫

xi−1

Ni s dx +
xi+1∫

xi

Ni s dx (41)

The right-hand side of this equation expressed as

F =

xi∫

xi−1

x − xi−1

�xi−1
s(x) dx +

xi+1∫

xi

xi+1 − x

�xi
s(x) dx

can be evaluated using a simple integration rule like the trapezium rule
xi+1∫

xi

g(x) dx ≈ g(xi) + g(xi+1)

2
�xi

Finite methods for partial differential equations 21

and it becomes

F =
(

�xi−1

2
+ �xi

2

)
si .

Performing the required operations in the left-hand side of Eq. (41) and includ-
ing the calculated valued of F leads to the FEM discrete form of the equation
as

−ui − ui−1

�xi−1
+ ui+1 − ui

�xi
=

�xi−1 + �xi

2
si .

Here if we assume that �xi−1 = �xi = �x then the equispaced approximation
becomes

ui+1 − 2ui + ui−1

�x
= �x si

which is identical to the finite difference formula. We note, however, that the
general FE formulation did not require the assumption of an equispaced mesh.

In general the evaluation of the integral terms in this formulation are more
efficiently implemented by considering most operations in a standard element
�st = {−1 ≤ x ≤ 1} where a mapping is applied from the element �i to the
standard element �st . For more details on the general formulation see Ref. [4].

3.3.3. Finite volume method (FVM)

The integral form of the one-dimensional linear advection equation is given
by Eq. (1) with f (u) = au and S = 0. Here the region of integration is taken to
be a control volume �i , associated with the point of coordinate xi , represented
by xi−(1/2) ≤ x ≤ xi+(1/2), following the notation of Fig. 4, and the integral
form is written as

xi+(1/2)∫

xi−(1/2)

ut dx +
xi+(1/2)∫

xi−(1/2)

fx(u) dx = 0. (42)

This expression could also been obtained from the weighted residual form (4)
by selecting a weight w(x) such that w(x) = 1 for xi−(1/2) ≤ x ≤ xi+(1/2) and
w(x) = 0 elsewhere. The last term in Eq. (42) can be evaluated analytically to
obtain

xi+(1/2)∫

xi−(1/2)

fx(u) dx = f
(
ui+(1/2)

) − f
(
ui−(1/2)

)

22 J. Peiró and S. Sherwin

and if we approximate the first integral using the mid-point rule we finally
have the semi-discrete form

ut |i
(
xi+(1/2) − xi−(1/2)

) + f
(
ui+(1/2)

) − f
(
ui−(1/2)

)
= 0.

This approach produces a conservative scheme if the flux on the boundary
of one cell equals the flux on the boundary of the adjacent cell. Conservative
schemes are popular for the discretization of hyperbolic equations since, if
they converge, they can be proven (Lax-Wendroff theorem) to converge to a
weak solution of the conservation law.

3.3.4. Comparison of FVM and FDM

To complete our comparison of the different techniques we consider the
FVM discretization of the elliptic equation uxx = s. The FVM integral form of
this equation over a control volume �i = {xi−(1/2) ≤ x ≤ xi+(1/2)} is

xi+(1/2)∫

xi−(1/2)

uxx dx =

xi+(1/2)∫

xi−(1/2)

s dx .

Evaluating exactly the left-hand side and approximating the right-hand side by
the mid-point rule we obtain

ux
(
xi+(1/2)

) − ux
(
xi−(1/2)

)
=
(
xi+(1/2) − xi−(1/2)

)
si . (43)

If we approximate u(x) as a linear function between the mesh points i − 1 and
i , we have

ux |i−(1/2) ≈ ui − ui−1

xi − xi−1
, ux |i+(1/2) ≈ ui+1 − ui

xi+1 − xi
,

and introducing these approximations into Eq. (43) we now have

ui+1 − ui

xi+1 − xi
− ui − ui−1

xi − xi−1
= (xi+(1/2) − xi−(1/2)) si .

If the mesh is equispaced then this equation reduces to

ui+1 − 2ui + ui−1

�x
= �x si ,

which is the same as the FDM and FEM on an equispaced mesh.
Once again we see the similarities that exist between these methods

although some assumptions in the construction of the FVM have been made.
FEM and FVM allow a more general approach to non-equispaced meshes
(although this can also be done in the FDM). In two and three dimensions,
curvature is more naturally dealt with in the FVM and FEM due to the integral
nature of the equations used.

Finite methods for partial differential equations 23

4. High Order Discretizations: Spectral Element/ p-Type
Finite Elements

All of the approximations methods we have discussed this far have dealt
with what is typically known as the h-type approximation. If h = �x denotes
the size of a finite difference spacing or finite elemental regions then conver-
gence of the discrete approximation to the PDE is achieved by letting h → 0.
An alternative method is to leave the mesh spacing fixed but to increase the
polynomial order of the local approximation which is typically denoted by p
or the p-type extension.

We have already seen that higher order finite difference approximations
can be derived by fitting polynomials through more grid points. The draw-
back of this approach is that the finite difference stencil gets larger as the
order of the polynomial approximation increases. This can lead to difficulties
when enforcing boundary conditions particularly in multiple dimensions. An
alternative approach to deriving high order finite differences is to use com-
pact finite differences where a Padé approximation is used to approximate the
derivatives.

When using the finite element method in an integral formulation, it is
possible to develop a compact high-order discretization by applying higher
order polynomial expansions within every elemental region. So instead of us-
ing just a linear element in each piecewise approximation of Fig. 6 we can
use a polynomial of order p. This technique is commonly known as p-type
finite element in structural mechanics or the spectral element method in fluid
mechanics. The choice of the polynomial has a strong influence on the nu-
merical conditioning of the approximation and we note that the choice of an
equi-spaced Lagrange polynomial is particularly bad for p > 5. The two most
commonly used polynomial expansions are Lagrange polynomial based on the
Gauss–Lobatto–Legendre quadratures points or the integral of the Legendre
polynomials in combination with the linear finite element expansion. These
two polynomial expansions are shown in Fig. 8. Although this method is more

(a) (b)
1

0

�1

1

0

�1

1

0

�1

1

0

�1

1

0

�1

1

0

�1

1

0

�1

1

0

�1

1

0

�1

1

0

�1

1

0

�1

1

0

�1

Figure 8. Shape of the fifth order (p = 5) polynomial expansions typically used in (a) spectral
element and (b) p-type finite element methods.

24 J. Peiró and S. Sherwin

involved to implement, the advantage is that for a smooth problem (i.e., one
where the derivatives of the solution are well behaved) the computational cost
increases algebraically whilst the error decreases exponentially fast. Further
details on these methods can be found in Refs. [5, 6].

5. Numerical Difficulties

The discretization of linear elliptic equations with either FD, FE or FV
methods leads to non-singular systems of equations that can easily solved by
standard methods of solution. This is not the case for time-dependent problems
where numerical errors may grow unbounded for some discretization. This is
perhaps better illustrated with some examples.

Consider the parabolic problem represented by the diffusion equation ut −
uxx = 0 with boundary conditions u(0) = u(1) = 0 solved using the scheme
(36) with b = 1 and �x = 0.1. The results obtained with �t = 0.004 and 0.008
are depicted in Figs. 9(a) and (b), respectively. The numerical solution (b)
corresponding to �t = 0.008 is clearly unstable.

A similar situation occurs in hyperbolic problems. Consider the one-
dimensional linear advection equation ut + aux = 0; with a > 0 and various
explicit approximations, for instance the backward in space, or upwind,
scheme is

un+1
i − un

i

�t
+ a

un
i − un

i−1

�x
= 0 ⇒ un+1

i = (1 − σ)un
i + σun

i−1, (44)

the forward in space, or downwind, scheme is

un+1
i − un

i

�t
+ a

un
i+1 − un

i

�x
= 0 ⇒ un+1

i = (1 + σ)un
i − σun

i+1, (45)

�0.2

�0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1

u(
x,

t)

x

t�0.20
t�0.24
t�0.28
t�0.32

t�0.20
t�0.24
t�0.28
t�0.32

�0.2

�0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1

u(
x,

t)

x

(a) (b)

Figure 9. Solution to the diffusion equation ut + uxx = 0 using a forward in time and centred
in space finite difference discretization with �x = 0.1 and (a) �t = 0.004, and (b) �t = 0.008.
The numerical solution in (b) is clearly unstable.

Finite methods for partial differential equations 25

u(x, 0) =

0 x ≤ −0.2
1 + 5x −0.2 ≤ x ≤ 0
1 − 5x 0 ≤ x ≤ 0.2
0 x ≥ 0.2

0.2 0.2

0.0

1.0
a

u(x,t)

x

Figure 10. A triangular wave as initial condition for the advection equation.

and, finally, the centred in space is given by

un+1
i − un

i

�t
+ a

un
i+1 − un

i−1

2�x
= 0 ⇒ un+1

i = un
i − σ

2
(un

i+1 − un
i−1)

(46)

where σ = (a�t/�x) is known as the Courant number. We will see later that
this number plays an important role in the stability of hyperbolic equations.
Let us obtain the solution of ut + aux = 0 for all these schemes with the initial
condition given in Fig. 10.

As also indicated in Fig. 10, the exact solution is the propagation of this
wave form to the right at a velocity a. Now we consider the solution of the
three schemes at two different Courant numbers given by σ = 0.5 and 1.5. The
results are presented in Fig. 11 and we observe that only the upwinded scheme
when σ ≤ 1 gives a stable, although diffusive, solution. The centred scheme
when σ = 0.5 appears almost stable but the oscillations grow in time leading
to an unstable solution.

6. Analysis of Numerical Schemes

We have seen that different parameters, such as the Courant number, can
effect the stability of a numerical scheme. We would now like to set up a
more rigorous framework to analyse a numerical scheme and we introduce the
concepts of consistency, stability and Convergence of a numerical scheme.

6.1. Consistency

A numerical scheme is consistent if the discrete numerical equation tends
to the exact differential equation as the mesh size (represented by �x and �t)
tends to zero.

26 J. Peiró and S. Sherwin

0
�1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

�0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6 0.8 1

σ � 0.5

u(
x,

t)

1

2

3

�1 �0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6 0.8 1

0

�1

�2

�3

σ � 1.5

u(
x,

t)

0 0.2 0.4 0.6 0.8 1

0

1

2

1

x

σ � 0.5

u(
x,

t)

�1

�2

�3
�1 �0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6 0.8 1

0

10

20

30

x

σ � 1.5

u(
x,

t)

�10

�20

�30

�40
�1 �0.8 �0.6 �0.4 �0.2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

x

u(
x,

t)

σ � 0.5

�0.2

�0.4

�0.6
�1 �0.8 �0.6 �0.4 �0.2

x

σ � 1.5

u(
x,

t)

0

1

2

3

�1

�2

�3

�4
0 0.2 0.4 0.6 0.8 1�1 �0.8 �0.6 �0.4 �0.2

Figure 11. Numerical solution of the advection equation ut + aux = 0. Dashed lines: initial
condition. Dotted lines: exact solution. Solid line: numerical solution.

Consider the centred in space and forward in time finite diference approxi-
mation to the linear advection equation ut + aux = 0 given by Eq. (46). Let us
consider Taylor expansions of un+1

i , un
i+1 and un

i−1 around (xi , tn) as

un+1
i = un

i + �t ut |ni + �t2

2
utt |ni + · · ·

Finite methods for partial differential equations 27

un
i+1 = un

i + �x ux |ni + �x2

2
uxx |ni + �x3

6
uxxx |ni + · · ·

un
i−1 = un

i − �x ux |ni + �x2

2
uxx |ni − �x3

6
uxxx |ni + · · ·

Substituting these expansions into Eq. (46) and suitably re-arranging the terms
we find that

un+1
i − un

i

�t
+ a

un
i+1 − un

i−1

2�x
− (ut + aux)|ni = εT (47)

where εT is known as the truncation error of the approximation and is
given by

εT =
�t

2
utt |ni + �x2

6
auxxx |ni + O(�t2, �x4).

The left-hand side of this equation will tend to zero as �t and �x tend to zero.
This means that the numerical scheme (46) tends to the exact equation at point
xi and time level tn and therefore this approximation is consistent.

6.2. Stability

We have seen in the previous numerical examples that errors in numeri-
cal solutions can grow uncontrolled and render the solution meaningless. It
is therefore sensible to require that the solution is stable, this is that the dif-
ference between the computed solution and the exact solution of the discrete
equation should remain bounded as n → ∞ for a given �x .

6.2.1. The Courant–Friedrichs–Lewy (CFL) condition

This is a necessary condition for stability of explicit schemes devised by
Courant, Friedrichs and Lewy in 1928.

Recalling the theory of characteristics for hyperbolic systems, the domain
of dependence of a PDE is the portion of the domain that influences the so-
lution at a given point. For a scalar conservation law, it is the characteristic
passing through the point, for instance, the line P Q in Fig. 12. The domain
of dependence of a FD scheme is the set of points that affect the approximate
solution at a given point. For the upwind scheme, the numerical domain of
dependence is shown as a shaded region in Fig. 12.

The CFL criterion states that a necessary condition for an explicit FD
scheme to solve a hyperbolic PDE to be stable is that, for each mesh point,
the domain of dependence of the FD approximation contains the domain of
dependence of the PDE.

28 J. Peiró and S. Sherwin

P

Q

P

(a) (b)

Characteristic

Q

∆ t ∆ t
a ∆ t

a ∆ t

t

x

∆ x ∆ xt

x

Figure 12. Solution of the advection equation by the upwind scheme. Physical and numerical
domains of dependence: (a) σ = (a�t/�x) > 1, (b) σ ≤ 1.

For a Courant number σ = (a�t/�x) greater than 1, changes at Q will
affect values at P but the FD approximation cannot account for this.

The CFL condition is necessary for stability of explicit schemes but it is
not sufficient. For instance, in the previous schemes we have that the upwind
FD scheme is stable if the CFL condition σ ≤ 1 is imposed. The downwind
FD scheme does not satisfy the CFL condition and is unstable. However, the
centred FD scheme is unstable even if σ ≤ 1.

6.2.2. Von Neumann (or Fourier) analysis of stability

The stability of FD schemes for hyperbolic and parabolic PDEs can be
analysed by the von Neumann or Fourier method. The idea behind the method
is the following. As discussed previously the analytical solutions of the model
diffusion equation ut − b uxx = 0 can be found in the form

u(x, t) =
∞∑

m=−∞
eβm t eI km x

if βm + b k2
m = 0. This solution involves a Fourier series in space and an expo-

nential decay in time since βm ≤ 0 for b > 0. Here we have included the com-
plex version of the Fourier series, eI km x = cos km x + I sin km x with I =

√−1,
because this simplifies considerably later algebraic manipulations.

To analyze the growth of different Fourier modes as they evolve under the
numerical scheme we can consider each frequency separately, namely

u(x, t) = eβm t eI km x .

Finite methods for partial differential equations 29

A discrete version of this equation is un
i = u(xi , tn) = eβm tn

eI km xi . We can take,
without loss of generality, xi = i�x and tn = n�t to obtain

un
i = eβm n�t eI kmi�x =

(
eβm�t

)n
eI kmi�x .

The term eI kmi�x = cos(kmi�x)+ I sin(kmi�x) is bounded and, therefore, any
growth in the numerical solution will arise from the term G = eβm�t , known
as the amplification factor. Therefore the numerical method will be stable, or
the numerical solution un

i bounded as n → ∞, if |G| ≤ 1 for solutions of the
form

un
i = Gn eI kmi�x .

We will now proceed to analyse, using the von Neummann method, the stabil-
ity of some of the schemes discussed in the previous sections.

Example 1 Consider the explicit scheme (36) for the diffusion equation
ut − buxx = 0 expressed here as

un+1
i = λun

i−1 + (1 − 2λ)un
i + λun

i+1; λ =
b�t

�x2
.

We assume un
i = GneI kmi�x and substitute in the equation to get

G = 1 + 2λ [cos(km�x) − 1] .

Stability requires |G| ≤ 1. Using −2 ≤ cos(km�x) − 1 ≤ 0 we get 1 − 4λ ≤
G ≤ 1 and to satisfy the left inequality we impose

−1 ≤ 1 − 4λ ≤ G =⇒ λ ≤ 1

2
.

This means that for a given grid size �x the maximum allowable timestep is
�t = (�x2/2b).

Example 2 Consider the implicit scheme (37) for the diffusion equation
ut − buxx = 0 expressed here as

λun+1
i−1 + −(1 + 2λ)un+1

i + λun+1
i+1 = −un

i ; λ =
b�t

�x2
.

The amplification factor is now

G =
1

1 + λ(2 − cos βm)

and we have |G| < 1 for any βm if λ > 0. This scheme is therefore uncondi-
tionally stable for any �x and �t . This is obtained at the expense of solving
a linear system of equations. However, there will still be restrictions on �x

30 J. Peiró and S. Sherwin

and �t based on the accuracy of the solution. The choice between an explicit
or an implicit method is not always obvious and should be done based on the
computer cost for achieving the required accuracy in a given problem.

Example 3 Consider the upwind scheme for the linear advection equa-
tion ut + aux = 0 with a > 0 given by

un+1
i = (1 − σ)un

i + σun
i−1; σ =

a�t

�x
.

Let us denote βm = km�x and introduce the discrete Fourier expression in the
upwind scheme to obtain

G = (1 − σ) + σ e−Iβm

The stability condition requires |G| ≤ 1. Recall that G is a complex number
G = ξ + Iη so

ξ = 1 − σ + σ cos βm ; η = −σ sin βm

This represents a circle of radius σ centred at 1 − σ . The stability condition
requires the locus of the points (ξ, η) to be interior to a unit circle ξ 2 +η2 ≤ 1.
If σ < 0 the origin is outside the unit circle, 1 − σ > 1, and the scheme is
unstable. If σ > 1 the back of the locus is outside the unit circle 1 − 2σ < 1 and
it is also unstable. Therefore, for stability we require 0 ≤ σ ≤ 1, see Fig. 13.

Example 4 The forward in time, centred in space scheme for the advec-
tion equation is given by

un+1
i = un

i − σ

2
(un

i+1 − un
i−1); σ =

a�t

�x
.

1 �λ

ξ

η

1
G

λ

Figure 13. Stability region of the upwind scheme.

Finite methods for partial differential equations 31

The introduction of the discrete Fourier solution leads to

G = 1 − σ

2
(eIβm − e−Iβm) = 1 − Iσ sin βm

Here we have |G|2 = 1 + σ 2 sin2 βm > 1 always for σ=/ 0 and it is therefore
unstable. We will require a different time integration scheme to make it stable.

6.3. Convergence: Lax Equivalence Theorem

A scheme is said to be convergent if the difference between the computed
solution and the exact solution of the PDE, i.e., the error En

i = un
i − u(xi , tn),

vanishes as the mesh size is decreased. This is written as

lim
�x,�t→0

|En
i | = 0

for fixed values of xi and tn . This is the fundamental property to be sought
from a numerical scheme but it is difficult to verify directly. On the other hand,
consistency and stability are easily checked as shown in the previous sections.

The main result that permits the assessment of the convergence of a scheme
from the requirements of consistency and stability is the equivalence theorem
of Lax stated here without proof:

Stability is the necessary and sufficient condition for a consistent linear FD
approximation to a well-posed linear initial-value problem to be convergent.

7. Suggestions for Further Reading

The basics of the FDM are presented a very accessible form in Ref. [7].
More modern references are Refs. [8, 9].

An elementary introduction to the FVM can be consulted in the book by
Versteeg and Malalasekera [10]. An in-depth treatment of the topic with an
emphasis on hyperbolic problems can be found in the book by Leveque [2].

Two well established general references for the FEM are the books of
Hughes [4] and Zienkiewicz and Taylor [11]. A presentation from the point
of view of structural analysis can be consulted in Cook et al. [11]

The application of p-type finite element for structural mechanics is dealt
with in book of Szabo and Babus̆ka [5]. The treatment of both p-type and spec-
tral element methods in fluid mechanics can be found in book by Karniadakis
and Sherwin [6].

A comprehensive reference covering both FDM, FVM and FEM for fluid
dynamics is the book by Hirsch [13]. These topics are also presented using a
more mathematical perspective in the classical book by Quarteroni and Valli
[14].

32 J. Peiró and S. Sherwin

References

[1] J. Bonet and R. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis.
Cambridge University Press, 1997.

[2] R. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge University
Press, 2002.

[3] W. Cheney and D. Kincaid, Numerical Mathematics and Computing, 4th edn.,
Brooks/Cole Publishing Co., 1999.

[4] T. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element
Analysis, Dover Publishers, 2000.

[5] B. Szabo and I. Babus̆ka, Finite Element Analysis, Wiley, 1991.
[6] G.E. Karniadakis and S. Sherwin, Spectral/hp Element Methods for CFD, Oxford

University Press, 1999.
[7] G. Smith, Numerical Solution of Partial Differential Equations: Finite Diference

Methods, Oxford University Press, 1985.
[8] K. Morton and D. Mayers, Numerical Solution of Partial Differential Equations,

Cambridge University Press, 1994.
[9] J. Thomas, Numerical Partial Differential Equations: Finite Difference Methods,

Springer-Verlag, 1995.
[10] H. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynam-

ics. The Finite Volume Method, Longman Scientific & Technical, 1995.
[11] O. Zienkiewicz and R. Taylor, The Finite Element Method: The Basis, vol. 1, Butter-

worth and Heinemann, 2000.
[12] R. Cook, D. Malkus, and M. Plesha, Concepts and Applications of Finite Element

Analysis, Wiley, 2001.
[13] C. Hirsch, Numerical Computation of Internal and External Flows, vol. 1, Wiley,

1988.
[14] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equa-

tions, Springer-Verlag, 1994.

Chapter 5

Numerical Methods for Linear
Conservation Laws

We study the basic theory of numerical methods for solving the linear advection
equation and linear hyperbolic systems. The emphasis will be on three important
concepts in numerical study, consistency, stability and convergence. We study
the basic theory on these focusing on linear equations in this chapter. The
fundamental ideas we learn in this chapter will be extended to the nonlinear
case.

1. Discretization

We continue to consider our simple model equation in 1D, the linear constant
coefficient advection equation,

{
ut + aux = 0, x ∈ R, t ≥ 0,
u(x, 0) = u0(x),

(5.1)

where a > 0 is constant and the advective flux f(u) = au. In this chapter, we
will frequently (and conveniently) call Eq. 5.1 the PDE.

As before, we follow the cell-centered (rather than cell interface-centered)
notation for discrete cells xi and the conventional temporal discretization tn:

xi = (i− 1

2
)∆x, i = 1, ..., N, (5.2)

tn = n∆t, n = 0, ...M. (5.3)

Then the cell interface-centered grid points are written using the ‘half-integer’
indices:

xi+ 1
2

= xi +
∆x

2
. (5.4)

Definition: Let uni = u(xi, t
n) be the pointwise values of the exact solution of

Eq. 5.1 at the discrete points (xi, t
n). This is the analytical solution of the PDE

and satisfies it without any form of numerical errors.

82

83

Definition: Let Uni be the numerical approximations to the exact solution of
the PDE. For instance, Uni represents

Uni =

uni for FDM, or

1
∆x

∫ x1+1/2

x1−1/2
u(x, tn)dx for FVM

(5.5)

Definition: Let Dn
i be the exact solution of the associated ‘difference equation

(DE)’ of the PDE, e.g., the forward in time backward in space (FTBS):

Dn+1
i −Dn

i

∆t
= −aD

n
i −Dn

i−1

∆x
. (5.6)

Since Dn
i is the exact solution of the DE, there is no round-off errors involved.

When we study numerical solution of PDEs, the solutions are affected by nu-
merical errors. They mainly come from two sources of numerical errors, and we
are now ready to define them.

Definition: The discretization error End at (xi, t
n) is defined by

End,i = uni −Dn
i . (5.7)

Definition: The round-off error Enr,i at (xi, t
n) is defined by

Enr,i = Dn
i − Uni . (5.8)

Definition: The global error Eng,i at (xi, t
n) is defined by

Eng,i = uni − Uni . (5.9)

Note by definition, Eng,i = End,i + Enr,i.

Definition: We say that the numerical method is convergent at tn in a given
norm || · || if

lim
∆x,∆t→0

||Eng || = 0. (5.10)

Remark: We note that the discretization error End,i is the sum of the truncation
error EnT,i for the DE Eq. 5.6 and any numerical errors EnB,i introduced by the
numerical handling of boundary conditions.

Remark: We define the round-off error Enr,i by the numerical errors introduced
after a repetitive number of arithmetic computer operations in which the com-
puter constantly rounds off the numbers to some significant digits.

Note: In Eq. 5.10, the error norm ||Eng || is to be understood as a value obtained
by taking a norm of the discrete cell-based data, Eng,i with a choice of norm. As
briefly mentioned in Eq. ??, Eq. ?? and Eq. ?? in the homework problems
in Chapter 4, it is worth to discuss a proper choice of norm especially when
measuring convergence rates in norms. We will discuss this matter in more
detail in the next section.

84

2. Choice of Norms

In order to quantify the errors we defined above, we must choose a norm that
is most appropriate to the inherent properties of the data we wish to measure.
Extended from the Lp-norm in the space of functions, we note that the discrete
lp-norm is a norm in the space of sequences.

One of the properties of the norm space is that all norms are equivalent
– the norm equivalence theorem – in finite dimensional vector space (not so in
infinite dimensional space though), and therefore we might wonder why making
a different choice of norms would make any different outcomes in measuring
errors in CFD, since the real applications in CFD are all finite vector space
indeed.

The truth is that, if we recall the definition of ‘the equivalence of any two
norms’, it simply means that two norms are bounded with each others using
some real constants, i.e., || · ||α and || · ||β are equivalent if there exist positive
real numbers C and D such that

C||x||α ≤ ||x||β ≤ D||x||α. (5.11)

Therefore, we should keep in mind that the equivalence relation does not mean
that the measured quantities (e.g., convergence rate) in different norms are the
same! They are simply bounded by each other with some scaling factors. Hence,
the norm equivalence can be useful to prove some boundedness property of the
numerical solutions, but not so much to quantify them. See Fig. 1 and Fig. 2.

Figure 1. Illustrations of unit circle, ||x|| = 1, in three different norms:
1-norm, 2-norm and ∞-norm.

Once again, let us define the discrete lp-norms that are frequently used in
CFD.

Definition: The p-norm (or lp-norm) of the N number of discrete data points
Eni at t = tn is defined by

||En||p =

(
∆x

N∑

i

∣∣∣Eni
∣∣∣
p
) 1

p

, (5.12)

85

Figure 2. The norm equivalence theorem indicates any given norm in finite
dimensional vector space can be scaled to be bounded in a different choice of
norms.

and the max-norm (or l∞-, or ∞-norm) of the N discrete data points Eni at
t = tn is given by

||En||∞ = max
1≤i≤N

∣∣∣Eni
∣∣∣. (5.13)

Let us now consider using the max-norm when measuring the errors to
show the numerical convergence as in Eq. 5.10. By definition, the max-norm
represents the maximum value of the ‘pointwise’ errors. The pointwise errors
should behave almost in a similar way at all discrete data points xi if the errors
evaluate smoothly varying data set, e.g., discrete data of sinusoidal waves. In
this case, the pointwise error estimation using max-norm is perfectly satisfactory.

However, if the data under consideration involve some form of jumps in
discontinuity, such as shock or contact discontinuity, the use of max-norm won’t
be any good at all and cannot provide any realistic measurement. This is be-
cause the error is the largest at at any jumps in discontinuity, and in fact, all
numerical schemes become only first-order accurate at discontinuities, experi-
encing significant drops in numerical accuracy. At discontinuities, the numerical
solution fails to converge on grid resolutions and there is nothing we can do to
improve solution convergence and accuracy. This means that the max-norm will
pick up the maximum error at such discontinuity, even though the numerical
solutions from the rest of smooth parts are convergent with numerical errors
that are usually orders of magnitude smaller than at the discontinuity.

86

In practice, l1-norm is very popular for conservation laws (i.e., PDEs in
weak form) for hyperbolic PDEs, since by definition, it describes the integral
quantities of the solutions.

On the other hand, l2-norm is often used for linear problems because of
the utility of Fourier analysis (e.g., Parseval’s identity, classical von Neumann
stability analysis) in that the Fourier transform û(ξ) of u(x) has the same l2-
norm as u(x), ||ûn||2 = ||un||2. This is useful as it suffices to show that ||ûn||2 is
bounded when showing ||un||2 is bounded (and vice versa) when we opt to show
the growth rate of the solution for an arbitrary wave number ξ is bounded in
the Fourier space.

Differences are typically greatest between the max-norm and other choices
of norms, and in many practical applications of CFD, the use of l1- and l2-norms
will give similar results. If this is the case, the choice of norm may just depend
mostly on which yields an easier mathematical analysis, e.g., the l1-norm for
(linear and nonlinear) conservation laws, while the l2-norm for linear equations.

3. The Fundamental Theorem of Numerical Methods – The Lax
Equivalence Theorem for Linear PDEs

The ultimate goal in this chapter is to show (at least partially) one of the the-
orems that is very powerful to provide us great levels of insights in numerical
differential equations. Briefly speaking, the theorem says, for linear PDEs,

consistency + stability ⇐⇒ convergence

Let us take a moment to think about the meaning of this theorem. It says that
if the numerical scheme converges to a (weak) solution provided the scheme is
proven to be consistent (we are going to define it shortly) and stable. So, what
is good about it? The good news is that in numerically solving many PDE sys-
tems, it is often very difficult to directly show convergence of a given numerical
method because not many PDEs have their exact analytical solutions available
(see the definition of convergence in Eq. 5.10). Without guaranteeing the ex-
istence of such analytical solutions, one cannot possibly say her/his numerical
scheme converges to a mathematically meaningful and correct solution at all.

A nice workaround is instead to look at numerical stability and consistency
that are based on a recurrence property of the numerical method acting on
the discrete grid data. The Lax Equivalence theorem then indicates that such
numerical method is indeed a convergent method that produces a well-defined
weak solution. Now let’s take a look at this nice theorem in more details.

First, we define few more things.

Definition: Let N be the (linear) numerical operator mapping the approximate
solution at one time step to the approximate solution at the next time step. Then
a general explicit numerical method can be written as

Un+1
i = N (Uni). (5.14)

87

We define the one-step error En1step,i by

En1step,i = uni −N (un−1
i), (5.15)

and the local truncation error EnLT,i by

EnLT,i =
1

∆t
En1step,i. (5.16)

We have already discussed the the order of method previously, and we now can
define it again using the local truncation error.

Definition: We say that the numerical method is of order p (or pth order
accurate) if for all sufficiently smooth data with compact support, the local
truncation error is given as

EnLT,i = O(∆tp,∆xp). (5.17)

Remark: One can obviously introduce a method that has different orders of
accuracy in space and time, i.e., a method that is of p-th order accurate in time
and r-th order accurate in space can be defined as

EnLT,i = O(∆tp,∆xr). (5.18)

In this case, the numerical solution in a fully resolved state – both temporally
and spatially – will exhibit its convergence rate dominated by the lower one
between the two, i.e.,

EnLT,i = O(∆ts) = min
[
O(∆tp),O(∆xr)

]
. (5.19)

Example: Consider the method of lines. Combining a first-order temporal
discretization and a second-order spatial discretization results in a first-order
accurate method unless ∆t ≈ O(∆x2).

Remark: When solving numerical PDEs, it is common to have a numerical
method that combines two different orders of accuracy in temporal and spatial
discretizations, yielding Eq. 5.18. In many cases, one often has p ≤ r, and
therefore the lower temporal accuracy dominates the overall convergence rate.
In this case, the little trick in the previous example can be used to provide
a better balance between the spatial and temporal orders, keeping the overall
solution to be r-th order accurate (rather than p-th order!) by adopting the
following principle:

∆t ≈ O(∆xr/p). (5.20)

More generally, while satisfying the numerical stability condition of ∆t on a
given grid resolution N (i.e., the CFL condition), one can conduct a grid resolu-
tion study by changing the size of grid resolutions from N1 to N2 (e.g., N1 < N2)
by following the simple rule:

88

the p-th rate of change in ∆t
= the r-th rate of change in ∆x,

or mathematically writing,
(

∆tN1

∆tN2

)p
=

(
∆xN1

∆xN2

)r
=

(
N2

N1

)r
(5.21)

3.1. Consistency

Let’s now formally define consistency of the numerical methods.

Definition: We say the numerical method is consistent in || · || with a proposed
DE if

lim
∆t,∆x→0

||EnLT || = 0 (5.22)

for all smooth functions u(x, t) that satisfies the given PDE.

Remark: In words, the numerical consistency is a measure to see if the numer-
ical operator N is in fact ‘consistent’ with the DE of interest in a sense that the
method should introduce a small error in any one step.

Remark: On the other hand, the numerical stability is a property that the
numerical method does not produce any local errors that grow catastrophically
and hence a bound on the global error can be obtained in terms of these local
errors.

Example: We consider the first-order upwind method – the DE – for the linear
scalar advection – the PDE – and see if the DE is consistent. The upwind DE
for a > 0 is

Un+1
i = Uni − a

∆t

∆x

(
Uni − Uni−1

)
. (5.23)

Let’s now apply Taylor expansion to obtain the local truncation error En+1
LT,i:

En+1
LT,i =

1

∆t

[
u(xi, t

n+1)−
{
u(xi, t

n)− a∆t

∆x

[
u(xi, t

n)− u(xi−1, t
n)
]}]

(5.24)

where

N (uni) = u(xi, t
n)− a∆t

∆x

[
u(xi, t

n)− u(xi−1, t
n)
]

(5.25)

Here, please note that we differentiate between uni and Uni . Using Taylor expan-
sions of u(xi, t

n+1) and u(xi−1, t
n):

u(xi, t
n+1) = u(xi, t

n) + ut(xi, t
n)∆t+ utt(xi, t

n)
∆t2

2
+O(∆t3), (5.26)

and

u(xi−1, t
n) = u(xi, t

n)− ux(xi, t
n)∆x+ uxx(xi, t

n)
∆x2

2
+O(∆x3). (5.27)

89

Substituting Eq. 5.26 and Eq.5.27 into Eq.5.24 gives

En+1
LT,i = ut(xi, t

n) + aux(xi, t
n) + utt(xi, t

n)
∆t

2
− auxx(xi, t

n)
∆x

2
+O(∆t2,∆x2).

(5.28)
Note that the first two terms vanishes since u(x, t) is the exact solution to the
PDE. Using so called the Cauchy-Kowalewski procedure, we get

utt = −autx = −a(−aux)x = a2uxx, (5.29)

and we finally arrive to get

En+1
LT,i =

1

2
a(a− 1)uxx(xi, t

n)O(∆t,∆x) +O(∆t2,∆x2). (5.30)

This means that the local truncation error EnLT,i is dominated byO(∆t,∆x),
whereby we show that the method is first-order accurate in both space and time.
It also proves that the method is consistent because En+1

LT,i approaches to zero

when ∆t and ∆x go to zero as long as u(x, t) is at least twice differentiable in
both space and time.

Note: In the above, we actually have the ‘pointwise’ property of the limit:

lim
∆t,∆x→0

En+1
LT,i = 0, (5.31)

as long as the solution u(x, t) is twice differentiable in space and time. Hence-
forth, it is natural to see its norm ||EnLT || approaches to zero in the limit, without
depending on the choice of norms, even in the max-norm. This is what is to be
expected for smooth continous solutions.

Homework 1 (15 points) The Lax-Friedrichs (LF) method for the our model
PDE reads as

Un+1
i =

1

2

(
Uni+1 + Uni−1

)
− ∆t

2∆x

(
f(Uni+1)− f(Uni−1)

)
. (5.32)

where the flux given by f(u) = au. As before, assume a > 0.
(a) Show that the LF method is consistent.
(b) Rewrite the LF method in the conservative form,

Un+1
i = Uni −

∆t

∆x

(
f̂(Uni+1/2)− f̂(Uni−1/2)

)
. (5.33)

That is to say, please find expressions for f̂ni±1/2 as functions of Unk and the

original flux f(Unk), k = −1, 0, 1.
(c) Numerically solve the sinusoidal advection problem we had in Chapter 2
using the LF method with the grid resolution N = 32, 64, 128 with Ca = 0.8.
Please show your plots at t = tcycle1 and tcycle2 at all three grid resolutions.
Describe your findings and compare the LF results with the previously studied
stable solution using the upwind method.

90

Homework 2 (20 points) The Lax-Wendroff (LW) method for the our model
PDE reads as

Un+1
i = Uni −

Ca
2

(
Uni+1 − Uni−1

)
+
C2
a

2

(
Uni+1 − 2Uni + Uni−1

)
. (5.34)

Again, let us assume a > 0.
(a) Use the method called Cauchy-Kowalewski (or the Lax-Wendroff technique)
to derive the LW method, that is,
(a)-(i) First show using Taylor expansion and using the conversion between the
spatial and temporal derivatives

ut = −fx = −fuux = −aux, etc., (5.35)

u(xi, t
n+1) = u(xi, t

n)−∆tfx +
∆t2

2
(afx)x +O(∆t3). (5.36)

(a)-(ii) Then finally use the second-order central differencing for the spatial
derivatives to obtain the relation in Eq. 5.34.
(b) Show that the LW method is consistent.
(c) Rewrite the LW method in the conservative form by introducing the conser-

vative flux f̂i±1/2 as in Eq. 5.33.
(d) Numerically solve the sinusoidal advection problem we had in Chapter 2
using the LW method with the grid resolution N = 32, 64, 128 with Ca = 0.8.
Please show your plots at t = tcycle1 and tcycle2 at all three grid resolutions.
Describe your findings and compare the LW results with the previously studied
stable solutions using the upwind method and the LF method.

3.2. Stability Theory

The form of stability bounds in this section provides a useful information in an-
alyzing ‘linear’ methods. It has to be emphasized that for ‘nonlinear’ methods,
the same technique we adopt for the linear method becomes hard to apply, and
therefore one has to provide a different approach to discuss nonlinear stability
(we will study such approach(es) later!). We limit our interest in the linear sta-
bility theory in this chapter.

In order to assess stability of the linear PDEs, we essentially need to bound
the global error Eng,i = uni −Uni using a recurrence relation. Applying the linear
numerical operator N to Uni , we obtain

Un+1
i = N (Uni) = N (uni − Eng,i). (5.37)

The global error at tn+1 is now

En+1
g,i = un+1

i − Un+1
i (5.38)

= un+1
i −N (uni − Eng,i) (5.39)

= un+1
i −N (uni)−

(
N (uni − Eng,i)−N (uni)

)
(5.40)

= ∆tEn+1
LT,i −

(
N (uni − Eng,i)−N (uni)

)
. (5.41)

91

Note that the first term in Eq. 5.41 is the new one-step error introduced
in this time step, and this term is therefore related to the consistency control of
the numerical method. On the other hand, the second term in the parenthesis
is the effect of the numerical method on the previous global error Eng,i and this
is the term that is to do with the stability control.

Definition: We say the linear numerical method defined by the linear operator
N is stable in || · || if there is a constant C such that

||N n|| ≤ C,∀n∆t ≤ T, (5.42)

for each time T .

Note: We note here that the superscript n on N represents powers of the ma-
trix (or linear operator) obtained by repeated applications of the linear operator
N . This is, however, not true for nonlinear operators.

Remark: In particular, the numerical method is stable if ||N || < 1, since in
this case, we have

||N n|| ≤ ||N ||n < 1. (5.43)

Theorem: The Lax Equivalence Theorem for linear difference methods states
that, for a well-posed consistent, linear method, stability is necessary and suffi-
cient for convergence.

A full proof can be found in a book by Richtmyer and Morton, Differ-
ence Methods for Initial-Value Problems, Wiley-Interscience, 1967, and we only
partially prove the sufficient part of the claim:

consistency + stability =⇒ convergence

Proof: We are going to show

lim
∆t,∆x→0

||En+1
g || = 0. (5.44)

Since N is linear, Eq. 5.41 becomes, recursively,

||En+1
g || ≤ ∆t||En+1

LT ||+ ||N (un − Eng)−N (un)|| (5.45)

= ∆t||En+1
LT ||+ ||N (Eng)|| (5.46)

≤ ∆t||En+1
LT ||+ ||N ||||Eng || (5.47)

≤ ∆t||En+1
LT ||+ C||Eng || (5.48)

≤ ∆t||En+1
LT ||+ C

(
||N ||||En−1

g ||+ ∆t||EnLT ||
)

(5.49)

· · · (5.50)

≤ ∆t

n+1∑

j=1

Cn+1−j ||EjLT ||+ Cn+1||E0
g || (5.51)

≤ D̃(n+ 1)∆t||ELT ||+ C̃||E0
g || (5.52)

= D̃tn+1||ELT ||+ C̃||E0
g ||, (5.53)

92

where ||ELT || = max1≤j≤n+1 ||EjLT ||, and for some C̃ and D̃.

Now if we let ∆t → 0, then ||E0
g || → 0, since it is the global error on

resolving the discrete initial data. It has to go to zero when the grid gets more
and more refined unless the initial data has some numerical error to start with
(i.e., ill-posed problems).

Also, if we let ∆t→ 0, then ||ELT || → 0, since the method is consistent by
assumption. Therefore, we prove ||En+1

g || → 0 as ∆x,∆t → 0, and the method
is convergent.

Note: It is not hard to show that the the sufficient condition also holds when
N is contractive, i.e.,

||N (P)−N (Q)|| ≤ ||P −Q||. (5.54)

Remark: One can also say the method is stable in || · || if

||Un+1|| ≤ ||Un||, (5.55)

for all n. To show this, let us assume Eq. 5.55. Recalling Un+1 = N (Un), we
have

||N (Un)||
||Un|| =

||Un+1||
||Un|| ≤ 1, (5.56)

for ||Un|| 6= 0. Since Eq. 5.56 is true for all n, we can take sup to get

sup
U 6=0

||N (U)||
||U || ≤ 1 (5.57)

which gives
||N || ≤ 1. (5.58)

Hence Eq. 5.55 implies the method is stable.

Homework 3 (10 points) Show that the upwind scheme of our model PDE with
a > 0 is stable if 0 < Ca ≤ 1.

Homework 4 (10 points) Show that the downwind scheme of our model PDE
with a > 0 is not stable for 0 < Ca.

Quick summary: Consistency + Stability ⇐⇒ Convergence

• Consistency: lim∆t,∆x→0 ||EnLT || = 0.

• Stability: ||N n|| ≤ C, ∀n∆t ≤ T for each T . Equivalently, ||Un+1|| ≤
||Un||.

• Convergence: lim∆x,∆t→0 ||Eng || = 0.

93

4. The CFL Condition

We can write an explicit DE for our model PDE as a conservative form

Un+1
i = Uni − Ca

(
Fn
i+ 1

2

− Fn
i− 1

2

)
, (5.59)

where a form of the numerical fluxes can have of the form

Fn
i+ 1

2

= F(Uni , U
n
i+1) =

{
aUni if a > 0
aUni+1 if a < 0.

(5.60)

Similarly,

Fn
i− 1

2

= F(Uni−1, U
n
i) =

{
aUni−1 if a > 0
aUni if a < 0.

(5.61)

Figure 3. Characteristics for the model advection equation with a > 0. Left
panel: For a small ∆t satisfying ∆t < ∆x/a, the characteristic information
travels ‘less’ than a single grid cell distance in a single time step ∆t, hence the
numerical flux Fn

i+ 1
2

at xi+ 1
2

depends on Un
i only. Right panel: For a large

∆t failing to satisfy ∆t < ∆x/a, the characteristic information travels ‘more’
than a single grid cell distance in a single time step ∆t, giving the extended
dependency of the numerical flux Fn

i+ 1
2

on Un
i−1 as well as Un

i .

Note that the method in Eq. 5.59 reduces to the stable, upwind method
in Eq. 2.19. In general, when the model PDE is no longer a linear constant
scalar case but nonlinear systems (e.g., the Euler equation), one needs to have a
conditional statement to consider signs of ai±1/2 and produce the cell-interface
fluxes of the form ani±1U

n
i±1. We consider these more sophisticated cases much

later when we study numerical methods for nonlinear systems and just focus on
a simple linear constant scalar for now.

94

Figure 4. The green triangles represent the numerical domain of depen-
dence of the point marked by the red stars. The red triangles illustrate the
analytical domain of dependence of the red point. The solid triangles with
two characteristic lines x = ±at show the maximum CFL stability regions of
Ca = 1. Top figure: Illustration of a stable case where the numerical domain
of dependence (green triangle) includes all the analytical domain (red trian-
gle) of dependence. Bottom figure: Illustration of an unstable case where
the numerical domain of dependence (green triangle) does not include all the
analytical domain (red triangle) of dependence.

We see that the update scheme of DE in Eq. 5.59 uses basically three
neighboring cell data, Uni−1, U

n
i , U

n
i+1 in order to update Un+1

i over ∆t. One can
think of two different situations in choosing ∆t:

(1) a∆t < ∆x (5.62)

(2) a∆t > ∆x. (5.63)

For the first case in Eq. 5.62, information propagates less than one grid cell
distance in a single time step, whereas information travels much longer distance
than one grid cell for the second case in Eq. 5.63.

As shown in the right panel of Fig. 3, the way we formulate the numerical
flux Fn

i+ 1
2

in Eq. 5.60 would become unstable because it does not include Uni−1

95

for the large choice of ∆t > ∆x/a. As a result, the numerical scheme in Eq. 5.59
will become unstable in this large single time step ∆t, and hence the instability
will grow exponentially.

This is a consequence of the CFL condition, named after Courant, Friedrichs,
and Lewy. See those three genius faces on top of the Pantheon pillars in Fig. 1
of the cover page. The CFL condition is a necessary stability condition for any
numerical method and is stated as follows:

A numerical method can be convergent only if its
numerical domain of dependence contains the true domain
of dependence of the given PDE, at least in the limit as

∆t and ∆x go to zero.

The CFL condition therefore provides a necessary condition for choosing the
length of ∆t depending on the PDE under consideration. The CFL condition
amounts to say, if we let Ca to be the CFL number that satisfy 0 < Ca ≤ 1, Ca
becomes, for the advection case,

Ca = max
p
|λp|

∆t

∆x
, (5.64)

and for the diffusion case,

Ca = max
p
κp

2∆t

∆x2
, (5.65)

where p is the number of all available wave speeds λp or the diffusion coefficients
κp, respectively. Note that p = 1 for the linear ‘scalar’ equations.

It is important to note that the CFL condition is only a necessary condition
for stability (and hence convergence). It is not always sufficient to guarantee
stability, and a numerical method satisfying the CFL condition can become un-
stable.

So far, we have discussed stability of the numerical schemes related to the
CFL condition. What can we say about the numerical accuracy regarding to
the CFL condition? Let us try to give a brief discussion about the relation be-
tween Ca and the numerical accuracy. Consider the stable case shown in the top
figure in Fig. 4. We know from Chapter 2 that the properties at the red star
depend only on those points inside the red triangle. However, the grid points
xi−1 and xi+1 are outside the domain of dependence – the red triangle – for the
red star and hence theoretically they should not influence the properties of the
red star. On the other hand, the numerical domain of dependence – the region
of the green triangle – actually takes information only from the two locations
at xi−1 and xi+1 (the red triangle region is indeed under resolved as there is
no grid point there!) which are outside the analytical domain of dependence.
This means that, when ∆t is chosen to be very small (i.e., ∆t � ∆x/a) the
numerical results at the red star may be quite inaccurate due to the large dis-
crepancy between the analytical domain of dependence of the red star and the
location of the actual numerical data used to calculate properties at the red star.

96

In summary, we conclude that Ca ≤ 1 for stability, but at the same time,
it is desirable to have Ca ≈ 1 as much as possible for accuracy. In order to have
such a numerical scheme, one has to work hard to provide a better numerical
methods that allow Ca to be as large as possible in a stable manner. Often, such
work requires to implement high-order, stable numerical algorithms, especially
for multi-dimensions.

Example: The CFL condition of the first-order donor-cell upwind (DCU)
method in 2D has

max
x,y

{ |λx|
∆x

+
|λy|
∆y

}
∆t ≤ 1, (5.66)

where λx and λy are the maximum characteristic wave speeds in x- and y-
directions. This reduces the CFL stability region in 2D by half (i.e., Ca ≤ 0.5)
compared to the 1D case.

Example: The CFL condition of the first-order donor-cell method in 3D has

max
x,y,z

{ |λx|
∆x

+
|λy|
∆y

+
|λz|
∆z

}
∆t ≤ 1. (5.67)

This thus reduces the CFL stability region in 3D by 1/3 (i.e., Ca ≤ 1/3) com-
pared to the 1D case.

Example: On the other hand, the CFL condition of the second-order corner-
transport-upwind (CTU) method in 2D and 3D has

max
x,y

{ |λx|
∆x

,
|λy|
∆y

}
∆t ≤ 1, (5.68)

max
x,y,z

{ |λx|
∆x

,
|λy|
∆y

,
|λz|
∆z

}
∆t ≤ 1, (5.69)

(5.70)

respectively. The CTU method therefore keeps the same CFL stability region in
multi-dimensions as in the 1D case, Ca ≤ 1. Implementing CTU is much more
complicated than DC.

5. Stability using von Neumann Analysis

For constant-coefficient linear equation, von Neumann stability analysis is often
the easiest way to determine stability bounds. As briefly mentioned in Section
2., the use of l2-norm becomes particularly useful because of Parseval’s relation,

||Un||2 = ||Ûn||2. (5.71)

The idea to show the boundedness of Un is then equivalent to showing the
boundedness of Ûn. This is convenient because each Fourier mode of Ûn can be
decoupled from all other wave numbers, whereas all elements of Un are coupled

97

together via the difference equations. In fact, the Fourier transform diagonalizes
the linear difference operator and hence we can easily decouple each individual
Fourier mode by transforming Un in the real space to Ûn in the Fourier space.

This brings us an easy analysis tool in Fourier space and it suffices to
consider an arbitrary single wave number ξ and the data of the form

Unj = A(tn)eIξj∆x, (5.72)

where I =
√
−1 and A(tn) = eαn∆t is a real number called the amplification

factor. We now use the Fourier analysis to obtain the CFL condition 0 < Ca ≤ 1
once again – this Fourier analysis is often called the von Neumann stability anal-
ysis for constant-coefficient linear models.

Let’s again take our model DE for the 1D advection with a > 0,

Un+1
j = Unj −

a∆t

∆x

(
Unj − Unj−1

)
. (5.73)

Substituting Eq. 5.72 into Eq. 5.73, we have

eα(n+1)∆teIξj∆x = eαn∆teIξj∆x − eαn∆tCa

[
eIξj∆x − eIξ(j−1)∆x

]
. (5.74)

Dividing Eq. 5.74 by eαn∆teIξj∆x, we get

eα∆t = 1− Ca
[
1− e−Iξ∆x

]
(5.75)

= 1− Ca + Ca cos(ξ∆x) + ICa sin(ξ∆x). (5.76)

Recalling from the relation 5.55 for numerical stability ||Un+1|| ≤ ||Un||, we see
that it suffices to show the amplification factor is bounded by unity:

|eα∆t| ≤ 1. (5.77)

Therefore, we consider

1 ≥ |eα∆t|2 =
(

1− Ca + Ca cos(ξ∆x)
)2

+ C2
a sin(ξ∆x) (5.78)

= 1− 2Ca(1− Ca)
(

1− cos(ξ∆x)
)
. (5.79)

Since 1− cos(ξ∆x) ≥ 0, we get

Ca(1− Ca) ≥ 0, (5.80)

which gives
0 ≤ Ca ≤ 1. (5.81)

98

Homework 5 (10 points) Repeat the similar von Neumann analysis of the 1D
advection using forward in time forward in space (FTFS)

Un+1
j = Unj −

a∆t

∆x

(
Unj+1 − Unj

)
. (5.82)

Conclude that FTFS is unstable if a > 0 and stable if a < 0.

Homework 6 (10 points) Use von Neumann stability analysis to show that the
CFL condition for the 1D heat equation

Un+1
j = Unj + Ca

(
Unj+1 − 2Unj + Unj−1

)
, (5.83)

with Ca = κ 2∆t
∆x2 , becomes Ca ≤ 1 as before.

Homework 7 (10 points) Show that a forward in time centered in space scheme
(FTCS) for 1D advection with a > 0

Un+1
j = Unj −

a∆t

2∆x

(
Unj+1 − Unj−1

)
(5.84)

is unconditionally unstable.

Homework 8 (10 points) Show that an implicit scheme of backward in time
centered in space (BTCS)

Un+1
j = Unj −

a∆t

2∆x

(
Un+1
j+1 − Un+1

j−1

)
(5.85)

is unconditionally stable.

Homework 9 (Bonus Problem – 15 points) What does von Neumann stabil-
ity analysis say about the LF method?

6. A List of Finite Difference Methods for the Linear Problem

In this section, we provide a couple of finite difference (FD) methods for solving
our model PDE, ut + aux = 0. We assume a > 0 for Beam-Warming and
Fromm’s methods. One can easily get appropriate forms for these two methods
for a < 0.

• Backward Euler (FTCS – Forward Time Centered Space)

Un+1
i = Uni −

a∆t

2∆x

(
Uni+1 − Uni−1

)
(5.86)

• One-sided (FTBS – Forward Time Backward Space)

Un+1
i = Uni −

a∆t

∆x

(
Uni − Uni−1

)
(5.87)

99

• One-sided (FTFS – Forward Time Forward Space)

Un+1
i = Uni −

a∆t

∆x

(
Uni+1 − Uni

)
(5.88)

• Leapfrog

Un+1
i = Un−1

i − a∆t

2∆x

(
Uni+1 − Uni−1

)
(5.89)

• Lax-Friedrichs (LF)

Un+1
i =

1

2

(
Uni+1 + Uni−1

)
− a∆t

2∆x

(
Uni+1 − Uni−1

)
(5.90)

• Lax-Wendroff (LW)

Un+1
i = Uni −

a∆t

2∆x

(
Uni+1−Uni−1

)
+

1

2

(a∆t

∆x

)2(
Uni+1−2Uni +Uni−1

)
(5.91)

• Beam-Warming (BW) for a > 0

Un+1
i = Uni −

a∆t

2∆x

(
3Uni −4Uni−1 +Uni−2

)
+

1

2

(a∆t

∆x

)2(
Uni −2Uni−1 +Uni−2

)

(5.92)

• Fromm’s method for a > 0

Un+1
i = Uni −

a∆t

∆x

(
Uni − Uni−1

)
− 1

4

a∆t

∆x

(
1− a∆t

∆x

)(
Uni+1 − Uni

)

+
1

4

a∆t

∆x

(
1− a∆t

∆x

)(
Uni−1 − Uni−2

)
(5.93)

Chapter 6

Computing Discontinuous
Solutions of Linear
Conservation Laws

For conservation laws we often encounters discontinuous solutions, and handling
discontinuities successfully in numerical methods is indeed our great interests.
So far, we have studied the linear theory where we naturally assumed smooth
solutions especially in our discussion of the truncation error and convergence
theory.

We now wish to understand what would happen when we apply a numerical
method that is proven to work well for smooth solutions to a linear problem with
discontinuous initial data.

1. Non-convergence at Discontinuity

In order to study numerical solution behaviors near discontinuity, let us start
considering the scalar advection equation with the Riemann problem as its initial
condition:

ut + aux = 0, x ∈ R, t ≥ 0 (6.1)

u0(x) =

{
1 for x < 0
0 for x > 0.

(6.2)

We know that the exact solution is u0(x−at) which is easily achieved by tracing
the characteristic curve. Does this solution behave well at the discontinuity?
To address this issue, let’s consider what happens to numerically compute the
spatial derivative ux across the discontinuity. For t > 0, the shock travels to
the location x = at from its initial location x = 0. Letting x1 = at + ∆x
and x2 = at − ∆x, a finite difference approximation to ux applied across the
discontinuity at x = at becomes

∂u

∂x

∣∣∣∣∣
x=at

=
u(x1, t)− u(x2, t)

x1 − x2
(6.3)

100

101

=
u(∆x, t)− u(−∆x, t)

2∆x
(6.4)

=
0− 1

2∆x
→ −∞ (6.5)

as ∆x→ 0.
The local truncation error does not vanish as ∆x→ 0 and the method be-

comes inconsistent, therefore the proof of convergence we studied in the previous
chapter is no longer available.

We can rescue the failure of the convergence proof by adopting the vanish-
ing viscosity approximation uε0(x) to u0(x) and letting ε → 0. Although this
vanishing viscosity approximation can resurrect the convergence of the method,
the convergence rate may be severely dropped and lower than the ‘order’ of the
method as defined on smooth solutions. The outcome of such numerical dif-
ficulties involving discontinuity would make its numerical solutions look very
unsatisfactory on any particular finite grid.

In Fig. 1 we display five different numerical solutions to two different types
of initial conditions. The panels on the left column shows the smooth sin(2πx)
wave initialized on x ∈ [0, 1]. The sine wave is solved numerically with – from
top to bottom – (1) Upwind method, (2) Lax-Friedrichs, (3) Lax-Wendroff, (4)
Beam-Warming, and (5) Fromm’s method. On the right column, the same
methods are applied – in the same order – to solve the initially discontinuous
Riemann problem,

u0(x) =

{
1 for x < 0.5
−1 for x > 0.5.

(6.6)

All numerical methods solve the sine wave until the wave completes the first
cycle on a periodic domain which is resolved on 64 grid cells, N = 64. The
same number of grid cells is used for the discontinuous case where the solutions
have been integrated on a domain with outflow boundary condition until the
location of the shock reaches to x = 0.8 which is 0.3 distance away from its
initial location x = 0.5.

There are two first-order methods (upwind and Lax-Friedrichs) and three
second-order methods (Lax-Wendroff, Beam-Warming, and Fromm’s method).
We note that all methods behave equally well on the smooth flow. On the
contrary, there are two distinctive solution characteristics – dissipation and os-
cillations – on the discontinuous flow, particularly near the discontinuity: the
first-order methods give very smeared solutions, while the second-order methods
give oscillations. These types of behaviors are very typical and understanding
the origin of such numerical behaviors is our goal in this chapter. Once we
understand the fundamental sources of the issues we would be able to improve
them and provide better numerical algorithms.

In addition, if we compute the l1-norm error in these computed discontin-
uous solutions we do not see the expected rates of convergence that would be
expected on smooth solutions. It turns out that the first-order methods con-
verge with an error that is O(∆x1/2) while the second-order methods have an

102

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1.5

−1

−0.5

0

0.5

1

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−2

−1.5

−1

−0.5

0

0.5

1

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1.5

−1

−0.5

0

0.5

1

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−2

−1.5

−1

−0.5

0

0.5

1

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1.5

−1

−0.5

0

0.5

1

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−2

−1.5

−1

−0.5

0

0.5

1

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1.5

−1

−0.5

0

0.5

1

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−2

−1.5

−1

−0.5

0

0.5

1

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1.5

−1

−0.5

0

0.5

1

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 1. Numerical (red circles) and exact (black solid curves) solutions
to the scalar advection equation ut + aux = 0, a > 0 with two different ini-
tial conditions: Left column: sinusoidal wave, Right column: discontinuous
Riemann problem. Five different schemes are shown from top to bottom:
(1) Upwind, (2) Lax-Friedrichs, (3) Lax-Wendroff, (4) Beam-Warming, (5)
Fromm’s method.

error that is O(∆x2/3) at best. These convergence rates can be proved for very
general initial data using the vanishing viscosity approximations.

103

2. Modified Equations

Recall that we have followed the following two-step procedure all the time so far
in order to discuss theories on the numerical PDEs:

1. First, identify PDEs to solve numerically, and

2. Second, discretize PDEs to get approximate solutions using relevant DEs.

We now try to reverse the process:

1. First, start with DEs, and

2. Second, consider relevant PDEs associated with the given DEs.

At first glance, it seems bit strange why we would want to do this, since the
reverse process may lead us to go back to the original PDEs we start from in the
conventional process. However, it turns out that the reverse procedure provides
us with a very useful information for studying the solution behaviors of DEs via
modeling the DEs by PDEs. This also means that the end product of the reverse
process is not the original PDEs, but different PDEs with extra information,
which is called the modified equations. The extra information enables us to
understand the ‘qualitative’ behavior of the numerical methods we discussed in
the previous section (see also Fig. 1) such as

• dissipative (or diffusive) solution behaviors across discontinuities in the
first-order methods (e.g., upwind, Lax-Friedrichs, etc.), and

• oscillatory (or dispersive) solution behaviors near discontinuities in the
second-order methods (e.g., Lax-Wendroff, Beam-Warming, Fromm’s method,
etc.).

The derivation of the modified equation is closely related to the calculation
of the local truncation error EnLT,i in Eq. 5.16 for a given DE. We are going to see
that there are two types of numerical relations, dissipation and dispersion, that
can be derived from the modified equation approach. The dissipation relation is
an outcome of identifying a modified equation for odd-order accurate schemes
(e.g., first-, third-order methods), while the dispersion relation is available from
looking at a modified equation for even-order accurate schemes (e.g., second-,
fourth-order methods). In the subsequent sections, we consider set of modified
equations for first- and second-order methods.

2.1. Dissipation Error in First-order Methods

We start with the first-order upwind method (FTBS) for the linear scalar ad-
vection ut + aux = 0 with a > 0:

Un+1
i = Uni −

a∆t

∆x

(
Uni − Uni−1

)
. (6.7)

The analysis of obtaining a modified equation is very closely related to com-
puting the local truncation error EnLT,i as in Eq. 5.24, where we have assumed

104

that u(x, t) is an analytical solution to ut + aux = 0.

This time, however, we no longer make the same assumption on u(x, t), but
instead we make the following assumption:

Assume that u(x, t) exactly agrees with Uni at the discrete
grid points, or mathematically, u(xi, t

n) = U(xi, t
n).

In this way, u(x, t) satisfies the DE relation Eq. 6.7 exactly:

u(x, t+ ∆t) = u(x, t)− a∆t

∆x

(
u(x, t)− u(x−∆x, t)

)
. (6.8)

Expanding these terms in Taylor series around (x, t) and simplifying gives:

(
ut +

∆t

2
utt +

∆t2

6
uttt + · · ·

)
+ a
(
ux −

∆x

2
uxx +

∆x2

6
uxxx + · · ·

)
= 0. (6.9)

Rewriting this gives us

ut + aux =
1

2

(
auxx∆x− utt∆t

)
− 1

6

(
auxxx∆x2 + uttt∆t

2
)
· · · (6.10)

Noticing we have utt = a2uxx +O(∆t) (note that we no longer have utt = a2uxx
since u(x, t) is not an exact solution of ut + aux = 0), we can obtain

ut + aux =
1

2

(
auxx∆x− a2uxx∆t

)
+O(∆x2,∆t2) (6.11)

=
a∆x

2

(
1− a∆t

∆x

)
uxx +O(∆x2,∆t2) (6.12)

DroppingO∆x2,∆t2 terms, we notice that the above equation is an advection-
diffusion equation of the form

ut + aux = κuxx, (6.13)

with a constant diffusion coefficient κ. Similarly, we can proceed to compute a
diffusion coefficient for LF (see Homework 1), and we have:

κ =

a∆x
2

(
1− Ca

)
for upwind,

∆x2

2∆t

(
1− C2

a

)
for LF.

(6.14)

Remark: In the analysis done in Eq. 5.24, we used the fact that u(x, t) is the
true solution of the linear scalar advection equation, henceforth we made use
of the fact ut + aux = 0 in the EnLT,i derivation in Eq. 5.24, giving the local
truncation error is of first-order in space and time:

En+1
LT,i ≈ O(∆t,∆x). (6.15)

105

However, this time, if we instead take u(x, t) to be the solution of the PDE

ut + aux =
a∆x

2

(
1− a∆t

∆x

)
uxx, (6.16)

the truncation error would be of second-order accurate

En+1
LT,i ≈ O(∆t2,∆x2), (6.17)

and consequently, the upwind DE method is also second-order accurate when
approximating the modified equation Eq. 6.16.

Note what we just have done so far: we first took our model DE and use
Taylor expansions to arrive at a new PDE that our DE actually solves for. As
clearly seen from a variant form of the modified equation that is different from
the original advection PDE, we see that our DE is not solving the original PDE
ut + aux = 0, but rather it solves the modified equation.

This is why we see the numerical solutions from the first-order methods be-
come diffusive (or smeared out) as time evolves. The reason is clear now that the
extra diffusion term in the modified equation become active and add numerical
diffusion across discontinuities. See Fig. 1. If we simply plot the exact solutions
to the modified equations in Eq. 6.16 and Eq. 6.19 together with the numerical
solutions of the upwind and LF solutions, they are virtually indistinguishable to
plotting accuracy.

Note that the diffusive term is of order O(∆x) as ∆x → 0 and hence it
vanishes in the limit. This means that the numerical solutions produced by the
upwind and LF methods are indeed very good approximations to the vanishing
viscosity solutions of the two methods, uε. In the linear case there is only one
weak solution to which uε converges, while for nonlinear cases, it turns out that
the LF method satisfies a discrete entropy condition and converges more gener-
ally to the vanishing viscosity weak solution as the grid is refined.

In real calculation, one can also compare the magnitude of the two diffusion
coefficients κ in Eq. 6.14 and determine which is more diffusive. For instance,
if we choose ∆t so that it satisfies Ca = 0.8 on a given grid resolution (e.g.,
∆t = 0.8,∆x = 1.0, a = 1.0), we see from Eq. 6.14 that

κ =

{
0.1000 for upwind,
0.1152 for LF.

(6.18)

Therefore, the Lax-Friedrichs method is more diffusive than the upwind method.

In Fig. 1, it is shown that the LF solution also exhibits a very distinctive
phenomenon called “odd-even decoupling” in which the numerical solution expe-
riences spurious oscillations (which is different from the fluctuating oscillations
in the second-order methods) with the shortest possible wave length of 2∆x.

106

Homework 1 (10 points) Show that a modified equation for Lax-Friedrichs
method is

ut + aux =
∆x2

2∆t

(
1− C2

a

)
uxx, (6.19)

where Ca = a∆t
∆x .

Remark: For stability, we know the diffusion coefficient needs be positive κ > 0
all the time in the diffusion equation (see also Table 1 in Chapter 2). Using this
fact, we can easily retrieve the CFL condition, 0 ≤ Ca ≤ 1, once again for the
upwind and LF methods (assuming a > 0) from their modified equations Eq.
6.16 and Eq. 6.19, respectively.

Quick summary:

• In this section we obtained two modified equations of the two first-order
DEs (upwind and LF), by expanding Taylor series using the original PDEs.

• We see that new extra information appears as a diffusive term.

• This explains why the first-order methods experience diffusive behavior
across discontinuities.

• We refer this phenomenon the ‘dissipation error (or diffusion error)’ in
first-order methods.

Homework 2 (10 points) Consider

Un+1
j = Unj −

Ca
2

(
Unj+1 − Unj−1

)
, (6.20)

and explain why that the method is unstable for all ∆x/∆t by using the modified
equation analysis.

2.2. Dispersion Error in Second-order Methods

For our second-order methods, we consider the Lax-Wendroff (LW) method and
the Beam-Warming (BW) method on ut+aux = 0. We can see that the modified
equations for the two methods are, respectively,

ut + aux =
a∆x2

6

(
C2
a − 1

)
uxxx for LW, (6.21)

ut + aux =
a∆x2

6

(
C2
a − 3Ca + 2

)
uxxx for BW. (6.22)

Both of these modified equations have the form

ut + aux = µuxxx, (6.23)

which is a dispersion equation with a dispersion coefficient µ:

µ =

a∆x2

6

(
C2
a − 1

)
for LW,

a∆x2

6

(
C2
a − 3Ca + 2

)
for BW.

(6.24)

107

Homework 3 (20 points) Show Eq. 6.21 and 6.22.

The theory of dispersive waves can be easily understood if we take a look at
a Fourier series solution to this equation. Recall that we can write u(x, t) using
the Fourier component û(ξ, t), and vice versa:

u(x, t) =
1√
2π

∫

R
û(ξ, t)eIξxdξ, (6.25)

û(ξ, t) =
1√
2π

∫

R
u(x, t)e−Iξxdx, (6.26)

where ξ is a wave number and I =
√
−1.

Note: In this way, we can say that the Fourier components with different wave
number ξ propagate at different speeds, i.e., they disperse as time evolves. And
by linearity it suffices to consider each wave number in isolation – one big at-
tractive thing you can do using Fourier analysis.

Taking time and spatial derivatives of u(x, t) in Eq. 6.25, we get

ut(x, t) =
1√
2π

∫

R
ût(ξ, t)e

Iξxdξ, (6.27)

ux(x, t) =
1√
2π

∫

R
ûx(ξ, t)IξeIξxdξ. (6.28)

Therefore, we easily see that the Fourier transform of ut is ût (trivial!), and the
Fourier transform of ux is Iξû:

ût = ût, and ûx = Iξû (6.29)

Let us now take a Fourier transform of the dispersion equation Eq. 6.23,
and get

ût + aIξû = µ(Iξ)3û, (6.30)

which gives
ût = −I(aξ + uξ3)û ≡ −Iωû. (6.31)

Henceforth, this leads us to have

û(ξ, t) = e−Iωtη̂(ξ), (6.32)

where u(x, 0) = η(x). One thing to notice here is that this has a character
similar to advection problems in that |û(ξ, t)| = |η̂(ξ)| for all t and each Fourier
component maintains its original amplitude – which is good.

Now some bad news. If we recombine with the inverse Fourier transform
we obtain

u(x, t) =
1√
2π

∫

R
û(ξ, t)eIξxdξ, (6.33)

108

=
1√
2π

∫

R
e−Iωtη̂(ξ)eIξxdξ, (6.34)

=
1√
2π

∫

R
e
Iξ(x−ω

ξ
t)
η̂(ξ)dξ. (6.35)

This indicates that the speed at which this oscillating wave propagates is clearly
ω(ξ)/ξ, which is called the phase velocity cp(ξ) for wave number ξ. This is the
speed at which wave peaks travel. Consider cp in our model case

cp(ξ) =
ω(ξ)

ξ
= a+ µξ2. (6.36)

This indicates that cp varies with ξ and is very close to the propagation velocity
a of the original advection equation only for small values of ξ. This is why we
see in second-order methods those oscillatory waves at different wave numbers
ξ that are traveling at different phase velocity cp. The waves generate trains of
oscillations before and after the discontinuity as shown in Fig. 1.

There is another important quantity called the group velocity, denoted by
cg and defined by cg(ξ) = ω

′
(ξ). For our model problem, we get

cg(ξ) =
dω

dξ
= a+ 3µξ2. (6.37)

This is a velocity at which ‘the wave packet’ as a group propagates, carrying
the energy associated with the overall propagation velocity. The usefulness of
cg is that it provides a good measure for general data which is usually composed
of many wave numbers, therefore, different waves traveling at different phase
velocities generate many ‘ripples’ instead of a single Gaussian wave. It is appar-
ent that the wave length λ of the ripples is changing through this wave and the
energy associated with the low wave number (i.e., larger ripples) is apparently
moving faster than the energy associated with the high wave numbers (smaller
ripples). The propagation velocity of this energy is the group velocity, rather
than the phase velocity.

From Eq. 6.24, we can compute values of the dispersion coefficients for LW
and BW. Since 0 ≤ Ca < 1 for stability, we get

µ =

a∆x2

6

(
C2
a − 1

)
< 0 for LW,

a∆x2

6

(
C2
a − 3Ca + 2

)
> 0 for BW.

(6.38)

Therefore, if we further assume a > 0, we get

cg =

a+ 3µξ2 < a for LW,

a+ 3µξ2 > a for BW.
(6.39)

This now explains for LW that all wave numbers travel slower than a, lead-
ing to an oscillatory wave train lagging behind the discontinuity as in Fig. 1. On

109

the other hand, for BW, the oscillations are faster than the advection velocity
a, resulting in the oscillations ahead of the discontinuity.

Remark: Please take a look at Wikipedia for a nice illustrative description on
the phase velocity and the group velocity:

http://en.wikipedia.org/wiki/Phase_velocity

Quick summary:

• We started our discussion from the two second-order DEs,

• The modified equation approach revealed that there is an extra term called
the dispersion term

• The Fourier analysis applied to the modified dispersion equations enabled
us to explain the oscillatory behaviors due to the dispersion term, either
ahead or behind the discontinuity.

Chapter 7

Computing Discontinuous
Solutions of Non-linear
Conservation Laws

In Chapter 6, we have seen in the linear conservation laws there are difficulties
in computing numerical solutions at discontinuities. We now study in this chap-
ter what happens when solving nonlinear conservation laws numerically. For
nonlinear problems, there are additional difficulties that can arise:

• The discrete method might be “nonlinearly unstable”, i.e., unstable on
the nonlinear problem even though linearized version appear to be stable.
Often oscillations will trigger nonlinear instabilities.

• The discrete method might converge to a function that is not a weak
solution of our original equation, or

• The discrete method might converge to a wrong weak solution that does
not satisfy the entropy condition.

The last case indicating we might get the wrong weak solution is not so sur-
prising, since we already have discussed there could be infinitely many different
weak solutions violating the entropy condition.

The fact pointed out in the second case, however, sounds bit more puzzling,
but can be easily explained in the following way. Recall that from our previous
homework problem (see Eq. 7.26 in Chapter 2), we have seen that one can derive
two different weak solutions for Burgers’ equation, one for

ut +
(u2

2

)
x

= 0, (7.1)

and another for

(u2)t +
(2u3

3

)
x

= 0. (7.2)

The two equations have exactly the same smooth solutions, but the Rankine-
Hunogiot condition gives different shock speeds, and hence two different weak

110

111

solutions. Let’s now say that we have a finite difference method that is consis-
tent with one of these equations, say Eq. 7.1. Then the method is also consistent
with Eq. 7.2 because the Taylor series expansion – which assumes smoothness –
should give the exact same result in either case, since both are exactly same for
smooth solutions. We then see that although the method is consistent with both
Eq. 7.1 and Eq. 7.2, it can only possibly converge to one of the two different
weak solutions, say Eq. 7.2, which is not a weak solution of the original Burgers’
equation.

Example: Let us write Burgers’ equation in a nonconservative form,

ut + uux = 0. (7.3)

A straightforward extension of the upwind method for ut + aux = 0 can give us
a natural discretization of Eq. 7.3:

Un+1
i = Uni −

∆t

∆x
Uni

(
Uni − Uni−1

)
, (7.4)

where we assume Uni ≥ 0 for all n and i. It turns out that the method Eq.
7.4 is adequate for smooth solutions, but does not, in general, converge to a
discontinuous weak solution of Burgers’ equation Eq. 7.1 as the grid is refined.
For instance, consider the initial condition

u0(x) =

{
1 for x < 0
0 for x ≥ 0.

(7.5)

In discrete form, we obtain

U0
i =

{
1 for xi < 0
0 for xi ≥ 0.

(7.6)

It is easy to check from Eq. 7.4 that U1
i = U0

i for all i, and recursively, we get
Uni = U0

i for all i and n, regardless of the grid and time resolutions ∆x and ∆t.
As the grid is refined, the numerical solution then converges very nicely to its
initial function u(x, t) = u0(x) which is not a weak solution of Eq. 7.1 or Eq.
7.2 either.

Note: Notice that u(x, t) = u0(x) satisfying Eq. 7.5 is not a weak solution of
Burgers’ equation.

In this example, the solution u(x, t) = u0(x) is obviously wrong as it simply
represents a standing discontinuous data for all t > 0, albeit the discontinuity
should advect. How does the method Eq. 7.4 behave with other initial condi-
tion? We take a look at this in the next section.

1. Conservative vs. Non-conservative Schemes at Discontinuity

We now consider an initial Riemann data on [0, 1] given by

u0(x) =

{
2 for x < 0.3
1 for x ≥ 0.3.

(7.7)

112

If this initial data is solved using the method in Eq. 7.4, the solution may
look reasonably correct, but with a wrong propagation speed. Fig. 1 shows
the true (black solid curve) and computed solution (red dotted curve) at time
t = 0.2390625 (or after the discontinuity propagates a distance of d = 0.35). We
can see that the solution does look very nice, but it obviously has the wrong
propagation speed.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.2

1.4

1.6

1.8

2

Figure 1. Numerical (red circles with dotted curve) and exact (black solid
curves) solutions to Burgers’ equation at t = 0.2390625 using the nonconser-
vative discretization in Eq. 7.4 with the initial condition given by Eq. 7.7.
The location of the discontinuity is not correct, indicating the propagation
speed of the method is wrong. The numerical solution is resolved on 64 cells
with Ca = 0.9.

The fact that we get a wrong shock propagation speed is because the method

Un+1
i = Uni −

∆t

∆x
Uni

(
Uni − Uni−1

)
, (7.8)

is not conservative.

On the other hand, let us consider the conservative discrete upwind method
(a.k.a. Godunov’s method) to solve the same initial data. The conservative
Godunov’s method takes the form

Un+1
i = Uni −

∆t

∆x

(1

2
(Uni)2 − 1

2
(Uni−1)2

)
, (7.9)

On smooth solutions, both of these methods are first-order accurate, and
they give comparable results. As shown in Fig. 1, however, the nonconservative

113

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

1.2

1.4

1.6

1.8

2

Figure 2. Numerical (red circles with dotted curve) and exact (black solid
curves) solutions to Burgers’ equation at t = 0.2390625 using the conservative
discretization in Eq. 7.9 with the initial condition given by Eq. 7.7. The loca-
tion of the discontinuity is correct now and the solution becomes smeared out
at the discontinuity as seen in the previous chapter. The numerical solution
is resolved on 64 cells with Ca = 0.9.

update fails to converge to a correct weak solution of the conservation law. The
conservative method in Eq. 7.9 produces a slightly smeared approximation to
the shock, but it is smeared about the correct location.

Note that the nonconservative scheme Eq. 7.4 can be rewritten as

Un+1
i = Uni −

∆t

∆x

(1

2
(Uni)2 − 1

2
(Uni−1)2

)
+

1

2
∆t∆x

(Uni − Uni−1

∆x

)2
. (7.10)

It is identical to the conservative Godunov’s method except for the last term
which approximates the time integral of 1

2∆x(ux)2. For smooth regions, the last
term is bounded and can be expected to vanish as ∆x→ 0. At discontinuity, it
does not vanish, and give a finite contribution in the limit, leading to a different
shock speed.

The last term can be also viewed as a singular source term that is being
added to the conservation law, an approximation to a delta function concen-
trated at the shock discontinuity.

It is worth to discuss conservation property of finite volume methods in
a discrete sense. Consider a 1D domain [a, b] subdivided into N subdomains,
[xi−1/2, xi+1/2] such that [a, b] = ∪Ni=1[xi−1/2, xi+1/2].

114

A conservative finite volume method takes the form

Un+1
i = Uni −

∆t

∆x

(
Fn
i+ 1

2

− Fn
i− 1

2

)
, (7.11)

where the value Uni represents the volume averaged quantity over the ith sub-
domain [xi−1/2, xi+1/2],

Uni =
1

∆x

∫ xi+1/2

xi−1/2

u(x, tn)dx, (7.12)

and the flux function Fni+1/2 approximates the time averaged flux along xi+1/2,

Fn
i+ 1

2

=
1

∆t

∫ tn+1

tn
f(u(xi+1/2, t))dt. (7.13)

If we sum ∆xUn+1
i from Eq. 7.11 over the subdomains, we obtain

∆x
N∑

i=1

Un+1
i = ∆x

N∑

i=1

Uni −∆t
(
Fn
N+N

2

− Fn1
2

)
. (7.14)

Here, the sum of the flux differences cancels out except for the two fluxes at the
left- and right-most domain boundaries x = a and x = b.

Note that the relation in Eq. 7.14 resembles the true conservation law of
the exact solution u(x, t) on [a, b] (see Eq. 3.42),

∫ b

a
u(x, tn+1)dx−

∫ b

a
u(x, tn)dx =

∫ tn+1

tn
f(u(a, t))dt−

∫ tn+1

tn
f(u(b, t))dt.

(7.15)
In this way, it makes sense the discrete method in Eq. 7.14 is said to be in

conservation form. This discrete conservation means that any shocks we com-
pute must, in a sense, be in the “correct” location. Consider, on the other hand,
the nonconservative method Eq. 7.4 of Burgers’ equation. It is easy to verify
that the nonconservative method Eq. 7.4 does not satisfy Eq. 7.14.

Homework 1 Write a simple program for Burgers’ equation to implement both
the nonconservative and conservative methods in Eq. 7.8 and Eq. 7.9, respec-
tively. Use the two methods to reproduce the results in Fig. 1 and Fig. 2.

2. Consistency for Discontinuous Solutions

In the case of smooth solutions, we made use of Taylor series expansions in order
to define consistency. We no longer have a chance to use Taylor series expansions
on discontinuous solutions. Instead we need the form of consistency specified as
below.

115

For a hyperbolic problem where information propagates with finite speed,
it is convenient to write Fni±1/2 as a function of neighboring cell data, e.g., Uni−1,

Uni and Uni+1. See Eq. 5.60 and Eq. 5.61. The formula for conservation law can
then be written using the numerical flux of the form

Fni+1/2 = F(Uni , U
n
i+1). (7.16)

Definition: In general (also for discontinuous solutions), the method

Un+1
i = Uni −

∆t

∆x

(
F(Uni , U

n
i+1)−F(Uni−1, U

n
i)
)

(7.17)

is said to be consistent with the original conservation law if the numerical flux
function F reduces to the true flux f for the case of constant flow. That is to
say, if the exact solution u(x, t) ≡ ū is constant, then from Eq. 7.13, we expect

F(ū, ū) = f(ū), ∀ū ∈ R. (7.18)

This is part of the basic consistency condition.

Remark: We generally also expect continuity in this function as Uni−1, Uni vary,
so that

lim
Uni−1,U

n
i →ū
F(Uni−1, U

n
i) = f(ū). (7.19)

For this, we can impose some requirement of Lipschitz continuity defined as fol-
low.

Definition: We say F is Lipschitz at ū if there exist a constant L (which may
depend on ū) such that

|F(Uni−1, U
n
i)− f(ū)| ≤ Lmax

(
|Uni − ū|, |Uni−1 − ū|

)
(7.20)

for all Uni−1 and Uni with |Uni − ū| and |Uni−1 − ū| sufficiently small. We say F is
Lipschitz continuous if it is Lipschitz at every point.

Note: For consistency it suffices to have F a Lipschitz continuous of each
variable.

3. The Lax-Wendroff Theorem

The above discussion suggests that we can hope to correctly approximate discon-
tinuous weak solutions to the conservation law by using a conservative discrete
scheme.

Lax and Wendroff proved – the Lax-Wendroff theorem – that this is indeed
true, at least in the sense that if a discrete solution converges to some function
u(x, t) as the grid is refined, then this function u(x, t) will in fact be a weak
solution of the conservation law.

116

It should be noted that the theorem does not guarantee convergence. For
that we need some form of stability, and even then, if there is more than one
weak solution it might be that one sequence of approximations will converge to
one weak solution, while another sequence converges to a different weak solution.

Nonetheless, this is a very powerful and important theorem because it says
that we can have confidence in solutions we compute. In practice we compute a
single approximation on one fixed grid. If this solution looks reasonable and has
well-resolved discontinuities – an indication that the method is stable and our
grid is sufficiently fine – then we can believe that it is in fact a good approxi-
mation to some weak solution.

We now state the theorem without proof. For complete proof please see our
main textbook by LeVeque.

Theorem: (Lax and Wendroff) Consider a sequence of grids indexed by i, n =
1, 2, ..., with mesh parameters ∆x and ∆t vanish to zero as i and n approaches
to ∞. Let Uni denote the numerical approximation computed with a consistent
and conservative method on the ith grid and at nth time step. Suppose that Uni
converges to a function u as i, n → ∞, in the sense made precise below. Then
u(x, t) is a weak solution of the conservation law.

We will assume that we have convergence of Uni to u in the following sense:

1. Over every bounded set Ω = [a, b]× [0, T] in x-t space,

∫ T

0

∫ b

a
|Uni (x, t)− u(x, t)|dxdt→ 0 as i, n→∞. (7.21)

This is the l1-norm over the set Ω, so that we can simply write

||Uni − u||1,Ω → 0 as i, n→∞. (7.22)

2. We also assume a property called Total Variation Bounded, or TVB that
for each T there is an R > 0 such that

TV (Uni (·, t)) < R, for all 0 ≤ t ≤ T, i, n = 1, 2, · · · (7.23)

Here TV denotes the total variation function defined as

TV (v) = sup

N∑

j=1

|v(ξj)− v(ξj−1)| (7.24)

where the supremum is taken over all subdivisions of there real line

−∞ = ξ0 < ξ1 < · · · < ξN =∞. (7.25)

Note: The Lax-Wendroff theorem does not guarantee that weak solutions ob-
tained in this manner satisfy the entropy condition, and there are many examples
of conservative numerical methods that converge to weak solutions violating the

117

entropy condition.

Example: Consider Burgers’ equation with initial data

u0(x) =

{
−1 for x < 0,

1 for x > 0.
(7.26)

Let us discretize the initial condition by setting

U0
i =

{
−1 for xi ≤ 0,

1 for xi > 0.
(7.27)

We know from Case II of the Riemann problem in Chapter 3 that a correct
entropy satisfying weak solution includes the rarefaction wave described as in
Eq. 3.38. But we also can easily verify that the stationary discontinuity u(x, t) =
u0(x) satisfying Eq. 7.26 is also a weak solution. (Why?)

The stationary weak solution can be readily obtained by conservative meth-
ods because the Rankine-Hugoniot condition yields the shock speed s = 0 due
to f(−1) = f(1) for Burgers’ equation. This means that there are very natural
conservative methods that converge to this latter solution – the entropy violat-
ing weak solution – rather than to the physically correct rarefaction wave.

Note: Notice the sensitivity of this numerical solution to our choice of discrete
initial data. If we take a different discretization instead of Eq. 7.26, say,

U0
i =

−1 for xi < 0,

0 for xi = 0,
1 for xi > 0,

(7.28)

then it turns out that the upwind method defined by the upwind flux

Fni+1/2 = F(Uni , U
n
i+1) =

f(Uni) if si+1/2 ≥ 0,

f(Uni+1) if si+1/2 < 0,
(7.29)

gives the proper rarefaction wave solution. Here, si+1/2 is the local shock speed
given by the Rankine-Hugoniot condition,

si+ 1
2

=
[f]

[U]
=
f(Uni+1)− f(Uni)

Uni+1 − Uni
. (7.30)

4. Godunov’s Method for Finite Volume Methods

The first-order upwind method for the constant-coefficient advection

Un+1
i = Uni − a

∆t

∆x

(
Uni − Uni−1

)
(7.31)

can be considered as a special case of the following approach which was origi-
nally proposed by Godunov (1959) as a method for solving the nonlinear Euler

118

equations of gas dynamics – which we will study in later chapters. We are going
to refer this approach to as the REA algorithm, for reconstruct-evolve-average.

REA Algorithm:

1. Reconstruct a peicewise polynomial function ũ(x, tn) defined for all x,
from the cell averages Uni . In the simplest case this is a piecewise constant
function that takes the value Uni in the ith grid cell, i.e.,

ũ(x, tn) = Uni ,∀x ∈ [xi−1/2, xi+1/2]. (7.32)

2. Evolve the hyperbolic equation exactly (or approximately) with this initial
data in order to obtain ũ(x, tn+1) a time ∆t later.

3. Average this function over each grid cell to obtain new cell averages

Un+1
i =

1

∆x

∫ xi+1/2

xi−1/2

ũ(x, tn+1)dx. (7.33)

The REA algorithm then repeats this process in the next time step.

The Godunov’s method is credited with the first successful conservative
extension of the Courant-Isaccson-Rees (CIR) scheme (1952) to nonlinear system
of conservation laws,

Un+1
i = Uni −

f ′(Uni)∆t

∆x

(
Uni − Uni−1

)
. (7.34)

Remark: The CIR scheme was one of the first methods that attempted using
upwinding for the equations of gas dynamics, using a linear interpolation based
on the two nearest grid values, which are (Uni−1, U

n
i) and (Uni , U

n
i+1), depending

on whether the corresponding characteristic speed is positive or negative, e.g.,
f ′(Uni) > 0 or f ′(Uni) < 0.

In other words, if f ′(Uni) > 0 we would interpolate between Uni−1 and Uni ,
giving

Un+1
i =

[(
1− f ′(Uni)∆t

∆x

)
Uni +

f ′(Uni)∆t

∆x
Uni−1

]
(7.35)

which is another form of Eq. 7.34 as a linear combination. This can be thought
as a natural way to achieve upwind approximation to ut+f

′(u)ux = 0, but this is
not a good method for a problem with shocks, since it is not in conservation form.

Godunov’s first-order upwind method is of the form Eq. 7.11, where the
intercell numerical fluxes Fn

i+ 1
2

are computed using solutions of local Riemann

problems. The basic assumption of the method is that at a given time level n the
data has a piecewise constant distribution of the form Eq. 7.12, as illustrated
in Fig. 3.

119

Figure 3. Piecewise constant distribution of data at time t = tn.

The data at time level n may be seen as pairs of constant states (Uni , U
n
i+1)

separated by a discontinuity at the intercell boundary xi+1/2. Then locally, one
can define a Riemann problem (or a local RP):

PDE: ut + f(u)x = 0 (7.36)

IC: u(x, 0) = u0(x) =

{
Uni if x < xi+1/2,
Uni+1 if x > xi+1/2.

(7.37)

This local RP may be solved analytically, if desired. Thus at a given time
level n, we have the local RP RP (Uni , U

n
i+1) with initial data (Uni , U

n
i+1).

We are now ready for the next step of finding the solution of the global prob-
lem at the next time level n + 1, a way of combining the local RPs to produce
the global update of Un+1

i .

One way to obtain the global Godunov solution is to write the local RPs in
the conservative form, and focus on computing upwind stable Godunov fluxes.
Applying the exact same steps for ũ(x, t) as discussed in considering Eq. 7.11 –
Eq. 7.15 – i.e., replace u with ũ in Eqs. 7.11, 7.12, 7.13, and 7.15, where ũ(x, t)
is understood as the combined solution of RP (Uni−1, U

n
i) and RP (Uni , U

n
i+1) and

is a true solution satisfying Eq. 7.15 – we arrive to define intercell Godunov

fluxes Fn,Godi±1/2

Fn,God
i− 1

2

=
1

∆t

∫ ∆t

0
f(ũ(xi−1/2, t))dt, (7.38)

Fn,God
i+ 1

2

=
1

∆t

∫ ∆t

0
f(ũ(xi+1/2, t))dt. (7.39)

120

Note here that we can compute the above integrals exactly, since ũ(xi±1/2, t)
are constant over the time interval [0,∆t]. This is because ũ(xi±1/2, t) are the
solutions of RP (Uni−1, U

n
i) and RP (Uni , U

n
i+1), and each of the RP centered at

xi+1/2 has a similarity solution that is constant along rays (x − xi+1/2)/t =
constant. And especially, for instance, the value ũ(xi+1/2, t) is constant along
(x− xi+1/2)/t = 0, which represents each intercell boundary.

If we denote the (constant) solution ũ(xi+1/2, t) of RP (Uni , U
n
i+1) by u∗i+1/2

at the interfaces, all that requires to construct the Godunov scheme is obtain
the intercell Godunov fluxes

Fn,God
i± 1

2

= f
(
ũ(xi± 1

2
, t)
)

= f
(
u∗
i± 1

2

)
(7.40)

Note that the above Godunov flux is consistent with f because if Uni =
Uni+1 ≡ ū then u∗

i± 1
2

= ū as well.

Example: For the constant-coefficient linear scalar conservation law, ut+aux =
0 the Godunov flux becomes the standard upwind flux,

Fn,God
i+ 1

2

= f
(
u∗
i+ 1

2

)
= f

(
RP (Uni , U

n
i+1)

)
=

f(Uni) = aUni if a > 0,

f(Uni+1) = aUni+1 if a < 0.

(7.41)

Note: When applied to the scalar conservation law with f(u) = au, Godunov’s
scheme reduces to the CIR scheme.

Example: Let’s consider the Godunov’s method for Burgers’ equation in the
context of nonlinear PDEs. We seek for the solution u∗i±1/2 of RP (Uni , U

n
i+1) in

two cases, first when Uni ≥ Uni+1; and second when Uni < Uni+1. Recalling the
Riemann solutions Eq. 3.35 and Eq. 3.38 from Chapter 3, we get

• Uni ≥ Uni+1:

Fn,God
i+ 1

2

= f
(
u∗
i+ 1

2

)
=

f(Uni) if s > (x− xi+1/2)/t,

f(Uni+1) if s < (x− xi+1/2)/t,
(7.42)

where s = [f]/[U] = 1
2

(
Uni +Uni+1

)
is the shock speed for Burgers’ equation.

• Uni < Uni+1:

Fn,God
i+ 1

2

= f
(
u∗
i+ 1

2

)
=

f(Uni) if (x− xi+1/2)/t ≤ Uni ,

f
(
x−xi+1/2

t

)
if Uni < (x− xi+1/2)/t < Uni+1,

f(Uni+1) if (x− xi+1/2)/t ≥ Uni+1,
(7.43)

121

Note that since we are evaluating Godunov fluxes at x = xi+1/2, the above
formulas become even much simpler:

• Uni ≥ Uni+1:

Fn,God
i+ 1

2

= f
(
u∗
i+ 1

2

)
=

f(Uni) if s ≥ 0

f(Uni+1) if s < 0.
(7.44)

• Uni < Uni+1:

Fn,God
i+ 1

2

= f
(
u∗
i+ 1

2

)
=

f(Uni) if 0 ≤ Uni ,

f(0) if Uni < 0 < Uni+1,

f(Uni+1) if 0 ≥ Uni+1,

(7.45)

The Godunov’s method can be easily understood if we consider all five possi-
ble wave patterns in the solution of the Riemann problem for Burgers’ equation.
These are illustrated in Fig. 4.

If the solution is a shock wave then cases (a) and (c) can occur. The sought
value u∗i+1/2 on the t-axis depends on the sign of the shock speed s. If the solution

is a rarefaction wave then the three possible cases are shown in (b), (d), and (e).
Applying terminology from gas dynamics to the rarefaction cases, Figs. (b) and
(d) are called supersonic to the left and the right, respectively. The case of Fig.
(e) is what is called the transonic rarefaction or sonic rarefaction; as the wave
is crossed, there is a sign change in the characteristic speed u and thus there is
one point us at which its characteristic speed becomes 0, or us = 0, a sonic point.

Remark: In general, if we assume the flux function f(u) is convex (or concave),
i.e., f ′′(u) does not change sign over the range of u of interest, the sonic point
us is the (unique) value of u for which f ′(us) = 0. Because of this, us is also
called the stagnation point, since the value us propagates with velocity 0.

Remark: Let us remind that us is also called the sonic point, since in gas dy-
namics the eigenvalues u ± cs where u and cs are respectively the flow velocity
and sound speed, can take value 0 only when the fluid speed |u| is equal to the
sound speed cs.

Remark: The solution shown in Fig. 4 (e) is called a transonic rarefaction since
in gas dynamics the fluid is accelerated from a subsonic velocity to a supersonic
velocity through such a rarefaction. In a transonic rarefaction the value along
(x− xi+1/2)/t = 0 is simply us.

Quick summary: What is novel about the Godunov’s method is to utilize the
local Riemann problems at intercell boundaries in order to compute the global
solution of the conservation laws.

122

Figure 4. Five possible wave patterns, shown in the x-t plane, in the so-
lution of the Riemann problem for Burgers equation when evaluating the
Godunov flux at xi+1/2. (a) left-going shock, u∗

i+ 1
2

= Un
i+1, (b) left-going

rarefaction, u∗
i+ 1

2

= Un
i+1, (c) right-going shock, u∗

i+ 1
2

= Un
i , (d) right-going

rarefaction, u∗
i+ 1

2

= Un
i , and (e) transonic rarefaction, u∗

i+ 1
2

= (x− xi+1/2)/t.

Example: We solve Burgers’ equation ut +
(
u2

2

)
x

= 0 on [0, 1] using the first-

order Godunov’s method as we described above. The initial condition is given
by

u(x, 0) = u0(x) =

{
uL = −1 if x < xd,
uR = 2 if x ≥ xd, (7.46)

where xd = 0.5 is a location of the initial discontinuity. As discussed above the
first-order Godunov’s method converges this initial condition to a weak solution
that includes a rarefaction wave, centered at the initial discontinuity location
x = 0.5.

Shown in Fig. 5 are the exact rarefaction solution (black curve) and a
computed numerical solution on a grid resolution of N = 32 using CFL number
Ca = 0.9. We note that the exact solution can be computed on a given grid

123

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

1.5

2

Figure 5. The solid black curve is the entropy-satisfying exact solution to
Burgers’ equation with a transonic rarefaction wave. The red circle with
dotted line show computed solution using the first-order Godunov’s method.
The results self-similar and are obtained using t = tmax = 0.1.

resolution as,

uexact(x, t) =

uL if x ≤ xL,
x−xd
t if xL < x < xR,

uR if x ≥ xR,

(7.47)

where xL = xd +uLt and xR = xd +uRt are respectively the left and right most
locations that define the region where the time-dependent rarefaction wave is
located.

On the other hand, the numerical solution can be obtained by implement-
ing the Godunov flux as described in Eq. 7.44 and Eq. 7.45 using the true flux
function f(u) = u2/2 of Burgers equation. Notice that there is a little start-up
error existing two closest cells at the initial discontinuity location xd = 0.5 which
is due to a discretization error in resolving the stagnation point (or sonic point),
at which a vacuum condition is occurred numerically.

Homework 2 Implement the first-order Godunov’s method and reproduce the
results in the previous example.

Chapter 8

High-Order Methods for
Scalar Conservation Laws

The central idea in this chapter is the resolution of two contradictory require-
ments on numerical methods, namely high-order of accuracy and absence of
spurious unphysical oscillations in the vicinity of large gradients.

As seen in Chapter 6, it is well-known that high-order linear (constant coef-
ficient) schemes produce unphysical oscillations near discontinuities. A cure for
such spurious oscillations is to introduce the class of monotone methods. How-
ever, the statement of Godunov’s theorem for linear schemes illustrates – which
we will study in this chapter – that monotone methods are at most first-order
methods and are therefore of limited use. One way of resolving the contradiction
is by constructing Total Variation Diminishing Methods, or TVD Methods for
short.

In this chapter, we mainly discuss on the scalar conservative PDEs,

ut + f(u)x = 0. (8.1)

For the purpose of this Chapter, we choose f(u) to be the flux for the linear
constant advection f(u) = au most of the time. However, nonlinear cases are
also generally considered.

We mainly focus on building the class of second-order accurate methods of
the Godunov’s first-order upwind method. The monotonicity control is realized
by introducing the use of limiter that changes the magnitude of diffusive be-
haviors depending on the characteristic structure of the solutions, i.e., smooth
or discontinuous. We would like to apply the limiters in such a way that the
discontinuous portion of the solution remains non oscillatory, while the smooth
portion remains second-order accurate.

It is worth to be noted that the slope-limiter type approach was first pi-
oneered in van Leer’s work in his series of five papers, Towards the ultimate
conservative difference scheme I, II, III, IV, V, over the period of 1973 through

124

125

1979.

For the scalar advection equation there are many ways to interpret the same
method, in particular, we will see how the slope-limiter approach relates to flux-
limiter methods of the type studied by Sweby (1984). The general ideas of these
slope-limiter and flux-limiter methods can be extended to the systems of linear
and nonlinear equations.

Before proceeding further, let us first define a couple of key concepts related
to stability of the (nonlinear) scalar conservation laws.

Definition: A two-level method of the form

Un+1
i = N (Uni−r+1, · · · , Uni+s) (8.2)

with nonnegative integers r and s, is said to be a Total Variation Diminishing
(TVD) scheme, if

TV (Un+1) ≤ TV (Un),∀n. (8.3)

Definition: Schemes of the form in Eq. 8.2 is called monotone if

∂N
∂Unk

≥ 0,∀k. (8.4)

Example: The Lax-Friedrichs scheme for ut + aux = 0 can be written as

Un+1
i =

1

2

(
1 + Ca

)
Uni−1 +

1

2

(
1− Ca

)
Uni+1. (8.5)

One can easily check LF satisfies the relation in Eq. 8.4 and it is monotone.

Example: The Lax-Wendroff scheme for ut + aux = 0, written as

Un+1
i =

1

2
Ca

(
1 + Ca

)
Uni−1 +

(
1− C2

a

)
Uni −

1

2
Ca

(
1− Ca

)
Uni+1. (8.6)

is not monotone, since it fails to satisfy the relation in Eq. 8.4.

Definition: Schemes of the form in Eq. 8.2 for the scalar, nonlinear conser-
vation law are said to be Monotonicity Preserving Schemes, or MPS, provided
that

Uni ≥ Uni+1,∀i, (8.7)

implies that
Un+1
i ≥ Un+1

i+1 , ∀i, (8.8)

Remark: Any TVD method is MPS.

Remark: A fundamental property of the exact solution of the nonlinear scalar
conservation law, when the initial data u(x, 0) has bounded total variation
(TVB) (see Eq. 7.23), is

126

1. no new local extrema in x may be created,

2. the value of a local minimum increases (it does not decrease) and the value
of a local maximum decreases (it does not increase).

Remark: TVB can be considered as one of the weakest nonlinear stability con-
dition, in a sense that TVB ensures that a method does not blow up, at least
not in an oscillatory manner. TVB does allow large oscillations provided only
that spurious oscillations do not grow unboundedly large as time increases.

Remark: For linear methods, if the solution does not blow up then it must ei-
ther shrink or stay the same size. For nonlinear methods, however, have a much
richer variety of behaviors. When you say that a nonlinear method does not
blow up, or equivalently, the method is TVB, the method could still have other
provocative behaviors, such as, in theory, the error could start small and grow
in time, provided the error eventually stopped growing or reached a horizontal
asymptote, no matter how large that asymptote might be.

Remark: Let Smon be the set of monotone schemes, Stvd be the set of TVD
schemes, Stvb be the set of TVB schemes, and Smps be the set of monotonicity
preserving schemes. Then in general, one can show

Smon ⊆ Stvd ⊆ Stvb ⊆ Smps (8.9)

1. The REA algorithm with Piecewise Linear Reconstruction

Recall the reconstruct-evolve-average (REA) algorithm introduced in the previ-
ous chapter. For the scalar advection equation we derived the upwind method
by

1. reconstructing a piecewise ‘constant’ function ũ(x, tn) from the cell aver-
ages Uni ,

2. solving the advection equation with ũ(x, tn),

3. averaging the result at time tn+1 over each grid cell to obtain Un+1
i .

We now work out the three steps in details as follows:

Step 1: Reconstruction
In order to achieve better than first-order accuracy, we must use a better recon-
struction, the first step in REA, than a piecewise ‘constant’ function. That is
to say, we now replace the first-order constant reconstruction

ũ(x, tn) = Uni (8.10)

with a second-order ‘linear’ reconstruction

ũ(x, tn) = Uni + ∆n
i (x− xi), x ∈ Ii = [xi− 1

2
, xi+ 1

2
], (8.11)

127

where ∆n
i is the slope on the ith cell.

Several choices of ∆n
i include:

∆n
i =

Uni+1−Uni−1

2∆x centered slope,

Uni −Uni−1

∆x upwind slope,

Uni+1−Uni
∆x downwind slope.

(8.12)

These are non TVD slope limiters, and thus may generate oscillations near
discontinuities.

Those that are TVD slope limiters are available:

∆n
i =

minmod
(
Uni −Uni−1

∆x ,
Uni+1−Uni

∆x

)
minmod,

minmod
(
Uni+1−Uni−1

2∆x , 2
Uni+1−Uni

∆x , 2
Uni −Uni−1

∆x

)
MC limiter,

vanLeer
(
Uni −Uni−1

∆x ,
Uni+1−Uni

∆x

)
van Leer’s limiter.

(8.13)
where the minmod function of two argument is defined by

minmod(a, b) =

a if |a| < |b| and ab > 0,

b if |b| < |a| and ab > 0,

0 if ab < 0.

(8.14)

The vanLeer function of two argument is defined as a harmonic mean,

vanLeer(a, b) =

0 if ab ≤ 0,

2ab
a+b otherwise .

(8.15)

In the above, the MC limiter (monotonized central-differencing limiter)
gives the sharpest possible slope value in the vicinity of steep gradients; while
the minmod limiter the smoothest among three. The van Leer’s limiter is in the
middle.

Note that the linear reconstruction is defined in such a way that

• the value at cell center is Uni : ũ(xi, t
n) = Uni .

• the cell average is Uni :

1

∆x

∫

Ii

ũ(x, tn)dx = Uni . (8.16)

128

These two facts are crucial in developing conservative methods for conservation
laws, because in order that the REA algorithm to be conservative we should use
a conservative reconstruction in Step 1. And these two facts guarantee that the
linear reconstruction is conservative indeed. Note that Step 2 and Step 3 are
conservative in general.

From Eq. 8.11, we see that

ũ(xi+ 1
2
, tn) =

URi = Uni + ∆x
2 ∆n

i if a > 0,

ULi+1 = Uni+1 − ∆x
2 ∆n

i+1 if a < 0.
(8.17)

Step 2: Evolve
For the scalar advection equation ut + aux = 0, a > 0, we can easily solve the
equation for ũ(x, tn+1) with the data ũ(x, tn) by tracing back to cell Ii:

ũ(x, tn+1) = ũ(x− a∆t, tn), ∀x ∈ Ii. (8.18)

Similarly, for a < 0, we trace back to cell Ii+1:

ũ(x, tn+1) = ũ(x− a∆t, tn),∀x ∈ Ii+1. (8.19)

Step 3: Average
For the scalar advection equation ut + aux = 0, a > 0, we can easily solve the
equation with the data ũ(x, tn), for t ∈ [tn, tn+1]:

ũ(xi+ 1
2
, t) = ũ(xi+ 1

2
− a(t− tn), tn) (8.20)

= Uni + ∆n
i

(
xi+ 1

2
− a(t− tn)− xi

)
(8.21)

= Uni + ∆n
i

(∆x

2
− a(t− tn)

)
. (8.22)

Similarly, we get for a < 0,

ũ(xi+ 1
2
, t) = Uni+1 + ∆n

i+1

(
xi+ 1

2
− a(t− tn)− xi+1

)
(8.23)

= Uni+1 −∆n
i+1

(∆x

2
+ a(t− tn)

)
. (8.24)

In summary we obtain:

ũ(xi+ 1
2
, t) =

ũL = Uni + ∆n
i

(
∆x
2 − a(t− tn)

)
if a > 0,

ũR = Uni+1 −∆n
i+1

(
∆x
2 + a(t− tn)

)
if a < 0.

(8.25)

Especially when t = tn+1/2, we get :

ũ(xi+ 1
2
, tn+1/2) =

ũL = Uni + ∆x
2 ∆n

i

(
1− Ca

)
if a > 0,

ũR = Uni+1 − ∆x
2 ∆n

i+1

(
1 + Ca

)
if a < 0.

(8.26)

129

The REA procedure is illustrated in Fig. 1. Using the mid-point quadrature
rule in time, we now can give the second-order accurate Godunov-type flux for
the piecewise linear method (PLM):

FPLM
i+ 1

2

=
1

∆t

∫ tn+1

tn
f
(
ũ(xi+ 1

2
, t)
)
dt = f

(
ũ(xi+ 1

2
,
∆t

2
)
)

=

f(ũL) if a > 0,

f(ũR) if a < 0.
(8.27)

Example: The PLM flux for the linear advection ut + aux = 0 is

FPLM
i+ 1

2

=

a
[
Uni + ∆x

2 ∆n
i

(
1− Ca

)]
if a > 0,

a
[
Uni+1 − ∆x

2 ∆n
i+1

(
1 + Ca

)]
if a < 0.

(8.28)

Note: The CFL condition for the linear constant advection equation is simply

∆t =
Ca∆x

a
, (8.29)

with the constant advection velocity a. Since a is constant, this calculation does
not require any local evaluation on each cell, nor need any temporal update.
Therefore ∆t can be computed only once at the beginning of simulations.

Remark: The PLM formulation discussed above can be naturally extended to
solve Burgers’ equation when we replace the constant advection velocity a with
the local shock speed si+1/2 = (ui + ui+1)/2 at each interface xi+1/2.

Then the PLM Godunov-type flux for Burgers’ equation becomes:

• flux for shock solution when Uni ≥ Uni+1:

FPLM
i+ 1

2

=

1
2

[
Uni + ∆x

2 ∆n
i

(
1− Ca

)]2
if si+ 1

2
> 0,

1
2

[
Uni+1 − ∆x

2 ∆n
i+1

(
1 + Ca

)]2
if si+ 1

2
< 0.

(8.30)

• flux for rarefaction solution when Uni < Uni+1:

FPLM
i+ 1

2

=

1
2

[
Uni + ∆x

2 ∆n
i

(
1− Ca

)]2
if 0 ≤ Uni ,

0 if Uni < 0 < Uni+1,

1
2

[
Uni+1 − ∆x

2 ∆n
i+1

(
1 + Ca

)]2
if 0 ≥ Uni+1.

(8.31)

In this case, the CFL condition should use

λmax = max
i
{si+ 1

2
} (8.32)

130

to calculate ∆t at each time step:

∆t =
Ca∆x

λmax
. (8.33)

Unlike the case of the linear constant coefficient advection, ∆t now varies both
spatially and temporally, hence requiring local propagation speeds si+1/2 and
their maximum every time step.

Note: The minmod function can be rewritten in a compact form:

minmod(a, b) =
1

2

(
sign(a) + sign(b)

)
min

(
|a|, |b|

)
, (8.34)

where the sign function is defined by

sign(a) =

1 if a ≥ 0,

−1 if a < 0.
(8.35)

Note: Likewise, the MC limiter can be rewritten in a compact form:

mc(a, b) =
(

sign(a) + sign(b)
)

min
(

min (|a|, |b|), 1

4
|a+ b|

)
, (8.36)

where

a =
Uni − Uni−1

∆x
, b =

Uni+1 − Uni
∆x

, (8.37)

Note: The observation of Eq. 8.28, Eq. 8.30 and Eq. 8.31 gives us that
it is straightforward to derive alternative “flux-limiter” formulations from the
slope-limiter formulations. In practice we therefore have two options that can
be implemented:

1. Option 1: More work on calculating the Riemann states ũ(xi+1/2, t) in
Eq. 8.25, while keeping the Godunov flux calculation simple as in Eq.
8.27,

2. Option 2: Omitting all the Riemann state calculations in Eq. 8.25, and
directly implementing the final form of the Godunov fluxes as in Eq. 8.28,
Eq. 8.30 and Eq. 8.31.

It seems that two options are exactly equivalent to each other in terms of
the needed computational efforts, performance gain, computational conveniency
and efficiency. This is true for the current applications of the scalar equations,
both linear and nonlinear, where the flux functions f(u) are simple in their
formulations.

However, for the system of equations, both linear and nonlinear, the flux
functions F(u) become a vector quantity that involves more complicated multi-
ple wave structures. Therefore, the flux functions for systems of equations are
lot more expensive to calculate numerically.

131

Many different types of flux formulations have been developed and are avail-
able – such as exact Riemann solvers, approximate Riemann solvers, etc. – in
order to provide different levels of computational efficiency, stability, and accu-
racy. In this sense, if you’re considering to explore implementing various types
of Riemann solvers, which is the standard practice found in many scientific soft-
wares, it should be much more efficient to keep the flux implementation simpler.

In this way, you provide ‘one same’ input (i.e., a pair of the left and right
Riemann states, (ũL, ũR)) to various types of Riemann fluxes at each cell inter-
face xi+1/2, rather than implementing ‘many different’ flux-limiter formulations
for many different types of Riemann fluxes.

Example: Nonlinear right-going shock
Solve Burgers’ equation on [0, 1] with IC:

u0(x) =

{
2 if x ≥ 0.5,
−1 if x < 0.5.

(8.38)

Let’s see how solutions look like using:
(i) the first-order Godunov method, and
(ii) the second-order PLM method with various slope limiters.

Example: Nonlinear standing shock
Solve Burgers’ equation on [0, 1] with IC:

u0(x) =

{
1 if x ≥ 0.5,
−1 if x < 0.5.

(8.39)

Let’s see how solutions look like using:
(i) the first-order Godunov method, and
(ii) the second-order PLM method with various slope limiters.

Example: Nonlinear left-going shock
Solve Burgers’ equation on [0, 1] with IC:

u0(x) =

{
1 if x ≥ 0.5,
−2 if x < 0.5.

(8.40)

Let’s see how solutions look like using:
(i) the first-order Godunov method, and
(ii) the second-order PLM method with various slope limiters.

Example: Nonlinear rarefaction
Solve Burgers’ equation on [0, 1] with IC:

u0(x) =

{
−1 if x ≥ 0.5,
1 if x < 0.5.

(8.41)

Let’s see how solutions look like using:
(i) the first-order Godunov method, and

132

(ii) the second-order PLM method with various slope limiters.

Example: Nonlinear sine wave evolving to shock
Solve Burgers’ equation on [0, 1] with IC:

u0(x) = sin(2πx) (8.42)

Let’s see how solutions look like using:
(i) the first-order Godunov method, and
(ii) the second-order PLM method with various slope limiters.

Example: Nonlinear moving shock and rarefaction
Solve Burgers’ equation on [0, 1] with IC:

u0(x) =

2 if x ≥ 0.3,
−1 if 0.3 < x ≤ 0.6,
3 if 0.6 < x ≤ 1.

(8.43)

Let’s see how solutions look like using:
(i) the first-order Godunov method, and
(ii) the second-order PLM method with various slope limiters.

Example: Nonlinear rarefaction and stationary shock
Solve Burgers’ equation on [0, 1] with IC:

u0(x) =

−1 if x ≥ 0.3,
2 if 0.3 < x ≤ 0.6,
−2 if 0.6 < x ≤ 1.

(8.44)

Let’s see how solutions look like using:
(i) the first-order Godunov method, and
(ii) the second-order PLM method with various slope limiters.

Example: Nonlinear two right-going shocks evolving into one right-going shock
Solve Burgers’ equation on [0, 1] with IC:

u0(x) =

4 if x ≥ 0.3,
2 if 0.3 < x ≤ 0.6,
−1 if 0.6 < x ≤ 1.

(8.45)

Let’s see how solutions look like using:
(i) the first-order Godunov method, and
(ii) the second-order PLM method with various slope limiters.

Example: Nonlinear two oppositely-moving shocks evolving into one left-going shock
Solve Burgers’ equation on [0, 1] with IC:

u0(x) =

4 if x ≥ 0.3,
0 if 0.3 < x ≤ 0.6,
−6 if 0.6 < x ≤ 1.

(8.46)

133

Let’s see how solutions look like using:
(i) the first-order Godunov method, and
(ii) the second-order PLM method with various slope limiters.

Example: Nonlinear two oppositely-moving shocks evolving into one standing shock
Solve Burgers’ equation on [0, 1] with IC:

u0(x) =

4 if x ≥ 0.3,
0 if 0.3 < x ≤ 0.6,
−4 if 0.6 < x ≤ 1.

(8.47)

Let’s see how solutions look like using:
(i) the first-order Godunov method, and
(ii) the second-order PLM method with various slope limiters.

Homework 1 Use the provided conservative first-order Godunov matlab code
and extend it to implement the second-order PLM method to solve Burgers’
equation with three initial conditions,

(a) a single mode sinusoidal wave over [0, 1]:

u0(x) = sin(2πx),∀x ∈ [0, 1], (8.48)

and
(b) a single shock profile

u(x, 0) = u0(x) =

{
2 if x > 0.5,
−1 if x < 0.5,

(8.49)

(c) a rarefaction wave

u(x, 0) = u0(x) =

{
−1 if x > 0.5,
1 if x < 0.5.

(8.50)

Use grid resolutions of N = 32, 64, 128 and compare your results with the results
shown in Fig. 1 in Chapter 6. For PLM, you use slope limiters of

(a) all three non TVD limiters (centered, upwind, and downwind) in Eq.
8.12, and

(b) all three TVD limiters (minmod, van Leer’s, and MC) in Eq. 8.13.

Please also check that you’re getting the following facts when using the non
TVD slope limiters:

• the Lax-Wendroff result when using the downwind slope,

• the Beam-Warming result when using the upwind slope,

• the Fromm’s result when using the centered slope.

134

Figure 1. Boundary extrapolated values. First-order update: (a) shows the
first-order piecewise constant reconstructed values, UR

i = Un
i and UL

i+1 =
Un
i+1 (red lines). (b) In the first-order method, there is nothing to be evolved,

and hence a pair of the Riemann states becomes (ũL, ũR) = (UR
i , U

L
i+1).

Second-order update: (c) At each interface xi+1/2 boundary extrapolated

values UR
i and UL

i+1 (blue lines) are reconstructed from the cell averaged val-
ues Un

i and Un
i+1 (red dotted lines). Notice that the equal area rule holds, see

Eq. 8.16. (d) The reconstructed values UR
i and UL

i+1 are temporally evolved

(orange dotted lines and arrows) to a new pair of Riemann states, (ũL, ũR), to
form the piecewise constant data for a local Riemann problem at the intercell
boundary xi+1/2.

Chapter 9

Finite Volume Methods for
the Euler Equations

In this chapter we first study how to solve the system of linear equations. The
idea is to ‘diagonalize’ the system of equations, which enables us to decouple
the ‘system’ into a group of separate piece of equations. Expressed in a system
of decoupled equations, these equations can be used for us to solve using the
knowledges for solving the ‘scalar’ linear equations we have established so far.

Finally, numerical approach to solve the system of nonlinear equations are
then achievable by considering local linearizations the nonlinear flux Jacobian
matrix.

Our goal in this chapter is to learn numerical methods to solve the Euler
equations. Unlike the simple scalar equations (for both linear and nonlinear) the
system of nonlinear equations such as the Euler equations, involve more compli-
cated wave structures that are multiple. This implies in the system of equations
(for both linear and nonlinear) we need to consider much richer characteristic
information, which is in contrast with the simple single-wave form in the scalar
equation case.

As a result, the Riemann problem itself is comprised of multiple jumps
across each characteristic curves. The associated numerical flux calculation,
therefore, should account for these jump conditions over the multiple character-
istic waves. Consequently, we would require more sophisticated numerical flux
formulations in constructing stable Godunov-type fluxes in upwind sense. For
this, we acquire to learn two numerical techniques in designing such numerical
fluxes: (i) Roe’s approximate Riemann solver, and (ii) HLL approximate Rie-
mann solver. As obviously mentioned in their names, these are both approximate
Riemann solvers.

One can construct yet more involved class of Riemann solvers, so-called the
exact Riemann solvers. We should understand the meaning of ‘exact’ not in a
way of utilizing analytical form of flux functions, but in a sense of obtaining
‘iterative’ flux solutions. The topic is beyond the scope of this course and we

135

136

are not going to treat this discussion.

On the other hand, there are other various types of ‘approximate’ Riemann
solvers. Several popular examples include fluxes such as other HLL-type of fluxes
in the family of HLL-fluxes: HLLC (hydro and MHD), HLLD (MHD only); lo-
cal Lax-Friedrichs Riemann solver (or also called the Rusanov Riemann solver),
two-shock or two-rarefaction Riemann solvers, Osher’s numerical flux, a class
of Riemann solvers hybridizing more than one type of formulations, and many
others.

In general, the choice of selecting proper Riemann solvers for real applica-
tions significantly affect the outcome of solution accuracy and stability. The nu-
merical behavior of any given Riemann solver may behave differently depending
on types of physics problems (e.g., hydro or MHD), dimensionality of problems
(e.g., 1D, 2D and 3D), and even on numerical methods themselves (e.g., the
first-order Godunov’s method, PLM, PPM, numerical viscosity of given meth-
ods, dimensionally split vs. unsplit schemes, etc.). For this reason, one needs
to choose Riemann solvers carefully before committing real scientific simulations.

Quick summary: Before proceeding further, let’s make one quick summary
connecting the scalar equations and the system of equations.

• Diagonalizing the system of equations allows us to use the numerical tech-
niques from the scalar equations,

• Linearizing the nonlinear system of equations enables us to use the numer-
ical techniques from the linear system of equations,

• Given multiple characteristic waves in the system, considering each upwind
direction in multiple waves makes the numerical solutions of the system
stable,

• We basically need to replace the single-wave information (a for the linear
advection; f ′(u) for Burgers’ equation) with the eigenvalues λi, i = 1, ...,m
(m = 3 for the Euler equations) of the m ×m flux Jacobian matrix A =
∂F(U)
∂U .

1. Linear Hyperbolic Systems

In this chapter we begin the study of systems of conservation laws by reviewing
the theory of a constant coefficient linear hyperbolic system. Here we can solve
the equations explicitly by transforming to characteristic variables – which will
be defined later.

Consider the linear system

Ut + AUx = 0, (9.1)

U(x, 0) = U0(x), (9.2)

137

where U : R× R+ → Rm and A ∈ Rm×m is a constant matrix. Notice here we
have now vector quantities for the conservative U and its flux F(U) = AU.

This system of conservation laws is called hyperbolic if A is diagonalizable
with real eigenvalues,

λ1 ≤ λ2 ≤ ...λk ≤ λm, (9.3)

so that we can decompose
A = RΛR−1 (9.4)

where Λ = dig(λ1, ..., λm) is a diagonal matrix of eigenvalues λk and R =
[r1|r2|...|rm] is the matrix whose columns are right eigenvectors, rk.

Note that AR = RΛ, i.e.,

Ark = λkrk, for k = 1, 2, ...,m. (9.5)

The system is called strictly hyperbolic if the eigenvalues are distinct,

λ1 < λ2 < ...λk < λm. (9.6)

For the most part, especially when considering 1D cases, we make this assump-
tion.

1.1. Diagonalizing the Coupled System into Decoupled System of
Linear Equations

Using the diagonalization of Eq. 9.4, we see that the original linear system Eq.
9.1 can be cast into

R−1Ut + ΛR−1Ux = 0, (9.7)

where R−1 is constant. Therefore we can further write this as

Wt + ΛWx = 0, (9.8)

where we define the characteristic variables W as

W = R−1U. (9.9)

Notice that since Λ is diagonal, this decouples into m independent scalar equa-
tions

∂wk
∂t

+ λk
∂wk
∂x

= 0, k = 1, 2, ...,m, (9.10)

where wk are the components of W

W =

w1

w2
...
wk
...
wm

. (9.11)

138

Similarly, we also denote the components of the conserved quantity by

U(x, t) =

u1

u2
...
uk
...
um

. (9.12)

Each of the equations in Eq. 9.10 is a constant coefficient linear advection
equation, and this is something we already know how to solve. That is, for each
wave k, we obtain its solution

wk(x, t) = wk(x− λkt, 0). (9.13)

The initial conserved data U(x, t) is recovered straightforwardly by project-
ing the characteristic variables W(x, t) back to the conserved vector space by
multiplying W by R,

U(x, t) = RW(x, t) = [r1|r2|...|rm]

w1(x, t)
w2(x, t)

...
wk(x, t)

...
wm(x, t)

. (9.14)

Note from Eq. 9.14 that the value wk(x, t) is the coefficient of rk in an
eigenvector expansion of the vector U(x, t), so that we can write out Eq. 9.14
as

U(x, t) =
m∑

k=1

rkwk(x, t) =
m∑

k=1

rkwk(x− λkt, 0). (9.15)

Note: We notice that R−1 is the accompanying left eigenvectors, and shall be
denoted by

L = R−1 (9.16)

whose rows represent individual k-th component of the left eigenvector lk, sat-
isfying

li · rj = δij , (9.17)

where δij is the Kronecker delta function.

2. Linearization of Nonlinear Systems

Now we consider a nonlinear system of conservation laws

Ut + F(U)x = 0, (9.18)

139

where U : R × R+ → Rm and F : Rm → Rm. This can be rewritten in the
quasilinear form

Ut + A(U)Ux = 0, (9.19)

where the flux Jacobian matrix A(U) = ∂F(U)/∂U is the m×m matrix. Again
the system is hyperbolic if A(U) is diagonalizable with real eigenvalues for all
values of U, at least in some range where the solution is known to lie, and strictly
hyperbolic if the eigenvalues are distinct for all U.

A full linearization can be available to the quasilinear form Eq. 9.19 if
we further linearize the problem about a constant state Ū = Uavg, and hence
obtain a constant coefficient linear system, with the Jacobian matrix frozen at
A(Ū) = A(Uavg),

Ut + A(Uavg)Ux = 0, (9.20)

As can be easily expected, the constant state Ū = Uavg represents an av-
eraged state between the left and right Riemann states at each interface when
solving the local Riemann problems. We refer to solving Eq. 9.20 as solving the
nonlinear system via linearization.

Note: The ‘nonlinear’ behavior of the linearized system would depend on the
choice of the mean averaged constant state Ū = Uavg. In general, this averaged
state is not uniquely determined, rather allowing infinitely many possible choices
of writing such linearization. For many practical purposes, an simple arithmetic
averaging between the left and right states can be used in the evaluation, i.e.,
Uavg = (UL+UR)/2, although one can provide a better averaging scheme, such
as the Roe’s averaged state. For our purposes in this course, however, we will
adopt the simple arithmetic averaging scheme.

3. The Euler Equations

Here in this section we present the one-dimensional time-dependent Euler equa-
tions obeying a simple thermodynamics property, an ideal Equation of State
(EoS), using three different formulations.

The first form is in the conservative-variable form by writing the Euler
equations in the conservative variables,

U =

ρ
ρu
E

 , (9.21)

where ρ is density, ρu is momentum where u is particle velocity, and E is total
energy per unit volume,

E = ρ
(u2

2
+ e
)
, (9.22)

with e the specific internal energy given by a caloric EoS,

e = e(ρ, p). (9.23)

140

The second form is in the primitive-variable form using the primitive variables,

V =

ρ
u
p

 , (9.24)

and lastly, the third form is what we already have derived using the characteristic
variables, which can be derived either from the conservative variables

W = (Rc)−1U = LcU =
(

l1, l2, l3
)c

ρ
ρu
E

 , (9.25)

or from the primitive variables,

W = (Rp)−1V = LpV =
(

l1, l2, l3
)p

ρ
u
p

 . (9.26)

Here we introduced the two families of eigenvectors as a pair, the first is
for the conservative left and right eigenvectors (Rc,Lc) that project between
the conservative and characteristic variables, while the second is for the primi-
tive left and right eigenvectors (Rp,Lp) that project between the primitive and
characteristic variables.

3.1. The Conservative-Variable Form of the Euler Equations

In the conservative formulation, we write the Euler equations in a compact
conservative form

Ut + F(U)x = 0, (9.27)

or
Ut + A(U)Ux = 0, (9.28)

where the vector of the conservative variables U is given by Eq. 9.21 and the
vector of the conservative fluxes is given by

F(U) =

f1

f2

f3

 =

ρu
ρu2 + p
u(E + p)

 , (9.29)

For ideal gases one has the simple expression for Eq. 9.23,

e = e(ρ, p) =
p

(γ − 1)ρ
, (9.30)

with γ denoting the ratio of specific heats. We also define the sound speed cs as

cs =

√
γp

ρ
. (9.31)

141

Writing Eq. 9.27 in the quasilinear form Eq. 9.19, we find the coefficient Jaco-
bian matrix A(U)

A(U) =

∂f1

∂u1

∂f1

∂u2

∂f1

∂u3

∂f2

∂u1

∂f2

∂u2

∂f2

∂u3

∂f3

∂u1

∂f3

∂u2

∂f3

∂u3

=

0 1 0

u2

2 (γ − 3) (γ − 3)u (γ − 1)

u3

2 (γ − 2)− c2su
γ−1

u2(3−2γ)
2 + c2s

γ−1 γu

.

(9.32)
We proceed to diagonalize the matrix A(U) to get

LcARc = Λ (9.33)

which allows us to write in a decoupled system of equations in terms of the
characteristic variables as in Eq. 9.10, or in a compact vector form,

Wt + ΛWx = 0. (9.34)

It is important to explicitly write out the conservative left and right eigen-
vectors (Rc,Lc) of A that correspond to the eigenvalues

Λ = diag(λ1, λ2, λ3) = (u− cs, u, u+ cs). (9.35)

The right eigenvectors can be found out to be the columns of the right eigenvector
matrix

Rc =

− ρ
2cs

1 ρ
2cs

− ρ
2cs

(u− cs) u ρ
2cs

(u+ cs)

− ρ
2cs

(
u2

2 + c2s
γ−1 − csu

)
u2

2
ρ

2cs

(
u2

2 + c2s
γ−1 + csu

)

, (9.36)

and the left eigenvectors are the rows of the left eigenvector matrix

Lc =
γ − 1

ρcs

−u2

2 − csu
γ−1 u+ cs

γ−1 −1

ρ
cs

(
− u2

2 + c2s
γ−1

)
ρu
cs

− ρ
cs

u2

2 − csu
γ−1 −u+ cs

γ−1 1

. (9.37)

3.2. The Primitive-Variable Form of the Euler Equations

The primitive formulation of the Euler equations is given as in terms of the
primitive variables V in Eq. 9.24,

Vt + A(V)Vx = 0, (9.38)

142

where we find the coefficient matrix is written as

A(V) =

∂f1

∂v1

∂f1

∂v2

∂f1

∂v3

∂f2

∂v1

∂f2

∂v2

∂f2

∂v3

∂f3

∂v1

∂f3

∂v2

∂f3

∂v3

=

u ρ 0

0 u 1
ρ

0 ρc2
s u

. (9.39)

As in the case of the conservative formulation, we can achieve a decoupled
system in terms of the characteristic variables by diagonalizing the matrix A(V),

LpARp = Λ, (9.40)

where the right eigenvectors are given by

Rp =

− ρ
2cs

1 ρ
2cs

1
2 0 1

2

−ρcs
2 0 ρcs

2

 , (9.41)

and the left eigenvectors are given by

Lp =

0 1 − 1
ρcs

1 0 − 1
c2s

0 1 1
ρcs

. (9.42)

Using these eigenvectors, we can convert the primitive form in Eq. 9.38 to the
the exact same diagonalized form in Eq. 9.34 written in the characteristic vari-
ables W.

Note that there is a simple relationship between A(U) and A(V). First
notice that

dU = QdV, (9.43)

where

Q =
dU

dV
=

1 0 0

u ρ 0

u2

2 ρu 1
γ−1

. (9.44)

Similarly,
dV = Q−1dU, (9.45)

where

Q−1 =
dV

dU
=

1 0 0

−u
ρ

1
ρ 0

1
2(γ − 1)u2 −(γ − 1)u γ − 1

. (9.46)

143

Then by chain rule, Eq. 9.28 can be written as

QVt + A(U)QVx = 0, (9.47)

or
Vt + Q−1A(U)QVx = 0. (9.48)

Comparing with Eq. 9.38 we see that

A(V) = Q−1A(U)Q. (9.49)

In other words, the two matrices A(U) and A(V) are similar matrices, whereby
they both have the same eigenvalues.

3.3. The Characteristic-Variable Form of the Euler Equations

As seen already, we call the form in Eq. 9.34 the canonical form or characteristic
form of system of the Euler equations. When expressed in terms of W, the
original coupled linear system Eq. 9.1 becomes completely decoupled into a
family of individual scalar equations, Eq. 9.10, where we only need to seek for
the single unknown wk(x, t),

∂wk
∂t

+ λk
∂wk
∂x

= 0, k = 1, 2, ...,m, (9.50)

solving the system is therefore identical to solving the linear advection equation
we have studied so far.

4. Riemann Problems for the Linearized Euler Equations

We study the Riemann problem for the conservative, hyperbolic, constant co-
efficient system (or conveniently assuming the linearized version of nonlinear
systems) of the form

Ut + AUx = 0, (9.51)

U(x, 0) =

UL if x < 0,

UR if x > 0.
(9.52)

For the sake of clear exposition, we also assume that the system is strictly
hyperbolic with the real and distinct eigenvalues,

λ1 < λ2 < · · ·λm. (9.53)

4.1. Jump Discontinuity Over Multiple Waves

The structure of the solution of the Riemann problem Eq. 9.51 in the x-t plane
is illustrated in Fig. 1 for the Euler equations with m = 3. It consists of m
waves emanating from the origin, or in general, from each cell-interface where
we consider the local Riemann problem, one for each eigenvalue λk.

144

Each k-th wave carries a jump discontinuity in U propagating with speed
λk. The primary task is to find the solution in the Riemann fan region – a region
surrounded by the left UL and right UR initial states – which is depicted as two
different star states consisting of the single-star state U∗ and the double-star
state U∗∗. These two states are naturally formed due to the presence of the
triple wave family in the system of the Euler equations. In general when there
are more number of waves in the system, for instance m = 7 in the system of
1D MHD equations, we see there are 6 Riemann state regions in the Riemann
fan.

Figure 1. Four different constant Riemann state regions of the Riemann fan
in solving the Euler equations. Given the left UL and right UR, there are two
new star states U∗ and U∗∗ formed from the three characteristic waves (i.e.,
eigenvalues) of the Euler equations, λ1, λ2 and λ3. The key idea is thus to
construct numerical solutions in these two start states from the given left and
right initial states by considering each jump discontinuity propagating with
speed λk.

As the right eigenvectors rk, k = 1, 2, 3, are linearly independent we can
expand the left and the right constant states as

UL =

3∑

i=1

αiri and UR =

3∑

i=1

βiri, (9.54)

with constant coefficients αi and βi for i = 1, 2, 3.

As considered in the previous section, we conveniently consider the solution
of Eq. 9.51 in terms of the characteristic variables wk and the associated right
eigenvectors rk. We already saw that this allows us to seek for the decoupled

145

system as in Eq. 9.10. Furthermore, by using the characteristic tracing in Eq.
9.13, followed by the right eigenvector projection, we obtain the result in Eq.
9.15,

U(x, t) =
m∑

k=1

rkwk(x, t) =
m∑

k=1

rkwk(x− λkt, 0). (9.55)

Comparing this with the linear independent expansions of the left and the right
states Eq. 9.54, we easily see the relation between αk, βk and wk,

wk(x, t) = wk(x− λkt, 0) =

αk if x− λkt < 0,

βk if x− λkt > 0.
(9.56)

We therefore get the final solution to the Riemann problem Eq. 9.51 in the
star states in terms of the initial left and right states as

U(x, t) =
I∑

k=1

βkrk +
3∑

k=I+1

αkrk, (9.57)

where the integer I is the maximum value of the sub-index k for which x−λkt >
0, for ∀k ≤ I.

Figure 2. Construction of solution to Riemann problem at the two different
star states. Top: The single-star state solution U∗ is obtained by crossing
the first wave λ1 from the left state UL, giving U∗ = β1r1 + α2r2 + α3r3.
Bottom: The double-star state solution U∗∗ is obtained by crossing the first
and the second waves, λ1 and λ2, from the left state UL, giving U∗∗ =
β1r1 + β2r2 + α3r3. Alternatively, U∗∗ can also be obtained by crossing the
last wave λ3 from the right state UR.

As an example, we show in Fig. 2 the Riemann problem solutions at the
star states, U∗ and U∗∗. In the top panel of Fig. 2, we look at the solution in
the ∗-Region by accounting for a jump discontinuity across the first wave λ1.
Considering the domain of dependence at the point of the location U∗, we see

146

that there is only one characteristic information (i.e., β1) emanated from the
right initial state UR along the characteristic curve x− λ1t (dotted green line).
The other two information (i.e., α2, α3) come from the left initial data UL along
the curves x − λ2t (dotted red line) and x − λ3t (dotted blue line). Thus the
solution in the ∗-Region, between the λ1 and λ2 waves, is

U∗ = β1r1 + α2r2 + α3r3. (9.58)

Similarly, we easily see that the solution in the ∗∗-Region, between the λ2

and λ3 waves, is
U∗∗ = β1r1 + β2r2 + α3r3. (9.59)

Now let us consider the total amount of jump ∆U in U across the whole
wave structure in the solution of the Riemann problem. It is easy to see that

∆U = UR −UL =

3∑

i=1

(
βi − αi

)
ri. (9.60)

The physical interpretation of this is that the total jump is the sum of
individual jumps across the k-th waves, denoted by ∆Uk = (βk − αk)rk, with
βk − αk the strength of the k-th wave.

4.2. Characteristic Fields

The characteristic speed (or the eigenvalues) λk = λk(U) defines a character-
istic field, the λk-field. Sometimes one also speaks of the rk-field, that is the
characteristic field defined the right eigenvector rk.

There are two different types of characteristic fields:

Definition: A λk-characteristic field is said to be linearly degenerate if

∇λk(U) · rk(U) = 0, ∀U ∈ Rm. (9.61)

Definition: A λk-characteristic field is said to be genuinely nonlinear if

∇λk(U) · rk(U) 6= 0, ∀U ∈ Rm. (9.62)

Note: The gradient of the eigenvalues are simply

∇λk(U) =
(∂λk
∂u1

,
∂λk
∂u2

,
∂λk
∂u3

)T
, (9.63)

for each k.

Example: The λ2-characteristic field of the Euler equations is linearly de-
generate, since we have

∇λ2(U) =
(∂λ2

∂u1
,
∂λ2

∂u2
,
∂λ2

∂u3

)
=
(
− u

ρ
,

1

ρ
, 0
)
, (why???) (9.64)

147

and

r2 =
(

1, u,
u2

2

)T
(9.65)

and hence
∇λ2 · r2 = 0. (9.66)

Example: In the same manner, one can show that the λ1- and λ3-characteristic
fields of the Euler equations are both genuinely nonlinearly.

To help our understanding of the two characteristic families, for the mo-
ment, let us consider a special case of a solution called a simple wave to the
conservation law

U(x, t) = Ū(ξ, t), (9.67)

where Ū(ξ, t) is an integral curve. We now define an integral curve.

Definition: We say a smooth curve Ū(ξ, t) through state space parametrized
by a scalar parameter ξ an integral curve of the vector field rk if at each point
Ū(ξ, t) the tangent vector to the curve, Ū′(ξ, t), is an eigenvector of A = ∂F/∂U
corresponding to the eigenvalue λk(Ū(ξ, t)). Thus we can write Ū′(ξ, t) as some
scalar multiple of the particular eigenvector rk(Ū(ξ, t)),

Ū′(ξ, t) = α(ξ)rk(Ū(ξ, t)). (9.68)

The value of αk(ξ) depends on the particular parameterization of the curve and
on the normalization of rk. Note that the crucial idea is that the tangent to the
curve is always in the direction of the appropriate eigenvector rk evaluated at
the point on the curve.

Example: In Fig. 3 we show a specific case of an illustration of integral curves
in the isothermal equations of gas dynamics. This can be considered as a reduced
version of the system of the Euler equations with the absence of the energy equa-
tion, as the isothermal system does not allow to have evolution of temperature,
nor the energy in the system. Then the system becomes, letting m = ρu,

ρt +mx = 0 (9.69)

mt +
(m2

ρ
+ c2

sρ
)
x

= 0. (9.70)

We can easily find the Jacobian matrix is

F′(U) =

0 1

c2
s − m2

ρ2
2m
ρ

 , (9.71)

with eigenvalues

λ1 =
m

ρ
− cs, λ2 =

m

ρ
+ cs, (9.72)

148

and the right eigenvectors

r1 =

(
1

m
ρ − cs

)
, r2 =

(
1

m
ρ + cs

)
. (9.73)

For convenience, we take cs = 1. The little arrows (blue) indicate a selection
of right eigenvectors r1 with different values of m/ρ that are constant (rays in
red). Notice that the eigenvectors are also constant for each of our choices drawn
in Fig. 3. The integral curves (dotted green curves) can be drawn by tracing
the eigenvectors to which the curves are tangent in the phase plane.

Figure 3. Integral curves of r1 in the phase plane (u1, u2) = (ρ, ρu). The
example illustrates a case for the first characteristic field, λ1 = u− cs, where
for exposition purpose we take the sound speed cs = 1.

Now if we evaluate the variation of λk along the integral curve Eq. 9.67 we
get

d

dξ
λk(Ū(ξ, t)) = ∇λk(Ū(ξ, t)) · Ū′(ξ, t) (9.74)

= ∇λk(Ū(ξ, t)) · α(ξ)rk(Ū(ξ, t)). (9.75)

149

Therefore, that the λk-characteristic is linearly degenerate implies that λk
is identically constant along each integral curve.

Example: Consider a constant-coefficient linear hyperbolic system, in which
λk is constant everywhere and thus the gradient ∇λk(U) = 0 for all U.

Example: Note that for a scalar nonlinear problem ut+(f(u))x = 0 where there
is only one single eigen-structure is available (i.e., m = 1), we have λ1(u) = f ′(u)
and thus can take r1 ≡ 1. We then see that the definition of genuinely nonlinear
field reduces to the convexity requirement

f ′′(u) 6= 0. (9.76)

Remark: The wave associated with the λ2-characteristic field is a contact dis-
continuity and those associated with λ1- and λ3-characteristic fields will either
be rarefaction waves (smooth) or shock waves (discontinuities). One does not
know in advance what types of waves will be present in the solution of the Rie-
mann problem, except for the middle wave, the λ2-characteristic field which is
always a contact discontinuity.

4.3. Elementary-Wave Solutions of the Riemann Problem

For nonlinear systems the waves may be discontinuities such as shock waves and
contact waves, or smooth transition waves such as rarefactions. In this section,
we simplify our interest and only consider an elementary type of wave solutions
which consist of a pair of initial data states UL and UR connected by a single
wave.

That is, the solution of the Riemann problem consists of only a single non-
trivial wave; rather than involves more than one wave structures (i.e., both shock
and rarefaction, or both shock and contact discontinuity, or all of the three). In
this way if the wave is a discontinuity we know that the wave must be either a
shock or a contact wave. On the other hand, if the wave is smooth, it must be a
rarefaction. We now ready to classify these three types of elementary solutions
of the Riemann problem in solving the system of equations.

• Shock Wave:
For a shock wave the two constant states UL and UR are connected
through a single jump discontinuity in a genuinely nonlinear field k and
the following conditions apply:

1. the Rankine-Hugoniot Conditions: F(UR)− F(UL) = s(UR −UL).

2. the entropy condition: λk(UL) > s > λk(UR)

• Contact Wave:
For a contact wave the two constant states UL and UR are connected
through a single jump discontinuity of speed s in a linearly degenerate
field k and the following conditions apply:

1. the Rankine-Hugoniot Conditions: F(UR)− F(UL) = s(UR −UL).

150

2. the constancy relation across the wave, called the Generalized Rie-
mann Invariants across the wave

dw1

rk · e1
=

dw2

rk · e2
=

dw3

rk · e3
, (9.77)

where wi is the individual component of the (either conservative or
primitive) variable W = (w1, w2, w3)T , rk is the k-th right eigen-
vector (e.g, k-th column of Rc in Eq. 9.36) corresponding to either
conservative or primitive, and ei is a unit vector with 1 on its i-th
entry while all others are zero (e.g., e3 = (0, 0, 1)).

3. the parallel characteristic condition λk(UL) = s = λk(UR).

• Rarefaction Wave:
For a rarefaction wave the two constant states UL and UR are connected
through a smooth transition in a genuinely nonlinear field k and the fol-
lowing conditions are met:

• the constancy of the Generalized Riemann Invariants across the wave

dw1

rk · e1
=

dw2

rk · e2
=

dw3

rk · e3
. (9.78)

• the difference of characteristics λk(UL) < λk(UR).

4.4. Approximate Riemann Solvers for the Euler Equations

For the purpose of designing numerical methods that are conservative when solv-
ing systems of the Euler equations we can present two different approaches in
terms of implementing Riemann solvers. The first approach is to choose Rie-
mann solvers that evaluate the Riemann solutions in the exact way. The resulting
Riemann solvers are hence said to be the exact Riemann solvers. This way re-
quires to construct the Riemann solutions in the Riemann fan regions by means
of considering the elementary-wave solutions case-by-case as and constructing
them in the Riemann fan. In practice, these analytical relations often take the
form of implicit equations, thus require iterative approaches in computing their
exact solutions. This becomes computationally expensive.

On the other hand, as with most practical purposes, one can simplify the
Riemann problem by considering an alternative approach using approximate Rie-
mann solvers which do not seek for iterative solutions, hence computationally
more efficient. The solution to an approximate Riemann solves prove almost as
good as or even, in some ways, better (i.e., more numerical stability in most
challenging real applications) than the solution to the true Riemann problem,
often at a fraction of the cost.

This section we describe two approximate Riemann solvers, the HLL solver
and the Roe solver, that replace the true nonlinear flux function by a locally
linearized approximation.

151

4.4.1. HLL Approximate Riemann Solver In order to compute a Godunov
flux, Harten, Lax and van Leer presented a novel approach for solving the Rie-
mann problem approximately. The Resulting Riemann solvers have become
known as HLL Riemann solvers. In this approach an approximation for the
intercell numerical flux is obtained directly, unlike the exact Riemann solvers.

Consider Fig. 4, in which the whole of the wave structure arising from
the exact solution of the Riemann problem is contained in the control volume
[xL, xR] × [0, T] on x-t plane. The two fastest signal velocities are denoted as
SL and SR perturbing the initial states UL and UR, respectively. The time T
is arbitrarily chosen. The integral form of the conservation laws in Eq. 9.27 in
the control volume [xL, xR]× [0, T] becomes

∫ xR

xL

U(x, T)dx =

∫ xR

xL

U(x, 0)dx+

∫ T

0
F(U(xL, t))dt−

∫ T

0
F(U(xR, t))dt

= xRUR − xLUL + T
(
FL − FR

)
, (9.79)

where FL = F(UL) and FR = F(UR). We call the integral relation Eq. 9.79
the Consistency Condition.

Now splitting the left hand side of Eq. 9.79 into three different integrals,

∫ xR

xL

U(x, T)dx =

∫ TSL

xL

U(x, T)dx+

∫ TSR

TSL

U(x, T)dx+

∫ xR

TSR

U(x, T)dx

= (TSL − xL)UL +

∫ TSR

TSL

U(x, T)dx+ (xR − TSR)UR

(9.80)

Comparing Eq. 9.80 with Eq. 9.79 gives

∫ TSR

TSL

U(x, T)dx = T
(
SRUR − SLUL + FL − FR.

)
(9.81)

Dividing by T (SR − SL), which is the width of the wave system of the solution
of the Riemann problem between the slowest and fastest signals at time T , we
have

Uhll =
SRUR − SLUL + FL − FR

SR − SL
, (9.82)

where we define the HLL state solution Uhll at T by

Uhll ≡ 1

T (SR − SL)

∫ TSR

TSL

U(x, T)dx. (9.83)

See Fig. 5 for the constant single vector state Uhll separated by the two fastest
waves, SL and SR.

152

Figure 4. Control volume [xL, xR]× [0, T] on x-t plane. SL and SR are the
fastest signal velocities arising from the solution of the Riemann problem.

We now apply the integral form of the conservation laws to the left portion
of Fig. 4, that is, [xL, 0]× [0, T],

∫ 0

TSL

U(x, T)dx = −TSLUL + T (FL − F0L), (9.84)

where F0L is the flux F(U) along the t-axis. Solving for F0L we see that

F0L = FL − SLUL −
1

T

∫ 0

TSL

U(x, T)dx. (9.85)

In the similar way, we evaluate on [0, xR]× [0, T] and get

F0R = FR − SRUR +
1

T

∫ TSR

0
U(x, T)dx. (9.86)

Note that if we satisfy the equality (which we should always guarantee)

F0R = F0L (9.87)

then we recover the Consistency Condition Eq. 9.79.

Note: All relations derived so far are exact, as we are assuming the exact solu-
tion of the Riemann problem.

The HLL flux formulation can be put into the following approximation

U(x, t) =

UL if x/t ≤ SL,

Uhll if SL ≤ x/t ≤ SR,

UR if x/t ≥ SR,

(9.88)

153

Figure 5. Approximate HLL Riemann solver. Solution in the Riemann fan
region (or Star Region) consists of a single state Uhll separated from data
states by two waves of speeds SL and SR.

where Uhll is the constant state vector given by Eq. 9.82, and the speeds SL
and SR are assumed to be known. In practice, we take

SL = min
[
(λ1)L, (λ1)R

]
, (9.89)

SR = max
[
(λ3)L, (λ3)R

]
, (9.90)

where (λk)L,R are the 1st and 3rd eigenvalues (i.e., k = 1 and 3) (see Eq. 9.35)
evaluated at the left and the right data states, UL,R, respectively.

Our goal is to seek for an approximated flux at each intercell boundary
xi+1/2 (or at x = 0 at each local frame of reference drawn as in Fig. 5) of the
form

Fi+ 1
2

=

FL if 0 ≤ SL,

Fhll if SL ≤ 0 ≤ SR,

FR if 0 ≥ SR.

(9.91)

The only non-trivial case of interest is therefore the subsonic case SL ≤ 0 ≤ SR.
Substituting the integrand in Eq. 9.85 or Eq. 9.86 by Uhll in Eq. 9.82, we get

Fhll = FL + SL(Uhll −UL), (9.92)

or
Fhll = FR + SR(Uhll −UR). (9.93)

154

Note also that Eq. 9.92 and Eq. 9.93 are also derived from applying the Rankine-
Hugoniot Conditions across the left and right waves respectively.

Writing out the expression of Uhll in Eq. 9.82 from Eq. 9.92 and Eq. 9.93,
we finally obtain the HLL flux defined by

Fhll =
SRFL − SLFR + SLSR(UR −UL)

SR − SL
. (9.94)

Note: It is important to notice that we did not take Fhll = F(Uhll), where F is
the true flux function of the Euler equations in Eq. 9.29. This naive approach
will make the resulting method unstable.

Quick summary: The HLL Riemann solver only uses two fastest characteristic
waves, λ1 and λ3, that are genuinely nonlinear, and omits the middle wave λ2

which is linearly degenerate. Therefore, the computed HLL Riemann solution
produces more dissipative approximation in the Riemann fan region than the
exact solution.

4.4.2. Roe’s Approximae Riemann Solver Perhaps, the most well-known of
all approximate Riemann solvers today, is the one due to Roe, which was first
presented in 1981. The Roe Riemann solver is one of the most sophisticated
Riemann solvers utilizing all available characteristic wave information given in
the system. This is in contrast to the HLL formulation which assumes the single
constant state Uhll in the Riemann fan region, thus ignoring to account for the
middle wave λ2 which corresponds to the contact discontinuity.

Roe’s approach replaces the flux Jacobian matrix A(U) by a constant Ja-
cobian matrix. The idea is the same as the one used in the linearization process
of the nonlinear systems of equations, and consider the constant Roe Jacobian
matrix Ā evaluated at a constant averaged state Ū = Uavg defined as

Ā ≡ Ā(Uavg) = Ā(UL,UR) (9.95)

and solve the approximate Riemann problem

Ut + ĀUx = 0, (9.96)

U(x, 0) =

UL if x < 0,

UR if x > 0,
(9.97)

which is then solved exactly. (i.e., the Roe’s method solves the linearized version
Eq. 9.96 of Eq. 9.28 exactly.)

Let us take a moment and think about what we are doing now. The Roe’s
linearization process amounts to say that we replace the original nonlinear hy-
perbolic conservation law

Ut + F(U)x = 0 (9.98)

155

involving with the original nonlinear (analytic) flux function F(U), with a new
modified linearized conservation law

Ut + F̄(U)x = 0 (9.99)

involving with a new modified linearized (analytic) flux function F̄(U) = ĀU.
This new modified flux function F̄(U) is presumably is easier to work with than
the original flux function F(U).

Note: Notice that the property of F̄(U) is now different from the original flux
F(U), thus we have F̄(U) 6= F(U) in general.

Roe suggested that the following conditions should be imposed on the Roe’s
linearized matrix Ā:

1. Hyperbolicity: Ā has real eigenvalues that can be ordered as

λ̄1 ≤ λ̄2 ≤ λ̄3. (9.100)

2. Consistency with the exact Jacobian:

Ā(U,U) = A(U) (9.101)

3. Conservation across discontinuities:

F(UR)− F(UL) = Ā(UR −UL). (9.102)

In what follows, for the sake of simplicity, let us drop the bar (¯) notation in the
associated eigensystem of the Roe matrix Ā which consists of a triple (λ̄k, r̄k, l̄k),
and let us denote it simply by (λk, rk, lk) without the bars.

Now that the modified linearized conservation system is given, we can write
the initial left and right states as

UL =

3∑

i=1

αiri, (9.103)

UR =

3∑

i=1

βiri. (9.104)

We have that αk and βk are the characteristic variables defined by the initial
condition of the characteristic variable wk given as Eq. 9.56. Using Eq. 9.25,
we see that

αk = lk ·UL

= lk,1ρL + lk,2mL + lk,3EL, (9.105)

and similarly,

βk = lk ·UR

= lk,1ρR + lk,2mR + lk,3ER. (9.106)

156

Here, lk,i denotes the i-th component of the k-th left eigenvector. For
instance, from Eq. 9.37 we have

l3,1 =
u2

2
− csu

γ − 1
, (9.107)

l3,2 = −u+
cs

γ − 1
, (9.108)

l3,3 = 1. (9.109)

Substituting these expressions for αk and βk we can rewrite the total amount
of jump ∆U in terms of the left and right states,

∆U =
3∑

i=1

(
βi − αi

)
ri

=
3∑

i=1

li ·
(
UR −UL

)
ri. (9.110)

The solution of the local Riemann problems to the modified system in Eq.
9.99 at each cell interface evaluated at x/t = 0 is given by, from the left state,

Ui+ 1
2
(0) = UL +

∑

λi≤0

li ·
(
UR −UL

)
ri, (9.111)

which only includes the left-going k-th waves, λk ≤ 0.
Likewise, we also can get, from the right state,

Ui+ 1
2
(0) = UR −

∑

λi≥0

li ·
(
UR −UL

)
ri, (9.112)

and we see that this only include the right-going k-th waves, λk ≥ 0.

Our goal is now to find a numerical flux function associated with the mod-
ified conservation law Eq. 9.99, denoted by Fnum

i+1/2, at each cell interface xi+1/2.

With the solution of the local Riemann problem Ui+1/2(0) in Eq. 9.111 or Eq.
9.112, one obvious choice would be to define as

Fnum
i+1/2 = ĀUi+ 1

2
(0). (9.113)

We however see that this choice is not correct if we consider a right-going su-
personic flow condition, i.e., λk > 0 for all k. Since all the waves are biased to
move from the left to the right direction, we expect the numerical flux should
simply reduce to the exact (or analytic) flux evaluated at the left state,

Fnum
i+1/2 = FL. (9.114)

The simple relation in Eq. 9.113 fails to provide this as

Fnum
i+1/2 = ĀUi+ 1

2
(0) = ĀUL = F̄(UL) 6= F(UL). (9.115)

157

We can achieve a correct relation for Fnum
i+1/2 as follows. Since we require the

solution of the local Riemann problem Ui+ 1
2
(x, t) to satisfy ‘the conservation

law’, we should expect Ui+ 1
2
(x, t) to hold the conservation relation applied to

Ut + F̄(U)x = 0 on the control volume [TSL, 0]× [0, T], (i.e., see Eq. 9.79)

∫ 0

TSL

Ui+ 1
2
(x, T)dx = T

[
F̄(UL)− F̄(Ui+ 1

2
(0))

]
− TSLUL, (9.116)

Likewise, on [0, TSR]× [0, T] we get

∫ TSR

0
Ui+ 1

2
(x, T)dx = T

[
F̄(Ui+ 1

2
(0))− F̄(UR)

]
+ TSRUR, (9.117)

At the same time, from the relation in Eq. 9.85 or Eq. 9.86, we have

F0L = FL − SLUL −
1

T

∫ 0

TSL

Ui+ 1
2
(x, T)dx, (9.118)

or

F0R = FR − SRUR +
1

T

∫ TSR

0
Ui+ 1

2
(x, T)dx. (9.119)

Finally, if we combine Eq. 9.116 and Eq. 9.118, we obtain

F0L = FL − F̄(UL) + F̄(Ui+ 1
2
(0)). (9.120)

Similarly, combining Eq. 9.117 and Eq. 9.119, we get

F0R = −F̄(UR) + F̄(Ui+ 1
2
(0)) + FR. (9.121)

Now if we use the definition of the flux F̄ = ĀU applied to Eq. 9.120 and
Eq. 9.120 respectively, and use the fact

Ārk = λkrk, (9.122)

we get

F0L = FL − F̄(UL) + F̄(Ui+ 1
2
(0)) (9.123)

= FL − ĀUL + Ā
[
UL +

∑

λi≤0

li ·
(
UR −UL

)
ri

]
(9.124)

= FL +
∑

λi≤0

li ·
(
UR −UL

)
λiri (9.125)

In the same manner, we obtain

F0L = FR −
∑

λi≥0

li ·
(
UR −UL

)
λiri. (9.126)

158

For consistency, we require
F0L = F0R (9.127)

and set to be
Fnum
i+ 1

2

≡ F0L = F0R (9.128)

Alternatively, we can sum Eq. 9.123 and Eq. 9.126 and get an averaged
expression

Fnum
i+ 1

2

=
1

2

(
FL + FR

)
− 1

2

3∑

i=1

li ·
(
UR −UL

)
|λi|ri. (9.129)

Note: We note here that FL,R are the fluxes evaluated exactly using the ana-
lytic Euler flux formulation in Eq. 9.29 at UL,R respectively.

Note: The eigensystem (λk, rk, lk) is to be evaluated analytically using the for-
mulas for the conservative ones in Eq. 9.35, Eq. 9.36, and Eq. 9.37, evaluated
at an averaged state Uavg.

Note: We can in practice take an arithmetic average to obtain Uavg,

Uavg =
1

2

(
UL + UR

)
. (9.130)

However, this simple averaging in general does not guarantee to satisfy the con-
servation property in Eq. 9.102 of the Roe matrix. Although in practice, it
turns out that the simple arithmetic works pretty well. One can improve this
situation by considering so-called the Roe averages.

Quick summary: It should be noted that the Roe solver include all available
wave characteristics in its formulation. Hence it resolves better Riemann so-
lutions at the Riemann fan and produces sharper resolutions compared to the
HLL solutions which lacks the contact discontinuity solution.

Quick summary: Remind that we have used the following different entities:

• F is the exact (or analytic) flux function for the original nonlinear conser-
vation laws,

• F̄(U) = ĀU is the exact (or analytic) flux function for the modified lin-
earized conservation laws,

• Fnum
i+1/2 is the numerical flux function of the modified linearized conservation

laws, and

• Ui+1/2(x, t) is the solution of the local Riemann problem of the modified
linearized conservation laws.

Chapter 10

Finite Volume Reconstruction
Schemes for FOG, PLM, PPM
and WENO

Important Remark on Notational Changes:

In what follows we are making a few changes in writing the k-th wave fam-
ily so that the new notations can bear a clearer description of the local cell
index i.

We write the wave family “k” using a superscript with parentheses and the
cell index i as a subscript. For instance, we replace the k-th eigensystem triple
of the eigenvalues, the left and the right eigenvectors

(λk, rk, lk) (10.1)

with
(λ

(k)
i , r

(k)
i , l

(k)
i) (10.2)

which are all evaluated at each point xi in a local cell Ii = [xi−1/2, xi+1/2].
When needed, we also differentiate the conservative and primitive eigenvectors
by denoting them, for instance, as

l(k,c), l(k,p), (10.3)

respectively. We may drop the superscript by conveniently assuming a correct
choice of eigenvectors applied to a given variable under consideration, i.e., con-
servative or primitive.

We also utilize general component forms at each cell Ii of the discrete numer-
ical data of the primitive (V), conservative (U) and characteristic (W) variables
denoted as

Vi =

vi:1
vi:2
vi:3

 =

vi:ρ
vi:u
vi:p

 =

ρi
ui
pi

 , (10.4)

159

160

Ui =

ui:1
ui:2
ui:3

 =

ui:ρ
ui:m
ui:E

 =

ρi
mi

Ei

 , (10.5)

Wi =

w
(1)
i

w
(2)
i

w
(3)
i

 =

l
(1,c)
i ·Ui

l
(2,c)
i ·Ui

l
(3,c)
i ·Ui

 =

l
(1,p)
i ·Vi

l
(2,p)
i ·Vi

l
(3,p)
i ·Vi

 . (10.6)

Often we would drop the index notation for components and simply represent
each component by ui, vi and wi.

1. Reconstruction Schemes

High-order reconstruction schemes for 1D problems are formulated consisting
of high-order state predictions in normal direction accommodating solution ac-
curacy (viz. normal prediction step). In this section, we provide an overall
numerical description on how to calculate the normal prediction in five different
types of reconstruction schemes for the Euler equations:

• the first-order Godunov method (Godunov, 1961),

• the second-order piecewise linear method (PLM) (Colella, 1985; Leveque;
Toro),

• the third-order piecewise parabolic (PPM) method by Colella and Wood-
ward (Colella & Woodward, 1984),

• the fifth-order weighted essentially non-oscillatory (WENO-5) by Jiang
and Shu, 1996, and

• the fifth-order WENO-Z method by Borges et al. (2008) as a variant of
WENO-Z.

In the following, we provide concrete REA formulations of the five different
normal prediction algorithms that provide differing orders of spatial accuracy,
while keeping the temporal accuracy to be second.

Before discussing mathematical algorithms for reconstruction, we first note
that there are two fundamental principles in formulating a class of reconstruction
algorithms in FVM.

1.1. Two Basic Principles

Two very important basic principles that a class of reconstruction algorithms
require to satisfy in the normal prediction step include:

(i) monotonic reconstruction, and
(ii) half-time step evolution.

For exposition purposes together with the fact that we are most interested in
solving 1D systems, let us consider the above two properties only in x-direction
(which is the only normal direction in 1D).

161

1.1.1. First Principle: Monotonic Reconstruction The first principle is to de-
sign a monotone-preserving reconstruction by choosing an approximating poly-
nomial pi = pi(x) of degree n on each i-th cell Ii = [xi− 1

2
, xi+ 1

2
], whose shape of

reconstruction on Ii preserves the cell volume-averaged quantity of each variable
‘v’ (preferably primitive variable in practice) under consideration. That is, pi is
chosen such that it satisfies

p̄ni = v̄ni , (10.7)

where

p̄ni =
1

∆xi

∫ x
i+ 1

2

x
i− 1

2

pi(x, t
n) dx, (10.8)

and

v̄ni =
1

∆xi

∫ x
i+ 1

2

x
i− 1

2

v(x, tn) dx . (10.9)

This constraint is very important in a sense that the approximating polyno-
mial does not lose one of the key properties in FVM in as much as FVM always
evolves the integral quantities, i.e., volume-averaged quantities over each cell.

The choice of the polynomial

pi(x) =
n∑

k=0

ck(x− xi)k (10.10)

with n ≥ 0 naturally determines the 1D reconstruction scheme in normal direc-
tion to be an n-th order accurate formulation in space.

Once pi(x) is chosen, the next step is to obtain cell edge nodal values unL,i
and unR,i. These nodal values are easily available by directly calculating

vnL,i ≡ pi(xi− 1
2
), and vnR,i ≡ pi(xi+ 1

2
). (10.11)

Although the way we obtain Eq. 10.11 is straightforward once pi(x) is known,
there is one remaining set of constraints that needs to be carried out on vnL,i
and vnR,i, in order to preserve non-oscillatory, monotonic states of the two recon-
structed states at the cell edges. This procedure is often called a ‘limiting’ step
which checks the following two conditions:

• Condition 1: The profile of pi(x) must be monotonic over Ii. See the left
panel in Fig. 1.

• Condition 2: vnL,i and vnR,i should lie between the neighboring volume-
averaged quantities, v̄ni±1. In other words, one should guarantee v̄ni−1 ≤
vnL,i ≤ v̄ni and v̄ni ≤ vnR,i ≤ v̄ni+1. See the right panel in Fig. 1.

If any one of the above conditions is not satisfied, vnL,i and vnR,i need to be

corrected by adjusting a new profile pi(x) to meet the two conditions; otherwise
numerical solutions using the reconstructed states can lead to erroneous oscilla-
tions especially at discontinuities. It is important that any newly corrected pi(x)
must satisfy the relation in Eq. (10.7) throughout the correction procedure.

162

xixi

vn
L,i

vn
L,i

vn
R,i vn

R,i

v(x, tn) v(x, tn)

Figure 1. The correction procedure for monotonic reconstruction in the case
of PPM. In both figures, the red dotted line represents the uncorrected profile
of pi(x); the solid blue line indicates the corrected profile; the direction of the
arrows denotes newly corrected edge values; and the green solid line illustrates
the cell-averaged quantities v̄nk on Ik. Left: Condition 1 checks if the profile
of the reconstructed polynomial function pi(x) on Ii is monotonic. In this
case, the original profile (red) of pi(x) has produced a new local maximum,
for which a new monotone-preserving profile (blue) needs to be sought. The
new corrected edge values are then recomputed from the new profile. Right:
Condition 2 ensures that the newly calculated nodal values vnL;R,i at cell edges
xi±1/2 are bounded by the cell-averaged values v̄ni;i±1 in the neighboring cells.
The original profile (red) has generated vnL,i which is larger than v̄ni−1 (green).

A correction to get a new profile pi(x) (blue) is needed in order to lower vnL,i

that is bounded by v̄ni−1 and v̄ni . And at the same time, the new profile must
bound vnR,i between v̄ni and v̄ni+1 as well.

163

1.1.2. Second Principle: Half-Time Step Evolution The second principle is
to perform so-called a ‘half-time step’ evolution that advances the reconstructed

edge states vnL;R,i by ∆t/2 to achieve v
n+ 1

2
L;R,i. The main idea, which was put

forward by van Leer and Hancock, and studied in the algorithm, named as
MUSCL-Hancock (MH), is to enhance temporal accuracy to second-order by
means of computing Godunov fluxes at half time step, following the mid-point
method in ODEs.

Note that at each cell xi, we have a 1D characteristic equation in each
normal direction (x-direction in our case) for each k-th wave,

∂w
(k)
i

∂t
+ λ

(k)
i

∂w
(k)
i

∂x
= 0, (10.12)

where w
(k)
i is a k-th component of Wi. The relationship between the prim-

itive variables Vi and Wi is given by projecting one from the other via the
eigenvectors,

Vi =
∑

k

r
(k)
i w

(k)
i , where w

(k)
i = l

(k)
i ·V. (10.13)

Since the linear combination in Eq. (10.13) also holds for pi(x) on Ii, we can
compute a half-time step advancement of an m-th reconstructed component vi:m
of Vi on Ii (i.e., vi:m = Vi · em) at the right edge x = xi+1/2 as

v
n+ 1

2
R,i:m =

1

∆t

∫ tn+1

tn
pi(xi+ 1

2
, t) dt =

∑

k

1

∆t

∫ tn+1

tn
r

(k)
i:mw

(k)
i (xi+ 1

2
, t) dt, (10.14)

where r
(k)
i:m = r

(k)
i · em is an m-th projection evaluated on Ii with the unit vector

em.
Now let Pi be a vector consisting of the individual reconstructed profiles

pi:m(x) on Ii for each m-th primitive variable vi:m of Vi which is of length 3 in
our hydrodynamics case, that is,

Pi = (pi:1, pi:2, pi:3)T = (pi:ρ, pi:upi:p)
T . (10.15)

The exact solution of w
(k)
i (xi+ 1

2
, t) on Ii at t = tn + ∆t (i.e., the farthest

thinner blue curve in Fig. 2) is found by tracing back in time to tn along its char-

acteristic line dx
dt = λ

(k)
i , where the spatial reconstruction of w

(k)
i (xi+ 1

2
, tn) (i.e.,

the near thicker blue curve in Fig. 2) is readily available via the reconstructed
profiles Pi(x). Thus for each right-going wave with a positive characteristic

velocity λ
(k)
i > 0 that reaches to the right edge at xi+ 1

2
, we get

w
(k)
i (xi+ 1

2
, tn + ∆t) = w

(k)
i (xi+ 1

2
− λ(k)

i ∆t)

= l
(k)
i ·Vi(xi+ 1

2
− λ(k)

i ∆t)

= l
(k)
i ·Pi(xi+ 1

2
− λ(k)

i ∆t). (10.16)

164

xi

vn
L,i

vn
R,i

v(x, tn)

vn+h
R,i

vn+h
L,i

�(m)�t

x

��(l)�t

xi+h

t

x

!(k)

dx

dt
= �(k)

xi�h

t = tn

t = tn + �t

!(k) is constant

on this plane

Domain of dependence

with a distance �(k)�t

(b)(a)

Figure 2. The shorthand notation ‘h’ is used to represent the half-index
1
2 in the above illustrations. (a) The characteristic tracing procedure from
tn + ∆t to tn. The reconstructed profiles of the k-th characteristic vari-
able ω(k) at the two different time steps are illustrated in blue thick curves.
The farthest thinner blue curve represents a not-yet reconstructed profile of
ω(k)(x, t = tn + ∆t), whereas the near thicker blue curve shows an already
reconstructed profile of ω(k)(x, t = tn), both on the cell Ii. The characteris-
tic line with a positive characteristic velocity λ(k) > 0 is drawn in solid red
line, showing a backtracing in time to tn. The invariance property of ω(k) is
preserved on the red-shaded plane, of which upper boundary in red-dotted
line denotes its constant value over time. The green-shaded area represents

the contribution of the k-th wave to v
n+ 1

2

R,i , which is an integrated average

quantity of ω(k)(x, t = tn) over a domain of dependence [xi+ 1
2
−λ(k)∆t, xi+ 1

2
]

at t = tn for the k-th characteristic. (b) Half-time step advancements of

the spatially reconstructed left and right states vnL;R,i to v
n+ 1

2

L;R,i on cell Ii by
tracing relavant characteristics. For the left state, the tracing only involves
with any left-going l-th characteristics (i.e., λ(l) < 0 in this case). The area
of the red-shaded region represents an averaged quantity over the resultant
domain of dependence from the n-th characteristic. This area amounts how
much contributions could be carried out to change vnL,i over ∆t/2 by the n-th
characteristic. The area of the rectangle in red line is equal to that of the

red-shaded region, showing the new evolved state v
n+ 1

2

L,i . The similar is true
for the right state with the right-going m-th characteristic as illustrated.

165

The value xi+ 1
2
−λ(k)

i ∆t is the ‘foot’ of the characteristic line dx
dt = λ

(k)
i , where the

line intersects with the x-axis at t = tn in the x-t phase space. The characteristic

variable w
(k)
i is invariant along the characteristic line in the phase space, which

we used in the first equality in Eq. (10.16). See Fig. 2. Here λ
(k)
i and l(k) denote

an eigenvalue and left eigenvector respectively, both corresponding to the k-th
wave and evaluated on Ii.

Then the integration in Eq. (10.14) becomes,

v
n+ 1

2
R,i:m =

∑

k

1

∆t

∫ tn+1

tn
r

(k)
i:ml

(k)
i ·Pi(xi+ 1

2
− λ(k)

i (t− tn)) dt,

=
∑

k;λ
(k)
i >0

1

λ
(k)
i ∆t

∫ x
i+ 1

2

x
i+ 1

2
−λ(k)

i ∆t
r

(k)
i:ml

(k)
i ·Pi(x) dx . (10.17)

We see that a new temporally-evolved, spatially-averaged right state value

v
n+ 1

2
R,i:m on Ii is successfully achieved by tracing back each k-th characteristic

to the old state t = tn, taking integrations to obtain averaged reconstructed
profiles over each domain of dependence, and taking a sum of them over all
characteristics that reach to the cell interface at xi+ 1

2
. See also Fig. 2.

Similarly, we get for the left state,

v
n+ 1

2
L,i:m =

∑

k

1

∆t

∫ tn+1

tn
r

(k)
i:ml

(k)
i ·Pi(xi− 1

2
− λ(k)

i (t− tn)) dt,

=
∑

k;λ
(k)
i <0

1

λ
(k)
i ∆t

∫ x
i− 1

2

x
i− 1

2
−λ(k)

i ∆t
r

(k)
i:ml

(k)
i ·Pi(x) dx . (10.18)

Quick summary: So far, we have discussed the two basic ingredients in build-
ing high-order reconstructions. The first principle is to formulate a spatially
monotonic reconstruction profile pi(x) of order k on each cell Ii. The second
principle is to use the characteristic tracing in order to advance the two left and
right reconstructed state values computed from pi(x) at t = tn by half a time

t = tn+ 1
2 . This completes our normal prediction step in each normal direction.

The pair (vL, vR) = (v
n+ 1

2
R,i , v

n+ 1
2

L,i+1) of these normal predicted values at each in-
terface xi+ 1

2
comprises of the initial left and right states for the local Riemann

problems. Upon solving the local Riemann problems, we compute the upwind
Godunov fluxes, and use them to evolve conservative variables Un to Un+1.

1.2. First-order Godunov’s Method

The first successful numerical method for nonlinear conservative hyperbolic sys-
tems became available by Godunov in 1959. This scheme is an extension of its
predecessor for solving scalar conservation laws by choosing upwind directions,

166

often called the CIR method (see Eq. 7.34), developed by Courant, Isaacson
and Rees (hence the name).

The key idea of the first-order Godunov’s scheme (FOG for short) is to seek
for the solution of the Riemann problem, either by an exact or an approximate
solver, using a constant (or flat) reconstruction. In other words, the choice of
the polynomial in Eq. (10.10) is simply given as, on Ii,

pi(x) = c0. (10.19)

Obviously, the flat reconstruction profile satisfies all of the monotonicity condi-
tions in the first principle. Also, the second principle of the half-time advance-
ment step doesn’t change anything but yields

v
n+ 1

2
L;R,i = vnL;R,i. (10.20)

1.3. Second-order Piecewise Linear Method

The key ingredient in the second-order approach is to use a linear reconstruction
profile

pi(x) = c0 + c1(x− xi), (10.21)

which can overcome the downside of FOG - practically unsuitable for any real
application problems by being too diffusive.

1.3.1. Step 1: Linear Profile Applying the relationship in Eq. (10.7) to the
linear piecewise polynomial pi(x) on Ii, we obtain

c0 = v̄ni and c1 =
∆vni
∆x

, (10.22)

where ∆vni is a properly chosen slope in order for the resulting pi(x) to satisfy
both Condition 1 and Condition 2 of the first principle. The quantity ∆vni is
going to be determined shortly. The two states at the left and right interfaces
xi±1/2 in Eq. (10.11) are then given by

vnL,i = v̄ni −
∆vni

2
, and vnR,i = v̄ni +

∆vni
2
. (10.23)

1.3.2. Step 2: Characteristic Tracing We continue to proceed the charac-
teristic tracing in Eqs. (10.17) and (10.18). Considering the integrand of Eq.
(10.17) for the right state, we get

r
(k)
i:ml

(k)
i · (pi:1, pi:2, pi:3)T

= r
(k)
i:m

3∑

s=1

l
(k)
i:s

(
v̄ni:s + (x− xi)

∆vni:s
∆x

)

= r
(k)
i:m

3∑

s=1

l
(k)
i:s v̄

n
i:s +

(x− xi)
∆x

r
(k)
i:m

3∑

s=1

l
(k)
i:s ∆vni:s, (10.24)

167

where r
(k)
i:m = r

(k)
i · em and l

(k)
i:m = l

(k)
i · em are the m-th projections of the right

and left eigenvectors evaluated on Ii with the unit vector em.

Since the first term is constant, its integration in Eq. (10.17) is just

∑

k;λ
(k)
i >0

r
(k)
i:ml

(k)
i · V̄n

i . (10.25)

Although this constant term only includes the positive waves that propagates
towards the right interface, in the case of using the HLL solver, we also include
a correction for waves which travel away from the interface with negative wave
speeds. This is to replace Eq.(10.25) with

3∑

k=1

r
(k)
i:ml

(k)
i · V̄n

i , (10.26)

in order to keep the minimum accuracy in the cell volume averages. This cor-
rection procedure is not needed when the Roe solver is used for simulations. By
this way, in particular, we retain the full first-order accuracy provided by the
constant cell-averaged state V̄n

i when ∆vni:h = 0, and the PLM scheme reduces
to FOG.

The integration in Eq. (10.17) of the second term in Eq. (10.24) becomes

1

2

∑

k;λ
(k)
i >0

(
1− λ

(k)
i ∆t

∆x

)
r

(k)
i:m∆w

(k)
i (10.27)

where

∆w
(k)
i =

3∑

s=1

l
(k)
i:s ∆vni:s = l(k) ·∆Vn

i . (10.28)

Note here that ∆w
(k)
i is a jump across the k-th characteristic, and is often

called as k-th characteristic slope limiting, generally combined with a monotone-
preserving TVD slope limiter,

∆w
(k)
i = TVD limiter

[
l
(k)
i · (Vn

i+1 −Vn
i), l

(k)
i · (Vn

i −Vn
i−1)

]
. (10.29)

The choice of TVD limiter can be one of the limiters of minmod, van Leer’s, and
MC in Eq. (8.13). The two conditions in the first principle are also guaranteed
to hold using these limiters.

Another variant in calculating slopes is feasible, which is to first apply TVD
slope limiters to the primitive variables and then to take projections of them with
left eigenvectors. This is referred to as primitive limiting which takes of a form,

∆w
(k)
i = l

(k)
i · TVD limiter

[
Vn
i+1 −Vn

i ,V
n
i −Vn

i−1

]
. (10.30)

168

When comparing the two limiting approaches, the characteristic limiting is a
preferred way to better maintain monotonicity. This is simply because it is the
characteristic variable that the invariant property holds along each characteris-
tic line, during the characteristic tracing procedure.

Putting all things together, we achieve the half-time evolved normal pre-
dicted states for the second-order piecewise linear method in vector expression,

V
n+ 1

2
R,i = V̄n

i +
1

2

∑

k;λ
(k)
i >0

(
1− λ

(k)
i ∆t

∆x

)
r

(k)
i ∆w

(k)
i , (10.31)

and

V
n+ 1

2
L,i = V̄n

i +
1

2

∑

k;λ
(k)
i <0

(
− 1− λ

(k)
i ∆t

∆x

)
r

(k)
i ∆w

(k)
i . (10.32)

1.4. Third-order Piecewise Parabolic Method

The extension to a third-order method based on a polynomial

pi(x) = c0 + c1(x− xi) + c2(x− xi)2 (10.33)

is now described. This PPM method is proposed by Colella and Woodward
(1984), which has been by far, one of the most popular reconstruction schemes
over three decades. Unlike the second-order PLM scheme, where there is no dis-
tinction between the cell-centered nodal point vni and the cell volume-averaged
quantity v̄ni , the PPM method clearly distinguishes them and use them differ-
ently. The term ‘reconstruction’, in this sense, refers to a procedure to build
nodal quantities vni±1/2 (in particular left and right states at interfaces) from the

given cell-averaged volume quantities v̄ni .

1.4.1. Step 1: Parabolic Profile We begin to specify three different conditions
in order to determine three unknowns ck, k = 0, 1, 2. The first condition is
obvious - Eq. (10.7), from which we obtain

v̄ni = c0 +
c2

12
∆x2. (10.34)

The other two conditions are readily available if we further assume we know how
to compute the two nodal values vL;R,i. With the help of these two values, we
get

vnL;R,i = pi(xi±1/2) = c0 ±
c1

2
∆x+

c2

4
∆x2. (10.35)

Determining the unknowns, we achieve

c0 = v̄ni −
c2

12
∆x2, (10.36)

c1 =
1

∆x
(vnR,i − vnL,i), (10.37)

c2 =
6

∆x2

(vnR,i + vnL,i
2

− v̄ni
)
. (10.38)

169

Therefore, the piecewise parabolic polynomial pi(x) for PPM is ready to be
determined completely if we find vnL;R,i, for which we proceed to use separate

fourth-order polynomials φ±(x),

φ±(x) =
3∑

k=0

a±k (x− xi±1/2)k. (10.39)

In order to determine this third-degree polynomial, we carry out considering
φ±(x) over four different adjacent cells, centering vnL;R,i in a symmetric fashion.

In this way, we consider φ−(x) over Ii−2, Ii−1, Ii, Ii+1 for vnL,i, whereas φ+(x)

over Ii−1, Ii, Ii+1, Ii+2 for vnR,i, on each of which, φ±(x) satisfies

1

∆x

∫

Ik

φ−(x) dx = v̄nk , for i− 2 ≤ k ≤ i− 1, (10.40)

and
1

∆x

∫

Ik

φ+(x) dx = v̄nk , for i− 1 ≤ k ≤ i− 2. (10.41)

After a bit of algebra, we can obtain the coefficients a±k , with s = 1 for a+
k , while

s = 0 for a−k ,

a±0 =
1

12

(
− v̄ni−2+s + 7v̄ni−1+s − 7v̄ni+s − v̄ni+1+s

)
, (10.42)

a±1 =
1

12∆x2

(
v̄ni−2+s − 15v̄ni−1+s + 15v̄ni+s − v̄ni+1+s

)
, (10.43)

a±2 =
1

4∆x3

(
v̄ni−2+s − v̄ni−1+s − v̄ni+s + v̄ni+1+s

)
, (10.44)

a±3 =
1

6∆x4

(
− v̄ni−2+s + 3v̄ni−1+s − 3v̄ni+s + v̄ni+1+s

)
. (10.45)

The two nodal values vnL;R,i now easily follow via the reconstruction polynomials,

vnL,i = φ−(xi− 1
2
) = a−0 , and vnR,i = φ+(xi+ 1

2
) = a+

0 . (10.46)

Compared to the case of PLM in Eq. (10.23), in which a pair of the left and
right states at (xi+ 1

2
, tn) doesn’t need to be continuous (i.e., vnR,i 6= vnL,i+1), the

PPM states given by Eq. (10.46) are continuous at the interface, vnR,i = vnL,i+1,

because φ±(x) are continuous over the four adjacent cells.
It may sound weird to have such a pair of continuous left and right states at

every interface, especially when the pair is to be used for the Riemann problem.
Any continuous pair of Riemann states will simply not produce any flux that
amounts to flow across the interface. However, this continuity at t = tn are no
longer to be true when the next step of characteristic tracing evolves the n-states

to n+ 1
2 , which results in v

n+ 1
2

R,i 6= v
n+ 1

2
L,i+1.

170

The expression of a±0 in Eq. (10.42) can be put into another form using
slope limiters, which helps to keep monotone profiles better in reconstruction,

a±0 =
1

2

(
v̄ni−1+s + v̄ni+s

)
− 1

6

(
∆v̄ni+s −∆v̄ni−1+s

)
, (10.47)

where
∆v̄ni = TVD limiter

[
v̄ni+1 − v̄ni , v̄ni − v̄ni−1

]
. (10.48)

Similar to PLM, the slope limiting can be carried out either in primitive
or characteristic variables. For the latter option we can implement projection
operators between the two variable spaces. For the m-th component it follows
as,

∆v̄ni:m =
3∑

k=1

r
(k)
i:m∆w

(k)
i , (10.49)

where

∆w
(k)
i = TVD limiter

[
l
(k)
i · (V̄n

i+1 − V̄n
i), l

(k)
i · (V̄n

i − V̄n
i−1)

]
. (10.50)

Before proceeding to the second principle (i.e., the characteristic tracing),
PPM needs to check if Condition 1 and Condition 2 hold in order to make sure
the monotonicity property is met in constructing vnL;R,i based on the first prin-
ciple of reconstruction.

Condition 1: The monotonic profile of pi(x) (see Fig. 3) can be ensured by
applying the following two constraints:

1. Reducing to the flat FOG reconstruction, vnL;R,i = v̄ni , when the two PPM

states are newly producing a local extremum on Ii (see panel (a) in Fig.
3). That is, PPM reduces to FOG when

(vnR,i − v̄ni)(v̄ni − vnL,i) ≤ 0. (10.51)

2. Recalculate one of the two states by shifting the abscissa of the parabola
to the closer interface, either xi− 1

2
(panel (b) in Fig. 3) or xi+ 1

2
(the

bottom right panel in Fig. 3), so that any extremum on Ii is relocated to
one of xi±1/2. PPM further corrects the reconstructed profile at the other
interface according to the new monotonic profile. This can be accomplished
by checking:

(a) vnR,i = 3v̄ni − 2vnL,i, (10.52)

if − (vnR,i − vnL,i)2 > 6(vnR,i − vnL,i)
(
v̄ni − (vnR,i + vnL,i)/2

)
,

171

(b)(a)

xi

v(x, tn)

xi

v(x, tn)

xi

v(x, tn)

xi

v(x, tn)

Figure 3. (a) PPM reduces to the flat reconstruction (blue solid line) at
the cell Ii on which the original reconstructed parabolic profile (red-dotted
line) produces a local extremum, violating the monotonicity constraint in
Condition 1. In this case, PPM clips at the extremum and becomes FOG. (b)
Maintaining monotonic profile by changing the abscissa x = xi − c1

2c2
to the

closer interface location, either xi− 1
2

(left panel) or xi+ 1
2

(right panel). See

the arrows illustrating the operation. The resulting new monotonic parabola,
denoted in blue solid line, produces a new right (or left) state at xi+ 1

2
(or

xi− 1
2
) on Ii. In all panels, the green solid lines represent the cell-averaged

quantities on each cell.

(b) vnL,i = 3v̄ni − 2vnR,i, (10.53)

if (vnR,i − vnL,i)2 < 6(vnR,i − vnL,i)
(
v̄ni − (vnR,i + vnL,i)/2

)
.

Condition 2: The two constraints, v̄ni−1 ≤ vnL,i ≤ v̄ni and v̄ni ≤ vnR,i ≤ v̄ni+1, are

automatically guaranteed by utilizing TVD slope limiters as in Eqs. (10.48) and
(10.50). See also the right panel in Fig. 1.

Remark: As can be seen, the monotonicity constraints in Eq. (10.51) in Condi-
tion 1 and Condition 2 often become too strong at smooth extrema reducing the
truncation error, so-called ‘clipping-error’, at those locations to first-order. This
clipping behavior diminishes the method’s formal order of accuracy, considering
for smooth solutions away from extrema, from third to first. There have been
new approaches for PPM to overcome this drawback.

1.4.2. Step 2: Characteristic Tracing The PPM proceeds to the next step

that advances the vnL;R,i states v
n+ 1

2
L;R,i by tracing characteristics. The approach

to take is exactly the same as what we have done in PLM, conducting steps
in Eqs. (10.24)-(10.28), but with the third-order polynomial defined by Eqs.
(10.33)-(10.38) and Eq. (10.46). The integrand for the right state in PPM

172

becomes

r
(k)
i:m

3∑

s=1

l
(k)
i:s

(
c0:s + c1:s(x− xi) + c2:s(x− xi)2

)
. (10.54)

Let us adopt a vector notation Cl = (cl:1, . . . , cl:3)T , for l = 0, 1, 2 in the below,
where each cl,m denotes the l-th coefficient of the reconstruction of the m-th
primitive variable. See Eq. (10.15). Similar to PLM, we can show that the
integrations in Eq. (10.17) of the first two constant and linear terms in Eq.
(10.54) are ∑

k

r
(k)
i:ml

(k)
i ·C0, (10.55)

and

1

2

∑

k;λ(k)>0

(
1− λ

(k)
i ∆t

∆x

)
r

(k)
i:m∆C

(k)
1 (10.56)

where

∆C
(k)
1 =

3∑

s=1

l
(k)
i:s c1:s∆x = l

(k)
i ·C1∆x. (10.57)

Finally, integrating the last quadratic term in Eq. (10.54) yields

1

4

∑

k;λ(k)>0

(
1− 2λ

(k)
i ∆t

∆x
+

4

3

(λ(k)
i ∆t

∆x

)2
)
r

(k)
i:m∆C

(k)
2 (10.58)

where

∆C
(k)
2 =

3∑

s=1

l
(k)
i:s c2:s∆x

2 = l
(k)
i ·C2∆x2. (10.59)

Putting all things together, we complete computing the half-time evolved
normal predicted states for the third-order PPM in vector form,

V
n+ 1

2
R,i = C0 +

1

2

∑

k;λ(k)>0

(
1− λ

(k)
i ∆t

∆x

)
r

(k)
i:m∆C

(k)
1

+
1

4

∑

k;λ(k)>0

(
1− 2λ

(k)
i ∆t

∆x
+

4

3

(λ(k)
i ∆t

∆x

)2
)
r

(k)
i:m∆C

(k)
2 ,

(10.60)

and

V
n+ 1

2
L,i = C0 +

1

2

∑

k;λ(k)<0

(
− 1− λ

(k)
i ∆t

∆x

)
r

(k)
i:m∆C

(k)
1

+
1

4

∑

k;λ(k)<0

(
1 +

2λ
(k)
i ∆t

∆x
+

4

3

(λ(k)
i ∆t

∆x

)2
)
r

(k)
i:m∆C

(k)
2 .

(10.61)

173

Obviously, we notice that the temporally evolved PPM states are very sim-
ilar to those of PLM in Eqs. (10.31) and (10.32) up to the first two terms. The
last terms in Eqs. (10.60) and (10.61) appear as PPM’s additional terms from
the quadratic term in Eq. (10.33).

1.5. The Fifth-order WENO Method

We study two formulations of the fifth-order weighted essentially non-oscillatory
(WENO) scheme as another choice of the high-order methods. The first is
the classical fifth-order WENO scheme by Jiang and Shu (1996), denoted with
WENO5. The second approach, referred to as WENO-Z by Borges et al. (2008),
is a variant of WENO5, with an improved formulation of weights. The two
schemes follow most of the formulations in the same way, only differing in im-
plementing the nonlinear weights.

Our WENO implementations adopt the following procedures:

• Use either WENO5 or WENO-Z to reconstruct vweno,nL;R,i .

• Evolve these WENO reconstructed profiles by ∆t/2 to get v
weno,n+ 1

2
L;R,i via

the same characteristic tracing approach in PPM.

In practice, we perform the following steps:

1. Take the same third-order polynomial pi(x) in PPM defined by Eqs. (10.33)
- (10.38), replacing the PPM’s fourth-order reconstructed states vppm,nL;R,i in

Eq. (10.46) by the fifth-order WENO states vweno,nL;R,i . This means that we

skip all the steps in PPM that use φ±(x) in Eqs. (10.39) - (10.46).

2. Check only the second constraint in Condition 1 which is related to pre-
serving monotonicity of the parabolic profile pi(x) on each Ii with the
left and right states vweno,nL;R,i . Notice that the rest of the constraints are
not needed as WENO provides non-oscillatory states by design, which we
describe in the below.

3. Conduct the steps for characteristic tracing in Eqs. (10.54) - (10.61).

In general, WENO is best formulated with one of the high-order ODE
solvers such as Runge-Kutta discretization schemes. In this way, one can es-
tablish an expected overall high-order accuracy in both spatial and temporal
updates. However, implementing such schemes in FVM is attended by signifi-
cant amount of coding efforts, especially in multidimensions. In this reason, we
integrate WENO methods within the framework of second-order temporal ODE
solver that provides second-order overall accuracy in smooth flows.

The main idea in WENO is to adapt nonlinearly its reconstruction proce-
dure according to smoothness measurements on each three ENO stencil, Sl with
l = 1, 2, 3, each of which consisting three cells Ii, i = i1, i2, i3. So let us first

174

define

S1 = {Ii−2, Ii−1, Ii}, (10.62)

S2 = {Ii−1, Ii, Ii+1}, (10.63)

S3 = {Ii, Ii+1, Ii+2}. (10.64)

The two WENO reconstructions consist of the following three steps:

1.5.1. Step 1: ENO-Build : We begin with building three second-order poly-
nomials for each l = 1, 2, 3,

pl(x) =
2∑

k=0

al,k(x− xi)k, (10.65)

each of which is defined on Sl, satisfying

1

∆x

∫

Ik

pl(x) dx = v̄k, (10.66)

for k = i+ l − 3, . . . , i+ l − 1. After a bit of algebra, we obtain the coefficients
al,k that determine pl(x) in Eq. (10.65).

For l = 1,

a1,1 =

(
− 1

24
v̄i−2 +

1

12
v̄i−1 +

23

24
v̄i

)
, (10.67)

a1,2 =

(
1

2
v̄i−2 − 2v̄i−1 +

3

2
v̄i

)
1

∆x
, (10.68)

a1,3 =

(
1

2
v̄i−2 − v̄i−1 +

1

2
v̄i

)
1

∆x2
, (10.69)

and for l = 2,

a2,1 =

(
− 1

24
v̄i−1 +

13

12
v̄i −

1

24
v̄i+1

)
, (10.70)

a2,2 =

(
−1

2
v̄i−1 +

1

2
v̄i+1

)
1

∆x
, (10.71)

a2,3 =

(
1

2
v̄i−1 − v̄i +

1

2
v̄i+1

)
1

∆x2
. (10.72)

Lastly, for l = 3, we get

a3,1 =

(
23

24
v̄i +

1

12
v̄i+1 −

1

24
v̄i+2

)
, (10.73)

a3,2 =

(
−3

2
v̄i + 2v̄i+1 −

1

2
v̄i+2

)
1

∆x
, (10.74)

a3,3 =

(
1

2
v̄i − v̄i+1 +

1

2
v̄i+2

)
1

∆x2
. (10.75)

175

Then three sets of left and right states follow as

{p1(xi− 1
2
), p2(xi− 1

2
), p3(xi− 1

2
)}, and {p1(xi+ 1

2
), p2(xi+ 1

2
), p3(xi+ 1

2
)}, (10.76)

where each of pl(xi±1/2) is the ENO approximation and given by, first for p1,

p1(xi− 1
2
) = −1

6
v̄i−2 +

5

6
v̄i−1 +

1

3
v̄i, (10.77)

p1(xi+ 1
2
) =

1

3
v̄i−2 −

7

6
v̄i−1 +

11

6
v̄i, (10.78)

and for p2,

p2(xi− 1
2
) =

1

3
v̄i−1 +

5

6
v̄i −

1

6
v̄i+1, (10.79)

p2(xi+ 1
2
) = −1

6
v̄i−1 +

5

6
v̄i +

1

3
v̄i+1, (10.80)

and finally for p3,

p3(xi− 1
2
) =

11

6
v̄i −

7

6
v̄i+1 +

1

3
v̄i+2, (10.81)

p3(xi+ 1
2
) =

1

3
v̄i +

5

6
v̄i+1 −

1

6
v̄i+2. (10.82)

These left and right states respectively approximate the nodal value v(xxi±1/2
)

with third-order accuracy, i.e., pl(xi±1/2) − v(xxi±1/2
) = O(∆x3), by using the

given cell-averaged quantities v̄k.

1.5.2. Step 2: Linear Constant Weights The next step is to construct a
fourth-order polynomial

φ(x) =
4∑

k=0

bk(x− xi)k (10.83)

over the entire stencil S = ∪3
l=1Sl, also satisfying

1

∆x

∫

Ik

φ(x)dx = v̄k, (10.84)

for k = i− 2, . . . , i+ 2. We can show that the coefficients bk are given as

b0 =
3

640
v̄i−2 −

29

480
v̄i−1 +

1067

960
v̄i −

29

480
v̄i+1 +

3

640
v̄i+2,

(10.85)

b1 =
5

48
v̄i−2 −

17

24
v̄i−1 +

17

24
v̄i+1 −

5

48
v̄i+2, (10.86)

b2 = − 1

16
v̄i−2 +

3

4
v̄i−1 −

11

8
v̄i +

3

4
v̄i+1 −

1

16
v̄i+2, (10.87)

b3 = − 1

12
v̄i−2 +

1

6
v̄i−1 −

1

6
v̄i+1 +

1

12
v̄i+2, (10.88)

b4 =
1

24
v̄i−2 −

1

6
v̄i−1 +

1

4
v̄i −

1

6
v̄i+1 +

1

24
v̄i+2. (10.89)

176

v(x, tn)

Ii�2 Ii�1 Ii+1 Ii+2Ii

p1(xi+h)

p2(xi+h)

p3(xi+h)

p3(xi�h)

p2(xi�h)

p1(xi�h)

Figure 4. In the plot the shorthand index ‘h’ represents the half-index 1
2 .

WENO reconstruction using three ENO approximations pl(x), l = 1, 2, 3 on
S = ∪lSl. The dotted lines in red, blue and purple respectively illustrate
p1(x) on S1, p2(x) on S2, and p3(x) on S3, each of which preserves cell-
volume quantities v̄k (represented in green lines) on each Ik. The nodal val-
ues pl(xi±1/2) are marked at the cell interfaces. They are combined with

the nonlinear weights ω±
l to compute the fifth-order accurate WENO states

vweno,n
L;R,i =

∑3
l=1 ω

±
l pl(xi±1/2).

We use φ(x) to determine three linear constant weights γ±l , l = 1, 2, 3, with∑
l γ
±
l = 1, such that

φ(xi±1/2) =

3∑

l=1

γ±l pl(xi±1/2). (10.90)

The values on the left-hand side become

φ(xi− 1
2
) = − 1

20
v̄i−2 +

9

20
v̄i−1 +

47

60
v̄i −

13

60
v̄i+1 +

1

30
v̄i+2, (10.91)

and

φ(xi+ 1
2
) =

1

30
v̄i−2 −

13

60
v̄i−1 +

47

60
v̄i +

9

20
v̄i+1 −

1

20
v̄i+2. (10.92)

Now, by inspection, one gets for the left state,

γ−1 =
3

10
, γ−2 =

6

10
, γ−3 =

1

10
, (10.93)

and for the right state,

γ+
1 =

1

10
, γ+

2 =
6

10
, γ+

3 =
3

10
. (10.94)

177

1.5.3. Step 3: Nonlinear Weights The last step that imposes the non-oscillatory
feature in the WENO approximations is to measure how smooth the three poly-
nomials pl(x) vary on Ii. This is done by determining non-constant, nonlinear
weights ω±l (three of them for each ± state) that rely on the so-called smoothness
indicator βl.

In most of the WENO papers, the smoothness indicator takes of the form
of a scaled sum of the square L2-norms of all the derivatives up to the degree of
pl(x) on Ii. This is to say, in our case of deg pl(x) = 2 for all l = 1, 2, 3,

βl =
2∑

s=1

(
∆x2s−1

∫

Ii

[ds
dxs

pl(x)
]2
dx

)
, (10.95)

where the scaling factor ∆x2s−1 removes the grid size ∆x dependency in mea-
suring the norm. With this definition, βl becomes small for smooth flows, and
large for discontinuous flows.

For explicit expressions, we attain

β1 =
13

12
(v̄i−2 − 2v̄i−1 + v̄i)

2 +
1

4
(v̄i−2 − 4v̄i−1 + 3v̄i)

2 , (10.96)

β2 =
13

12
(v̄i−1 − 2v̄i + v̄i+1)2 +

1

4
(v̄i−1 − v̄i+1)2 , (10.97)

β3 =
13

12
(v̄i − 2v̄i+1 + v̄i+2)2 +

1

4
(3v̄i − 4v̄i+1 + v̄i+2)2 . (10.98)

Equipped with these βl, the nonlinear weights ω±l ≥ 0 are defined as: (i)
for WENO5,

ω±l =
ω̃±l∑
s ω̃
±
s
, where ω̃±l =

γ±l
(ε+ βl)m

, (10.99)

and (ii) for WENO-Z,

ω±l =
ω̃±l∑
s ω̃
±
s
, where ω̃±l = γ±l

(
1 +

(|β0 − β2|
ε+ βl

)m
)
. (10.100)

Here ε is any arbitrarily small positive number that prevents division by zero,
for which we choose ε = 10−36. The WENO reconstruction is scale invariant
as long as ε is chosen to be a small percentage of the size of typical vi under
consideration.

It should be noted that the nonlinear weights, by design, satisfy the follow-
ing two requirements:

1. The nonlinear weights become equivalent to the linear ones, ω±l ≈ γ±l ,
when the quantity v(x) WENO approximates is smooth over the entire
stencil S.

2. Otherwise, ω±l ≈ 0 if v(x) is discontinuous on one of S = ∪lSl, say, Sj ,
but is smooth on at least one of ∪l 6=jSl.

178

Most of the WENO literatures use m = 2 for the power in the denominator
in Eq. (10.99), which determines the rate of changes in βl. However, we observe
that using m = 1 resolves discontinuities sharper in most of our numerical sim-
ulations, so the default value in our implementation.

Using these nonlinear weights, we complete the WENO reconstruction pro-
cedure with the fifth-oder spatially accurate reconstructed values,

vweno,nL;R,i =
3∑

l=1

ω±l pl(xi±1/2) (10.101)

The remaining tasks are to conduct the steps for characteristic tracing de-
scribed in Eqs. (10.54) - (10.61), which produce the Riemann states (vL, vR) =

(v
weno,n+ 1

2

R,i+ 1
2

, v
weno,n+ 1

2
L,i+1). They are provided as the initial value problems for the

Godunov fluxes at each interface xi+ 1
2
.

2. 1D Shock Tube Results and Method Comparsion

The Shu-Osher problem (1989) tests a shock-capturing scheme’s ability to resolve
small-scale flow features. It gives a good indication of the numerical (artificial)
viscosity of a method. Since it is designed to test shock-capturing schemes, the
equations of interest are the one-dimensional Euler equations for a single-species
perfect gas.

In this problem, a (nominally) Mach 3 shock wave propagates into a sinu-
soidal density field. As the shock advances, two sets of density features appear
behind the shock. One set has the same spatial frequency as the un-shocked
perturbations, but for the second set, the frequency is doubled. Furthermore,
the second set follows more closely behind the shock. None of these features is
spurious. The test of the numerical method is to accurately resolve the dynamics
and strengths of the oscillations behind the shock.

The problem is initialized as follows. On the domain −4.5 ≤ x ≤ 4.5, the
shock is at x = xs at t = 0.0. On either side of the shock,

V(x, 0) =

ρ
u
p

L

=

3.857143
2.629369
10.33333

 if x ≤ xs,

ρ
u
p

R

=

1 + aρ sin(fρx)
0.0
1.0

 if x > xs.

(10.102)

where aρ is the amplitude and fρ is the frequency of the density perturbations,
for which we take aρ = 0.2 and fρ = 5.0. The ideal equation of state is used
with γ set to 1.4. The location of the initial discontinuity is at xs = −4.0.

179

For this problem, special boundary conditions are applied. The initial con-
ditions should not change at the boundaries; if they do, errors at the boundaries
can contaminate the results. To avoid this possibility, a boundary condition
subroutine was written to set the boundary values to their initial values.

The purpose of the tests is to compare computed solutions using five differ-
ent reconstruction methods of first-order Godunov, PLM, PPM, WENO-5 and
WENO-Z. Therefore, all computations are carried out on a uniform mesh reso-
lution of N = 200. Solutions in Fig. 2. are obtained at t = 1.8. The reference
solution, using 4000 mesh cells, is overplotted in black curve with five different
computed solutions in Fig. 2. This solution was computed using PLM at a CFL
number of Ca = 0.8.

It is evident that the higher-order methods such as PPM, WENO-5 and
WENO-Z resolve better resolutions producing much higher peaks and troughs
in the oscillating density shapes. The first-order Godunov solution is the most
dissipative among all, essentially failing to resolve sufficiently the high frequency
oscillating regions at all. The last panel clearly indicate the great advantage of
using high-order methods over the low-order methods on a given size of grid
resolution.

180

Figure 5. The Shu-Osher problem. The density profiles at t = 1.8 are
computed using five different reconstruction schemes of first-order Godunov
(FOG), PLM, PPM, WENO-5 and WENO-Z on a 200 grid resolution. The
reference solution is obtained using PLM on a 4000 grid resolution. The last
panel illustrates a closeup view of the five different numerical solutions in the
domain between −1 ≤ x ≤ 3.

Chapter 11

Multidimensional Euler
Equations

In this chapter we are concerned with multidimensional hyperbolic system of
conservation laws. For Cartesian geometry we can write the equations of our
interest as

Ut +∇ · Flux(U) = Ut + F(U)x + G(U)y + H(U)z = 0, , (11.1)

where we take the conventional notation for multidimensional fluxes F, G, and
H for x, y and z directions, respectively.

For exposition purposes, we shall present one of the two ways of solving
Eq. 11.1 in 2D. The approach we will take is the simpler one of the two, called
dimensionally split methods. The other approach, which is in general more
computationally expensive but more accurate, is called dimensionally unspilt
methods, for which we simply provide a list of references.

1. Two-Dimensional Euler Equations in Conservative Form

We write the full Euler equations in 2D in the conservative form as

Ut + F(U)x + G(U)y = 0, (11.2)

with

U =

ρ
u
v
w
E

 ,F =

ρu
ρu2 + p
ρuv
ρuw

u(E + p)

 ,G =

ρv
ρuv

ρv2 + p
ρvw

v(E + p)

 , (11.3)

Since ∂
∂z = 0 the z-velocity component w becomes simply an passively advected

quantity in 2D.

181

182

2. Dimensionally Split Methods

For nonlinear systems dimensional splitting is not exact nor the best way to use,
but one may construct an approximate splitting scheme very easily, especially
when extended from an already existing 1D code. Consider the 2D initial value
problem

PDE: Ut + F(U)x + G(U)y = 0,

IC: U(x, y, tn) = Un.
(11.4)

The two dimensional splitting approach replaces Eq. 11.4 by a pair of one
dimensional IVPs

PDE: Ut + F(U)x = 0

IC: Un

∆t
=⇒ Un+ 1

2 , (11.5)

and

PDE: Ut + G(U)y = 0

IC: Un+ 1
2

∆t
=⇒ Un+1, (11.6)

where ∆t is chosen to satisfy the multidimensional CFL condition

max
x,y

{ |λx|
∆x

,
|λy|
∆y

}
∆t ≤ 1. (11.7)

Here the maximum wave speed calculation takes the global maximum value over
the all available wave speeds in x and y wave characteristics evaluated over an
entire computational domain. In practice for the Euler equations,

max
x

{ |λx|
∆x

,
|λy|
∆y

}
= max

i,j

{ |ui,j |+ csi,j
∆x

,
|vi,j |+ csi,j

∆y

}
(11.8)

As we can see in the first step in Eq. 11.5 we solve a 1D problem in the
x-direction for a time step ∆t. This is called the x sweep and its solution only
reflects a half-updated state Un+1/2 from the x-directional flux contribution. In
the next step in Eq. 11.6 we solve another 1D problem in the y-direction, also for
the same time step ∆t. This is called the y sweep which takes the half-updated
state Un+1/2 as an initial condition.

Let X (t) and Y(t) be the operators to approximate the solutions in Eq. 11.5
and Eq. 11.6, respectively. Then we can express Eq. 11.5 and Eq. 11.6 as either

Un+1 = Y(∆t)X (∆t)Un, (11.9)

or
Un+1 = X (∆t)Y(∆t)Un, (11.10)

since there is no particular reason for applying the operators in any specific
order.

183

These splitting approaches in Eqs. (11.9) - (11.10) can be shown to be only
first-order in time (Strang, 1968) if the individual operators X and Y are at
least first-order accurate in time. Alternatively, one can obtain a more efficient
second-order accurate splitting (Strang, 1968),

Un+1 = X (∆t
2

)Y(∆t)X (∆t
2

)Un, (11.11)

or
Un+1 = Y(∆t

2
)X (∆t)Y(∆t

2
)Un, (11.12)

which require only 50% more work than the first splitting approaches in Eqs.
(11.9) - (11.10).

Yet another type of second-order accurate scheme is

Un+2 = X (∆t)Y(∆t)Y(∆t)X (∆t)Un, (11.13)

or
Un+2 = Y(∆t)X (∆t)X (∆t)Y(∆t)Un, (11.14)

which is second-order accurate every other time step and has been implemented
and used in the FLASH’s split PPM hydrodynamics solver.

3. Dimensionally Unsplit Methods

Alternative to splitting multidimensional PDEs into sub-1D systems as in the
dimensionally splitting methods, we can directly discretize and numerically solve
the whole multidimensional PDEs. This is called the directionally unspilt meth-
ods. With this unspilt approach one can avoid introducing the numerical errors
from splitting PDEs dimensionally.

The unspilt methods are in general better in maintaining multidimensional
symmetries than the split methods. Other challenges of the unsplit approaches
include that (i) one has to require more memory spaces to store all the avail-
able calculations in intermediate steps, (ii) the unspilt consideration is more
attended to account for multidimensional wave structures, (iii) a more careful
multidimensional stability needs to be established in order to use the full CFL
stability region, i.e., 0 ≤ Ca ≤ 1. Otherwise, the CFL region will be reduced to
0 ≤ Ca ≤ 1/Ndim in general.

For those who are interested in more reading, please take a look at the
following references:

• Multidimensional Upwind Methods for Hyperbolic Conservation Laws by
Colella, 1990, JCP (attached; 2D hydrodynamics),

• An Unsplit Staggered Mesh Scheme for Multidimensional Magnetohydro-
dynamics, D. Lee and A. Deane, 2009, JCP (2D MHD),

• An Unsplit 3D Upwind Method for Hyperbolic Conservation Laws, Saltz-
man, 1994, JCP (3D hydrodynamics),

184

• A Solution Accurate, Efficient and Stable Unsplit Staggered Mesh Scheme
for Three Dimensional Magnetohydrodynamics, D. Lee, 2013, JCP (3D
MHD),

• Riemann Solvers and Numerical Methods for Fluid Dynamics, Toro, Springer,

• Finite-Volume Methods for Hyperbolic Problems, LeVeque, Cambridge
Texts in Applied Mathematics,

• And many others!

IOGRNAL OF COMPUTATIONAL PHYSICS $7, !71-200 (1990)

ultidimensional Upwind
for Hyperbolic Conservatio

PHILLIP COLELLA

Mechanicd Engineering Department, University of Caiifornia, Berkeley, Cal$omia 94720

Received June 20, 1984; revised October 21, 1987

We present a class of second-order conservative finite difference algorithms for solving
numerically time-dependent problems for hyperboiic conservation iaws in several space
variables. These methods are upwind and multidimensional, in that the numerical fluxes are
obtained by solving the characteristic form of the full multidimensional equations at the zone
edge, and that all fluxes are evaluated and differenced at the same time; in particular, operator
splitting is not used. Correct behavior at discontinuities is obtained by the use of solutions TV
the Riemann problem, and by limiting some of the second-order terms. Numerical results are
presented, which show that the methods described here yield the same bigh resolution as the
corresponding operator split methods. Q 1990 Academic Press, Inc.

Over the last several years, there has been considerable development of upwin
type numerical methods for solving nonlinear systems of byperbo~~c conservation.
laws in several space dimensions. These methods, generally peaking, a.re all secon
order extensions of Godunov’s first-order method [111. T ey incorporate into t
numerical solutions the nonlinear wave propagation properties of the solution, in
the form of Riemann problems and characteristic equations, leading to algorithms
which are robust and accurate, even in the presence of nonlinear disco~~~~n~~t~~s.
However, all of the methods currently in use are derived using the characteristic
form of the equations in one space dimension, with most of these algorithms being
extented to several space dimensions using operator splitting. Nonetheless, these
algorithms, particularly the operator split ones, have been quite successful in res~~v~~~
complex patterns of interacting discontinuities and smooth waves ; for further
details see [22-j and the references cited there.

In this paper, we will consider a class of conservative finite difference akgorithms

* Work supported by the Applied Mathematical Sciences subprogram of the Offlice of Energy
Research of the U.S. Department of Energy at the Lawrence Berkeley Laboratory under Contract
DE-AC03-76SFOOO98; by the U.S. Defence Nuclear Agency under DNA task code “699QAXSG; and by
the Office of Naval Research under Contract N00014-76-C-0316.

171
OO21-999;,‘90 $3.00

Copyright c 1990 by Academic Presr. inc
All rights of reproducwx~ m any form rexned.

172 PHILLIP COLELLA

for hyperbolic conservation laws in several space variables which do not make use
of operator splitting, for which the multidimensional wave propagation properties
of the solution are used to calculate fluxes. Unsplit schemes are customarily used
in a variety of applications, including petroleum reservoir simulation [lg],
ionospheric physics [24], and Lagrangian hydrodynamics [I]. Thus, one of our
goals is to provide algorithms which have the same robustness and resolution as the
existing operator split algorithms, but which have the same unsplit structure as the
existing algorithms used in the applications codes in those areas. In addition, there
are two specilic applications for which these methods were developed which are the
subject of our current research. One is as a method to be coupled with a front
tracking method [3], where the tracked front is represented locally by a polygonal
line which divides the cells into two pieces. In each piece, the solution is updated
by a method that is necessarily unsplit, in order to preserve the Rankine-Hugoniot
relations for the tracked front. The second application is as a starting point for the
extension to more than one space dimension of implicit/explicit methods of the type
discussed in [lo]. In these methods, propagation along each of the characteristic
families is treated implicitly or explicitly, depending on whether the CFL number
for that characteristic is greater than or less than 1. Thus we require an explicit
algorithm with properties similar to those of the l-dimensional algorithms in [7],
but which can be hybridized continuously to an implicit algorithm, in order to have
steady states which are independent of d t.

The design of the algorithm described here is broken into two steps. First, we
specify an algorithm for a linear scalar advection equation, which. in smooth
regions, is second-order accurate, to which a monotonicity condition, related to
those used in [ZO] for advection algorithms in one dimension, is applied. We then
construct the algorithm for systems by introducing a predictor-corrector formalism
and by replacing various derivatives in the predictor step by finite differences, using
the advection algorithm as guide: upwind differences for advection become
differences of Godunov fluxes for systems, and monotonized central differences for
advection become monotonized central differences with monotonicity constraints
applied to the appropriate choice of transformed variables. Independently of the
present work, van Leer also derived multidimensional upwind methods for hyper-
bolic conservation laws, following a similar line or reasoning; in particular, both
methods lead to the algorithm for advection given in the next section. However, his
extension to systems is rather different from the predictor-corrector formalism
described here; for details, see [21].

A major problem in the program outlined above is the specification of design
criteria which guarantee oscillation-free results, even in the one for a linear scalar
equation. The principal criterion in one space dimension is that the scheme be total
variation diminishing [131; however, a straightforward generalization of this
criterion to more than one dimension has been shown in [12] to imply that the
scheme is at most first-order accurate for smooth solutions. The approach taken in
the present work is to specify cetain necessary conditions that the scheme must
satisfy, and which are satisfied by the schemes described here. These are:

MULTIDIMENSIONAL UPWIND METHODS

(1) For a I-dimensional problem aligned with one of the grid directions, the
algorithm. should reduce to a second-order Godunov metho of a type described
in [7].

(2) The second-order scheme without limiting, and the first-order sche~me
obtained by imposing the full limiting of the fluxes at all mesh points, should have
as linear difference schemes, the same CFL stability limit on the time step. This
CFE stability limit should be the same as for an operator split scheme, with the
component l-dimensional algorithm as in [7].

(3) In the case of linear advection, the fully limited scheme should satisfy a
maximum principle.

In the following, we will restrict our attention to the case of two space variables.
Although the formalism developed here carries over to higher dimensions, rhe
trade-offs between performance and cost change as the number of dimensions grow ;
a proper evaluation of what those trade-offs are can ~niy be made by numerical
experimentation. In three dimensions, such a study wouid strain the capaoiiities of
present computer technology. Some discussion of these considerations wi)lI be nade

e final section of this paper.

1. ADVECTION ALGORITHMS

We consider the scalar advection equation in two space variables

We want to solve numerically initial value problems for (I.1). To this end: -we
will attempt to construct algorithms which generalize ~pstre~m~centered aigorithms
in [ZO] to two space variables, without replacing the operator ap~roxim~tjmg the
time evolution of (1.1) by the product of l-dimensional evolution operators. Our
strategy will be to start from a well-behaved first-order upwind algorithm ‘I _ IQ?
solving (1.1). We add to the evolution operator the terms necessary to make the
algorithm second-order accurate in a way such that they can be Iimited. Le.,
subtracted off, at discontinuities.

Let ds, by be spatial increments, dt a time increment. We assume that we ‘know
p:J? the average of p at time t”:

I

p:j=$, /, p(x, I”) dx.
r.,* z.,

ere di.,=C(i-~)d.r,(i+~)ns]x~(.i-~)d~.(j+~)C~,3~ a,.i=larea of Ir2:,,;1.

174 PHILLIP COLELLA

We wish to calculate py f’, the solution to (1.1) at time trr+ ’ = t” + At. A natural
algorithm for doing this ‘is to trace backward in time from t” + At the set ‘!fij, along
the characteristics of (1.1) to obtain A&. Then pi, j ‘I+ ’ is set equal to the average
over Ai,j of the trivial interpolation function p’(x) = pr j if x E A, j:

=(A,p:j+A,P::i-,+~~P~~,,j+A,P~-l,j-l~~ (1.2)
CJ

where the A,‘s are the areas in each of the four upstream zones swept out by u, as
indicated in Fig. 1.

We can put this scheme in explicit conservation form

(1.4)

One way of deriving the formulas for p~~~~j, p;~~~s2 is to notice that they are the
averages of P’ over the region swept out by the characteristics through the zone
edges centered, respectively, at (i+ &j) and (i, j+ i) (Fig. 2). We shall refer to this
scheme as the corner transport upwind (CTU) scheme, since it takes into account
the effect of information propagating across corners of zones in calculating the flux.
This scheme is first-order accurate. It also satisfies a maximum principle, since
p$&, p;;:$ are weighted sums,. with nonnegative weights, of values of the
solution at time r”.

FIG. 1. The region over which we average p’ to obtain the new value for p is outlined with a dotted
line. It is obtained by following the integral curves of the vector field u (in this case, straight lines) back-
wards in time by Sr from points in d,.

MULTIDIMENSIONAL UPWIND METHODS

Fur;. 2. Tne shaded region is the region over which one averages p’ to obtain the CTU flux at rhe
zone edge bounding that region. It is the set of all points from .xkich characterisrics can reack thai zone
edge between rime I” and r” + AZ,

One fact that is immediately seen from the formula given above for the boxes
is the difference between the CTU scheme and the conventional donor czi!

differencing. In the latter case, p:.+?z.i = p:fj, p;T_1’$ = pr.,. Thus, in this scheme, k+e
are adding a time-centered correction term to the donor-cell flux which estimates
the effect on the flux of the gradients in the transverse direction. This corresponds
to subtracting from the donor cell algorithm a term which, to Ieading order in the
truncation error, is always destabilizing. This is reflected in the differing CFL rime
step limits for the two schemes:

where (1.5 j is a suffkient condition, and (1.6) is a necessary condition, as is eas:iy
checked using Fourier analysis.

One can view schemes of the form (1.3)-(1.4) as being predictor-corrector
schemes. One regards the calcuiation of p;‘z:!&: pT,=‘<‘, as the predictor step, with
the conservative differencing as the corrector step. Thus, if ,o;,+?& were to be
calculated in such a way as to have a local truncation error of O(Ar*) in smooth

regions: then the scheme would be second-order accurate. To obtain such an
estimate for p;zc:l:i one must have

176 PHILLIP COLELLA

The only terms in (1.7) missing for the CTU flux (1.4) are the ones involving Sp!&x.
Thus, we add that term to p;$iTi to obtain a second-order flux:

(1.8)

Here 4”p, j/4~~ should be a difference approximation to (Sp/a.x)(,id.r. jdgJ, and 4”~
should also be limited to suppress oscillations at discontinuities. The simplest choice
is a central difference approximation to (?p/?~), with the l-dimensional limiter
given in [?O]:

X w@:'+ ~,j- PY- I, j) if (P:,'+ ,.,i-P;j)(P2j-Pr-,,,i)>O;

= 0 otherwise. (1.9)

Similarly, we define

where 4.“p is a monotonized central difference formula, such as the one given by
(1.9 j with the roles of i and j reversed. Because of the nonlinear switch in the defmi-
tion of 4”p, 4?p, one cannot perform a formal error analysis on this algorithm.
However, in smooth regions, one expects 3”p, dJ’p to be given by the central dif-
ference operators (4”p)i,.j= f(pi+ l..i - pip 1, j), (4I.o ji,l = f(pi,,+ I - pi,]- L j. In this
case, one can perform the linear error analysis and find that the scheme is second-
order accurate. We have also calculated the amplification factor and evaluated it
numerically; we have found that, as long as the time step satisfies (Lj), the second-
order algorithm does not amplify any Fourier modes.

There is not a great deal one can say about the monotonicity properties of this
algorithm, save that, when the slopes are fully limited, i.e., 4 yp = 4”~ = 0, it reduces
to the first-order CTU scheme described above. In order to have this property, it
is necessary to treat the spatial derivatives in the predictor step in a non-symmetric
way: the derivatives in the direction tangent to the zone edge are approximated by
upwind differences, and are not subject to monotonicity constraints, while the
derivatives in the direction normal to the zone edge are approximated by
monotonized central differences. For linear advection of a discontinuity oblique to
the grid, the algorithm appears to produce monotone results.

A different approach to the one taken here, more in line with the geometric
constructions in [20], would be to construct piecewise linear interpolants of p,
suitably monotonized, and to integrate over surfaces swept out by the characteritics
to obtain fluxes, similar to what was done to obtain the flux form (1.4) for the CTU
scheme. We have not done so here: for a development along such lines, see [21].
However, for strongly nonlinear problems, we find that a somewhat more elaborate

treatment of the transverse derivatives than simply using first-order upind
diffeerencing will be required, leading to an algorithm which is intermediate in
complexity. This algorithm will be discussed in the next section.

2. SYSTEMS OF CONSERVATION LAWS

In this section, we will consider algorithms for solving numerically the initiai
value problem

For each nr E ’ we define the projected equations (along ra) to be the i-dimensionxi
system of conservation laws

(-i -j

/A.- ,i

We say that the system (2.1) is hyperbolic if, for every n she projected equarjcr~s

4

FiG. 3. Chacacrerisric surfaces in two space dimensions. f is a curve in the spatial plane with ~Iii~~WLi

vector 5eId n. and S’ is one of the .M characteristic surfaces in space-time passing throw@ ,7

178 PHILLIP COLELLA

(2.2) are hyperbolic, i.e., that the linearized coefficient matrix V,F” = A” has M real
eigenvalues A”, I d . . d /Z’*..” corresponding to M linearly independent left and right
eigenvectors (l”.‘, I”.“), V= 1, ,.., AL We also have A”= n. A, where A= (A’, A’),
-4” = V,.F”, A.” =VLFJ’. The left and right eigenvectors can be chosen so as to be
biorthonormal, i.e.. I”*” . I.“.” = 6 ,,,,, ,, so that the expansion of a vector II’ER”’ in
terms of the P”s is given by N’= x,,= i, ,,_, M E”,\‘P”, with ~(“3” = I”,” 1~.

Our algorithm for the calculation of conservative fluxes is motivated in part by
a version of the multidimensional theory of characteristics, which we review briefly
here; for a more extensive discussion, see [S, 161. If I- is a curve in the plane
{(x, t): t=t,}, th en there exist surfaces S’, S” called characteristic surfaces,
passing through r, such that the normal to S” at a point (x, t) is of the form
(n, -A”.“), where A”,” is the rth eigenvalue of the projected equations in the
direction of the unit vector n (see Fig. 3). The significance of these surfaces is that
along each of these surfaces, a continuous, piecewise C’ solution to (2.1) satisfies
the following interior partial differential relation:

()=I”.‘. au
I+ATU

>

= 1%‘. 2U
at+ (n. A)(n .VU) + (t .A)(t .VU)

>

= I”.” , au
z+,i”-‘n.VU+(t.A)(t.VU) ,

>
(2.3)

where t is a unit vector orthogonal to n in the plane. Since (dn9’n, 1) and (t, 0) are
tangent to S’, then (2.3) contains only derivatives in directions tangent to S’. In
particular, if we define d/do’ to be differentiation in the direction of the vector field
(A”,%, I), then (2.3) becomes

,..~e.E+(p’ .A’)(t.VU)=O; (2.4)

i.e., we obtain the ordinary differential relation from the theory of characteristics in
one dimension for the system projected in the n direction, with the derivatives in the
t direction acting as source terms.

Finally, we assume that the Riemann problem for the projected system (2.2) is
well posed for all n E R2, i.e., that the initial value problem for (2.2) given by

ux, 0) = u, for x<O

= UR for x>O

has a unique solution with appropriate entropy conditions, for any choice of UL,
UR for which (2.2) is hyperbolic. This solution is a function only of the similarity

MULTIDIMENSIONAL UPWIND METHOOS

variable l/r; throughout this paper, when we require the solution to a Riemann
problem, it will be at the point x/t = 0.

We assume, as in the scalar case, that we know e/r:fI’ the average of the sohrtion
over A,.,, the zone centered at (i Ax, j Ay) :

We want to extend the algorithm described in the previous section to calcufete
U:.:, ‘, The difficulty here is that the different modes of wave propagation can carry
gradient information from different sides of the zone edge where the flux is to be
evaluated. We solve this problem by using predictor calculations similar to (I.8) to
calculate two states at a zone edge, representing the propagation of signals coming
from the left and the right of the zone edge. We then obtain a single value for the
flux by solving a Riemann problem given the two states, with the jump assuaed i;;
be parallel to the zone edge.

The algorithm can be broken up into the following four steps:

(1) the calculation of monotonized central difference approximations to

A-‘6’ c?U A’C! Fir
---z-
d.Y d*?c (idx,;,jq

--;2-
A 1,’ Q’ (,or..,l,,

(2) the construction of time-centered left and right states at the zone
edges : U;=,“;; j,r. U:f::;&R at ((i+ 4) d.u, j A!), and I;:[.T:,f.,.L, L:y:i $_ at
(i Ax, (j+ $) Ay);

(3) the solution of the Riemann problem at the zone edges for the projected
equations along the normal to that zone edge, given :he left and right states com-
puted in (2), to obtain U:.‘z,‘.;&, CT:::,&;

(4) the conservative differencing of the fluxes Ff, ,,:, , = F’[Unfit&):
F iI’., + 1 12 = F:‘(u; ;:,&) to obtain Uy: ’ :

We will describe the details of only the calculation of Ff+ I .?, ?; the other fluxes
are calcuiated along the same lines, interchanging the roles of i and j. .Y and I.‘.

The calculation of slopes follows the pattern seen in the scalar case: we use ce~-
tral difference to approximate the spatial derivatives of L’ and constrain t&em using
a l-dimensional monotonicity algorithm. In imposing monotonicity constraints,
there are two strategies which have been used successfully in one dimension. The
first is to perform a nonlinear change of variables such that the new dependent
variables are the Riemann invariants, i.e., a set of variables (ill. ..~_ 11~“)’ such that
I’ -8, [)I” = a,,,., and interpolate those variables componentwise using monotonized

180 PHILLIP COLELLA

interpolation such as the one given for the scalar case in the previous section. This
procedure can be done only for special systems, since such a set of Riemann
invariants does not, in general, exist when M> 2. A variation on this procedure is
done for Euler’s equations for compressible flow, where the primitive variables are
interpolated; this is discussed in Section 4. The second approach, due to
Harten [14], is to expand the central difference approximation to the spatial
derivatives in terms of the right eigenvectors of the coeffkient matrix of the
linearized equation and constrain the amplitudes in that expansion. Since the latter
procedure is well defined for general systems of conservation laws, we will describe
it here.

To calculate (d”U),, we define the expansions,

where I x “: rx’ “, A”,“ are the eigenvectors and eigenvalues of the equations projected
in the x coordinate direction. Then (d”U),,, is given by

(2.6)

CC” = min(I@;\, \K;J, la”,\) x sgn(a>) if aLa’,>0

=o otherwise.

Next, we define the left and right states at the zone edges U?:,‘.‘:,,, ~‘~~~/~~j,R.
We extrapolate from the zone centers on either side of the zone edge at
((i+ f) Ax, j Ay), using a formula similar to t.l.7):

Ax AtA” c3U At c?F’
= U;tk,j -I +-T-- x---.

> 2 I 2 dy
(2.7)

Here, and in what follows, we use expressions such as (2.7) involving the symbols
. (.S, _+, k) to mean a pair of expressions. one with (S, f , k) replaced by (L, +, 0),

the other with (S, &, k) replaced by (R, -, 1). In calculating CJ~~:~~~i,s, we
approximate aU/sx by the monotonized central differences A”U/Ax and the dFy/$
term by a difference of Godunov fluxes, the extension to nonlinear systems in one
dimension of upwind differencing for linear scalar equations.

Ht is convenien: to view the calculation of U;~~,.ii.L~ C~:‘,:~~j, R as consisting of
two steps, the Erst involving the monotonized central difference approximations io
S d7i’3.ic, the second involving the transverse derivatives :

In order to calculate CT,+, ?, ,.S for linear problems, it would suffice simply 20
replace i?U/ax by (d”U),,/dx. However, we make two changes in (2.8) which. for
constant coefftcient problems, are redundant operations leading to identica! va1uzs
for c:T’1’>: ,’ but which have been seen to lead to a somewhat more robust
algorithm for strongly nonlinear problems. This firs: is to discard in the ?L[i?.\- term
the components corresponding to characteristics which do not propagate tonards
the zone edge. The second is to introduce arbitrary reference states oia, 0,. taking
advantage of the fact that the characteristic projection operators appearing in borh
the construction of the left and right states and in the SOIL&XI of the Riemann
probiem act on increments of CT. The resulting algorithm is given as follows:

The reference states 8,, 0, are chosen so as to reduce to as great an extent as
possibie the size of the sum of the terms multiplied by the characteristic projection
operators P,. One possibility is to take

The additional cost of applying the characteristic projection operators is small,
ecause of the monotonicity algorithm, we already know the expansion of &L’ in

terms of the right eigenvectors. Applying the characteristic pro_iection operators to
(d”U) is accomplished by setting to zero the coefficients of the eigenvector expzn-
sion of (A’U) which have associated propagation speeds with the wrong sign.
Finaiiy. the cakulation of the terms involving A‘ is easiljr accomplished using the
fact that the projection operators are sums of eigenprojections of A”, impiying that
Ps.4~~d~u=~+I*L>o Pvc(“F’. Using this fact, and with the above choice of ?;..
O,, we obtain Yhe following explicit expression for i2.10 j :

182 PHILLIP COLELLA

Oi+ l,‘Z,.i, R = OR + $
- _ ,, : ;..I. I’

l+l.,co

where the c~;‘,?‘s are the expansion coefficients of (d”U),, given by (2.6). This proce-
dure is essentially that given in [7] for computing the left and right states for the
l-dimensional algorithm, applied to the case of piecewise linear interpolation.

To complete the calculation of U;:l,Lzj,S we approximate (8F”/ir~))/, ij,. jdJ,J by
some appropriate upwind flux difference. The simplest choice is to use Godunov’s
first-order method to evaluate ?P/i$. If we define UzTj+ *,,? to be the solution to the
Riemann problem for the projected equations along the y-direction, with left and
right states

then

U” + 1!2 ~f1;2.j,S= oi+l.2.j,SA& tF'('T+k, j+ I;2)-F?'(UT+',,.j-I./2)) (2.14)
,’

is a sufficiently accurate approximation to (2.9) to yield an algorithm that is
second-order accurate. For problems involving moderately strong nonlinear discon-
tinuities which are oblique to the mesh directions, it is necessary to use a slightly
more complicated algorithm to evaluate the effect of the transverse derivative term
(dFl‘j$y)(df/2) on the left and right states. This term estimates the change in the
solution due to the J--gradients. In the case of an oblique discontinuity, if the
estimate is suff%ziently different from the actual change calculated in the conserva-
tion step, the solution will overshoot, or the discontinuity will spread, depending on
the relative signs of the gradient and the error. To alleviate this problem, we use an
estimate for i?F’/dy which is closer to what we will actually use in the conservation
step, by taking Uzj+ ,,,2 to be the solution to the Riemann problem for the
equations projected along the y-direction with left and right states

('@+,;2.L, UPj+1,2.R)=(~r,j+1.2,L, oii,j+1~2,R)? (2.15)

where oi,j+ m,Lr oi,j+1i2,R is cotnputed using the analogue of (2.10) for the zone
edge at (i Ax, (j + t) Al?).

Given the left and right states defined as above, we solve the Riemann problem
for the l-dimensional equation projected along the .X direction to obtain U~~$j.
In the case of constant coefficient equations, it is easy to check that CT:::,2 i satisfies
the following linear equations, independent of the choice of a,, ni,:

MULTIDIMENSIONAL UPWIND METHODS

where

This is a finite difference approximation to the characteristic form of Eqs. i2.4) on
the M characteristic surfaces intersecting the line {(x, ~1): x = (ii- $ As) at trme
fZ f ! 2, The proof is a routine calculation using the characteristic projec5oG
operators; the key fact that is required is that the solution to the Riemann problem
for (2.2) with left and right states I$‘,, Li’-, is given by

where P,, P, are the projection operators defined in (2.10 j. In the case where the
equations arc nonlinear, but the solutions are smooth c’yz:.:, satisfies tQ.16’)
modufo terms which are second order in the mesh spacingi provided that
0 -rr-y

S Vt!tk,j is of the order of the mesh spacing, where the eigenvectors and eigen-
values are evaluated at U;‘~~~~,. This fact describes one sense in which the
algorithm described here is upstream-centered for smooth solutions: the valw ol
the predictor CT:,” ,!;z, is given as a solution to 34 linear equations which are 5ni:e
difference approximations to the characteristic equations,

Finally, we need to specify a bound on the time step for stability. We expect that
the CFL condition should be given by

by analogy with the stability condition (1.5) for the advection equation. Tn the ‘case
where A” and A F commute, the above stabiiity condition holds m the sense that i;
held for the scalar equation, i.e., that the fully limited scheme. and the scheme
without limiting. both have (2.17) as necessary and sufficient conditions for Fouraer
stability. This follows easily from the analogous result for scalar equations, plus the
fact that the system can be diagonalized. We have not proven (2.17) for any
problem for which A” and -4”‘ do not commute. However, we have used the above
condition as a time step control for our gas dynamics calculations and have seen
no evidence of instability.

3. QUADRILATERAL GRIDS

The above algorithm can be extended to the case of arbitrary quadrilateral grids.
For the purposes of deriving the algorithm we will assume that our grid comes from

184 PHILLIP COLELLA

a smooth coordinate mapping, although the final difference algorithm will be
expressed only in terms of differences between coordinates of the corners of the
quadrilateral mesh.

We now assume that our computational domain is divided into quadrilaterals
LI,~ with corners located at (-‘ci+ ,,2, i+ 1,2, yi+ I,,Z,.i+ l,.z). Furthermore, we assume
there is a smooth map (5, r]) c* (x, y) between some coordinate space and physical
space, with a rectangular mesh in (5, tl) space with corners located at (li_ rT2,

qj+ I;?) such that (-xi+ r.l..,+ I.‘*, .Yi+1.2.j+ r/2) = (-x(ri+ I!23 vj+ l.fZJ. Y(Ci+ 1’2, ‘lj+ 1:2)).

We can transform the system (2.1) to the (& I?) coordinate system:

d(JU) i?F< irFq
dt+S;;+-=0

drl
(3.1)

J= Det(V,,,,,ix, J’))

F’ = ,,‘I F, JV=n’.F

“v=($,_?T); &(_$,$).

Without loss of generality we assume here that J>O. We define finite difference
approximations to the derivatives of the grid mapping function:

(Arx)~.j=~((A’x)~,~+~‘2+(A5X)~,~_~,~)

(A’?X),,= $((A’lx)j+ 1.2.j+ (dw_,,2.j)

~j.j=~((Xi+I;2,j~-li.2-Xi~ 1,2,j+~,2~(J~i+1~2,j~~l;l~J'r~-1;2,j--l.2~

+ (Xi, 1,2.j+ ,,‘2 - .Xj_~ I,&- ,,‘2)(J’i- I.z,~+ I,Z - Ji+ r,2,j- 1.2)).

(3.2)

Using these finite differences, we can make the connection between the mapping
derivatives appearing in the transformed equations (3.1) and the geometry of the
finite difference grid in physical space (Fig. 4) : oii z J(&, vi) LI~~LI~ is the area of

the (i, j)th zone, and n’ 65, z -(d:x)&+ 1;2, nIr Atliz (A”xj,i; ,;2,j are normal to the
zone edges, where we use the notation (n,,, 12’~)~ = (ICY, --ICY).

As in the previous section, we will assume that, at time step 12, we know lJFj, the
average of U over A,i. The procedure for calculating LJ;T’ follows the same basic
outline as that for the rectangular grid case. We construct time-centered left and
right states at the zone edges, solve the Riemann problem, and difference the fluxes
conservatively, taking care that, at each step, the effect of the quadrilateral mesh is
accounted for in a suitable fashion.

MULTIDIMENSIONAL UPWIND METH’9DS

Constant
7 Lines

t: Lines

FG. J. Georr,etric interpretation of the difference approximations to the derivettivz =f the s’id
mapping.

Our conservative difference step will be of the “f&rite volume" type:

~~~~‘=L::,+dr1(il”x),,,~,,,.F(U:r~l:il:i-(40~~:+~~.~. 
oi,, 

(ly’v,i 

- (&)l i.i-i,~.F(C~~~‘~;?,)+(3~x)~i*1,2’F(UTf~~;~*)~. i”> Y J.3 ! 

It is ckar that this formuia is a conservative finite difference approximation to (3 1). 
This formula can also be obtained by integrating (2.1) over 4,,j x [r”, I”+ ‘3, apply- 
ing the divergence theorem, and approximating the resulting surface inregrafs using 
the rcidpoint formula From that point of view, each of the terms multiplied by 
JI,~cT~, i represents a time- and space-averaged flux through one of the edges of LP:,~. 

Our strategy for obtaining values for U;;:;l,, 
in the rectangular grid case. We extrapolate time 
states at the zone edges using (3.1). We then solve the Riemann problem usmg these 
states for Eqs. (2.1) projected in the direction of the normal to the zone edges in 
physical space. We consider, for example, the zone edge centered at (i $ I,‘& j) and 
we wish to construct U;:t;; i.L, / u~~~:~ i. R, 3. the left and right states at that znae 
edge, The starting point for this is to consider the extrapolation formulae analogous 
to (2.7) for the system (3.1): 



186 PHILLIP COLELLA 

where A’ = nV. A. The term (At/2J)(SnV/dt). F comes from putting SF:Ic?{ in non- 
conservation form and is equal to zero in the rectangular grid case. We break this 
procedure into two steps: 

Oi+ Ij2.j,S= A: 
au E 
Ed*i+k 

(3.6) 

We approximate aU,ia< by monotonized central differences and c?F”/dq by upwind 
differences. The term (L?nt~,/ag) . F is differenced in such a way as to exactly cancel 
the difference approximation to aF”j&~ if there are no gradients in the q direction. 

We first consider the calculation of oj+ ,;2..i,s. We approximate 

1 At 

‘2-2JAEi+k 
A’ (A”x),L+~,~. A(U;&) (3.7) 

where we have replaced J and nt, ns by the appropriate difference approximations 
from (3.2). By analogy with the rectangular grid case, we want to approximate 
(i!U/a<) Ati with (LI~U)~,~, a central difference approximation to which some form 
of monotonicity constraint has been applied. If the coordinate mapping is smooth, 
then the formula (2.5) for equally spaced zones can be used without modification, 
while retaining second-order accuracy in regions where the solution is smooth. 
However, we replace the eigenvectors in the monotonicity constraints in (2.6) by 
(I??, I$;), v = 1, . . . . M, the left and right eigenvectors corresponding to the eigenvalues 
,I#< . . . < 2:: of (dqx)$. A(Uyj). As before, we can also discard terms in (3.7) 
corresponding to signals propagating away from the zone edge and allow for an 
arbitrary choice of reference state n,, obtaining the following analogue of (2.10) for 
a general quadrilateral grid : 

Oi+ I!2J,S= 8,+ P,(qj- &) 

where 
P, 121 = C (l!ck,.j. 1~) rglk,j. 

,,: +,$.v ~~ t+i.,‘O 

We approximate (At/2J)(dFv/&y) by an appropriate upwind difference 
approximation. In general, it is of the form of the corresponding difference 
approximation in the conservative difference step (3.3): 



MULTIDIMENSIONAL UPWIND ME?‘HODS 187 

Here cyj+ i ,1 is calculated by solving a Kiemann probkm for the projected equa- 
tions aiong - (A%)$+ L:7 with left and right states (GFI+ r 2,L_ L::,, I 2_R). As in the 
rectangular grid case, Ulf,, ,.l.S may be set to Cr:; li l OP O,,;+ i,2.s. Fidi~i, we 

approximate (~It,W)(i?rn~/d~) . F using the finite difference approximations i 3.2’) : 

Collecting our difference approximations. our tinai value for r;:i;; 2’ i,s is given by 

We obtain 5:;:,‘1, by solving the Riemann problem for he projected equations 
along (d’fx):; 1 2.1 &th ieft and right states t~:‘~(,l~,.,T i.:y+?::I,R. t:~~~~.,‘, satisfies 

ifference approximations to the characteristic equations (2.4) for the charac- 
ceristic surfaces through the (i + i/Z, j)th zone edge in physical space, similar to 
(2.14), 

The appropriate generalization of (2.17) as a CFL condition on the time step !s 
given by 

This is dimensionally correct since Ati, I.:-; contain factors of A%, Il’x. In the case 
of advection, and if the coordinate transformation is a linear map, one can 
demonstrate by numerical evaluation of the Fourier transform, as was done for the 
rectangular mesh case, that this is the correct CF‘L condition. In general, the time 
step bound (3.12) has the following interpretation in terms of characteristics: At 
must be less than the time it takes a wave propagating in a direction normai to a 
zone edge to reach an opposite zone edge. 

4. GAS DYNAMICS 

We give in this section a detailed description of an algorithm of the type- 
described above for the case of Euler’s equations for inviscid compressible flow in 
two space variables, in planar geometry, on a general quadrilateral grid. The system 
we wish TO solve is of the form (2.1), with M = 4, and 



188 PHILLIP COLELLA 

where p is the density, (u, ~1) = u the s and 4’ components of velocity, and E the total 
energy per unit mass. The pressure is derived from these quantities via an equation 
of state, p = p(p, e), where e is the internal energy per unit mass, given by 
e = E - f(~’ + a’). In this section, we will describe an algorithm suitable for use with 
a polytropic equation of state, i.e., for p given by p(p, e) =&II- l), and the 
adiabatic speed of sound c given by c2 = yp/p. The case of a general convex equa- 
tion of state is a straightforward extension of ideas in [6]. 

The projected equations for the system (4.1), are essentially those of gas 
dynamics in one dimension. If we project the equations in the II direction for n a 
unit vector, we can make a change of variables to obtain the following system 
equivalent to (2.2) : 

aw WW)=o 
at+ a)[ (4.2) 

Here uN = u . n, uT = u n’ with the other variables defined as before. Since n is a 
unit vector, u2 + z.~* = ( uN)l + (UT j2 so the formula for the internal energy r can use 
either quantity. From these equations, it is clear that the eigenvectors and eigen- 
values of the linearized system, as well as the solution to the Riemann problem, are 
given by those for the l-dimensional gas dynamucs equations, with U’ being treated 
as a passively advected quantity. Hence, we can use the techniques of [4: 71 for 
calculating solutions to the Riemann problem and for manipulating characteristic 
variables. 

Although the algorithm described here follows the same basic outline as those 
given in the previous two sections, there are some differences, mainly with the 
calculation of tij+ l,z,.i,s, For the purpose of calculating tii, I;2,,j.s, we make a non- 
linear change of variables, performing the difference calculation of (3.5) in terms of 
the primitive variables p, U, v, p, as was done in [7] for gas dynamics in one space 
variable. We then transform back to the conserved variables to calculate I!J~~~;~~ s. 
This procedure enables us to perform our central difference calculation com- 
ponentwise on the primitive variables, using formulas similar to (1.9), rather than 
on the amplitudes of an expansion of d’U in terms of the right eigenvectors. Also, 
since we are working in terms of the primitive variables, we can use the more 



MULTIDIMENSIONAL UPWIND METHODS 
* 00 
IO, 

elaborate central difference algorithm given in [6]> which gives rise to a steeper 
representation of dicontinuities than (1.9). 

In order to justify the use of the more elaborate algorithm for computing 2C1,i3< 
and, more generally, to understand the errors introduced by using difference 
approximations to 8Lr/~<, such as (2.5). it is useful to make a local change a: 
variables (<, q) ++ (n, S) 

The coordinate (a, 6) measure arc length along the grid lines (q = constJ, 
‘, 5 = const 1, respectively. It is easy to check that, for (<, q) sufficiently close to 
(<;. r,rj) the Jacobian of the above map is nonsingular, since the cross derivatives 
?a/c?q?, ?h,‘o’< = U( (( - ri), (g - 11~)). Using the chain rule, we compute c?GI/S< to 5:: 

Thus, the central difference approximation to SU:Sg used in (3.8) can be viewed as 
using a central difference approximation for irC:iSn and dropping the term pro~or- 
tional to St/Z<, since it is of one order smaller in the mesh spacing. In Ierms of the 
mesh in physical space, this corresponds to the assumption that the arc length 
along each of the coordinate directions is a smoothly varying function of the other 
coordinate. This is a condition satisfied in a wide variety of applications, even when 
the grid mapping as a whole is not smooth, such as in the case of highly stretched 
grids used in aerodynamics calculations. In the latter situation, one can retam the 
formalism developed here but use an approximation to the derivatives appropriate 
for a strongly varying mesh in the u- or b- direction. 

In terms of the coordinate system (4.3), we can express C:‘_‘i,& in the form 

where 



190 

We calculate OL, I;z,j,S by transforming to the variables C’= (p, u, ~1, p)’ before 
applying (4.5) : 

Here Ti,j=V,,Ul [ci and P, is defined by Psw=~,:+;.Y;Y~,,~o (I?~K.J”) ‘YIk.j: *here 
IT;, r:J, AT;, 1, = 1, . . . . 4 are the eigenvectors and eigenvalues of T,i’ .,4fj. Ti.j: 

1 
llbC 

-I 

f, 1 = 

! 
P 

llbC 
-I’ 

P 

c* 

r a.2 _ - 2 b 
ry 

P 

la,4= ( o,fg$& . > 



Here d = (oh,, II:) and the subscripts i, j are suppressed. The ?ime step cont.roi 
i 3.12) in terms of the above eigenvalues, is given by 

The approximation to (?P:;&z)l,, ~!a,~ we use is obtained by using a foormrrla tik 
( 1.9) far each component of J’. For example, we define. ?o~ q = py p= II, I’. 

(A&,q)i.i=2 min(jq:‘+,,j-q:fj/, l&-&-~.jl! 

if (q:‘+,,j-(I:Ij)(4:Ti-4;-l.i)>o. 

=O otherwise, 

(d;‘~ii~,=min(~lq?+,.i-q:+,,~ 1, (d~,q)j.,)xsgniq:‘+,,i-a:I+;.,)! 

and set {dL’qji.j= jd-Tq)j,j to obtain the algorithm ana’8ogous 10 (1.9). In the caic~~la- 
Cons presented in Section 5. we use the following algorithm. taken from [SJ. which 
Yields a steemzr representation of discontinuities : 

Given the xvalues for d”l’, we can give explicit formulas fz kTri+ , ?, j,s: 



192 PHILLIP COLELLA 

The formulas for ?. ,,,+,,Z,S are identical to those given above, with the interchange 
of i and j, na and nb. 

The calculation of Uy:lf,;& given oi+1,2,j,s is given by (4.5): with UIfi+,:.2 the 
solution to the Riemann problem for the equations projected in the nzj+ I.:2 direc- 
tion, with left and right states given by UTj+l.:z,s= tii,j,1,2,s or Uzj+ I,2r3= U:fj+k. 
In the calculations shown below, we use the latter choice. 

The final conservative difference step is given by (3.3). We define 

where n~:(z:$ j = Abi+ l,,z._ip~~$~ ,(n!+ 1:z.j . uYcl’:z jj, rn~i’,‘;& = Aai.j+ I~~P~~~‘$ 

(n~j+l;2 “;~~~2) 
are the mass fluxes through the zone edges at (i+ f, jj and 

(i, j+ 4). Then (3.3) is given by 

At 
Ult’=U’f.$--(F<_ : 

1. I 1.' 
.-F< 

~i,j 1 l:z,J I+1.2.i+FZj-_,3-F:jtl~Z). 

Dissipation Meckanisrns 

In [7], it was noticed that, in one space dimension, and near strongly nonlinear 
shocks, the dissipation implicit in monotonicity constraints such as (3.6) and (4.8), 
was insufficient to guarantee the correct jump in the Riemann invariants trans- 
ported along the characteristic families which cross the shock. For that reason, it 
was suggested that additional dissipation be added to the algorithm near such 
discontinuities in the form of flattening of the interpolation functions and by adding 
a small viscous dissipation term to the fluxes. Since both these forms of dissipation 
were required for l-dimensional problems, it is expected that similar dissipation 
would be required for the present algorithm, since, for l-dimensional problems, it 
is similar to the algorithm in [7]. The second-order artificial viscosity used in [7] 
can be applied without modification to the present algorithms simply by adding the 
dissipative flux to each of the four fluxes, prior to the conservative differencing step. 
The form these dissipative fluxes take in the case of a general quadrilateral grid is 
also standard; see, e.g., [19]. The simplest flattening algorithm in [7] can be used, 
with one important modification: in each zone, the slopes corresponding to the 



MULTIDIMENSIONAL UPWIND METHODS 
15’ i /i 3 

derivatives in each of the grid directions should be flattened by the same amount. 
We define flattening zU, $‘, 

otherwise 

x;i=min(ZP~m ‘,,. j, fTii, 

where 

and 

~~,,=sign(p,+~.,-p~-,.,) 

We define xpi similarly. with the roles of i andj reversed. Then the slopes d”q. d-jq 
obtained fro& (4.8) are reset to 

d”9, j? dh9i,y -‘%iid”qa,Xi.idhqi,i. v-4,10! 

where 

hn the runs discussed in the next section, the parameters in the above aigoriihm 
were set to be 6 = 0.33, z. = 0.75, z1 = 0.85. In addition, we used the Z-dimensional 
Lapidus viscous flux discussed in [7] with a coefficient of 0.1. These were the choice 
of the parameters used in the corresponding algorithms for operator split calcula- 
tions described in [7] and have been found to give adequate results when -used with 
the present algorithm over a wide range of problems. 

Boundtwy Corzdirions 

It is straightforward to impose various continuation-type boundary conditions 
(inflow, outflow, periodic, etc.) in regions where the grid has a natural extension 
beyond the computational domain. Since the numerical domain of dependence of a 
grid point is contained in the 9 x 9 block of grid points containing the point at the 
center, then one can extend the original computational mesh by four grid points En 
each direction and set the values of the extended part of the grid at rhe beginning 
of each time step using the boundary conditions, thus supplying sufficient data tc 
calculate the values on the original grid. 



194 PHILLIP COLELLA 

The most common situation where one cannot extend the grid is in the case of 
an impermeable surface, particularly on a body-fitted grid. Let us assume, for exam- 
ple, that the curve {t(x)= Sj,~.,~r} IS a reflecting surface, with the fluid contained 
in the region (f(x)> ti,- 1.‘2}. The algorithm described above can be applied 
without modification, if we specify values for the slopes d~~qiom.,,2,j, dbqjo-l,,,i and 
for the fluxes F( Ui-- 1,.2. j), F( t’i?‘, 1 i,,). The slopes are given by 

dqj~,j=di4io.j=o, q=p,p, ne, 2.i.u 

nff-I.'2.j' ~~ui~,j=min(lui~,j.n~-,.~,,iI, 21fuio+l.j- %,i) . n,b,-. I,‘2, jl ) w(uio.j~ ni- ~2.~) 

if (~i,,i~n~~~,~2,,~~ui,+,,j-ui,,j)~n~-~,2,i~0 

=o otherwise. (4.11) 

Given the slope information, it is possible to calculate fijO-,,.z,j.R, U;‘:j’,,j R. To 
obtain the states Uz _ 1;2 i, U;;‘y:5,j, we solve Riemann problems projected ‘in the 

‘i- 1,'Z.j direction, with left and right state given by 

1 r-l+ IiT ,I + 1;2 
qio-li2.j,Lt 9i,~-1,.2,,i,L=qi0-lI,2,j,R, 4$-1;2.j,R? 4=p,p,n~,,2,,.u 

nkpl,2 j.~ia-~,'2,j,~,nfb-~.~j'u~t-~'2,j~= -nb,- I.2,j.'io-1'2J.R> -nk-, 2 j.R' 

(4.12) 
3. I 1 

With this choice of left and right states, it is clear that uiO- l:z,j= 0% so that the 
advective terms in the fluxes at (i, - $, j) vanish, leaving only the pressure terms in 
the X- and I’-momentum equations. Whatever approximate solution to the Riemann 
problem is used should guarantee that the advective terms vanish in the flux 
calculation at the wall. 

5. NUMERICAL RESULTS 

The gas dynamics algorithm described here has been used in a variety of applica- 
tions in two dimensions, including flow in cascades and channels with body-fitted 
meshes [9], in adaptive mesh refinement calculations [Z], and in a conservative 
front-tracking algorithm [3]. In addition, various forms of the algorithm for scalar 
equations have been used to calculate flow in porous media [15]. 

We will present here two gas dynamics calculations, both done on rectangular 
grids. The first is the calculation of a steady state regular shock reflection described 
in [23], which has been used extensively as a test problem for numerical methods 
used in aerodynamic calculations [25]. The second test problem is the double 
Mach reflection of a shock off an oblique surface, used in [22] as a test problem 
for comparing the performance of various difference methods on problems 
involving strong shocks. Since our purpose is to demonstrate that the current 
method has the same resolution as the corresponding operator split algorithm, we 
present also a calculation of the latter problem performed by using in an operator 



bKJLTIDIhlENSIONXL UPWIND HETHOUS 

FIG. 5. Steady state regular refiection problem 

split formulation the I-dimensional algorithm obtained by restricting the aigoriktm 
described in Section 4 to one dimension 

In the first test problem, the computational domain is a rectangle of length 4 and 
height I (Fig. 5). This domain is divided into a 40 x 20 rectangular grid, wiii 
di- = A, dy = &. The boundary conditions are that of a reflecting surface aiong the 
bottom boundary, supersonic outflow along the right boundary, and Dirichlet 
conditions on the other two sides, given by 

(Pi u, I’, L&yLr!= (l., 2.9,0., l/1,4) 

(p. u, 11, JJ)~ ,.yl. rf = (1.69997, 2.61934, .50632, !.52819). 

InitiaPiy, we set the solution in the entire domain to be that at the left boundar:,i: 
we then iterate for 500 time steps using a CFL condition of 0.9, at which time PIP 
solution reaches a steady state. 

In Fig. 6, we show a contour plot of the pressure. The contours are equally 

FIG. 6. Numerical solution to regular reflection problem: (a) with flattening; (b I withcct fla::zn;rtg. 



196 PHILLIP COLELLA 

ty--l-T7-7 

O.Z90E*Ol 

O.Z60E+01 

E 

-_ 

X 
0.230E+OI 

O.l7OE+OI 

O.L‘lOE+OL 

%f:!i ~xuNu”;““J; i , / ( ( ( / 1 . + 
O.OOOE+OO 0.900E+OO O.BOOE+OO O.lZOE+Ol O.l60E+OI 0.200E+Ol 0.290EtOl O.ZBOE+Ol 0,32oE+O, 0.360E,O, 0.9~+0, 

FIG. 7. Comparison of pressure profiles for regular reflection problem along the line y=O.525 

(j= 11 J: s-with flattening, *-without flattening. 

spaced, with contour levels of 0.1, beginning at 0. The shocks have a nearly 
monotone transition, and are fairly narrow, with some slight spreading on the high 
pressure side of each shock. This spreading is due to the flattening algorithm (4.10). 
We see this in Fig. 7, where we plot profiles of the solution at J = 0.525, computed 
with and without flattening. The width of the shocks is about 2-2; zones in the 
normal direction, where this figure is obtained by counting the number of points in 
the transition in Fig. 7, and multiplying it by sinjtan-r((dx//d~~) Itan(ajl)j, where 
ry is the angle between the direction tangent to the shock and the x direction. The 
shock transition with flattening is slightly broader; however, the transition without 
flattening has some low-amplitude oscillations, which are not present in the 
solution obtained with flattening. Even though the shocks are supersonic on both 

a 

b 

FIG. 8. Ramp reflection problem: (a) initial configuration; (b) double Mach reflection at later times: 

solid lines are shocks: dotted lines are slip surfaces. 



hllJLTIDIMENSIONAL UPWIND METHODS 157 

FIG. 9. Numerical solution of ramp problem using the method described in Section %. The mest is 
a rectangular mesh of 430 x 100 zones, with the reflecting wall beginning 20 mesh lengths from the !owe: 
left corner. 4.x = -ly = &, and the time shown is r = 0.2; thus this calculation corresponds to ihc fines: 
grid results in [22> 

sides, there is no difficulty with uncontrolled diffusion of the discontinuities. This is 
in contrast to the results obtained with first-order upwind methods, where steady 
shocks remain quite sharp if the transition is supersonici!subsonic, but which spread 
over many zones if the transition is supersonic/supersonic. Indeed, t’ne main 
difficulty for the present method is to ensure that the shocks are broad enough SC 

that sufficient dissipation occurs across the shock, as was the case with the operator 
split second-order methods. 

The second test problem is unsteady shock reflection problem. A planar shock is 
incident on an oblique surface, with the surface at a 30’ angle to the direction of 
propagation of the shock (Fig. 8). The fluid in front of the shock has zero veiocity, 
and the shock Mach number is equal to 10. The sohution to this problem is self- 
similar, with U a function of (x, I; t) only in the combination (-Y,‘!, ~,jri. In Fig. 9, 
we show the results of calculation of this test problem performed with the present 
unsplit second-order method; in Fig. 10. the corresponding results obtained with 
the operator split method. The results of the two calculations are essentially ideE& 
cai, supporting the assertion that the unsplit method has the same resolution as the 
corresponding operator split method. However, a considerable degree of car: was 
required in the unsplit scheme for this to be the case. The choice of (2.15), rather 

FG. 10. Numericai solution of ramp reflection problem. using operator split method. with numericai 
parameters the same as for Fig. 9. 



198 PHILLIP COLELL.4 

than (2.13), in calculating the transverse derivative in the predictor step is essential; 
otherwise, one obtains considerably lower resolution in the jet along the wall in the 
double Mach region. The accuracy in the double Mach region is also sensitive to 
the reflecting boundary conditions. The former difliculty has no analogue in the 
operator split method; as for the latter problem, the operator split method gives the 
same results which much simpler boundary conditions. Finally, the multidimen- 
sional flattening algorithm given by (4.10) was required to eliminate low-amplitude 
noise behind the shocks, whereas the operator split algorithms required only the 
l-dimensional flattening algorithm in [7] to be applied in each sweep. 

6. DISCUSSION AND CONCLUSIONS 

In this paper, we have derived explicit second-order Godunov-type methods in 

two space variables by using the wave propagation properties for multidimensional 
hyperbolic equations and by limiting some of the second-order terms to suppress 
oscillations. The calculations in Section 5 indicate that we have been successful in 
the goal stated in the Introduction of producing an algorithm with comparable 
performance to the operator split second-order Godunov methods, at a comparable 
cost. In retrospect, this is not surprising, since the multidimensional algorithm 
consists of combinations of the l-dimensional operators which appear in the 
operator split schemes. In particular, the same Riemann problems appear in the 
present method as in the operator split methods, since in the former case averaging 
the solution to the characteristic form of the equations over a zone edge provides, 
via (2.4). a natural choice of a direction in which to project the multidimensional 
equations for solving the Riemann problem. However, there are differences between 
the present algorithms and the operator split approach. The algorithms discussed 
here are somewhat more expensive, requiring twice as many solutions to the 
Riemann problem as the corresponding operator split algorithm. Since the cost of 
solving the Riemann problem for a polytropic equations of state constitutes half the 
cost of the calculation in one dimension [6], this leads to an algorithm which takes 
50% more time than the operator split algorithm. In the regular reflection problem, 
the vectorized implementation on the Cray 1 advanced about 24,000 zones by one 
time step in each cpu second, consistent with this estimate and the timing figures 
for the corresponding l-dimensional algorithm given in [6]. Also, the multi- 
dimensional algorithms appear to be more sensitive to various details of the 
implementation, requiring a greater degree of care, such as for the reflecting 
boundary conditions (4.1 l)-(4.12), and for the flattening algorithm (4.10). 

There are a number of straightforward applications and extensions of the 
methods described here. It is possible to introduce quadratic interpolants, as in [7], 
to evaluate c7 in the predictor step in order to improve the resolution of linear 
discontinuities by means of contact detection and steepening. Conservation laws for 
which the fluxes have an explicit spatial dependence, such as for incompressible 
multiphase flow in porous media, can be easily treated using similar techniques to 



the ones used for the general quadrilateral meshes. The treatment of a general eqas- 
tion of state via the techniques in [6] is accomplished by introducing an additioml 
transport equation for y = p/pe + 1 for use in the predictor step for the transverse 
derivatives. Thus mtroduces some additional complication into the method, which 
is mGre than offset by the fact one need oniy evaluate the equation of slate once ner 
zone per time step. 

There are some problems for which the formalism given here is attractive, but f.or 
which the extensions are not entirely straightforward. One of these is the extension 
of this method for calculation of problems in Lagrangian coordinates In ttvo dimen- 
%ons. The difficultv here is that the motion of the grid must be obtained from :rhr d 
soiution itself; uniike in one dimension, neither the solution nor the fluxes arc- 
defined at the corners of the mesh, where it is most natural to specify the motion 
of the grid. Consequently, some form of averaging of the velocities mu.st be intro- 
duced in order to move the grid, but one which does not degrade the resolution of 
the method [IT]. Finally, there is the question of the extension of these ideas ‘IC 
three dimensinns. If we just take as our advection aigorithm the 3-dimensionak 
anaiogue of (1.2). we arrive at an algorithm fGr systems which satisfies the proper- 
ties ( t j-(3 ) in the introduction, but requires 12 solutions to the Riemarm prob’iem 
per zone per time step; this is in contrast to the 3 solutions required by an operaror 
split method. The large number of solutions to the Riemann prob!em comes from 
rh.e fact that for each coordinate direction in three dimensions, the analogtie of -he 
predictor step fGr the transverse derivatives (2.9 ) requires a calcuiation comparable 
to the full 2-dimensional calculation described in this paper. However, if we are 
willing tG relax the third requirement somewhat, we obtain an algorithm which 
requires only 6 solutions to the Riemann problem by using the extension Gf donor- 
ceh differe~c~ng TV systems to evaluate the transverse derivatives in the pre&ctG; 
step: equivafentfy. we would be ignoring the contributions due tG trampor: frorr: 
zones offSet by one mesh length in all three directions, which correspond :G third- 
order terms in the truncation error. Tn both cases. we would obtain a:gGrithms 
which, for 2-dimensional problems aligned with one Gf the mesh direction;: gi~:.e 
identical results to the algorithms described in this paper. The question as to Rabat 
the appropriate formulation is for problems in three dimensions is undGubted;y 
problem dependent. and probably can be resolved only by numerical expcriment~. 

REFERENCES 

i. Merhods qf Computarional Physics, Vol. 3, edited by B. Alder and 5‘. Fernbach (Acadekc i3ress. 
Ntw York, t964j. 

2. hf. BERGER AND P. COLELL.A, Lawrence Liwxmore Nationa! Laboratory Report UtRr-971’i6; 

J. Compur. Fli~a. 82. 64 (1989 j. 
3. I.-t. CAEKN AND P. COLELLA. Lawrence Livermox b!attonal Laooratory Repit CCRL-97X. 

.A Conrpur. Phg., in press. 
1. P. COLXLA, SIA31 .i. Sci. Sfar. Compur. 3. 76 (1982). 
5. P. COLELU. S1.4:if J. Sci. Star. Conp~. 6. 107 ( i985 1. 



200 PHILLIP COLELL.4 

6. P. COLEL.LA AND H. M. GLAZ, J. Compur. Phys. 59, 264 (1985). 
7. P. COLELLA .AND P. R. WOODWARD, J. Compur. Phlw. 54, 174 (1984). 
8. R. COURANT AND D. HILBERT, Methods of’ Mathematical Physics, Vol. 11 (Interscience, New York, 

1963 ). 
9. S. EIDELMAN, P. COLELLA, AND R. P. SHREEVE, AI.&4 J. 22, 1609 (1984). 

10. B. A. FRYXELL, P. R. WOODWARD, P. COLELLA. AND K.-H. WINKLER, J. Cotnpllt. f/ly~. 63, 283 
(1986). 

11. S. K. GODUNO~, A. V. ZABRODYN, AND G. P. PROKOPOV, C’SSR Comput. Math. d4ath. phys. 1, 1187 
(1961). 

12. J. B. GOODMAN AND R. LEVEQIJE, Math. Comput. 45, 15 (1985). 
13. A. HAKTEN, J. Comput. Phys. 49, 357 (1983). 
14. A. H~RTEN, “On Second Order Accurate Godunov-type Schemes,” 1982 (unpublished). 
15. C. H. LAI, G. S. BOIIVARSSON, ANU P. A. WITHERSPOON, “Numerical Studies of Silica Precipitation/ 

Dissolution,” Lawrence Berkeley Laboratory Earth Sciences Division, 1985 (unpublished). 
16. R. D. RICHTMYER ANI) K. W. MORTON, Finite D@erence Methods for Initial-L’airle Problems 

(Interscience, New York, 1967). 
17. J. S. SArrzhrAN AND P. COLELLA, Los Alamos National Laboratory Report LAUR-85-678, 1985 

(unpublished). 
18. G. R. SHUBIN AND J. B. BELL, Comput. Merh. Appl. Mech. Eng. 47, 41 (1984). 
19. J. T. STEGER, Al&l J. 16, 679 (1978). 

20. B. VAN LEER, J. Comput. Phys. 23, 276 (1977). 
21. B. VAN LEER, in Computing &fethods in Applied Sciences and Engitleering [,‘I, edited by R. Glowinski 

and J.-L. Lions (North-Holland, Amsterdam, 1984). p, 493. 
22. P. R. WOODWARD AND P. COLELLA, J. Comput. Phys. 54, 115 (1984). 
23. H. C. YEE, R. F. WARMING. AND I$. HARTEN, in Proceedings, 8th International Conjkrence on 

Numerical methods in Fluid Dynamics, Lecture Notes in Physics Vol. 141 (Springer-Verlag, New 
York/Berlin, 1982). p. 547. 

24. S. T. ZALESAK, J. Comput. Phys. 31, 335 (1979). 
25. “Proceedings. Sixth AIAA Computational Fluid Dynamics Conference, Danvers, MA, June, 1983.” 


