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AMS 213B Homework 5 – due Monday, May 16, 2016

Note: Please submit your MATLAB codes to your git repo.

Simple Notation: Ca ≡ ∆t
∆x2

Problem 1

Use the von Neumann stability analysis to show that the fully implicit difference
method given by
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approximating the heat equation
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, κ > 0, (2)

is unconditionally stable (i.e., stable for all Ca). ( Hint: cos 2θ = 1− 2 sin2 θ).

Problem 2

Repeat the von Neumann stability analysis for the explicit differencing scheme
given by
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for Eq. (2) and find the stability condition (or bound) for Ca.

Problem 3

Show that the Crank-Nicolson method is of order O(∆t2 + ∆x2) by explicitly
identifying the leading term in the local truncation error.

Problem 4

Find the local truncation error of the difference method given as
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for Eq. (2) with κ = 1, and find the value of θ that will make the scheme to be
of O(∆t2 + ∆x4) (i.e., second-order in time and fourth-order in space).
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Problem 5

Please implement the 1D explicit MATLAB code based on FTCS to solve Eq.
(2) on a 1D domain [xa, xb] = [−1, 1].

0.1. Initial condition

The initial condition is given as Gaussian:

u(x, y, 0) = exp
(
− (x− xctr)2

σ2

)
, (5)

with xctr = 0 and σ = 0.1.

0.2. Discretizations

The spatial and temporal discretizations are configured as, see Fig. 1:

xi = xa + (i− 1

2
)∆x, i = 1, ..., N, (6)

tn = n∆t, n = 0, ...M, (7)

together with one guardcell (GC) point on each side of the domain,

x0 = xa −∆x/2 = x1 −∆x, (8)

xN+1 = xb + ∆x/2 = xN + ∆x. (9)

0.3. Boundary condition

With these two extra GC points over the spatial domain the difference equation
are evolved only over the interior points, whereas the boundary conditions are
explicitly imposed at the two GC points. We use the outflow condition through
the GCs:

u(x0, t) = u(x1, t), u(xN+1, t) = u(xN , t), for t > 0. (10)

0.4. CFL stability condition

The CFL condition provides a necessary condition for choosing the length of ∆t
for FTCS to solve Eq. (2). The CFL condition amounts to say, if we let Ccfl to
denote the CFL number satisfying 0 < Ccfl ≤ 1, Ccfl becomes, for the diffusion
case

Ccfl = κ
2∆t

∆x2
. (11)

It is important to note that the CFL condition is only a necessary condition
for stability (and hence convergence). It is not always sufficient to guarantee
stability, and a numerical method satisfying the CFL condition can become



3

Figure 1. Two guardcells, x0 and xN+1, are the extra cells outside the
computational domain, through which the boundary conditions are applied
to reflect that the initial Gaussian temperature in the middle of the domain
diffuses out through the end boundaries over time. The steady state solution
with a flat temperature profile over the domain is to be reached later in time.

unstable. Note that the above CFL condition allows us to pick a proper time
step size ∆t,

∆t = Ccfl
∆x2

2κ
, (12)

for 0 < Ccfl ≤ 1.

(a) Please run your simulation until t = tmax, where the final time step tmax is
to be determined when the steady state is reached: i.e.,

||En||1 = ∆t
N∑
i=1

|Un
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i | (13)

becomes smaller than ε, say, ||E||1 < ε. Use Ccfl = 0.9 and κ = 0.230. De-
termine tmax when ε = 10−5 on the N = 32 grid resolution, and evolve your
numerical solution up to tmax. How many time steps does it take?

(b) Plot your numerical solutions at t = htmax, where h = 0, 0.25, 0.5, 0.75 and 1.

(c) Repeat (a) and (b) using κ = 1.156. What are the differences you observe
in this case, in terms of tmax and the total number of steps it takes? What can
you say about different values of κ in general?


