
1

AMS 213B Homework 4 – due Friday, May 6, 2016

Note: Please submit your MATLAB codes to your git repo.

Consider the BVP for Problem 1 and Problem 2, given by u′′(t) = f(u) + g(t), 1 ≤ t ≤ 2,

u(1) = 0, u(2) = ln 2,
(1)

where f(u) = −(u′)2 − u and g(t) = ln t. The exact solution is given as
u(t) = ln t.

Problem 1

Based on the MATLAB example code of the shooting method, please mod-
ify the code to implement a shooting method algorithm to solve this nonlinear
BVP. Please run your code with the following choices:

• Choose the Forward Euler method for the time marching of the IVPs.

• Use three different temporal resolutions, N = 8, 16, 32.

• Use the MATLAB example root find code which uses the Newton’s method

to iteratively find a best possible guess of the initial slope at t = 0, y
(k)
2 (0).

For this, you would need a small threshold value ε > 0 so that your exit
conditions of the root finding iteration becomes

exit if estimator = |h(k)/(h(k))′| < ε or Niteration > 100. (2)

Notice here that the second exit condition will prevent the root finding
search from going to an infinite loop when a choice of your initial guess

y
(0)
2 (0) is not proper. Please use ε = 10−5, and use the exact derivative

method to obtain (h(k))′ (note: this exact method has been already done
in the example code).

(a) Convert the second-order ODE to a system of first-order ODEs.

(b) How many iterations do you see in finding the best possible root y
(k)
2 (0)

for the three different temporal resolutions? Use y
(0)
2 (0) = 1 for this case.

(c) Now try y
(0)
2 (0) = −1, 0, 7, 8 and see how many iterations Niteration you

need using N = 16 for each initial guess. Do you see which initial guess(es)

2

make the solution diverge? Which choice of initial guess among the four make
the the solution converge the fastest and slowest? Based on this observation, can
you find experimentally the minimum and maximum values of the initial slopes

within the range −1 ≤ y(0)2 (0) ≤ 8 that make the solution converge? Please find
the minimum and maximum slopes up to the tenth decimal points (e.g., 5.9).

(d) Plot all your results with the exact solution.

Problem 2

Based on the MATLAB example code of the finite difference method, please
modify the code to solve the above BVP using the finite difference method we
studied in the class. Note that you are going to need to solve a linear system
Ax = b for which you can use the MATLAB’s command linsolve (please
know what this command does to solve the linear system). Please do NOT use
the direct inversion. Use the same grid resolutions, N = 8, 16, 32 as in Problem
1.

(a) Write down the forms of A, x, and b explicitly using the second-order finite
differencing formulas for u′ and u′′ we studied in the class.

(b) In b you notice that there are Un, n = 0, 1, . . . , N + 1 which are not known
yet. To execute your code, you need an initial guess for Un for which you can
use a straight line through (ta, u(ta)) = (1, 0) and (tb, u(tb)) = (2, ln 2). With

this initial guess of Un,(0), you can initiate the run until the L1 error between
the current solution and the previous solution, given by

||E||1 = ∆t
N∑

n=1

|Un,(k) − Un,(k−1)|, (3)

becomes smaller then ε, say, ||E||1 < ε. Please use ε = 10−5. Plot your three
numerical solutions at N = 8, 16, 32 together with the exact solution.

(c) What are the number of steps for convergence, i.e., ||E||1 < ε, at each
resolution?

(d) Compared to the solutions of the shooting method at the same resolutions,
please quantify which one is more accurate based on the L1 error defined by

||Ẽ||1 = ∆t
N∑

n=1

|uexact(tn)− Un|. (4)

3

Problem 3

Please modify the MATLAB example code, ForwardEuler while.m, and im-
plement two implicit methods, (a) the Trapezoidal method and (b) the Back-
ward Euler method to solve the stiff problem we did in the class (Ex 3 from
Lecture note 10). Reproduce the two results in Figure 9.4 in the lecture note on
0 ≤ t ≤ 3.

In order to implement an one-step implicit method, you need an iterative
algorithm to search for the unknown, i.e., Un+1, that appears in both left and
right hand sides of the difference equation. For examples,

(a) Trapezoidal method:

Un+1 = Un +
∆t

2

[
f(Un) + f(Un+1)

]
, (5)

(b) Backward Euler method:

Un+1 = Un + ∆tf(Un+1), (6)

In MATLAB, this can be done very easily using the single-variable nonlinear
zero finder with fzero. For instance, the Backward Euler method implements
a line such as

U_new=fzero(@(U_new) U_new-(U_soln(n)+dt*f(U_new,t(n))),U_soln(n));

This command line is pretty much everything you need for implicit scheme imple-
mentations using MATLAB, although however, you can write your own routine
by modifying the example code rootFind.m we used in the class.

Remark: There is a typo in Ex 2 in Lecture note 10: the correct ODE in
the IVP should be given as u′(t) = f(t, u) + g(t), 0 ≤ t ≤ 3,

u(0) = 1,
(7)

where f(t, u) = λ(u− cos t) and g(t) = − sin t.

