AMS 213B Homework 3 - due Wed, Apr 27, 2016

Problem 1

Recall that an ODE method is said to be A-stable if its region of absolute stability contains the entire left half-plane $\{z \in \mathbb{C}: \operatorname{Re}(z) \leq 0\}$. Show that the implicit backward Euler method

$$
\begin{equation*}
U^{n+1}=U^{n}+\Delta t f\left(t^{n+1}, U^{n+1}\right) \tag{1}
\end{equation*}
$$

is A-stable when applied for solving the linear model equation $u^{\prime}(t)=\lambda u(t)$, i.e., $f(t, u)=\lambda u(t)$, for $\lambda \in \mathbb{C}$.

Problem 2

Use the method of undetermined coefficients to derive an explicit two-step method of the form

$$
\begin{equation*}
U^{n+2}=\alpha U^{n+1}+\Delta t\left[\beta_{1} f\left(U^{n+1}\right)+\beta_{2} f\left(U^{n}\right)\right] \tag{2}
\end{equation*}
$$

That is to say, please determine α, β_{1} and β_{2}.

Problem 3

Show that the two-step method

$$
\begin{equation*}
U^{n+2}=\frac{1}{2}\left(U^{n+1}+U^{n}\right)+\frac{\Delta t}{4}\left[4 f\left(U^{n+2}\right)-f\left(U^{n+1}\right)+3 f\left(U^{n}\right)\right], \quad n \geq 1 \tag{3}
\end{equation*}
$$

with $u^{\prime}(t)=f(u)$ is second-order. Also find the leading term in the local truncation error.

Problem 4

Solve the third-order linear difference equation

$$
\begin{equation*}
U^{n+3}=U^{n+2}+c\left(U^{n+1}-U^{n}\right) \quad n \geq 0, \quad 0<c<1, \tag{4}
\end{equation*}
$$

with U^{0}, U^{1}, U^{2} given. What can you say about $\lim _{n \rightarrow \infty} U^{n}$?

Problem 5

Consider the two-step method

$$
\begin{equation*}
U^{n+2}=2 U^{n}-U^{n+1}+\frac{\Delta t}{2}\left[5 f\left(U^{n+1}\right)+f\left(U^{n}\right)\right] \tag{5}
\end{equation*}
$$

Discuss the followings on the method: (i) order of accuracy, (ii) consistency, and (iii) zero-stability.

Furthermore, what can you say about convergence of the method? If you think the method is not convergent, please justify your assertion by applying the method to solve a simple IVP (i.e., please choose a simple form of $f(u)$), and by directly showing its numerical solution diverges as $n \rightarrow \infty$. On the other hand, prove your claim if you think the method is convergent.

Problem 6

Consider the nonhomogeneous IVP:

$$
\left\{\begin{array}{l}
u^{\prime}(t)=f(u)+g(t) \tag{6}\\
u(0)=1
\end{array}\right.
$$

where $f(u)=-u$ and $g(t)=2 \cos t$. The exact solution is $u(t)=\cos t+\sin t$.
(a) Use the Forward Euler's method to derive a new second-order method using Richardson extrapolation. To obtain a new method, please proceed the following steps:

- Since the Forward Euler's method is explicit, you first need to find the absolute stability bound for Δt of the homogeneous equation. What is the maximum allowed bound, $\Delta t_{\max }$?
- After finding the bound, you consider obtaining a new formula by halving the timestep (i.e., $\Delta t / 2$), instead of doubling it (i.e., $2 \Delta t$) in order to avoid that $2 \Delta t$ is outside the stability bound.
- The resulting formula based on Richardson extrapolation will be your new second-order scheme, $U_{\Delta t}^{n,(1)}$.
(b) Find a formula for the global error estimator of the method.
(c) Write a MATLAB program to fill out the following table:

t	$U_{\Delta t}^{n}$	$U_{\Delta t / 2}^{n}$	$u\left(t^{n}\right)$	$U_{\Delta t}^{n,(1)}$	$u^{n}-U_{\Delta t}^{n}$	global error estimator
2						
4						
6						
8						
10						

Please note that $U^{n}=U_{\Delta t}^{n}$ in the above. Also note that you are advancing twice more steps for $U_{\Delta t / 2}^{n}$ than for $U_{\Delta t}^{n}$. Please use two different time step sizes, $\Delta t=0.5 \Delta t_{\text {max }}$ and $\Delta t=0.25 \Delta t_{\text {max }}$.

