
1

AMS 213B Lecture Notes

Instructor: Prof. Dongwook Lee (dlee79@ucsc.edu)

MWF, 11:00 am – 12:10 pm
Jack Baskin Engineering classroom 169

Spring, 2016

Contents

1 Systems of Linear Equations 3

2

Chapter 1

Systems of Linear Equations

There are many relationships in nature that are linear, meaning that effects can
be described by a matrix-vector notation, or a linear system of equations

Ax = b, (1.1)

where A is a m×n matrix, x is an n-vector, and b is an m-vector. This form of
liner equation tells us that if we know causes x then we can predict the resulting
effects b.

More interestingly, we we often want to know is the “reverse” of the pro-
cess: if we know the effect b then we should like to be able to determine the
corresponding cause vector x. Numerical methods for accomplishing this task
is our primary goal in numerical linear algebra.

What about when relationships are nonlinear? In this case, we often seek
for an approximated solution that is linear locally, whereby we makes use of the
linear theory.

One can identify different types of linear problems in three different ap-
proaches:

• Solutions of well-posed linear systems Ax = b with A a n × n square
matrix, and x and b are n-vectors – this is a topic in this chapter.

• Approximate solutions of overdetermined linear systems with Ax = b with
A a m× n matrix (m > n), x is an n-vector, and b is an m-vector – this
is a topic in Chapter 3.

• Eigenvalue and eigenvector problems Ax = λx – this is a topic in Chapter
4.

Studying the systems of linear equations is not only very important in its
own sake mathematically, but also crucial in solving various types of discrete
solutions in ODEs and PDEs. Learning stable, accurate, fast and efficient nu-
merical algorithms for linear algebra therefore will be a fundamental resource in
both pure mathematics and applied mathematics.

3

4

The goal will be for you to develop a set of useful routines for solving a wide
range of linear algebra problems. Let’s begin with reviewing basic concepts of
vectors, matrices, and their relations.

1. Review of Basic Linear Algebra

1.1. Existence and uniqueness

An n×n matrix A is said to be nonsingular if it satisfies any one of the following
equivalence conditions:

1. A has an inverse A−1 such that AA−1 = I, where I is an identity matrix.

2. det(A) 6= 0.

3. rank(A) = n (the rank of a matrix is the maximum number of linearly
independent rows or columns it contains).

4. For any nonzero vector x 6= 0, Ax 6= 0 (i.e., A does not annihilate non-zero
vector).

Otherwise, the matrix is said to be singular. For a given square matrix A
and b, the possibilities of solution x are summarized as follows:

• Unique solution x = A−1b if A is nonsingular and b is arbitrary.

• Infinitely many solutions if A is singular and b ∈ span(A) = {Ax : x ∈
Rn} (why? Hint: Assume A(x + γz) = 0 for any scalar γ and for nonzero
z).

• No solution if A is singular and b 6∈ span(A).

Definition: The p-norm (or lp-norm) of an n-vector x is defined by

||x||p =

(
n∑

i=1

∣∣∣xi∣∣∣p)
1
p

. (1.2)

Important special cases are:

• 1-norm:

||x||1 =

n∑
i=1

∣∣∣xi∣∣∣ (1.3)

• 2-norm:

||x||2 =

(
n∑

i=1

∣∣∣xi∣∣∣2)
1
2

(1.4)

• ∞-norm (or max-norm):

||x||∞ = max
1≤i≤n

∣∣∣xi∣∣∣ (1.5)

5

Figure 1. Illustrations of unit circle, ||x|| = 1, in three different norms:
1-norm, 2-norm and ∞-norm.

Example: For the vector x = (−1.6, 1.2)T , we get

||x||1 = 2.8, ||x||2 = 2.0, ||x||∞ = 1.6. (1.6)

�

Definition: The matrix p-norm of m× n matrix A can be defined by

||A||p = max
x 6=0

||Ax||p
||x||p

. (1.7)

Some matrix norms are easier to compute than others, for example,

• 1-norm:

||A||1 = max
j

m∑
i=1

∣∣∣aij∣∣∣ (1.8)

• ∞-norm:

||A||∞ = max
i

n∑
j=1

∣∣∣aij∣∣∣ (1.9)

Definition: The condition number of a nonsingular square matrix A with
respect to a given matrix norm is defined to be

cond(A) = ||A|| · ||A−1|| (1.10)

By convention, cond(A) =∞ if A is singular.

The following important properties of the condition number are easily de-
rived from the definition and hold for any norm:

1. For any matrix A, cond(A) ≥ 1.

2. For the identity matrix, cond(I) = 1.

6

Figure 2. The norm equivalence theorem indicates any given norm in finite
dimensional vector space can be scaled to be bounded in a different choice of
norms.

3. For any matrix A and nonzero γ, cond(γA) = cond(A).

4. For any diagonal matrix D = diag(dii), cond(D) = maxi |dii|
mini |dii| .

Remark: The condition number is a measure of how close a matrix is to being
singular: a matrix with a large condition number is nearly singular, whereas a
matrix with a condition number close to 1 is far from being singular. �

Remark: Notice that the determinant of a matrix is not a good indicator of
near singularity. In other words, the magnitude of det(A) has no information
on how close to singular the matrix A may be. For example, det(αIn) = αn.
If |α| < 1 the determinant can be very small, yet the matrix αIn is perfectly
well-conditioned for any nonzero α. �

Remark: The usefulness of the condition number is in accessing the accuracy
of solutions to linear system. However, the calculation of the condition number
is not trivial as it involves the inverse of the matrix. Therefore, in practice, one
often seeks for a good estimated approach to approximate condition numbers. �

7

2. Direct Methods for Solving Linear Systems

Recall that in this chapter we are interested in solving a well-defined linear
system given as

Ax = b, (1.11)

where A is a n× n square matrix and x and b are n-vectors.

2.1. Invariant Transformations

2.1.1. Permutation To solve a linear system, we wish to transform the given
linear system into an easier linear system where the solution x = A−1b remains
unchanged. The answer is that we can introduce any nonsingular matrix M and
multiply from the left both sides of the given linear system:

MAx = Mb. (1.12)

We can easily check that the solution remains the same. To see this, let z
be the solution of the linear system in Eqn. 1.12. Then

z = (MA)−1Mb = A−1M−1Mb = A−1b = x. (1.13)

Example: A permutation matrix P, a square matrix having exactly one 1 in
each row and column and zeros elsewhere – which is also always a nonsingular
– can always be multiplied without affecting the original solution to the system.
For instance,

P =

 0 0 1
1 0 0
0 1 0

 (1.14)

permutes v as

P

 v1
v2
v3

 =

 0 0 1
1 0 0
0 1 0

 v1
v2
v3

 =

 v3
v1
v2

 . (1.15)

�

2.1.2. Row scaling Another invariant transformation exists which is called
row scaling, an outcome of a multiplication by a diagonal matrix D with nonzero
diagonal entries dii, i = 1, . . . n. In this case, we have

DAx = Db, (1.16)

by which each row of the transformed matrix DA gets to be scaled by dii from
the original matrix A. Note that the scaling factors are cancelled by the same
scaling factors introduced on the right hand side vector, leaving the solution to
the original system unchanged.

Note: The column scaling does not preserve the solution in general. �

8

2.2. LU factorization by Gaussian elimination

Consider the following system of linear equations:

x1 + 2x2 + 2x3 = 3, (1.17)

−4x2 − 6x3 = −6, (1.18)

−x3 = 1. (1.19)

We know this is easily solvable since we already know x3 = −1, which gives
x2 = 3, therefore recursively arriving a complete set of solution with x1 = −1.
When putting these equations into a matrix-vector form, we have 1 2 2

0 −4 −6
0 0 −1

 x1
x2
x3

 =

 3
−6

1

 , (1.20)

where the matrix has a form of (upper) triangular.

Therefore, our strategy then is to devise a nonsingular linear transforma-
tion that transforms a given general linear system into a triangular linear system.
This is a key idea of LU factorization (or LU decomposition) or also known as
Gaussian elimination.

The main idea is to find a matrix M1 such that the first column of M1A
becomes zero below the first row. The right hand side b is also multiplied by M1

as well. Again, we repeat this process in the next step so that we find M2 such
that the second column of M2M1A becomes zero below the second row, along
with applying the equivalent multiplication on the right hand side, M2M1b.
This process is continued for each successive column until all of the subdiagonal
entries of the resulting matrix have been annihilated.

If we define the final matrix M = Mn−1 · · ·M1, the transformed linear
system becomes

Mn−1 · · ·M1Ax = MAx = Mb = Mn−1 · · ·M1b. (1.21)

Note: As seen in the previous section, we recall that any nonsingular matrix
multiplication is an invariant transformation that does not affect the solution to
the given linear system.

The resulting transformed linear system MAx = Mb is upper triangular
which is what we want, and can be solved by back-substitution to obtain the
solution to the original linear system Ax = b.

Example: We illustrate Gaussian elimination by considering:

2x1 +x2 +x3 = 3,
4x1 +3x2 +3x3 +x4 = 6,
8x1 +7x2 +9x3 +5x4 = 10,
6x1 +7x2 +9x3 +8x4 = 1.

(1.22)

9

or in a matrix notation

Ax =

 2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8


 x1
x2
x3
x4

 =

 3
6
10
1

 = b. (1.23)

The first question is to find a matrix M1 that annihilates the subdiagonal
entries of the first column of A. This can be done if we consider a matrix
M1 that can subtract twice the first row from the second row, four times the
first row from the third row, and three times the first row from the fourth row.
The matrix M1 is then identical to the identity matrix I4, except for those
multiplication factors in the first column:

M1A =

 1
−2 1
−4 1
−3 1


 2 1 1 0

4 3 3 1
8 7 9 5
6 7 9 8

 =

 2 1 1 0
1 1 1
3 5 5
4 6 8

 , (1.24)

where we treat the blank entries to be zero entries. At the same time, we proceed
the corresponding multiplication on the right hand side to get:

M1b =

 3
0
−2
−8

 . (1.25)

The next step would be to annihilate the third and fourth entries from the second
column (3 and 4), which will give a next matrix M2 that has the form:

M2M1A =

 1
1
−3 1
−4 1


 2 1 1 0

1 1 1
3 5 5
4 6 8

 =

 2 1 1 0
1 1 1

2 2
2 4

 , (1.26)

now with the right hand side:

M2M1b =

 3
0
−2
−8

 . (1.27)

The last matrix M3 will complete the process, resulting an upper triangular
matrix U:

M3M2M1A =

 1
1

1
−1 1


 2 1 1 0

1 1 1
2 2
2 4

 =

 2 1 1 0
1 1 1

2 2
2

 = U,

(1.28)

10

together with the right hand side:

M3M2M1b =

 3
0
−2
−6

 = y. (1.29)

We see that the final transformed linear system MAx = Ux = y is up-
per triangular which is what we wanted and it can be solved easily by back-
substitution, starting from obtaining x4 = −3, followed by x3, x2, and x1 in
reverse order to find a complete solution

x =

 0
1
2
−3

 . (1.30)

The full LU factorization A = LU can be established if we compute

L = (M3M2M1)
−1 = M−1

1 M−1
2 M−1

3 . (1.31)

At first sight this looks like an expensive process as it involves inverting a series
of matrices. Surprisingly, however, this turns out to be a trivial task. The
inverse of Mi, i = 1, 2, 3 is just itself but with each entry below the diagonal
negated. Therefore, we have

L = M−1
1 M−1

2 M−1
3

=

 1
−2 1
−4 1
−3 1


−1  1

1
−3 1
−4 1


−1  1

1
1
−1 1


−1

=

 1
2 1
4 1
3 1


 1

1
3 1
4 1


 1

1
1
1 1



=

 1
2 1
4 3 1
3 4 1 1

 . (1.32)

Notice also that the matrix multiplication M−1
1 M−1

2 M−1
3 is also trivial and is

just the unit lower triangle matrix with the nonzero subdiagonal entries of M−1
1 ,

M−1
2 , and M−1

3 inserted in the appropriate places.
All together, we finally have our decomposition A = LU: 2 1 1 0

4 3 3 1
8 7 9 5
6 7 9 8

 =

 1
2 1
4 3 1
3 4 1 1


 2 1 1 0

1 1 1
2 2

2

 . (1.33)

11

�

Quick summary: Gaussian elimination proceeds in steps until a upper trian-
gular matrix is obtained for back-substitution: ∗ ∗ ∗ ∗∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 M1−−→

 ∗ ∗ ∗ ∗0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 M2−−→

 ∗ ∗ ∗ ∗0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 M3−−→

 ∗ ∗ ∗ ∗0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗


(1.34)

�

Algorithm: LU factorization by Gaussian elimination:

for k = 1 to n− 1
#[loop over column]
if akk = 0 then

stop
#[stop if pivot (or divisor) is zero]

endif
for i = k + 1 to n

mik = aik/akk
#[compute multipliers for each column]

endfor
for j = k + 1 to n

for i = k + 1 to n
aij = aij −mikakj
#[transformation to remaining submatrix]

endfor
endfor

endfor

2.3. Pivoting

2.3.1. Need for pivoting We obviously run into trouble when the choice of a
divisor – called a pivot – is zero, whereby the Gaussian elimination algorithm
breaks down. As illustrated in Algorithm above, this situation can be easily
checked and avoided so that the algorithm stops when one of the diagonal entries
become singular.

The solution to this singular pivot issue is almost equally straightforward:
if the pivot entry is zero at state k, i.e., akk = 0, then one interchange row k
of both the matrix and the right hand side vector with some subsequent row
whose entry in column k is nonzero and resume the process as usual. Recall
that permutation does not alter the solution to the system.

12

This row interchanging process is called pivoting, which is illustrated in the
following example.

Example: Pivoting with permutation matrix can be easily explained as below: ∗ ∗ ∗ ∗0 0 ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 P−→

 ∗ ∗ ∗ ∗0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗

 (1.35)

where we interchange the second row with the fourth row using a permutation
matrix P given as

P =

 1
1

1
1

 . (1.36)

�

Note: The potential need for pivoting has nothing to do with the matrix being
singular. For example, the matrix

A =

[
0 1
1 0

]
(1.37)

is nonsingular, yet we can’t process LU factorization unless we interchange rows.
On the other hand, the matrix

A =

[
1 1
1 1

]
(1.38)

can easily allow LU factorization

A =

[
1 1
1 1

]
=

[
1 0
1 1

] [
1 1
0 1

]
= LU, (1.39)

while being singular. �

2.3.2. Partial pivoting There is not only zero pivots, but also another situ-
ation we must avoid in Gaussian elimination – a case with small pivots. The
problem is closely related to computer’s finite-precision arithmetic which fails to
recover any numbers smaller than the machine precision ε. Recall that we have
ε ≈ 10−7 for single precision, and ε ≈ 10−16 for double precision.

Example: Let us now consider a matrix A defined as

A =

[
ε̃ 1
1 1

]
, (1.40)

13

where ε̃ < ε ≈ 10−16, say, ε̃ = 10−20. If we proceed without any pivoting (i.e.,
no row interchange) and take ε̃ as the first pivot element, then we obtain the
elimination matrix

M =

[
1 1
−1/ε̃ 1

]
, (1.41)

and hence the lower triangular matrix

L =

[
1 0

1/ε̃ 1

]
(1.42)

which is correct. For the upper triangular matrix, however, we see an incorrect
floating-point arithmetic operation

U =

[
ε̃ 1
0 1− 1/ε̃

]
=

[
ε̃ 1
0 −1/ε̃

]
, (1.43)

since 1/ε̃ >> 1. But then we simply fail to recover the original matrix A from
the factorization:

LU =

[
1 0

1/ε̃ 1

] [
ε̃ 1
0 −1/ε̃

]
=

[
ε̃ 1
1 0

]
6= A. (1.44)

Using a small pivot, and a correspondingly large multiplier, has caused an un-
recoverable loss of information in the transformation.

We can cure the situation by interchanging the two rows first, which gives
the first pivot element to be 1 and the resulting multiplier is −ε̃:

M =

[
1 0
−ε̃ 1

]
, (1.45)

and hence

L =

[
1 0
ε̃ 1

]
and U =

[
1 1
0 1− ε̃

]
=

[
1 1
0 1

]
(1.46)

in floating-point arithmetic. We therefore recover the original relation:

LU =

[
1 0
ε̃ 1

] [
1 1
0 1

]
=

[
1 1
ε̃ 1

]
= A, (1.47)

which is the correct result after permutation. �

The foregoing example is rather extreme, however, the principle in gen-
eral holds to find the largest pivot in producing each elimination matrix, by
which one obtains a smaller multiplier as an outcome and hence smaller er-
rors in floating-point arithmetic. We see that this process involves repeated use
of permutation matrix Pk that interchanges rows to bring the entry of largest
magnitude on or below the diagonal in column k into the diagonal pivot position.

14

Quick summary: Gaussian elimination with partial pivoting proceeds as below.
Assume xik is chosen to be the maximum in magnitude among the entries in
k-th column, thereby selected as a k-th pivot: ∗ ∗ ∗ ∗

∗ ∗ ∗
xik ∗ ∗
∗ ∗ ∗

 P1−−→

 ∗ ∗ ∗ ∗
xik ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

 M1−−→

 ∗ ∗ ∗ ∗
xik ∗ ∗
0 ∗ ∗
0 ∗ ∗

 (1.48)

In general, A becomes an upper triangular matrix U after n− 1 steps,

Mn−1Pn−1 · · ·M1P1A = U. (1.49)

�

Note: The expression in Eq. 1.49 can be rewritten in a way that separates the
elimination and the permutation processes into two different groups

P = Pn−1 · · ·P2P1, (1.50)

L = (M
′
n−1 · · ·M

′
2M

′
1)
−1, (1.51)

so that we write the final transformed matrix as

PA = LU. (1.52)

To do this we first need to find what M
′
i should be. Consider reordering the

operations in Eq. 1.49 in the form, for instance with n− 1 = 3,

M3P3M2P2M1P1 = M
′
3M

′
2M

′
1P2P2P1(= L−1P). (1.53)

Rearranging operations,

M3P3M2P2M1P1 (1.54)

= (M3)(P3M2P
−1
3)(P3P2M1P

−1
2 P−13)(P3P2P1) (1.55)

≡ (M
′
3)(M

′
2)(M

′
1)P2P2P1, (1.56)

whereby we can define M
′
i, i = 1, 2, 3 equals to Mi but with the subdiagonal

entries permuted:

M
′
3 = M3 (1.57)

M
′
2 = P3M2P

−1
3 (1.58)

M
′
1 = P3P2M1P

−1
2 P−13 (1.59)

We can see that the matrix M
′
n−1 · · ·M

′
2M

′
1 is unit lower triangular and

hence easily invertible by negating the subdiagonal entries to obtain L. �

15

Example: To see what is going on, consider

A =

 2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 . (1.60)

With partial pivoting, let’s interchange the first and third rows with P1: 1
1

1
1


 2 1 1 0

4 3 3 1
8 7 9 5
6 7 9 8

 =

 8 7 9 5
4 3 3 1
2 1 1 0
6 7 9 8

 . (1.61)

The first elimination step now looks like this with left-multiplication by M1: 1
−1/2 1
−1/4 1
−3/4 1


 8 7 9 5

4 3 3 1
2 1 1 0
6 7 9 8

 =

 8 7 9 5
−1/2 −3/2 −3/2
−3/4 −5/4 −5/4

7/4 9/4 17/4

 . (1.62)

Now the second and fourth rows are interchanged with P2: 1
1

1
1


 8 7 9 5

−1/2 −3/2 −3/2
−3/4 −5/4 −5/4

7/4 9/4 17/4

 =

 8 7 9 5
7/4 9/4 17/4
−3/4 −5/4 −5/4
−1/2 −3/2 −3/2

 .
(1.63)

With multiplication by M2 the second elimination step looks like: 1
1

3/7 1
2/7 1


 8 7 9 5

7/4 9/4 17/4
−3/4 −5/4 −5/4
−1/2 −3/2 −3/2

 =

 8 7 9 5
7/4 9/4 17/4

−2/7 4/7
−6/7 −2/7


(1.64)

Interchanging the third and fourth rows now with P3: 1
1

1
1


 8 7 9 5

7/4 9/4 17/4
−2/7 4/7
−6/7 −2/7


 8 7 9 5

7/4 9/4 17/4
−6/7 −2/7
−2/7 4/7

 . (1.65)

The final elimination step is obtained with M3: 1
1

1
−1/3 1


 8 7 9 5

7/4 9/4 17/4
−6/7 −2/7
−2/7 4/7

 =

 8 7 9 5
7/4 9/4 17/4

−6/7 −2/7
2/3

 .
(1.66)

�

16

Remark: The name “partial” pivoting comes from the fact that only the cur-
rent column is searched for a suitable pivot. A more exhausting pivoting strat-
egy is complete pivoting, in which the entire remaining unreduced sub matrix is
searched for the largest entry, which is then permuted into the diagonal pivot
position. �

Algorithm: LU factorization by Gaussian elimination with Partial Pivoting:

for k = 1 to n− 1
#[loop over column]
Find index p such that
|apk| ≥ |aik| for k ≤ i ≤ n
#[search for pivot in current column]

if p 6= k then
interchange rows k and p
#[interchange rows if needed]

endif
if akk = 0 then

continue with next k
#[skip current column if zero]

endif
for i = k + 1 to n

mik = aik/akk
#[compute multipliers for each column]

endfor
for j = k + 1 to n

for i = k + 1 to n
aij = aij −mikakj
#[transformation to remaining submatrix]

endfor
endfor

endfor

2.4. Gauss-Jordan elimination for inverse matrix

We have seen in Gaussian elimination that the LU factorization transforms a
general matrix into a triangular form which becomes easier to solve than the
original linear system. Can we extend this transformation technique bit further
so that we can possibly obtain a system that is even easier than the triangular
form? The answer is yes.

We notice that a diagonal linear system appears to be the next desirable
target. This method is called Gauss-Jordan elimination and is a variation of
standard Gaussian elimination in which the matrix is reduced to diagonal form
rather than merely a triangular form.

17

Quick summary: Gauss-Jordan elimination can be illustrated as in the fol-
lowing pictorial steps:

 ∗ ∗ ∗ ∗∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 −→

 1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 −→
 1 0 ∗ ∗

0 1 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 (1.67)

−→

 1 0 0 ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 ∗

 −→
 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 (1.68)

�

Definition: Let us introduce a form called augmented matrix of the system
Ax = b which writes the n× n matrix A and the n-vector b together in a new
n× (n+ 1) matrix form: [

A
∣∣∣b] . (1.69)

The use of augmented matrix allows us to write each transformation step of the
linear system (i.e., both A and b) in a compact way.

Example: Consider the following system using Gauss-Jordan elimination with-
out pivoting:

x1 +x2 +x3 = 4
2x1 +2x2 +5x3 = 11
4x1 +6x2 +8x3 = 24

, (1.70)

which can be put in as an augmented matrix form:
1 1 1

∣∣∣ 4

2 2 5
∣∣∣ 11

4 6 8
∣∣∣ 24

 . (1.71)

First step is to annihilate the first column:
1 1 1

∣∣∣ 4

2 2 5
∣∣∣ 11

4 6 8
∣∣∣ 24

 M1−−→


1 1 1

∣∣∣ 4

0 0 3
∣∣∣ 3

0 2 4
∣∣∣ 8

 , where M1 =

 1
−2 1
−4 1

 .
(1.72)

Next we permute:
1 1 1

∣∣∣ 4

0 0 3
∣∣∣ 3

0 2 4
∣∣∣ 8

 P1−−→


1 1 1

∣∣∣ 4

0 2 4
∣∣∣ 8

0 0 3
∣∣∣ 3

 , where P1 =

 1
1

1

 . (1.73)

18

Next row scaling by multiplying a diagonal matrix D1:
1 1 1

∣∣∣ 4

0 2 4
∣∣∣ 8

0 0 3
∣∣∣ 3

 D1−−→


1 1 1

∣∣∣ 4

0 1 2
∣∣∣ 4

0 0 1
∣∣∣ 1

 , where D1 =

 1
1/2

1/3

 .
(1.74)

Next annihilate the remaining upper diagonal entries in the third column:
1 1 1

∣∣∣ 4

0 1 2
∣∣∣ 4

0 0 1
∣∣∣ 1

 M2−−→


1 1 0

∣∣∣ 3

0 1 0
∣∣∣ 2

0 0 1
∣∣∣ 1

 , where M2 =

 1 −1
1 −2

1

 .
(1.75)

Finally, annihilate the upper diagonal entry in the second column:
1 1 0

∣∣∣ 3

0 1 0
∣∣∣ 2

0 0 1
∣∣∣ 1

 M3−−→


1 0 0

∣∣∣ 1

0 1 0
∣∣∣ 2

0 0 1
∣∣∣ 1

 , where M3 =

 1 −1
1

1

 .
(1.76)

�

In this example the right hand side is a single n-vector. What happens if we
perform the same procedure using multiple n-vectors? In other words, consider
now a new choice of the right hand side in the form of n×n augmented matrix:[

b1

∣∣∣b2

∣∣∣ · · · ∣∣∣bn

]
. (1.77)

We see that the same operation can easily be performed simultaneously on in-
dividual bi, 1 ≤ i ≤ n.

Especially, if we choose bi = [0, · · · , 1, · · · , 0]T with unity at ith entry, then

the collection of vectors
[
b1

∣∣∣b2

∣∣∣ · · · ∣∣∣bn

]
actually becomes the identity matrix I.

In this case we see that Gauss-Jordan elimination yields the inverse of A:[
A
∣∣∣ [b1

∣∣∣b2

∣∣∣ · · · ∣∣∣bn

]]
=
[
A
∣∣∣I] −→ · · · −→ [

I
∣∣∣A−1] . (1.78)

Remark: Although the resulting diagonal system in GJ provides an easier way
to obtain the final solution than the back-substitution in triangular form, the
elimination process of GJ is much more expensive requiring about n3/2 multipli-
cations and a similar number of additions, which is 50 percent more expensive
than standard Gaussian elimination. Therefore, in practice, GJ is not a pre-
ferred way to compute linear systems. �

19

Remark: Then why do we learn GJ at all? Because it is straightforward, un-
derstandable, solid as a rock, and an exceptionally good “psychological” backup
for those times that something is going wrong and you think it might be your
linear-equation solver. �

2.5. Cholesky factorization for symmetric positive definite systems

Thus far we have assumed that the linear system has a general matrix and is
dense, meaning that majority of the matrix entries are nonzero. On the other
hand, there are some special cases we can seek for improved efficiency in both
working and storing data when operating on some special matrices.

Some examples of special properties of real matrix A that can be exploited
include the following:

• Symmetric: A = AT , i.e., aij = aji for all i, j.

• Positive definite: xTAx > 0 for all x 6= 0.

• Banded: aij = 0 for all |i − j| > β, where β is the bandwidth of A. An
important special case is a tridiagonal matrix, for which β = 1.

• Sparse: most entries of A are zero.

Remark: The properties defined above for real matrices have analogues for
complex matrices. In the complex case the usual matrix transpose (denoted by
T) is replaced by the conjugate transpose (denoted by H). For instance, the
conjugate transpose of a complex matrix A is denoted as

AH = āji, (1.79)

where āji represents complex conjugate for each matrix entry. �

Remark: For a real matrix A, AH = AT . �

Definition: An analog to the real symmetric matrix in complex matrix is called
Hermitian matrix if

A = AH . (1.80)

Definition: Similarly, a complex matrix A is called positive definite if

xHAx > 0, for all complex vector x 6= 0. (1.81)

Definition: If the matrix A symmetric and positive definite (SPD), then an
LU decomposition of A indicates that

UTLT = (LU)T = AT = A = LU, (1.82)

20

so that U = LT , that is, A = LLT , where L is lower triangular and has positive
diagonal entries (but not in general, a unit diagonal). This is known as the
Cholesky factorization of A.

Remark: Since U = LT , Cholesky factorization is twice faster than the stan-
dard Gaussian elimination. �

Example: Let us begin with considering a simple 2 × 2 case of a symmetric
positive definite matrix decomposition:[

a11 a21
a21 a22

]
=

[
l11 0
l21 l22

] [
l11 l21

0 l22

]
. (1.83)

This implies we have

l11 =
√
a11, (1.84)

l21 = a21/l11, (1.85)

l22 =
√
a22 − l221. (1.86)

�

The algorithm of CF can be generalized as follow:

Algorithm: Cholesky factorization (decomposition):

for k = 1 to n
#[loop over column]
akk =

√
akk

for i = k + 1 to n
aik = aik/akk
#[scale current column]

endfor
for j = k + 1 to n

for i = k + 1 to n
aij = aij − aikakj
#[from each remaining column,
subtract multiple of current column]

endfor
endfor

endfor

Note: There is a number of facts about the CF algorithm that make it very
attractive and popular for symmetric positive definite matrices:

• In the above Algorithm we see that the Cholesky factor L overwrites the
original matrix A, without requiring a separate storage space for L.

21

• The n square roots required are all of positive numbers, therefore CF is
well-defined.

• No pivoting is required for numerical stability.

• Only the lower triangle of A (e.g., a11, a21, a22) is accessed and hence the
strict upper triangular potion (e.g., a12) need not be stored.

• Only about n3/6 multiplications and a similar number of additions are
required.

• In all, CF requires only about half as much work and half as much stor-
age as are required for LU factorization of a general matrix by Gaussian
elimination.

�

Example: To illustrate the algorithm, we compute the CF of the symmetric
positive definite (SPD) matrix

A =

 3 −1 −1
−1 3 −1
−1 −1 3

 (1.87)

Step1: Dividing the first column by
√

3 ≈ 1.7321 from the first for-loop: 1.7321
−0.5744 3
−0.5744 −1 3

 (1.88)

Step2: Second column update from the second for-loop: 1.7321
−0.5744 3− (−0.5744)2

−0.5744 −1− (−0.5744)(−0.5744) 3− (−0.5744)(−0.5744)


=

 1.7321
−0.5744 2.6667
−0.5744 −1.3333 2.6667

 (1.89)

We are now done with the first iteration of the outer most for-loop (i.e., k = 1),
and move on to the next one, k = 2.

Step4: Second column scaling from the first for-loop: 1.7321
−0.5744 2.6667/

√
2.6667

−0.5744 −1.3333/
√

2.6667 2.6667


=

 1.7321
−0.5744 1.6330
−0.5744 −0.8165 2.6667

 (1.90)

22

Step5: Third column update from the second for-loop: 1.7321
−0.5744 1.6330
−0.5744 −0.8165 2.6667− (−0.8165)2


=

 1.7321
−0.5744 1.6330
−0.5744 −0.8164 2.0

 (1.91)

We are now done with the second iteration of the outer most for-loop (i.e.,
k = 2), and move on to the next one, k = 3. In this case, there is nothing to
be done in the second for-loop as j = k + 1 = 4 which is beyond the size of the
matrix.

Step6: Third column scaling from the first for-loop:

L =

 1.7321
−0.5744 1.6330
−0.5744 −0.8164 2.0/

√
2.0


=

 1.7321
−0.5744 1.6330
−0.5744 −0.8164 1.4142

 (1.92)

�

2.6. Short Discussion on Operation Counts of Gaussian elimination
and Gauss-Jordan

In general, the overall operation count of seeking for the solution X to the linear
system AX = B, where A is an n×m matrix, X is an m×m matrix, and

B =
[
b1

∣∣∣b2

∣∣∣ · · · ∣∣∣bm

]
, an n×m matrix, (1.93)

can be found out to be (see more details in one of our references Numerical
Recipes):

• Gaussian elimination: O(n
3

3 + n2m
2 + n2m

2)

• Gauss-Jordan: O(n3 + n2m)

Note: The above quick estimation tells us that GE is about a factor 3 advan-
tage over GJ for small number of m << n, e.g., m = 1. �

Note: One also can see that (again, see Numerical Recipes for more logical
discussion) for matrix inversion, the two methods turn out to be identical in
performance. �

23

2.7. Crout’s Method for LU decomposition

As yet another variant of Gaussian elimination method we consider a more com-
pact transformation method, called Crout’s method, that allows to convert A to
L and U directly, including an efficient storage algorithm of entries of them.

Recall that the previous LU decomposition method using Gaussian elim-
ination, with or without pivoting, does not provide both L and U simulta-
neously during the calculation steps. Rather we first compute the upper tri-
angular matrix U, and we separately compute the lower triangular matrix by
multiplying elimination matrices Mi. The solution x is then evaluated by the
back-substitution. One can say that the Cholesky factorization algorithm does
provide both L and U simultaneously but it CF is only limited to a special case
for symmetric positive definite systems.

The Crout’s algorithm can be applied for any general (dense) n× n matrix
A and directly decomposes A into L and U, A = LU, and hence

b = Ax = (LU)x = L(Ux). (1.94)

This can be further broken into two successive linear systems:

Ly = b, (1.95)

Ux = y. (1.96)

Notice that Eq. 1.95 can be solved by forward-substitution, which is analogous
to the back-substitution in Eq. 1.96.

The idea in Crout’s method is to consider an efficient method to decompose
A = LU. Putting this in a 4× 4 component form for instance, l11

l21 l22
l31 l32 l33
l41 l42 l43 l44


 u11 u12 u13 u14

u22 u23 u24
u33 u34

u44

 =

 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 .
(1.97)

We first note that there are 16 equations and 4×5
2 = 10 unknowns for each

lij and uij (20 total unknowns), hence the system can’t be solved. However, we
can overcome this difficulty by imposing

lii = 1, (1.98)

as can be observed experimentally in Eq. 1.32. This then removes 4 unknowns
from L, whereby we can easily solve for L and U, given A: 1

l21 1
l31 l32 1
l41 l42 l43 1


 u11 u12 u13 u14

u22 u23 u24
u33 u34

u44

 =

 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 .
(1.99)

24

2.7.1. First try without pivoting We see that we can write the relation in Eq.
1.99 as (n = 4 in our example)

aij =

n∑
k=1

likukj =

min(i,j)∑
k=1

likukj , (1.100)

since {
lik = 0 if k > i
ukj = 0 if k > j

(1.101)

Evaluating first few steps, we get:

• Step 1:
For i = 1,

a1j =
1∑

k=1

l1kukj = u1j ,∀j. (1.102)

This completes evaluations denoted by u1j which can be simply stored in
the position of corresponding a1j . u11 u12 u13 u14

a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 . (1.103)

Now for i ≥ 2, j = 1,

ai1 =
1∑

k=1

likuk1 = li1u11, ∀i ≥ 2,∀j, (1.104)

hence,

li1 =
ai1
u11

, ∀i ≥ 2. (1.105)

This completes evaluations denoted by li1 that can stored in the place of
corresponding ai1:  u11 u12 u13 u14

l21 a22 a23 a24
l31 a32 a33 a34
l41 a42 a43 a44

 . (1.106)

• Step 2:
Now for i = 2,

a2j =
2∑

k=1

l2kukj = l21u1j + 1 · u2j ,∀j, (1.107)

25

giving
u2j = a2j − l21u1j , ∀j. (1.108)

This completes evaluations denoted by u2j which can be simply stored in
the position of corresponding a2j : u11 u12 u13 u14

l21 u22 u23 u24
l31 a32 a33 a34
l41 a42 a43 a44

 . (1.109)

Similarly, for i ≥ 3, j = 2, we get:

ai2 =
2∑

k=1

likuk2 = li1u12 + li2u22, ∀i ≥ 3, (1.110)

giving

li2 =
ai2 − li1u12

u22
,∀i ≥ 3. (1.111)

This completes evaluations denoted by li2 which can be simply stored in
the position of corresponding ai2: u11 u12 u13 u14

l21 u22 u23 u24
l31 l32 a33 a34
l41 l42 a43 a44

 . (1.112)

• Step 3: We repeat the same process until the end.

We can generalize this and write Crout’s algorithm without pivot as

Algorithm: Crout’s algorithm without pivot:

for k = 1 to n
#[sweep though Step1, Step2, etc.]
for j = k to n

ukj = akj −
∑k−1

m=1 lkmumj

#[fill out each row]
#[this can be stored at akj]

endfor
for i = k + 1 to n

lik = 1
ukk

(
aik −

∑k−1
m=1 limumk

)
#[fill out subdiagonal entries of each column]
#[this can be stored at aik]

endfor
endfor

26

2.7.2. Second try with pivoting The previous attempt of designing the Crout’s
algorithm does not facilitate to provide any pivoting, which is essential to sta-
bility and accuracy, as the order of processes (i.e., Steps) alternates rows and
columns, which is not suitable for pivoting. Also, such an implementation will
significantly slows down array handling in both Fortran and C because the use
of indices i, j are adjacent at all.

We can rectify the situation by re-ordering the operations to column-wise
operation only by postponing the row-wise evaluation (i.e., no alternating col-
umn fill and row fill, but just column fill) so that the algorithm allows a partial
pivoting.

The modified algorithm can be written as:

Algorithm: Crout’s algorithm with column-wise only:

for j = 1 to n
#[loop over column]
for i = 1 to j

uij = aij −
∑i−1

m=1 limumj

#[fill out each row]
#[this can be stored at aij]

endfor
for i = j + 1 to n

lij = 1
ujj

(
aij −

∑j−1
m=1 limumj

)
#[fill out subdiagonal entries of each column]
#[this can be stored at aij]

endfor
endfor

Figure 3. Column-wise operation of Crout’s algorithm, delaying the row fill
operation until later.

27

The Crout’s algorithm with partial pivoting can be written as:

Algorithm: Crout’s algorithm with implicit pivoting:

for i = 1 to n
scale(i) = max1≤j≤n |aij |
#[loop over rows to get max]

endfor

for j = 1 to n
#[loop over column]
for i = 1 to j − 1

ukj = akj −
∑k−1

m=1 lkmumj

#[compute all uij except for ujj
which must be selected by pivoting]

endfor

for i = j to n

lij = aij −
∑j−1

m=1 limumk

#[partial evaluation of lij omitting division by ujj.
The largest of these will be the pivot ujj.
Note that this formula is correct for ujj]

pivot = maxj≤i≤n

∣∣∣ lij
scale(i)

∣∣∣
set ipivot = i for row index i that contains pivot

endfor

if j 6= ipivot then
interchange row j with row ipivot
ujj = pivot
#[switch rows if max pivot is found]
record the switch for RHS

endif
for i = j + 1 to n

lij =
lij
ujj

#[divide by ujj to complete the lij calculation]
endif

Remark: This algorithm uses implicit pivoting where each equation is first
scaled by its largest entry, then the Crout’s algorithm performed.

28

The Crout’s algorithm with partial pivoting can be written as:

Algorithm: Crout’s algorithm with partial pivoting:

for j = 1 to n
#[loop over column]
for i = 1 to j

aij = aij −
∑i−1

m=1 limumj

ipivot = i
pivot = |aj,j |
#[compute all uij except for ujj
which must be selected by pivoting]
#[The summation is zero if i− 1 < 1]

endfor

for i = j + 1 to n

aij = aij −
∑j−1

m=1 limumj

#[partial evaluation of lij omitting division by ujj.
The largest of these will be the pivot ujj.
Note that this formula is correct for ujj]
#[The summation is zero if j − 1 < 1]

if pivot <
∣∣∣aij∣∣∣ then

pivot = |ai,j |
ipivot = i
#[Record a new max]

endif
endfor

if j 6= ipivot then
interchange row j with row ipivot
#[switch rows if max pivot is found]
record the switch for RHS

endif

for i = j + 1 to n
aij =

aij
ajj

#[divide by ujj to complete the lij calculation]
endif

Remark: This algorithm overwrites entries of L and U to A as shown in Fig. 3.

Remark: Notice that this type of pivoting is what we used in the Gaussian
elimination. The resulting matrix A holds the elements of both the lower and
the upper triangular matrices, arranged as in Fig. 3. Note also that the prod-
uct of the resulting lower and upper matrices LU looks slightly different from
the original matrix A because of the row swappings from the partial pivoting.

29

However, LU is equivalent to the original A except for the corresponding swaps,
or permutations, and the successive forward and backward substitutions should
give the correct solution x.

