
Chapter 2

Reviews on Partial Differential
Equations and Difference
Equations

1. Properties of PDEs

In this chapter, we study the key defining properties of partial differential equa-
tions (PDEs). First of all, there are more than one ‘independent’ variables
t, x, y, z, .... Associated to these is so called a ‘dependent’ variable u (of course
there could be more than one dependent variables) which is a function of those
independent variables,

u = u(t, x, y, z, ...) (2.1)

We now provide a bunch of basic definitions and examples on PDEs.

Definition: A PDE is a relation between the independent variables and the
dependent variable u via the partial derivatives of u.

Definition: The order of PDE is the highest derivative that appears.

Example: F (x, y, u, ux, uy) = 0 is the most general form of first-order PDE in
two independent variables x and y.

Example: F (t, x, y, u, ut, ux, uy, uxx, uxy, uyy) = 0 is the most general form of
second-order PDE in three independent variables t, x and y.

Example: ut − uxx = 0 is a second-order PDE in two independent variables t
and x.

Example: uxxxx+(uy)3 = 0 is a fourth-order PDE in two independent variables
x and y.
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Definition: L is called a linear operator if L(u+v) = Lu+Lv for any functions
u and v.

Definition: A PDE Lu = 0 is called a linear PDE if L is a linear derivative
operator.

Definition: A PDE Lu = g is called an inhomogeneous linear PDE if L is a
linear derivative operator and if g 6= 0 is a given function of the independent
variables. If g = 0, it is called a homogeneous linear PDE.

Example: The following PDEs are homogeneous linear:
ut + ux = 0 (transport); ut + xux = 0 (transport); uxx + uyy = 0 (Laplace’s
equation)

Example: The following PDEs are homogeneous nonlinear:
ut +uux = 0 (Burgers’ equation with shock wave); utt−uxx +u3 = 0 (wave with
interaction); ut + uux + uxxx = 0 (dispersive wave);

Example: The following PDEs are inhomogeneous linear:
cos(xy2)ux − y2uy = tan(x2 + y2)

Remark: In general, we reserve t for the temporal variable, and x, y and z
for the three spatial variables in modeling PDEs for fluid dynamics, physical
phenomena, etc. in the usual sense, i.e., three spatial dimension with one time
dimension.

2. Well-posedness of PDEs

When solving PDEs, one often encounters a problem that has more than one
solution (non-uniqueness) if few auxiliary conditions are imposed. Then the
problem is called underdetermined. On the other hand, if too many conditions
are given, there may be no solution at all (non-existence) and in this case, the
problem is overdetermined.

The well-posedness property of PDEs is therefore required in order for us to
enable to solve the given PDE system successfully. Well-posed PDEs of proper
initial and boundary conditions follows the following fundamental properties:

1. Existence: There exists at least one solution u(x, t) satisfying all these
conditions,

2. Uniqueness: There is at most one solution,

3. Stability: The unique solution u(x, t) depends in a stable manner on the
data of the problem. This means that if the data are changed a little, the
corresponding solution changes only a little as well.
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3. Classifications of Second-order PDEs

PDEs arise in a number of physical phenomena to describe their natures. Some
of the most popular types of such problems include fluid flows, heat transfer,
solid mechanics and biological processes. These types of equations often fall
into one of three types, (i) hyperbolic PDEs that are associated with advection,
(ii) parabolic PDEs that are most commonly associated with diffusion, and (iii)
elliptic PDEs that most commonly describe steady states of either parabolic or
hyperbolic problems.

In reality, not many problems fall simply into one of these three types,
rather most of them involve combined types, e.g., advection-diffusion problems.
Mathematically, however, we can rather easily determine the type of a general
second-order PDEs, which we are going to briefly discuss here.

In general, let’s consider the PDE of form with nonzero constants a11, a12,
and a22:

a11uxx + 2a12uxy + a22uyy + a1ux + a2uy + a0u = 0, (2.2)

which is a second-order linear equation in two independent variables x and y
with six constant coefficients.

Theorem: By a linear transformation of the independent variables, the equa-
tion can be reduced to one of three forms:

1. Elliptic PDE: if a2
12 < a11a22, it is reducible to

uxx + uyy + L.O.T = 0 (2.3)

where L.O.T denotes all the lower order terms (first or zeroth order terms).

2. Hyperbolic PDE: if a2
12 > a11a22, it is reducible to

uxx − uyy + L.O.T = 0 (2.4)

3. Parabolic PDE: if a2
12 = a11a22 (the condition for parabolic is in between

those of elliptic and hyperbolic), it is reducible to

uxx + L.O.T = 0 (2.5)

Remark: Notice the similarity between the above classification and the one in
analytic geometry. We know from analytic geometry that, given (again assuming
nonzero constants a11, a12, and a22)

a11x
2 + 2a12xy + a22y

2 + a1x+ a2y + a0 = 0, (2.6)

Then Eq. 2.6 becomes

1. Ellipsoid if a2
12 < a11a22
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2. Hyperbola if a2
12 > a11a22

3. Parabola if a2
12 = a11a22.

Note again that parabola is in between ellipsoid and hyperbola. See Fig. 1 for
an illustration.

Figure 1. Three major types of conic section from analytic geometry –
Image source: Wikipedia

Example: uxx − 5uxy = 0 is hyperbolic; 4uxx − 12uxy + 9uyy + uy = 0 is
parabolic; 4uxx + 6uxy + 9uyy = 0 is elliptic.

Example: The wave equation is one of the most famous examples in hyperbolic
PDEs. We write the wave equation as

utt = c2uxx for −∞ < x <∞, c 6= 0. (2.7)

Factoring the derivative operator, we get( ∂
∂t
− c ∂

∂x

)( ∂
∂t

+ c
∂

∂x

)
u = 0 (2.8)

Considering the characteristic coordinates ξ = x+ ct and η = x− ct, we obtain

0 =
( ∂
∂t
− c ∂

∂x

)( ∂
∂t

+ c
∂

∂x

)
u =

(
− 2c

∂

∂ξ

)(
2c

∂

∂η

)
u (2.9)

Hence, we conclude that the general solution must have a form u(x, t) = f(x+
ct)+g(x−ct), the sum of two functions, one (g) is a wave of any shape traveling
to the the right at speed c, and the other (f) with another arbitrary shape travel-
ing to the the left at speed c. We call the two families of lines, x±ct = constant,
the characteristic lines of the wave equation.
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Example: One very simple and famous example in the parabolic PDEs is so
called the diffusion equation

ut = kuxx, with k constant and (x, t) ∈ D × T (2.10)

One of the important properties in the diffusion equations is to have the maxi-
mum principle. Recall that the maximum principle says if u(x, t) is the solution
of Eq. 2.10 on D×T = [xmin, xmax]× [T0, T1] in space-time, then the maximum
value of u(x, t) is assumed only on the initial and domain boundary of D × T .
That is, the maximum value only occurs either initially at t = T0 or on the sides
x = xmin or x = xmax.

Remark: The fundamental properties of the two types of PDEs can be briefly
compared in the following table. The physical meanings in Table 1 are also
illustrated in Fig. 2 and Fig. 3.

Table 1. Comparison of Waves and Diffusions: Fundamental properties of
the wave and diffusion equations are summarized.

Property Waves Diffusions

(1) speed of propagation finite (≤ c) ∞
(2) singularities for t > 0? transported along charac-

teristics (with speed = c)
lost immediately

(3) well-posed for t > 0? yes yes (at least for bounded
solutions)

(4) well-posed for t < 0? yes no
(5) maximum principle? no yes
(6) behavior as t→∞ energy is constant so does

not decay (i.e., simple ad-
vection without diffusion)

decays to zero

(7) information transported lost gradually

4. Discretization

We consider the cell-centered (rather than cell interface-centered) notation for
discrete cells xi and the conventional temporal discretization tn:

xi = (i− 1

2
)∆x, i = 1, ..., N, (2.11)

tn = n∆t, n = 0, ...M. (2.12)

Then the cell interface-centered grid points are written using the ‘half-integer’
indices:

xi+ 1
2

= xi +
∆x

2
. (2.13)
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Figure 2. Domain and boundaries for the solution of hyperbolic PDEs in
2D. Note that any information or disturbance introduced at p is going to
affect only the region called the ‘region of influence’ but nowhere. Such infor-
mation is propagated with the finite advection speed along the characteristic
surface which forms the conic region of influence. On the other hand, if the
characteristic surface can be extended backward in time to the place where
the initial data is imposed, this forms another conic section on the lower part
of the figure which is called the ‘domain of dependence’.

Definition: Let uni = u(xi, t
n) be the pointwise values of the exact solution of

a given PDE at discrete points (xi, t
n). This is the analytical solution of the

PDE and satisfies it without any form of numerical errors.

Definition: Let Un
i be the numerical approximations to the exact solution

of the PDE. For instance, Un
i represents

Un
i ≈ uni for FDM. (2.14)

Definition: Let Dn
i be the exact solution of the associated ‘difference equation

(DE)’ of the PDE, e.g., the forward in time backward in space (FTBS):

Dn+1
i −Dn

i

∆t
= −a

Dn
i −Dn

i−1

∆x
. (2.15)

Since Dn
i is the exact solution of the DE, there is no round-off errors involved.

When we study numerical solution of PDEs, the solutions are affected by nu-
merical errors. They mainly come from two sources of numerical errors, and we
are now ready to define them.
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Figure 3. Domain and boundaries for the solution of parabolic PDEs in 2D.
Note that from a given point p in the mid plane, there is only one physically
meaningful direction that is positive in t. Therefore, any information at p
influences the entire region onward from p, called the ’region of influence’.
Such information can only marches forward in time under the assumption
that all boundary conditions around the surface and the initial condition are
known.

Definition: The discretization error En
d at (xi, t

n) is defined by

En
d,i = uni −Dn

i . (2.16)

Definition: The round-off error En
r,i at (xi, t

n) is defined by

En
r,i = Dn

i − Un
i . (2.17)

Definition: The global error En
g,i at (xi, t

n) is defined by

En
g,i = uni − Un

i . (2.18)

Note by definition, En
g,i = En

d,i + En
r,i.

Definition: We say that the numerical method is convergent at tn in a given
norm || · || if

lim
∆x,∆t→0

||En
g || = 0. (2.19)

Remark: We note that the discretization error En
d,i is the sum of the truncation
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error En
T,i for the DE Eq. 2.15 and any numerical errors En

B,i introduced by the
numerical handling of boundary conditions.

Remark: We define the round-off error En
r,i by the numerical errors introduced

after a repetitive number of arithmetic computer operations in which the com-
puter constantly rounds off the numbers to some significant digits.

5. The Fundamental Theorem of Numerical Methods – The Lax
Equivalence Theorem for Linear PDEs

The ultimate goal in this chapter is to show (at least partially) one of the the-
orems that is very powerful to provide us great levels of insights in numerical
differential equations. Briefly speaking, the theorem says, for linear PDEs,

consistency + (absolute) stability ⇐⇒ convergence

Let us take a moment to think about the meaning of this theorem. It says that
if the numerical scheme converges to a (weak) solution provided the scheme is
proven to be consistent (we are going to define it shortly) and stable. So, what
is good about it? The good news is that in numerically solving many PDE sys-
tems, it is often very difficult to directly show convergence of a given numerical
method because not many PDEs have their exact analytical solutions available
(see the definition of convergence in Eq. 2.19). Without guaranteeing the ex-
istence of such analytical solutions, one cannot possibly say her/his numerical
scheme converges to a mathematically meaningful and correct solution at all.

A nice workaround is instead to look at numerical stability and consistency
that are based on a recurrence property of the numerical method acting on
the discrete grid data. The Lax Equivalence theorem then indicates that such
numerical method is indeed a convergent method that produces a well-defined
weak solution. Now let’s take a look at this nice theorem in more details.

First, we define few more things.

Definition: Let N be the (linear) numerical operator mapping the approximate
solution at one time step to the approximate solution at the next time step. Then
a general explicit numerical method can be written as

Un+1
i = N (Un

i ). (2.20)

We define the one-step error En
1step,i by

En
1step,i = uni −N (un−1

i ), (2.21)

and the local truncation error En
LT,i by

En
LT,i =

1

∆t
En

1step,i. (2.22)
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We have already discussed the the order of method previously, and we now can
define it again using the local truncation error.

Definition: We say that the numerical method is of order p (or pth order
accurate) if for all sufficiently smooth data with compact support, the local
truncation error is given as

En
LT,i = O(∆tp + ∆xp). (2.23)

Remark: One can obviously introduce a method that has different orders of
accuracy in space and time, i.e., a method that is of p-th order accurate in time
and r-th order accurate in space can be defined as

En
LT,i = O(∆tp + ∆xr). (2.24)

In this case, the numerical solution in a fully resolved state – both temporally
and spatially – will exhibit its convergence rate dominated by the lower rate
between the two, i.e., assuming ∆t ≈ ∆x ≈ h � 1 the error will be dominated
by hmin{p,r}, or simply

En
LT,i = max

[
O(∆tp),O(∆xr)

]
. (2.25)

5.1. Consistency

Let’s now formally define consistency of the numerical methods.

Definition: We say the numerical method is consistent in || · || with the given
PDE if

lim
∆t,∆x→0

||En
LT || = 0 (2.26)

for all smooth functions u(x, t) that satisfies the given PDE.

Remark: In words, the numerical consistency is a measure to see if the numer-
ical operator N is in fact ‘consistent’ with the PDE of interest in a sense that
the method should introduce a small error in any one step.

Remark: On the other hand, the numerical stability is a property that the
numerical method does not produce any local errors that grow catastrophically
and hence a bound on the global error can be obtained in terms of these local
errors.

5.2. Stability Theory

The form of stability bounds in this section provides a useful information in an-
alyzing ‘linear’ methods. It has to be emphasized that for ‘nonlinear’ methods,
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the same technique we adopt for the linear method becomes hard to apply, and
therefore one has to provide a different approach to discuss nonlinear stability
(these topics will be covered in AMS 260). We limit our interest in the linear
stability theory in this chapter.

In order to assess stability of the linear PDEs, we essentially need to bound
the global error En

g,i = uni −Un
i using a recurrence relation. Applying the linear

numerical operator N to Un
i , we obtain

Un+1
i = N (Un

i ) = N (uni − En
g,i). (2.27)

The global error at tn+1 is now

En+1
g,i = un+1

i − Un+1
i (2.28)

= un+1
i −N (uni − En

g,i) (2.29)

= un+1
i −N (uni ) +N (En

g,i) (2.30)

= ∆tEn+1
LT,i +N (En

g,i). (2.31)

Note that the first term in Eq. 2.31 is the new one-step error introduced
in this time step, and this term is therefore related to the consistency control of
the numerical method. On the other hand, the second term in the parenthesis
is the effect of the numerical method on the previous global error En

g,i and this
is the term that is to do with the stability control.

Definition: We say the linear numerical method defined by the linear operator
N is stable in || · || if there is a constant C such that

||N n|| ≤ C, ∀n∆t ≤ T, (2.32)

for each time T .

Note: We note here that the superscript n on N represents the nth power of
the matrix (or linear operator) obtained by repeated applications of the linear
operator N . This is, however, not true for nonlinear operators.

Remark: In particular, the numerical method is stable if ||N || ≤ 1, since in
this case, we have

||N n|| ≤ ||N ||n ≤ 1. (2.33)

Theorem: The Lax Equivalence Theorem for linear difference methods states
that, for a well-posed consistent, linear method, stability is necessary and suffi-
cient for convergence.

A full proof can be found in a book by Richtmyer and Morton, Differ-
ence Methods for Initial-Value Problems, Wiley-Interscience, 1967, and we only
partially prove the sufficient part of the claim:

consistency + (absolute) stability =⇒ convergence
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Proof: We are going to show

lim
∆t,∆x→0

||En+1
g || = 0. (2.34)

Since N is linear, Eq. 2.31 becomes, recursively,

||En+1
g || ≤ ∆t||En+1

LT ||+ ||N (un − En
g )−N (un)|| (2.35)

= ∆t||En+1
LT ||+ ||N (En

g )|| (2.36)

≤ ∆t||En+1
LT ||+ ||N ||||E

n
g || (2.37)

≤ ∆t||En+1
LT ||+ C||En

g || (2.38)

≤ ∆t||En+1
LT ||+ C

(
||N ||||En−1

g ||+ ∆t||En
LT ||

)
(2.39)

· · · (2.40)

≤ ∆t
n+1∑
j=1

Cn+1−j ||Ej
LT ||+ Cn+1||E0

g || (2.41)

≤ D̃(n+ 1)∆t||ELT ||+ C̃||E0
g || (2.42)

= D̃tn+1||ELT ||+ C̃||E0
g ||, (2.43)

where ||ELT || = max1≤j≤n+1 ||Ej
LT ||, and for some C̃ and D̃.

Now if we let ∆t,∆x → 0, then ||E0
g || → 0, since it is the global error on

resolving the discrete initial data. It has to go to zero when the grid gets more
and more refined unless the initial data has some numerical error to start with
(i.e., ill-posed problems).

Also, if we let ∆t→ 0, then ||ELT || → 0, since the method is consistent by
assumption. Therefore, we prove ||En+1

g || → 0 as ∆x,∆t → 0, and the method
is convergent.
�

Note: It is not hard to show that the the sufficient condition also holds when
N is contractive, i.e.,

||N (P )−N (Q)|| ≤ ||P −Q||. (2.44)

Remark: One can also say the method is stable in || · || if

||Un+1|| ≤ ||Un||, (2.45)

for all n. To show this, let us assume Eq. 2.45. Recalling Un+1 = N (Un), we
have

||N (Un)||
||Un||

=
||Un+1||
||Un||

≤ 1, (2.46)
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for ||Un|| 6= 0. Since Eq. 2.46 is true for all n, we can take sup to get

sup
U 6=0

||N (U)||
||U ||

≤ 1 (2.47)

which gives
||N || ≤ 1. (2.48)

Hence Eq. 2.45 implies the method is stable.


