
1

AMS 209, Fall 2016
Final Project Type B – Numerical PDE:
Linear Advection and Diffusion Equation

1. Project Description

There are two parts in the final term project:

• Fortran implementation of a linear algebra solver in a Fortran directory,
"project/PDE",

• Python implementation of a run setup, a run scheduler, and a data visu-
alizer, in a Python directory, "project/PyRun".

1.1. Fortran Implementation

In the Fortran part of the project, you are going to implement:

• finite difference schemes (two advection schemes + one diffusion scheme),

in order to solve a linear advection-diffusion equation

ut + aux = κuxx, 0 ≤ x ≤ 1, (1)

where a is a constant advection velocity and κ ≥ 0 is a constant diffusion coef-
ficient. The CFL number Ca is set to be 1.0 in all cases.

Modular Programming: Please design your code in a modular way. A sample
structure of your code can be organized as below:

• advect diff.f90 – this is going to be your main driver routine, within
which you call the following subroutines:

– grid init.f90 – this sets up the grid configuration

– diffuse init.f90 – this sets up an initial condition for diffusion

– diffuse update.f90 – this updates (only) the diffusion equation

– advect init.f90 – this sets up an initial condition for advection

– advect update.f90 – this updates (only) the advection equation

∗ upwind.f90 – this implements the upwind method

∗ centered.f90 – this implements the centered scheme

– cfl.f90 – this calls the CFL condition for diffusion or advection

– bc.f90 – this applies boundary conditions, periodic or outflow

– check error.f90 – this checks the exit condition for convergence

– write data.f90 – this outputs your results to a file, output N.dat
for a set of t = {Ntmax}N = {0.0, 0.2tmax, 0.5tmax, 0.8tmax, tmax}, i.e.,
N = 0, 0.2, 0.5, 0.8, 1.0.

2

Makefile: Please compile your code using a makefile (Executing make with
Python is also optional.). When coding, please make sure you use useful debug-
ging Fortran flags for easy debugging processes, for instance, with gdb. Later,
you run your code with optimization flags only after you are convinced with the
code. See sections on Fortran Flags and Makefiles in the lecture note.

1.1.1. 1D Diffusion Let a = 0 in Eq. (1). The resulting equation is the
classical homogeneous heat equation (or diffusion equation) of the form

ut = κuxx (2)

with κ > 0.

Discretization: Write a Fortran program in order to numerically solve Eq.
(2). Use the finite difference scheme in Eq. (21) in the reading material.

Initial condition: The initial condition is described as:

u0(x) =

{
0◦F for 0 ≤ x < 1,

100◦F for x = 1.
(3)

Boundary condition: The boundary condition is given so as to hold the tem-
perature u to be zero at x = 0 and 100◦ F at x = 1 for t ≥ 0 (i.e., in Eq. (9) of
the reading material, we have un0 = 0◦F and unN+1 = 100◦F.).

Material properties Your numerical scheme solves for temporal evolutions
of a material diffusivity of copper with κ = 1.156cm2/sec.

Questions:
(a) Choose a time tmax sec at which the temperatures of the materials reach to a
steady state solution for κ = 1.156. Note that you need a criterion to determine
tmax. The maximum steady-state time step tmax can be determined when the
L1 error En is less than a threshold value ε:

||En||1 = ∆x
N∑
i=1

|uni − un−1
i | < ε. (4)

Use ε = 10−4. Use the grid sizes of N = 32 and 128. Write outputs into files at
t = 0.2tmax, 0.5tmax, 0.8tmax and tmax.

(b) Is there any difference in solution between the two different grid resolu-
tions, say, in terms of number of steps to reach tmax?

(c) What happens if your ∆tdiff fails to satisfy the CFL condition in Eq. (23)
of the reading material for the given κ?

(d) What is your value of tmax for κ = 1.156?

3

1.1.2. 1D Advection Let κ = 0 in Eq. (1) now, with a > 0. The resulting
equation in this case, is the linear scalar advection equation of the form

ut + aux = 0. (5)

Use a = 1.

Discretization: Write a Fortran code to implement two different finite dif-
ference schemes for advection (see the reading material):

• 1st order accurate upwind scheme in Eq. (30),

• 2nd order accurate centered scheme in Eq. (32).

Initial condition: An initial condition is given as follow:

• smooth continuous initial profile,

u(x, 0) = sin(2πx). (6)

Boundary condition: We are going to use a periodic boundary condition
for the smooth sine wave advection. Consider using a discrete domain with N
cell-centered grid points

xi = (i− 1

2
)∆x, ∆x =

1

N
, i = 1, · · · , N. (7)

Using one layer of guard cell (GC) on each side of the domain, we have one extra
GC point through which we will impose the boundary conditions. At the left
boundary, we have GC whose coordinate is

x0 = −∆x

2
, (8)

and at the right boundary we get

xN+1 = (N +
1

2
)∆x. (9)

With these GCs, the periodic boundary condition on the GC regions can
be implemented as

un0 = unN , (10)

unN+1 = un1 . (11)

Questions:
(e) Find a time tmax sec analytically at which the sine wave makes a one periodic
cycle to the initial location.

(f) Choose two grid resolutions of sizes N = 32 and 128 as in the diffusion
case, and run the two different finite difference schemes. Please make sure you

4

satisfy the CFL condition for advection in Eq. (19) (or Eq. (29)) of the read-
ing material. Identify any finite difference scheme(s) that work(s) well for the
sine wave. You are expected to obtain results that look similar to Figure 2 of
the reading material. Identify any good and bad scheme(s) for the smooth sine
advection.

(g) Choose your best working scheme for the sine wave and run it, but this
time, with a large ∆tadv that does not satisfy the CFL condition. What do you
see?

1.1.3. 1D Advection-Diffusion You now study a full advection and diffusion
equation in Eq. (1) with κ > 0 and a = 1. The two PDEs (advection and
diffusion) can be combined in a sequential way, i.e., advection first, followed by
diffusion. This technique is called the “operator splitting” method where you
first solve the advection part using one of the two advection methods, taking uni
as an initial condition,

u∗i = uni − a∆tDxu
n
i , (12)

followed by the diffusion update, taking the adjectively updated intermediate
solution u∗i as its initial condition,

un+1
i = u∗i + κ∆tD2

xu
∗
i . (13)

Note that Dx represents one of the differencing schemes for the first derivative
(Eqs. (30) – (37) of the reading material), whereas D2

x represents the centered
differencing diffusion operator (Eq. (22) of the reading material) for the second
derivative.

Questions:
(h) Find analytically a diffusion coefficient κ > 0 such that ∆tadv = ∆tdiff on
N = 32. Use Ca = 1. Pick and run your advection method which produced
numerical instability (upwind or centered, or both?) in the sine advection in the
pure advection mode with κ = 0. Does non-zero diffusion κ help to suppress the
numerical instabilities you observe with κ = 0?

1.2. Python Implementations

You use Python to produce various plots of the Fortran outputs:

• Run setup and run scheduler: these are optional in Project Type B. Please
explore how you can organize your runs better using Python, but again,
this is optional.

• Solution visualizer:

– Plots for Q (a): Produce two cases of the diffusion runs N = 32, 128
each of which contains four subfigures using plt.subplots(2,2,i),
i=1,2,3,4 for t = 0.2tmax, 0.5tmax, 0.8tmax and tmax.

5

– Plots for Q (f): Produce two cases of the advection runs N = 32, 128,
each of which runs with both the upwind and the centered methods.
Plot all four cases using plt.subplots(2,2,i), i=1, ..., 4.
Subfigures in the first column (plt.subplots(2,2,i), i=1,2)
display the sine wave solutions with the upwind scheme for N =
32, 128, and subfigures in the second column (plt.subplots(2,2,i),
i=3,4) show the sine wave solutions with the centered scheme for
N = 32, 128. In each figure, plot both the initial profile at t = 0 and
the final profile at tmax.

– Plot for Q (g): Plot one with ∆tadv < ∆x/|a|, and another one with

∆tadv > ∆x/|a|. You can do this, for instance, using Ca = 0.9 and
Ca = 1.2, where ∆tadv = Ca∆x/|a|. Again, in each case, plot both
the initial profile at t = 0 and the final profile at tmax.

– Plot for Q (h): One plot for this.

1.3. LaTeX Report

Write your final report using LaTeX (7-page limit including figures). You have
to write three parts in your report:

• Abstract

• Body: methods, results, findings, comments, etc.

• Conclusion

1.4. Website Update

Upload your LaTeX report and your source codes to your website, under a new
tab, "Project".

2. Appendix: Example Matlab Code

% ---
% AMS 209 - Fall, 2016
% MATLAB code for 1D heat diffusion
% u_t = kappa *u_xx
% Written by Prof. Dongwook Lee
% AMSC, UCSC
% --
clf;
clear all;

%grid resolution
xa=0.;
xb=1.;

N=16;
dx = (xb-xa)/N;

6

%discrete domain
x=linspace(0.5*dx,xb-0.5*dx,N);

% fixed BC
g0=0.;
g1=100.;
% IC
u(1) = g0;
u(2:N+1)=0;
u(N+2)=g1;

% diffusion coefficient
kappa=1.156;

% CFL & dt
Ca = 0.8;
dt= this is your CFL satisfying dt
t=0;
tmax=?;

while t<tmax;
for i=2:N+1;

% solve heat diffusion for interior points
% finite difference implementation goes here (one line)

end

%update t
t=t+dt;

% update BC
uNew(1) =g0;
uNew(N+2)=g1;

% store your solution array
u=uNew;

end

